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ABSTRACT Idiopathic toe walking (ITW) is a gait abnormality in which children toe touch at initial contact
and demonstrate limited or no heel contact throughout the gait cycle. Toe walking results in poor balance,
increased risk of falling, and developmental delays among children. Identifying toe walking steps during
walking can facilitate targeted intervention among children diagnosed with ITW. With recent advances in
wearable sensing, communication technologies, and machine learning, new avenues of managing toe walking
behavior among children are feasible. In this study, we investigate the capabilities of Machine Learning (ML)
algorithms in identifying initial foot contact (heel strike versus toe strike) utilizing wearable body sensors.
Thirty-six children (Age 9.442.8 years) diagnosed with ITW participated in this study. Six ML algorithms,
consisting of Support Vector Machines (SVM), decision tree (DT), random forest (RF), K-nearest neighbors
(KNN), Multi-layer Perceptron (MLP), and Gaussian process (GP), could successfully classify initial contact
walking patterns among ITW. We found that a simple KNN algorithm resulted in the highest accuracy of
92.92% and F1-score of 93.20% to differentiate toe walking gait versus best heel strike when using all four
body sensors. We also found that toe walking resulted in higher variability in the sacral vertical accelerations
among children diagnosed with ITW. Accurate quantification of toe walking steps in clinical applications is
critical for assessing rehabilitation progress and designing new interventions for children diagnosed with
ITW.

INDEX TERMS Best Heel Strike (BHS), Gait, Idiopathic Toe Walking (ITW), Inertial Measurement Unit
(IMU), Machine Learning (ML)

I. INTRODUCTION

Toe walking is a gait abnormality described by clinicians as
toe-to-toe touch initial contact of the foot [1]. Persistent toe-
walking without treatment may lead to increased risk of
tripping or falling [2], leg pain [3], impaired muscle and motor
coordination [4], and develop structural abnormalities [5].
Children with autistic spectrum disorders, cerebral palsy,
muscular dystrophy, intellectual disabilities, etc., have an
increased likelihood of exhibit toe walking characteristics but
toe walking also observed in healthy children with no signs of
a neurological, orthopedic, or psychological condition [6, 7]
and referred to as Idiopathic Toe Walking (ITW) [1]. At six

years of age, approximately one out of every 20 children
demonstrate ITW [8-10] worldwide.

Toe walking is usually identified visually by clinical
experts. Furthermore, gait analysis utilizing laboratory-based
motion capture systems provides an accurate, objective
quantification of toe walking behavior [2, 11]. Standard
laboratory-based gait analysis protocols require specialized
laboratory equipment such as instrumented walkways, infra-
red camera-based motion capture systems, or treadmills with
embedded force plates. This laboratory assessment is
expensive and limited since it requires specialized personnel
to operate and analyze gait data. In addition, children with
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ITW frequently modify their gait in a laboratory environment
to a more normalized pattern. Thus, new systems which could
detect toe walking in natural settings are needed. Currently, no
commercial technology exists to identify toe walking (gait
type) in real-world settings and intervene in real-time for gait
correction. Rehabilitation of children diagnosed with ITW
largely depends on clinicians’ visual observations of the
child’s gait pattern or collecting feedback from parents for
their gait [12], which are observational and rely heavily on the
clinicians’ experience and judgment [12] and are error-prone.
We have earlier reported that pressure sensors [13] and
machine learning algorithms [14] could identify toe strike
events, and smart-insoles can objectively track toe strike gait
[15] among children with ITW in their natural settings.

Moreover, even after the rehabilitative intervention, there is a
tendency for these children to revert to toe walking gait. Thus,
accurate information on the number of toe strikes and how
long children walk on toes is critical. Hence, continuous gait
pattern monitoring is of high necessity to assist with clinical
decision-making and evaluate different treatment outcomes.
Recently, the emergence of embedded intelligence has
demonstrated great potential for continuous and real-time
decision-making in various fields [16]. The integration of
artificial intelligence and embedded hardware such as
wearable devices enable increased operational efficiency,
improved products and services, and enhanced performance.
Indeed, driven by the advancement of sensing technology,
several wearable sensors, e.g., inertial measurement units
(IMUs), have been increasingly employed for convenient
patient gait data collection due to the high wearability, reduced
cost, and low power consumption [7]. The unprecedented data
availability provides excellent opportunities for precise and
efficient monitoring and diagnosis of ITW by using machine
learning (ML) algorithms to mine the hidden gait pattern
automatically. ML strategies for human movement
recognition, such as neural networks, support vector machines
(SVM), decision tree (DT), have been extensively investigated
in a wide range of healthcare applications in the recent decade
due to its ability to deal with high-dimensional and nonlinear
data pattern, such as fall detection [17], Parkinson’s disease
stage prediction and severity assessment [18, 19], post-stroke
patient gait pattern classification [20], human activity
identification, e.g., walking versus running [21] and others
[22-24]. Tlias et al. [25] proposed a combination of neural
networks and SVM in classifying the gait patterns of autistic
children from normal gait. They found that the SVM model
with a polynomial kernel has the highest overall performance
for classifying normal gait among children with autism [25].
Trentzsch et al. [26] tested six machine learning algorithms to
differentiate gait between people with multiple sclerosis and
healthy controls. They found the SVM model with Radial
Basis Function (RBF) kernel could classify gait with the
highest accuracy. Chakraborty et al. [27] investigated several
regression modeling techniques to detect pathological gait.
They found multiple adaptive regression splines (MARS)

model (Accuracy=88.3%, Precision=0.89, Recall=0.87 and F1
Score=0.88)  outperformed SVM  (Accuracy=_84.8%,
Precision=0.85, Recall=0.83 and F1 Score=0.84) and logistic
regression models (Accuracy=68.5%, Precision=0.78,
Recall=0.51 and F1 Score=0.61) for gait classification.
Pendharkar et al. [28] differentiated ITW gait patterns from
normal ones, achieved accuracy of 87.5% using SVM based
on heel accelerometry data collected from five children
diagnosed with ITW and five normal healthy children.
Pendharkar and coworkers [29] developed an automated way
to assess the gait in children diagnosed with ITW through a
threshold-value based statistical method wusing heel
accelerometer data. The algorithm had an accuracy of 98.5%.
However, the robustness of this algorithm is questionable due
to changing frequency and speed during toe walking. Kim et
al. [30] investigated the capabilities of ML algorithms to detect
and differentiate heel-toe gait versus toe-toe gait using data
from a single inertial sensor. They reported that k-means
clustering was successful in differentiating toe-toe gait and
heel-toe gait signals with 82% accuracy score.

This study’s primary objective is to investigate the targeted
ML approach to identify optimal sensor placements on the
body for accurate identification of toe walking in children
diagnosed with ITW. We hypothesize that sensors at the trunk
level with statistical and frequency features would predict toe
walking characteristics since trunk carries 2/3™ of body weight
and represents movement of center of mass of body. Previous
study has reported that foot posture and function affect trunk
kinematics and lead to low back pain [31]. The secondary
objective of this study is to investigate if data inputs as
segmented gait cycles could improve the classification
accuracy of these ML models. We plan to evaluate classifier
performance using six conventional ML classifiers, including
SVM, Random Forest (RF), DT, Multi-layer Perceptron
(MLP) and Gaussian process (GP) to classify typical toe
walking versus best heel strikes.

Il. METHODS

A total of thirty-six children diagnosed with ITW (Age=9.4 +
2.8 years, Height= 53.8 = 6.6 cm, Weight=75.0 + 27.2 lbs)
participated in this study. All participants signed a written
consent form before participation that Chapman Institutional
Review Board (IRB) approved. Four wireless sensor modules
composed of Xsens MTw sensors packaged in a
47mmX30mmxX 13mm plastic housing were used. The sensors
contain 3D accelerometer and 3D rate gyroscopes to measure
acceleration and angular velocities. The sensors weighed 16g,
including the battery. The tri-axial accelerometer had a +£16g
capacity in full range, and the gyroscope had +2000°/s with a
bandwidth of 3200Hz, where g represents acceleration due to
gravity (1g =9.8 m/s?). The accelerometer’s sensitivity was
31.2 LSB/g and gyroscopes sensitivity were 14.375 LSB/s.
The sensors were affixed at the posterior sacrum, posterior
trunk at T4, left and right lateral shank just proximal to the
lateral malleoli, Figure la shows the locations where the
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sensors were affixed to the body and Figure 1b shows Xsens
Awinda sensor unit.

FIGURE 1. Representational picture a) participant with affixed
sensors at Trunk, Sacrum, Right and Left Shanks, b) Xsens Awinda
sensor unit.
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FIGURE 2. a) Typical or toe walking , b) Best Heel Strikes (BHS)
among children diagnosed with ITW

Data was collected using Xsens MT Manager Software suite.
The sampling frequency was set to 75Hz. This is largely
sufficient for human movement analysis in daily activities
which occur in band-width [0.8-5 Hz][32].

The participants were instructed to i) walk with Best Heel
Strikes (BHS), and ii) Toe Walk (TW) over a 15m long
walkway as demonstrated in Figure 2. In a well-lit motion
capture laboratory, all walking trials were conducted at the
preferred walking speed. The walkway was embedded with
two force plates (Bertec, Columbus, Ohio 43219). Typical gait
in children with ITW may be affected due to white coat
syndrome in the new testing environment, and children may
consciously present BHS during walking in clinicians’

presence. In an attempt to capture the child’s typical toe
walking, researchers asked parents if typical toe walking trials
were similar to the gait observed at home. If parents reported
it was not, researchers asked child to relax and verbally
distracted the participant until the parent reported the gait was
more similar to what they observed at home. We also
instructed participants to mimic best heel strikes (BHS) with
all participants trying their best to perform heel-to-toe gait.
Each participant walked multiple trials of each walking type
barefoot. Ten trials of 10 m walk were collected for each walk
type (toe walking and Best Heel Strike). Each 10 m walk trial
consisted of 3 to 4 gait cycles. Children with Idiopathic toe
walking characteristics walk on their toes but have capability
to make best heel strikes (BHS). Thus it is important to
identify both toe walking and BHS among children. The gait
remediation for these children would involve motor learning
to produce BHS. In essence, this research is innovative in
identifying toe walking in children using inertial sensors and
could potentially be helpful in providing real-time corrective
feedback to children.

If participants did not step at the center of the force plate or
failed to perform the instructed kind of walk, the trial was
repeated. Only complete walking trials of each category
(typical and BHS walking) were used for the analysis. Figure
3 shows acceleration profiles during toe walking (TW) and
best heel strike (BHS) gait for a) anterior posterior, b) medial
lateral, c) vertical directions. The sensor was affixed at
sacrum. The blue line represents BHS, the red line represents
typical TW for children with ITW.

To investigate the efficacy of ML algorithms in differentiating
TW versus BHS utilizing sensor signals, informative features
were extracted from raw sensor data. Six ML algorithms, i.e.,
SVM, DT, RF, KNN, MLP and GP, were tested for gait
classification. Sensor data input was fed to ML algorithms in
two forms i) as a 10-second walking data and ii) truncated gait
cycle signals (Figure 3). The effects of sensor node placement
on gait classification accuracy was evaluated from i) one site
and ii) all sites. Both classification scenarios used 10 s raw
signals and truncated gait cycle signals, the best sensor
placement analysis is also presented, providing a good
reference for sensor placement prioritization.

A. FEATURE EXTRACTION

Feature extraction aims to extract informative features from
raw signals, which can improve ML algorithms’ accuracy.
Commonly used methods for feature extraction from time-
series signals are divided into two categories, statistical
methods and transforming methods. The statistical methods,
such as mean, standard deviation (SD), kurtosis, skewness
etc., measure the fluctuation of signals and do not reflect the
temporal characteristic of the signal, are the most common
feature extraction approaches in signal processing-based
applications.

Transforming methods aim at changing the signal into a
different domain (frequency domain) and visualize the
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FIGURE 3. Acceleration profiles during best heel Strikes (BHS) and Toe walking (TW) presented by children with Idiopathic Toe Walking
characteristics in a) anterior-posterior direction, b) medial-lateral direction, c) vertical direction, d) directions sensed by sensor. The shaded area
represents standard deviation of acceleration curves for three trials of all subjects. The solid lines represent mean values of the acceleration during
gait cycle. The blue solid line represents Best Heel Strike and red solid line represents toe walking trials.

TABLE 1 LIST OF TIME DOMAIN FEATURES EXTRACTED FROM THE
ACCELERATION SIGNALS

Name of . .
Feature Brief Explanation Formula
T
Mean Average values of signal %
The maximum value of
Max the signal max(x)
. The minimum value of .
Min the signal min(x)
Standard ~ Measure the dispersion I (e — X)?
deviation (SD) of a signal T—1
The asymmetry of the T )3
(e — %
Skewness probability density Ltl
function of the signal (T—-1)=SD
The sharpness of the T _ )4
Kurtosis ~ probability distribution M
of the signal (T—-1)=SD
interquartile The spread of the
ran 2 (IQR) middle half of your Q;— 0y
& distribution
the region bounded by

area under the
curve of signal

area under the
curve of the
squared signal

median
absolute
deviation
(MAD)

the signal between the
start and endpoints
the region bounded by
the square of signal
between the start and
endpoints

measure how spread out
a set of data is

median(|x, — x|)

behaviors of data in that domain, i.e., discrete Fourier
transform (DFT) to convert the signal to the frequency domain
to characterize a signal with period/frequency, amplitude,
phase. Assume the data collected at time t from each
individual is denoted as X; = [x¢ 1, X¢ 2, ..., X¢; ], Where j =
1,2, ...,J, ] is the total number of signals (3D accelerometers
and 3D gyroscopes). In this experiment, four sensors are
affixed to each participant. Each 3D-accelerometer and 3D-
gyroscope of each sensor measure along three orthogonal
axes, X, Y,and Z. Thus /] = 24 for four sensors and 6 channels
of data. For each channel signal, both statistical and
transformed features were extracted. The ten extracted
statistical features in the time domain are listed in Table 1,
where T is the length of channel data of each trial. Q; and Q5
represent the first and third quantiles of the signal,
respectively. The area under the curve was computed by
integration using the trapezoidal rule [33].

Discrete Fourier transform (DFT) is applied to compute
frequency domain features from the raw channel signals. DFT
is a signal processing technique that transforms a signal into a
vector of complex Fourier coefficients, which is defined by
equation (1) below

X ZT_I —Z—Mkn
= xX.,e T
k n=o " Q)

Where 0 < k < T — 1. The X}, represents the signal level at
various frequencies. To facilitate the efficient computation of
DFT, Fast Fourier Transform (FFT) is employed, which is an
optimized algorithm for the implementation of DFT. The
frequency components of a channel signal and its coefficients
are determined using FFT. Figure 4 shows frequencies
observed at the sacrum level during TW and BHS from
accelerometers and gyroscope signals. It is clear that the TW
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FIGURE 4. Representations of the signals of sacrum in the frequency domain

and BHS demonstrate obvious discriminative patterns. The
frequency-domain features extracted from all accelerometers
and gyroscope signals in this study include weighted mean
frequency (1 feature), the first 5 DFT coefficients (5 features)
and the first 5 maxima of DFT coefficients (5 features) and
their corresponding frequencies (5 features). In addition, the
statistical properties listed in Table 1 are also extracted from
the frequency domain, which yields 26 features for each signal
in total extracted from the frequency domain.

B. SEGMENTED GAIT CYCLES

Gait is a cyclic process and gait cycle is defined as the
movement between two same gait events. For example, heel
contact of one foot to next contact of the same foot. To
generate a large number of data samples for better
classification performance, the raw signals can be segmented
into strides, that is, into gait cycles. The simplest way to
identify the gait cycle from IMU signals is to detect the peak
(a gait event) of a sensor signal, then the signal data between
two consecutive similar peaks (similar gait events) can be
considered as a gait cycle [34]. We have previously reported
that gyroscope measurements in the sagittal plane are the best
choice for gait segmentation because the measurements
contain typical time-series patterns such as “valleys”,
“peaks”[35, 36]. Thus, we identified the local maximum as the
segmentation points (Figure 5). Some local maxima may not
correspond to gait cycles’ actual starting or ending points. We
enhanced the gait cycle detection method by constraining the
minimum horizontal distance between neighboring peaks as
50 data points usual gait cycle times are around 1s). A 2
degrees/s’ threshold could be set for gait cycle identification.
In this way, some incorrect peaks can be disregarded. Figure
5 demonstrates the peak detection using the z-axis of the
gyroscope from the shank sensor. Red stars indicate the
detected peaks corresponding to a gait cycle’s starting and
ending points. The first and last peaks are the start and

endpoints of a gait cycle. In other words, the signals are
discarded before the first peak and after the last peak. Hence,
gait initiation and gait termination data are carefully removed,
leaving us with eight gait cycles (Figure 5). After the
segmentation of the z-axis of gyroscope signals, the other
signals (Acceleration-x, y, z, and gyroscope X, y) are
segmented into gait cycles.

Magnitudes

5
0+
5

0 200 400 600 800 1000

Time

FIGURE 5. Peak detection and truncation of raw sensor walking
signals to segmented gait cycles (SGC)

C. MACHINE LEARNING ALGORITHMS

Support Vector Machine (SVM): SVM transforms input
data into a higher-dimensional space by a kernel function and
then learns a boundary called hyperplane in that transformed
space, which optimally separates data into two classes. SVM
has gained wide popularity as a tool in pattern recognition and
data classification due to its low computational cost, small
memory occupation, and excellent performance in solving
small samples and local extreme value problems [23, 37].
Given a set of N samples (x;,y;), i=1,2,...,N, where x; is a
vectors including multiple features, y; is the true label for each
sample 1, the goal of SVM is to learn a classification function
f(x) = wTx + b, The solution of the problem is a vector of
w and b that defines a separating hyperplane with the largest
separation, or margin, between the two classes. The decision
boundary can be found by minimizing the following
constrained optimization problem [38].

N
loss = —||w||2 +C &

i=1

2
subject to y; (wTx — b) >1-¢,and§; =0 foralli @
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where C is a tradeoff parameter between error and the margin.
To generalize the linear decision classifier to nonlinear
situations, the features need to map to a higher-dimensional
space via some transformation @:x — @(x), then a kernel
K(x;,x)) = @T(x)@(x) offers a more efficient and less
expensive way to transform data into higher dimensions.
Kernel functions commonly include linear, nonlinear,
polynomial, radial basis function (RBF), and sigmoid.

Decision Tree (DT): DT is a non-parametric supervised
technique that formulates the classification model in a tree
structure for regression and classification [39]. The key idea
of DT is to divide the dataset into smaller subsets into nodes
and branches. A DT generally consists of one root, several
branches, and many interval nodes. Every path is from the root
node to a leaf node through the internal nodes. This path
denotes a classification with the different conditions of the
components. Every leaf node represents a response for
regression or a class label for classification. A decision tree is
constructed from the pre-classified data. The division of data
into different classes is based on the values of the features of
the given data. To determine which features to split, the
commonly used method is to measure the impurity, which
measures the homogeneity of the labels on a node. This
process is applied to all subsets of data items recursively. The
process terminates as all the data items in the current subgroup
belong to the same class.

Random Forest (RF) [40]: RF is a variant of DT. Unlike
DT, which builds a single tree on a whole dataset, RF creates
a set of DTs using random resampling on the training set. For
classification tasks, each DT then votes for a particular target
class, and a class selected by most DTs is the output of the RF.
RF benefits from two powerful techniques: bagging and
random subspace selection. RF builds many DTs and allows
each tree to randomly sample from the original dataset with
replacement, resulting in different trees. Secondly, each tree
picks a subset of features randomly. This forces more variation
amongst the trees in the model, resulting in lower correlation
and more diversification across trees. The hyperparameters,
including the number of trees (n_estimators) and the number
of variables (max_features), must be optimized to improve the
classification accuracy.

K-Nearest Neighbors (KNN) [41]: KNN tries to predict

outputs by calculating the distance between the test data and
training points, then selecting the K number of points closest
to the test data. A class label is assigned based on a majority
vote for classification problems. A reasonable distance
function will identify essential features and discriminate
between relevant and irrelevant ones. Commonly used
distance functions include Euclidean, Manhattan, and
Hamming.
Euclidean distance is calculated as the square root of the sum
of the squared differences between a new point and an existing
point. It is the minimum distance between two points. If points
(x1,¥1) and (x,,y,) are in 2-dimensional space, then the
Euclidean distance ‘d’ is represented as

d =1 (= x)% + (2 = y1)? )
Manhattan distance between two points a and b with k
dimensions is defined as ‘D’ below

k
b= Yo - @
=1

Hamming distance is mainly used for categorical variables,
also referred as binary strings. For example, the two points,
(0,1,1) and (0,1,0), the hamming distance is 1, since only one
value (last value) is different between two variables.

Multi-layer Perceptron (MLP): Multilayer perceptron
(MLP) is one of the most commonly used types of artificial
neural networks. The standard architecture of an MLP
artificial neural network consists of an input layer, multiple
hidden layers, and an output layer. Hidden layers learn
representations of input data by using non-linearity functions.
The number of neurons in the input layer equals the number of
features, and the number of neurons in the output layer equals
the number of classes. In contrast, the number of neurons in
each hidden layer needs to be tuned to find a suitable network
with sufficient parameters and good generalization for
classification or regression tasks.

Gaussian process (GP): A GP is a stochastic process whose
kernel is a Gaussian distribution [42]. The GP assumes that the
mapping from inputs and outputs via a latent function f, which
can be defined mathematically as

f~GP(m(x), k(x,x")) (&)

Where m(x) and k(x,x") are the mean and covariance

functions respectively, denoted by
m(x) = E(f(x))

kG x') = E[(f () —m@)(f &) — m(x))"] ©)

The output values are assumed to be independent when
conditioned on the latent function, ie., p(y|x, f) =

N p(ilf(x). Kernel function k(x,x')is the critical
ingredient in using Gaussian processes, which determine the
shape of prior and posterior of the GP. The main advantage of
GP is probabilistic so that one can compute empirical
confidence intervals to quantify the uncertainty of the
prediction. When applying it to classification tasks, the
posterior of the latent function f no longer has a closed-form
solution since a Gaussian likelihood is inappropriate for
discrete class labels. Several approximation schemes have
been suggested, including Laplace’s method, variational
approximations, mean-field methods, Markov chain Monte
Carlo and Expectation Propagation.

Deployment of ML algorithms: All machine learning
codes were deployed using Python, and computations were
performed on a 2.3 GHz Quad-Core Intel Core i7 processor.
The classification accuracy was determined for 1)
unsegmented 10 m walk dataset and ii) segmented gait cycles
(SGC). Four hundred ninety-two walking samples are
obtained from the experiment. The whole data is randomly
shuffled and split into training and test with a ratio of 80%:
20%, which corresponds to 393 and 99 samples, respectively.
For each sample, 36 features are extracted for each signal, i.e.,
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corresponding to 36*24=864 features per sample. Once we
have extracted features, min-max scaling is used to normalize
the data to range between 0 and 1 to reduce variation. Five-
fold cross-validation is used on the training data set for each
classifier to select the best model for the test. We used a grid
search algorithm to optimize hyperparameters when
performing five-fold cross-validation for each classifier; this
tuning technique exhaustively generates candidates from a
grid of parameter values, then builds a model for every
combination of hyperparameters specified and evaluates the
accuracy of each model.

Hyperparameter Tuning: We conducted a grid search for
each ML classifier, four kernels of SVM, including linear,
polynomial, radial basis function (RBF), and sigmoid with a
set of regularization parameter C € [0.01,0.05,0.1,1,10] are
tuned. For the DT, two attribute selection methods, entropy to
calculate information gain and ‘Gini index’ for the Gini
impurity, are tuned. For the RF, we tune a wide range of values
from 10 to 700 for the number of trees (n_estimators) in the
forest. For the KNN, grid search is performed over various
values of K. For the MLP, different numbers and sizes of
hidden layers, activation functions including Rectified Linear
unit (ReLU), tanh, logistic, and diverse learning rates are
employed. For the GP the best kernel is chosen from RBF,
DotProduct, Matern, RationalQuadratic, WhiteKernal. The
model with the highest validation accuracy is eventually
selected for the test. The best hyperparameters configuration
for each classifier is listed in

Table 2. Classification performance was evaluated using
several performance metrics such as accuracy, precision,
sensitivity, specificity, and the Matthews correlation
coefficient (MCC). Accuracy is the ratio of correctly identified
samples out of all predictions. Sensitivity, or recall, also
known as true positive rate (TPR), refers to the proportion of
true positives to actual total positive predictions. It is a
measure of how well a model can identify true positives.
Specificity, or true negative rate (TNR), on the other hand,
refers to the ratio of true negatives to total negatives in the
data. Precision is the ratio of true positives to the combined
number of true positives and false positives, which measures
the model’s accuracy in classifying a sample as positive. F1-
score is the harmonic mean of the precision and recall. The
Matthews correlation coefficient (MCC) measures the overall
association between actual classes and predicted classes by
calculating the correlation coefficient. It is, in essence, a
correlation coefficient value between -1 and +1. A coefficient
of +1 represents a perfect prediction. Conversely, -1 represents
the worst prediction where a classifier labels all the positives
as negatives and all the negatives as positives. 0 indicates an
average random prediction. More concretely, the metrics are

calculated using the following formulas:
TN +TP

A = 7
Ceuracy = TN TP + EN+FP @

Sensitivity = TP+—FN ®)
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TN
i 9
Specificity —TI\’};- 7P )
ision = ———— 10
Precision TPZ-;I;P (10)
Fl1—score = ————— (11)

2TP + FN + FP

TP, FN, FP, and TN represent true positive, false negative,
false positive, and true negative. 7P and 7N imply the number
of the positive/negative classes that have been correctly
categorized; FN (false negative) are the reverses, indicating
the number of positive/negative samples categorized wrong.

TABLE 2 BEST HYPERPARAMETERS CONFIGURATIONS FOR DIFFERENT ML
ALGORITHMS USED FOR CLASSIFICATION OF TOE WALKING (TW) VERSUS

BEST HEEL STRIKE (BHS)
Model Best Parameter Configuration
SVM C: 0.05, kernel:poly, degree:3
DT criterion: gini, max_depth: 18, min_samples_leaf: 10
bootstrap: True, max_depth: 20, max_features: auto,
RF .
n_estimators: 600
leaf size: 20, metric: minkowski, n_neighbors: 2, p: 1,
KNN — . . —
weights: distance
activation: relu, alpha: 0.0001,
MLP hidden_layer sizes: (50, 10), learning_rate: invscaling,
solver: adam
GP kernel: 1¥*2 * Matern (length_scale=1, v=1.5)
lll. RESULTS

TABLE 3 PERFORMANCE METRICS OF THE CLASSIFICATION MODELS WITH
ALL FOUR BODY ATTACHED SENSORS. THE HIGHEST PERFORMING
CLASSIFIER IS HIGHLIGHTED IN BOLD.

Performance metrics
Mod
el Accura  Precisi  Sensitivi  Specifici Fl- MCC
cy on ty ty score
SVM | 0.8585 0.8800 0.8461 0.8723 0'%62 0.7617
DT 0.7474  0.7547 0.7692 0.7234 0'7961 0'293
RF 0.8282  0.8571 0.8076 0.8510 0'231 0'6957
KNN | 09292  0.9411 0.9230 0.9361 0'?]32 0'?3.58
MLP | 0.8585 0.8958 0.8269 0.8936 0'%60 0'791 ?
GP 0.8686  0.9148 0.8269 0.9148 0'268 0';41

Classification capabilities of six different classifiers to
distinguish the toe walking (TW) and best heel strike (BHS)
was evaluated. We found all of these six algorithms can
classify BHS and TW gait patterns from the data correctly
with an average prediction accuracy of 84.84%. We found
KNN showed the best classification accuracy of 92.92%,
specificity of 93.61% and sensitivity of 92.30%, F1-score of
93.20%, MCC of 0.8585 to distinguish between TW and BHS,
which is significantly higher (6.9%) than GP (Table 3 and
Figure 6). Among 99 test samples, only 3 BHS and 4 TW
samples are misclassified. We found GP achieves satisfiable
performance with an accuracy of 86.86% when using Matern
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kernel with smooth parameter v=1.5. The atern kernel is a
generalization of the RBF. Compared to RBF, Matern has an
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FIGURE 6. Confusion Matrix using all four body affixed sensors
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FIGURE 7. ROC curves and AUC values are presented for a) all four sensors, b) sacrum sensor, c) Trunk sensor, d) left shank sensor, and e) right

shank sensor for different ML algorithms.

additional parameter v to control the smoothness of the
estimated function. The smaller v, the less smooth the function
gets. When v—oo, the kernel gets equivalent to RBF. LP
with 2-hidden-layers and SVM with a polynomial kernel
achieve the same accuracy of 85.85% with 14 samples
misclassified.

Nevertheless, the specificity of MLP is slightly higher than
that of SVM. MLP and SVM perform better than RF and far
better than DT in toe walking classification accuracy. We
found that for all the classifiers except DT, the specificity
values are higher than those of sensitivity, indicating that the

BHS samples are more rarely misclassified than the Toe
walking samples.

Table 4 shows the performance results with four different
sensor locations, and the best performing metrics are
highlighted in bold. The comparison of receiver operating
characteristic (ROC) curves with varying sensor locations
using six classifiers in Figure 7. The ROC curve is created by
plotting the TPR against the FPR at various threshold settings,
which is a typical plot to characterize the diagnostic ability
[43]. The area under the ROC curve (AUC) is also
demonstrated in Figure 7.
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FIGURE 8. Confusion matrix for the six ML classifiers using the gait cycle segmented data of all sensors.

TABLE 4 PERFORMANCE METRICS OF THE CLASSIFICATION MODELS WITH
DIFFERENT SENSOR LOCATIONS

Performance

Sensgr Modell .. o [
Location Accuracy Precision SensitivitySpecificity score MCC
SVM| 0.7878 0.7818  0.8269 0.7446 0.8037 0.5744
DT | 0.7692 0.8222 0.7115  0.8297 0.7628 0.5428
Sacrum RF | 0.7575 0.7692 0.7692  0.7446 0.7692 0.5139
KNN| 0.7979 0.8076 0.8076  0.7872 0.8076 0.5949
MLP| 0.7979 0.8200 0.7834  0.8085 0.8039 0.5962
GP | 0.7676  0.7959  0.7500  0.7872 0.7722 0.5365
SVM| 0.7878 0.8444  0.7307 0.8510 0.7835 0.5835
DT | 0.6363 0.6481 0.6730 0.5957 0.6603 0.2695
Trunk RF | 0.7575 0.8043 0.7115 0.8085 0.7551 0.5206
KNN| 0.7777 0.8750 0.6730 0.8936 0.7608 0.5766
MLP| 0.6666 0.6727 0.7115 0.6170 0.6915 0.3301
GP | 0.7474 0.7647  0.7500  0.7446 0.7572 0.4942
SVM| 0.8585 0.8958 0.8269 0.8936 0.8600 0.7199
DT | 0.6464 0.6808 0.6153  0.6464 0.6464 0.2962
Left RF | 0.8585 0.8958 0.8269 0.8936 0.8686 0.7199
shank |[KNN| 0.8181 0.8541 0.7884  0.8510 0.8200 0.6390
MLP| 0.7777 0.8000 0.7692  0.7872 0.7843 0.5557
GP | 0.8282 0.8301 0.8461 0.8085 0.8380 0.6554
SVM| 0.8282 0.8070 0.8846  0.7659 0.8440 0.6573
DT | 0.6666 0.7209 0.5961  0.7446 0.6526 0.3433
Right | RF | 0.7777 0.8125  0.7500  0.8085 0.7800 0.5580
shank |KNN| 0.8383 0.8214 0.8846 0.7872 0.8518 0.6768
MLP| 0.7979 0.7758 0.8653  0.7234 0.8181 0.5969
GP | 0.8686 0.8823 0.8653 0.8723 0.8737 0.7371

The AUC summarizes the classification quality and is a
measure of accuracy, where an AUC of 0.5 indicates a random
classifier with no value. The best accuracy for all six classifiers
is obtained using all four sensors for each algorithm. The

maximum AUC value (0.94) is achieved from KNN, MLP,
and RF when applied the algorithms to the data that combines
all sensors. Another phenomenon is that none of the
algorithms consistently outperformed the others in terms of
accuracy. For example, SVM performs best at trunk location
but does not perform well than GP when using the suitable
shank sensor. We found performance at left and right shank
locations is better than at sacrum and trunk. Sensor signal
segmentation into gait cycles resulted in a large number of
samples.

After the segmentation into gait cycles, the data size increases
to 4044 (3233 for training and 811 for the test), close to 10
times the original size. The classification results using the
same feature extraction strategy were evaluated. Figure 8
shows the confusion matrix for the six classifiers using the gait
cycle segmented data. The quantitative results are provided in
Table 5. We found SVM had an accuracy of 85.69%.
However, KNN yielded the best precision and specificity but
relatively low sensitivity. GP demonstrated the best
sensitivity, indicating the best diagnostic ability to identify the
TW patterns. Similarly, the DT showed poor ability to
distinguish the TW and BHS and had the lowest accuracy of
68.06% and smallest MCC value of 0.3607. The performance
is still promising despite the lower average accuracy of
81.60% and F1-score of 82.23% than that of using raw data.
The effects of the number of sensors and sensor placement are
explored, and the ROC curves and classification performance
are provided in Figure 9 and Table 5. The results show that
using all sensors gains the best classification results, implying
that richer information leads to better discriminative power.
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FIGURE 9. ROC curves and AUC values are presented for a) all four sensors, b) sacrum sensor, c) Trunk sensor, d) left shank sensor, and e) right
shank sensor for different ML algorithms.

TABLE 5 PERFORMANCE METRICS OF THE CLASSIFICATION MODELS USING SEGMENTED DATA

. Performance
Sensor Location | Model

Accuracy  Precision  Sensitivity  Specificity Fl-score  MCC
SVM 0.8569 0.8652 0.8611 0.8523 0.8632  0.7133
DT 0.6806 0.7004 0.6823 0.6787 0.6912  0.3607
All Sensors RF 0.8397 0.8624 0.8258 0.8549 0.8437  0.6800
KNN 0.8335 0.8698 0.8023 0.8678 0.8347  0.6698
MLP 0.8310 0.8380 0.8400 0.8212 0.8390  0.6613
GP 0.8545 0.8545 0.8705 0.8367 0.8624  0.7081
SVM 0.8076 0.8225 0.8070 0.8082 0.8147  0.6148
DT 0.6461 0.6546 0.6823 0.6062 0.6689  0.2894
Sacrum RF 0.7718 0.7803 0.7858 0.7564 0.7831  0.5425
KNN 0.7903 0.8179 0.7717 0.8108 0.7941  0.5820
MLP 0.7558 0.7609 0.7788 0.7305 0.7697  0.5101
GP 0.8027 0.8192 0.8000 0.8056 0.8095  0.6051
SVM 0.7644 0.7896 0.7505 0.7797 0.7696  0.5297
DT 0.6461 0.6691 0.6423 0.6502 0.6554  0.2922
Trunk RF 0.7533 0.7892 0.7223 0.7875 0.7542  0.5097
KNN 0.7459 0.7717 0.7317 0.7616 0.7512  0.4928
MLP 0.7287 0.7506 0.7223 0.7357 0.7362  0.4575
GP 0.7570 0.7864 0.7364 0.7797 0.7606  0.5157
SVM 0.8014 0.8055 0.8188 0.7823 0.8121  0.6017
DT 0.7003 0.7136 0.7152 0.6839 0.7144  0.3992
Left shank RF 0.7817 0.7966 0.7835 0.7797 0.7900  0.5629
KNN 0.7755 0.8060 0.7529 0.8005 0.7785  0.5529
MLP 0.7965 0.8201 0.7835 0.8108 0.8014  0.5937
GP 0.8014 0.8142 0.8047 0.7979 0.8094  0.6023
SVM 0.7940 0.7905 0.8258 07590 0.8078  0.5869
DT 0.6744 0.6968 0.6705 0.6787 0.6834  0.3489
RF 0.8027 0.7977 0.8352 0.7668 0.8160  0.6043
Rightshank | NN | 07731 0.7822 0.7858 0.7590 0.7840  0.5450
MLP 0.7657 0.7701 0.7882 0.7409 0.7790  0.5299
GP 0.7903 0.7972 0.8047 0.7746 0.8009  0.5796
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This is consistent with classification results obtained using raw
signals. Figure 9 shows that except DT all other 5 classifiers
are comparable and could be good candidates for the ITW
monitoring system. In terms of the location of sensors,
configuring all four sensors together always performed the
best. Power spectral density evaluations were conducted for
accelerations in anterior posterior, medial-lateral and vertical
directions. Power in four frequency bands was computed i) 0
Hz<f <2 Hz i) i) 2 Hz<f <4 Hz,iii)) 4 Hz<f <6 Hz,
and iv) 6 Hz < f<8Hz Figure 10). The dominant frequencies
for BHS and TW are presented in Figure 11.
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FIGURE 10. Area under the power spectral density (PSD)
curves were computed for 4 frequency bands i) 0Hz < f < 2Hz, ii) 2Hz <
f < 4 Hz, iii) 4Hz < f <6 Hz, iv) 6 Hz < f < 8Hz for all three directions of
accelerations.

IV. DISCUSSION

This study aimed to determine optimal sensor location and ML
algorithms that can classify toe walking among children
diagnosed with ITW with high accuracy. Previous studies
have used the accelerometer to differentiate the toe-walking
stance from the normal stance [14, 44-46] among children
with ITW. In this study, we demonstrated the influence of 1)
15 m walk continuous timeseries versus SGC, ii) body sensor
locations (right and left shank, trunk, and sacrum), and iii)

various ML algorithms (SVM, DT, RF, KNN, MLP and GP)
in accurately classifying toe walking gait. This research
provides a platform for ML-based automated classification of
toe walking needed for intervention among ITW children. The
highest classification of 92.9% was observed using all four
sensors using KNN. This was followed by GP (86.8%), SVM
and MLP (85.8%), RF (82.8%) and DT (74.7%).

ITW participants demonstrated reduced variability when
mimicking BHS, as shown in Fig. 3(a-c). Gait variability is
associated with the energy cost of walking in people with
multiple sclerosis [47]. Thus, more variability found during
toe walking could increase walking energetics [48-51]. Lower
limb muscle fatigue is more commonly found in children who
walk than in typically developing peers [52, 53].

We evaluated the effects of input timeseries lengths for ML
classification. We utilized a simple yet effective peak
detection method similar to our previous study to truncate raw
signals to gait cycles [36]. We tested the influence of input
timeseries by employing i) 15 m long walking timeseries
signals versus SGC. Although the number of samples
increased, classification accuracy was not affected due to the
truncation of time series into gait cycles. We found increased
number of samples reduced overfitting of the classifier and
boosted classification performance.

We used both temporal and frequency domain features (Table
1). The frequency components of accelerations at the sacrum
were analyzed at different frequency bins (0-2 Hz, 2-4Hz, 4-
6Hz, and 6-8Hz). Paired t-test was carried out to compare the
median frequencies between BHS and TW. We found BHS
resulted in significantly higher frequencies in medial-lateral
(ML) and anterior-posterior (AP) directions, whereas TW
resulted in significantly higher accelerations in the vertical
direction (Figure 10). Specifically, vertical accelerations
produced during TW in the sacrum consist mainly of high
frequencies. TW could potentially lead to low back pain
among children diagnosed with ITW[54]. The dominant
frequency during TW was higher than BHS (28Hz versus
26.6) (Figure 11).
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FIGURE 11. Mean dominant acceleration frequencies during
TW and BHS.
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Six ML algorithms are tested, and hyperparameter
configurations are tabulated in Table 2. To avoid the
overfitting of ML models, we used five-fold cross-validation
techniques. The confusion matrix using all four sensors among
six ML algorithms is provided in Figure 6. The accuracy of all
six classifiers was compared using Receiver Operating
Characteristics (ROC) curves (Figure 7), confusion matrices,
and other performance metrics like Mathews Correlation
Coefficient (MCC) (Table 5). We found KNN classified the
TW patterns with highest accuracy (92.9%), highest precision
(94.1%), sensitivity (92.3%), specificity (93.6%) with F1
score (93.2%) and MCC (85.8%).

We evaluated the effects of body sensor locations on the
accuracy of toe gait classification. Four sensors affixed at both
shanks, trunk, and sacrum. To perform comparisons, same
hyperparameter tuning methods were conducted. We found a
single sensor located at the shank could classify TW versus
BHS with an accuracy of 86.8%, followed by sacrum (79.7%)
and trunk (78.7%). Our results demonstrate that sensors
located at the shank have added advantages for accurate gait
classification. It may be attributed to knee and hip joints that
may absorb or produce counteractive movements peculiar to
gait type, thus reducing classification accuracy. We thus
observed lower accuracies at sacrum and trunk positions. The
ROC curves and AUC values are shown in Figure 9.

There is insufficient research on whether existing clinical
interventions are adequate ITW treatment options. We
propose that if TW is accurately identified using sensors
affixed at the shank level, appropriate real-time feedback
interventions can be implemented. Gait classification accuracy
may be affected by intra-subject variability and severity of toe
walking. Thus, the heterogeneity in toe walking severity
among children diagnosed with ITW may challenge ML
algorithms to classify gait accurately. In addition, the effects
of an environment may influence walking behavior in
children. For example, in the presence of an
experimenter/clinician, the children may present the best
performance to maintain good foot contact. Participants were
asked to look forward at the target (20 m far) while walking in
laboratory settings. The consistency was held in every trial
during data collection.

Since the classification accuracy is also affected by the sample
size of the data. If the data size is small, even a few
misclassified samples will reduce the performance obviously
from a statistical perspective. However, a higher classification
performance can be achieved if more datasets are available.
Nevertheless, the ML algorithms, especially SVM, KNN, and
GP, have good discriminative power for gait classification of
ITW children and can potentially be integrated into an expert
gait system for monitoring and diagnosis. We found that all
ML algorithms showed good specificity, which indicates that
the ML algorithms can accurately identify BHS patterns, so
the number of false positives is low, and this is helpful from
the treatment perspective. The children will be less interrupted
by the false alarm. Finally, this study provides evidence that

an ML-enabled low-cost gait monitoring device can give a
good capability for monitoring without hindrance.

V. CONCLUSION

There is limited research on using automated algorithms to
identify TW in children diagnosed with ITW using wearable
sensors and providing real-time feedback for correcting gait.
In this study, we evaluated the performance of wearable
sensors located at four different body locations using six ML
algorithms to classify TW. We found ML algorithms
successfully classified the TW strides from BHS in the
children with ITW. This study demonstrates the significant
potential of using low-cost wearable devices and ML
algorithms to diagnose and monitor the gait of ITW children
and further intervene using feedback. Accurate quantification
of toe walking steps is critical for designing new real-time
interventions for children diagnosed with ITW. Using
wearable sensors and ML, real-time TW stride detection can
be integrated with closed-loop control in assistive devices for
intervention and motor rehabilitation. This will reduce costs
and the burden on both clinicians and parents of the children.
Future work will include additional participants and model
personalization to improve performance.
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