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ABSTRACT Idiopathic toe walking (ITW) is a gait abnormality in which children toe touch at initial contact 
and demonstrate limited or no heel contact throughout the gait cycle. Toe walking results in poor balance, 
increased risk of falling, and developmental delays among children. Identifying toe walking steps during 
walking can facilitate targeted intervention among children diagnosed with ITW. With recent advances in 
wearable sensing, communication technologies, and machine learning, new avenues of managing toe walking 
behavior among children are feasible. In this study, we investigate the capabilities of Machine Learning (ML) 
algorithms in identifying initial foot contact (heel strike versus toe strike) utilizing wearable body sensors. 
Thirty-six children (Age 9.4±2.8 years) diagnosed with ITW participated in this study. Six ML algorithms, 
consisting of Support Vector Machines (SVM), decision tree (DT), random forest (RF), K-nearest neighbors 
(KNN), Multi-layer Perceptron (MLP), and Gaussian process (GP), could successfully classify initial contact 
walking patterns among ITW. We found that a simple KNN algorithm resulted in the highest accuracy of 
92.92% and F1-score of 93.20% to differentiate toe walking gait versus best heel strike when using all four 
body sensors. We also found that toe walking resulted in higher variability in the sacral vertical accelerations 
among children diagnosed with ITW. Accurate quantification of toe walking steps in clinical applications is 
critical for assessing rehabilitation progress and designing new interventions for children diagnosed with 
ITW.  

INDEX TERMS Best Heel Strike (BHS), Gait, Idiopathic Toe Walking (ITW), Inertial Measurement Unit 
(IMU), Machine Learning (ML)

I. INTRODUCTION 
Toe walking is a gait abnormality described by clinicians as 

toe-to-toe touch initial contact of the foot [1]. Persistent toe-
walking without treatment may lead to increased risk of 
tripping or falling [2], leg pain [3], impaired muscle and motor 
coordination [4], and develop structural abnormalities [5]. 
Children with autistic spectrum disorders, cerebral palsy, 
muscular dystrophy, intellectual disabilities, etc., have an 
increased likelihood of exhibit toe walking characteristics but 
toe walking also observed in healthy children with no signs of 
a neurological, orthopedic, or psychological condition [6, 7] 
and referred to as Idiopathic Toe Walking (ITW) [1]. At six 

years of age, approximately one out of every 20 children 
demonstrate ITW [8-10] worldwide. 

Toe walking is usually identified visually by clinical 
experts. Furthermore, gait analysis utilizing laboratory-based 
motion capture systems provides an accurate, objective 
quantification of toe walking behavior [2, 11]. Standard 
laboratory-based gait analysis protocols require specialized 
laboratory equipment such as instrumented walkways, infra-
red camera-based motion capture systems, or treadmills with 
embedded force plates. This laboratory assessment is 
expensive and limited since it requires specialized personnel 
to operate and analyze gait data. In addition, children with 
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ITW frequently modify their gait in a laboratory environment 
to a more normalized pattern. Thus, new systems which could 
detect toe walking in natural settings are needed. Currently, no 
commercial technology exists to identify toe walking (gait 
type) in real-world settings and intervene in real-time for gait 
correction. Rehabilitation of children diagnosed with ITW 
largely depends on clinicians’ visual observations of the 
child’s gait pattern or collecting feedback from parents for 
their gait [12], which are observational and rely heavily on the 
clinicians’ experience and judgment [12] and are error-prone. 
We have earlier reported that pressure sensors [13] and 
machine learning algorithms [14] could identify toe strike 
events, and smart-insoles can objectively track toe strike gait 
[15] among children with ITW in their natural settings.  
Moreover, even after the rehabilitative intervention, there is a 
tendency for these children to revert to toe walking gait. Thus, 
accurate information on the number of toe strikes and how 
long children walk on toes is critical. Hence, continuous gait 
pattern monitoring is of high necessity to assist with clinical 
decision-making and evaluate different treatment outcomes. 
Recently, the emergence of embedded intelligence has 
demonstrated great potential for continuous and real-time 
decision-making in various fields [16]. The integration of 
artificial intelligence and embedded hardware such as 
wearable devices enable increased operational efficiency, 
improved products and services, and enhanced performance. 
Indeed, driven by the advancement of sensing technology, 
several wearable sensors, e.g., inertial measurement units 
(IMUs), have been increasingly employed for convenient 
patient gait data collection due to the high wearability, reduced 
cost, and low power consumption [7]. The unprecedented data 
availability provides excellent opportunities for precise and 
efficient monitoring and diagnosis of ITW by using machine 
learning (ML) algorithms to mine the hidden gait pattern 
automatically. ML strategies for human movement 
recognition, such as neural networks, support vector machines 
(SVM), decision tree (DT), have been extensively investigated 
in a wide range of healthcare applications in the recent decade 
due to its ability to deal with high-dimensional and nonlinear 
data pattern, such as fall detection [17], Parkinson’s disease 
stage prediction and severity assessment [18, 19], post-stroke 
patient gait pattern classification [20], human activity 
identification, e.g., walking versus running [21] and others 
[22-24]. Ilias et al. [25] proposed a combination of neural 
networks and SVM in classifying the gait patterns of autistic 
children from normal gait. They found that the SVM model 
with a polynomial kernel has the highest overall performance 
for classifying normal gait among children with autism [25]. 
Trentzsch et al. [26] tested six machine learning algorithms to 
differentiate gait between people with multiple sclerosis and 
healthy controls. They found the SVM model with Radial 
Basis Function (RBF) kernel could classify gait with the 
highest accuracy. Chakraborty et al. [27] investigated several 
regression modeling techniques to detect pathological gait. 
They found multiple adaptive regression splines (MARS) 

model (Accuracy=88.3%, Precision=0.89, Recall=0.87 and F1 
Score=0.88) outperformed SVM (Accuracy=84.8%, 
Precision=0.85, Recall=0.83 and F1 Score=0.84) and logistic 
regression models (Accuracy=68.5%, Precision=0.78, 
Recall=0.51 and F1 Score=0.61) for gait classification.  
Pendharkar et al. [28] differentiated ITW gait patterns from 
normal ones, achieved accuracy of 87.5% using SVM based 
on heel accelerometry data collected from five children 
diagnosed with ITW and five normal healthy children. 
Pendharkar and coworkers [29] developed an automated way 
to assess the gait in children diagnosed with ITW through a 
threshold-value based statistical method using heel 
accelerometer data. The algorithm had an accuracy of 98.5%. 
However, the robustness of this algorithm is questionable due 
to changing frequency and speed during toe walking.  Kim et 
al. [30] investigated the capabilities of ML algorithms to detect 
and differentiate heel-toe gait versus toe-toe gait using data 
from a single inertial sensor. They reported that k-means 
clustering was successful in differentiating toe-toe gait and 
heel-toe gait signals with 82% accuracy score.  

This study’s primary objective is to investigate the targeted 
ML approach to identify optimal sensor placements on the 
body for accurate identification of toe walking in children 
diagnosed with ITW. We hypothesize that sensors at the trunk 
level with statistical and frequency features would predict toe 
walking characteristics since trunk carries 2/3rd of body weight 
and represents movement of center of mass of body. Previous 
study has reported that foot posture and function affect trunk 
kinematics and lead to low back pain [31]. The secondary 
objective of this study is to investigate if data inputs as 
segmented gait cycles could improve the classification 
accuracy of these ML models. We plan to evaluate classifier 
performance using six conventional ML classifiers, including 
SVM, Random Forest (RF), DT, Multi-layer Perceptron 
(MLP) and Gaussian process (GP) to classify typical toe 
walking versus best heel strikes.  

   
II. METHODS 
A total of thirty-six children diagnosed with ITW (Age=9.4 ± 
2.8 years, Height= 53.8 ± 6.6 cm, Weight=75.0 ± 27.2 lbs) 
participated in this study. All participants signed a written 
consent form before participation that Chapman Institutional 
Review Board (IRB) approved. Four wireless sensor modules 
composed of Xsens MTw sensors packaged in a 
47mm×30mm×13mm plastic housing were used. The sensors 
contain 3D accelerometer and 3D rate gyroscopes to measure 
acceleration and angular velocities. The sensors weighed 16g, 
including the battery. The tri-axial accelerometer had a ±16g 
capacity in full range, and the gyroscope had ±2000°/s with a 
bandwidth of 3200Hz, where g represents acceleration due to 
gravity (1g =9.8 m/𝑠2). The accelerometer’s sensitivity was 
31.2 LSB/g and gyroscopes sensitivity were 14.375 LSB/s. 
The sensors were affixed at the posterior sacrum, posterior 
trunk at T4, left and right lateral shank just proximal to the 
lateral malleoli, Figure 1a shows the locations where the 
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sensors were affixed to the body and Figure 1b shows Xsens 
Awinda sensor unit.  

FIGURE 1. Representational picture a) participant with affixed 
sensors at Trunk, Sacrum, Right and Left Shanks, b) Xsens Awinda 
sensor unit. 

FIGURE 2. a) Typical or toe walking , b) Best Heel Strikes (BHS) 
among children diagnosed with ITW 

 
Data was collected using Xsens MT Manager Software suite. 
The sampling frequency was set to 75Hz. This is largely 
sufficient for human movement analysis in daily activities 
which occur in band-width [0.8-5 Hz][32]. 
The participants were instructed to i) walk with Best Heel 
Strikes (BHS), and ii) Toe Walk (TW) over a 15m long 
walkway as demonstrated in Figure 2. In a well-lit motion 
capture laboratory, all walking trials were conducted at the 
preferred walking speed. The walkway was embedded with 
two force plates (Bertec, Columbus, Ohio 43219). Typical gait 
in children with ITW may be affected due to white coat 
syndrome in the new testing environment, and children may 
consciously present BHS during walking in clinicians’ 

presence. In an attempt to capture the child’s typical toe 
walking, researchers asked parents if typical toe walking trials 
were similar to the gait observed at home. If parents reported 
it was not, researchers asked child to relax and verbally 
distracted the participant until the parent reported the gait was 
more similar to what they observed at home. We also 
instructed participants to mimic best heel strikes (BHS) with 
all participants trying their best to perform heel-to-toe gait. 
Each participant walked multiple trials of each walking type 
barefoot. Ten trials of 10 m walk were collected for each walk 
type (toe walking and Best Heel Strike). Each 10 m walk trial 
consisted of 3 to 4 gait cycles. Children with Idiopathic toe 
walking characteristics walk on their toes but have capability 
to make best heel strikes (BHS). Thus it is important to 
identify both toe walking and BHS among children. The gait 
remediation for these children would involve motor learning 
to produce BHS. In essence, this research is innovative in 
identifying toe walking in children using inertial sensors and 
could potentially be helpful in providing real-time corrective 
feedback to children.  
If participants did not step at the center of the force plate or 
failed to perform the instructed kind of walk, the trial was 
repeated. Only complete walking trials of each category 
(typical and BHS walking) were used for the analysis. Figure 
3 shows acceleration profiles during toe walking (TW) and 
best heel strike (BHS) gait for a) anterior posterior, b) medial 
lateral, c) vertical directions. The sensor was affixed at 
sacrum. The blue line represents BHS, the red line represents 
typical TW for children with ITW.  
To investigate the efficacy of ML algorithms in differentiating 
TW versus BHS utilizing sensor signals, informative features 
were extracted from raw sensor data. Six ML algorithms, i.e., 
SVM, DT, RF, KNN, MLP and GP, were tested for gait 
classification. Sensor data input was fed to ML algorithms in 
two forms i) as a 10-second walking data and ii) truncated gait 
cycle signals (Figure 3). The effects of sensor node placement 
on gait classification accuracy was evaluated from i) one site 
and ii) all sites.  Both classification scenarios used 10 s raw 
signals and truncated gait cycle signals, the best sensor 
placement analysis is also presented, providing a good 
reference for sensor placement prioritization.  

A. FEATURE EXTRACTION 
Feature extraction aims to extract informative features from 
raw signals, which can improve ML algorithms’ accuracy. 
Commonly used methods for feature extraction from time-
series signals are divided into two categories, statistical 
methods and transforming methods. The statistical methods, 
such as mean, standard deviation (SD), kurtosis, skewness 
etc., measure the fluctuation of signals and do not reflect the 
temporal characteristic of the signal, are the most common 
feature extraction approaches in signal processing-based 
applications.  
Transforming methods aim at changing the signal into a 
different domain (frequency domain) and visualize the 

 a) Typical walking 

 b)  i micking best heel strikes
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FIGURE 3. Acceleration profiles during best heel Strikes (BHS) and Toe walking (TW) presented by children with Idiopathic Toe Walking 
characteristics in a) anterior-posterior direction, b) medial-lateral direction, c) vertical direction, d) directions sensed by sensor. The shaded area 
represents standard deviation of acceleration curves for three trials of all subjects. The solid lines represent mean values of the acceleration during 
gait cycle. The blue solid line represents Best Heel Strike and red solid line represents toe walking trials. 

 
TABLE 1  LIST OF TIME DOMAIN FEATURES EXTRACTED FROM THE 

ACCELERATION SIGNALS 
Name of 
Feature  Brief Explanation Formula 

Mean Average values of signal ∑ 𝑥𝑡
𝑇
𝑡=1

𝑇
 

Max The maximum value of 
the signal  𝑚𝑎𝑥(𝒙) 

Min The minimum value of 
the signal 𝑚𝑖𝑛(𝒙) 

Standard 
deviation (SD) 

Measure the dispersion 
of a signal √

∑ (𝑥𝑡 − 𝑥̅)2𝑇
𝑡=1

𝑇 − 1
 

Skewness 
The asymmetry of the 

probability density 
function of the signal 

∑ (𝑥𝑡 − 𝑥̅)3𝑇
𝑡=1

(𝑇 − 1) ∗ 𝑆𝐷3
 

Kurtosis 
The sharpness of the 

probability distribution 
of the signal 

∑ (𝑥𝑡 − 𝑥̅)4𝑇
𝑡=1

(𝑇 − 1) ∗ 𝑆𝐷4
 

interquartile 
range (IQR) 

 The spread of the 
middle half of your 

distribution 
𝑄3 − 𝑄1 

area under the 
curve of signal 

the region bounded by 
the signal between the 

start and endpoints 
- 

area under the 
curve of the 

squared signal 

the region bounded by 
the square of signal 

between the start and 
endpoints 

- 

median 
absolute 
deviation 
(MAD) 

measure how spread out 
a set of data is 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑥𝑡 − 𝑥̅|) 

 

behaviors of data in that domain, i.e., discrete Fourier 
transform (DFT) to convert the signal to the frequency domain 
to characterize a signal with period/frequency, amplitude, 
phase. Assume the data collected at time 𝑡 from each 
individual is denoted as 𝑋𝑡 = [𝑥𝑡,1, 𝑥𝑡,2, … , 𝑥𝑡,𝐽 ], where 𝑗 =
1,2, … , 𝐽, 𝐽 is the total number of signals (3D accelerometers 
and 3D gyroscopes). In this experiment, four sensors are 
affixed to each participant. Each 3D-accelerometer and 3D-
gyroscope of each sensor measure along three orthogonal 
axes, X, Y, and Z. Thus 𝐽 = 24 for four sensors and 6 channels 
of data. For each channel signal, both statistical and 
transformed features were extracted. The ten extracted 
statistical features in the time domain are listed in Table 1, 
where 𝑇 is the length of channel data of each trial. 𝑄1 and 𝑄3  
represent the first and third quantiles of the signal, 
respectively. The area under the curve was computed by 
integration using the trapezoidal rule [33].  
Discrete Fourier transform (DFT) is applied to compute 
frequency domain features from the raw channel signals. DFT 
is a signal processing technique that transforms a signal into a 
vector of complex Fourier coefficients, which is defined by 
equation (1) below 

𝑋𝑘 = ∑ 𝑥𝑛𝑒−
2𝜋𝑖

𝑇
𝑘𝑛

𝑇−1

𝑛=0
 

 
(1) 

Where 0 ≤ 𝑘 ≤ 𝑇 − 1. The 𝑋𝑘 represents the signal level at 
various frequencies. To facilitate the efficient computation of 
DFT, Fast Fourier Transform (FFT) is employed, which is an 
optimized algorithm for the implementation of DFT. The 
frequency components of a channel signal and its coefficients 
are determined using FFT. Figure 4 shows frequencies 
observed at the sacrum level during TW and BHS from 
accelerometers and gyroscope signals. It is clear that the TW
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FIGURE 4. Representations of the signals of sacrum in the frequency domain  
 
and BHS demonstrate obvious discriminative patterns. The 
frequency-domain features extracted from all accelerometers 
and gyroscope signals in this study include weighted mean 
frequency (1 feature), the first 5 DFT coefficients (5 features) 
and the first 5 maxima of DFT coefficients (5 features) and 
their corresponding frequencies (5 features).  In addition, the 
statistical properties listed in Table 1 are also extracted from 
the frequency domain, which yields 26 features for each signal 
in total extracted from the frequency domain. 

B. SEGMENTED GAIT CYCLES 
Gait is a cyclic process and gait cycle is defined as the 

movement between two same gait events. For example, heel 
contact of one foot to next contact of the same foot. To 
generate a large number of data samples for better 
classification performance, the raw signals can be segmented 
into strides, that is, into gait cycles. The simplest way to 
identify the gait cycle from IMU signals is to detect the peak 
(a gait event) of a sensor signal, then the signal data between 
two consecutive similar peaks (similar gait events) can be 
considered as a gait cycle [34]. We have previously reported 
that gyroscope measurements in the sagittal plane are the best 
choice for gait segmentation because the measurements 
contain typical time-series patterns such as “valleys”, 
“peaks”[35, 36]. Thus, we identified the local maximum as the 
segmentation points (Figure 5). Some local maxima may not 
correspond to gait cycles’ actual starting or ending points. We 
enhanced the gait cycle detection method by constraining the 
minimum horizontal distance between neighboring peaks as 
50 data points  usual gait cycle times are around 1s). A ‘2 
degrees/s’ threshold could be set for gait cycle identification. 
In this way, some incorrect peaks can be disregarded. Figure 
5 demonstrates the peak detection using the z-axis of the 
gyroscope from the shank sensor. Red stars indicate the 
detected peaks corresponding to a gait cycle’s starting and 
ending points. The first and last peaks are the start and 

endpoints of a gait cycle. In other words, the signals are 
discarded before the first peak and after the last peak. Hence, 
gait initiation and gait termination data are carefully removed, 
leaving us with eight gait cycles (Figure 5). After the 
segmentation of the z-axis of gyroscope signals, the other 
signals (Acceleration-x, y, z, and gyroscope x, y) are 
segmented into gait cycles. 

 

FIGURE 5. Peak detection and truncation of raw sensor walking 
signals to segmented gait cycles (SGC) 

C. MACHINE LEARNING ALGORITHMS 
Support Vector Machine (SVM): SVM transforms input 

data into a higher-dimensional space by a kernel function and 
then learns a boundary called hyperplane in that transformed 
space, which optimally separates data into two classes. SVM 
has gained wide popularity as a tool in pattern recognition and 
data classification due to its low computational cost, small 
memory occupation, and excellent performance in solving 
small samples and local extreme value problems [23, 37]. 
Given a set of N samples (𝑥𝑖 , 𝑦𝑖), i=1,2,…,N, where 𝑥𝑖 is a 
vectors including multiple features, 𝑦𝑖  is the true label for each 
sample i, the goal of SVM is to learn a classification function 
𝑓(𝑥) = 𝑤𝑇𝑥 + 𝑏, The solution of the problem is a vector of 
𝑤 and 𝑏 that defines a separating hyperplane with the largest 
separation, or margin, between the two classes. The decision 
boundary can be found by minimizing the following 
constrained optimization problem [38]. 

𝑙𝑜𝑠𝑠 =
1

2
‖𝒘‖2 + 𝐶 ∑ 𝜉𝑖

𝑁

𝑖=1
 

subject to 𝑦𝑖(𝒘𝑇𝒙 − 𝑏) ≥ 1 − 𝜉𝑖, and 𝜉𝑖 ≥ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 

 

(2) 
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where 𝐶 is a tradeoff parameter between error and the margin. 
To generalize the linear decision classifier to nonlinear 
situations, the features need to map to a higher-dimensional 
space via some transformation ∅:𝑥 → ∅(𝑥), then a kernel 
𝐾(𝑥𝑖 , 𝑥𝑗) = ∅𝑇(𝑥)∅(𝑥) offers a more efficient and less 
expensive way to transform data into higher dimensions. 
Kernel functions commonly include linear, nonlinear, 
polynomial, radial basis function (RBF), and sigmoid. 

Decision Tree (DT): DT is a non-parametric supervised 
technique that formulates the classification model in a tree 
structure for regression and classification [39]. The key idea 
of DT is to divide the dataset into smaller subsets into nodes 
and branches. A DT generally consists of one root, several 
branches, and many interval nodes. Every path is from the root 
node to a leaf node through the internal nodes. This path 
denotes a classification with the different conditions of the 
components. Every leaf node represents a response for 
regression or a class label for classification. A decision tree is 
constructed from the pre-classified data. The division of data 
into different classes is based on the values of the features of 
the given data. To determine which features to split, the 
commonly used method is to measure the impurity, which 
measures the homogeneity of the labels on a node. This 
process is applied to all subsets of data items recursively. The 
process terminates as all the data items in the current subgroup 
belong to the same class. 

Random Forest (RF) [40]: RF is a variant of DT. Unlike 
DT, which builds a single tree on a whole dataset, RF creates 
a set of DTs using random resampling on the training set. For 
classification tasks, each DT then votes for a particular target 
class, and a class selected by most DTs is the output of the RF. 
RF benefits from two powerful techniques: bagging and 
random subspace selection. RF builds many DTs and allows 
each tree to randomly sample from the original dataset with 
replacement, resulting in different trees. Secondly, each tree 
picks a subset of features randomly. This forces more variation 
amongst the trees in the model, resulting in lower correlation 
and more diversification across trees. The hyperparameters, 
including the number of trees (n_estimators) and the number 
of variables (max_features), must be optimized to improve the 
classification accuracy.  

K-Nearest Neighbors (KNN) [41]: KNN tries to predict 
outputs by calculating the distance between the test data and 
training points, then selecting the K number of points closest 
to the test data. A class label is assigned based on a majority 
vote for classification problems. A reasonable distance 
function will identify essential features and discriminate 
between relevant and irrelevant ones. Commonly used 
distance functions include Euclidean, Manhattan, and 
Hamming.  
Euclidean distance is calculated as the square root of the sum 
of the squared differences between a new point and an existing 
point. It is the minimum distance between two points. If points 
(𝑥1, 𝑦1) and (𝑥2, 𝑦2) are in 2-dimensional space, then the 
Euclidean distance ‘d’ is represented as  

𝑑 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 (3) 

Manhattan distance between two points 𝑎 and 𝑏 with 𝑘 
dimensions is defined as ‘D’ below 

𝐷 = ∑|𝑎𝑗 − 𝑏𝑗|

𝑘

𝑗=1

 

 

(4) 

Hamming distance is mainly used for categorical variables, 
also referred as binary strings. For example, the two points, 
(0,1,1) and (0,1,0), the hamming distance is 1, since only one 
value (last value) is different between two variables. 

Multi-layer Perceptron (MLP): Multilayer perceptron 
(MLP) is one of the most commonly used types of artificial 
neural networks. The standard architecture of an MLP 
artificial neural network consists of an input layer, multiple 
hidden layers, and an output layer. Hidden layers learn 
representations of input data by using non-linearity functions. 
The number of neurons in the input layer equals the number of 
features, and the number of neurons in the output layer equals 
the number of classes. In contrast, the number of neurons in 
each hidden layer needs to be tuned to find a suitable network 
with sufficient parameters and good generalization for 
classification or regression tasks. 

Gaussian process (GP): A GP is a stochastic process whose 
kernel is a Gaussian distribution [42]. The GP assumes that the 

mapping from inputs and outputs via a latent function 𝑓, which 

can be defined mathematically as 
𝑓~𝐺𝑃(𝑚(𝑥), 𝑘(𝑥, 𝑥′)) (5) 

Where 𝑚(𝑥) and 𝑘(𝑥, 𝑥′) are the mean and covariance 

functions respectively, denoted by 

𝑚(𝑥) = 𝐸(𝑓(𝑥)) 

𝑘(𝑥, 𝑥′) = 𝐸[(𝑓(𝑥) − 𝑚(𝑥))(𝑓(𝑥′) − 𝑚(𝑥′))
𝑇

] (6) 

The output values are assumed to be independent when 
conditioned on the latent function, i.e., 𝑝(𝑦|𝒙, 𝑓) =
∏ 𝑝(𝑦𝑖|𝑓(𝒙𝑖))𝑁

𝑖=1 . Kernel function 𝑘(𝑥, 𝑥′) is the critical 
ingredient in using Gaussian processes, which determine the 
shape of prior and posterior of the GP. The main advantage of 
GP is probabilistic so that one can compute empirical 
confidence intervals to quantify the uncertainty of the 
prediction. When applying it to classification tasks, the 
posterior of the latent function 𝑓 no longer has a closed-form 
solution since a Gaussian likelihood is inappropriate for 
discrete class labels. Several approximation schemes have 
been suggested, including Laplace’s method, variational 
approximations, mean-field methods, Markov chain Monte 
Carlo and Expectation Propagation. 

Deployment of ML algorithms: All machine learning 
codes were deployed using Python, and computations were 
performed on a 2.3 GHz Quad-Core Intel Core i7 processor. 
The classification accuracy was determined for i) 
unsegmented 10 m walk dataset and ii) segmented gait cycles 
(SGC). Four hundred ninety-two walking samples are 
obtained from the experiment. The whole data is randomly 
shuffled and split into training and test with a ratio of 80%: 
20%, which corresponds to 393 and 99 samples, respectively. 
For each sample, 36 features are extracted for each signal, i.e., 
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corresponding to 36*24=864 features per sample. Once we 
have extracted features, min-max scaling is used to normalize 
the data to range between 0 and 1 to reduce variation. Five-
fold cross-validation is used on the training data set for each 
classifier to select the best model for the test. We used a grid 
search algorithm to optimize hyperparameters when 
performing five-fold cross-validation for each classifier; this 
tuning technique exhaustively generates candidates from a 
grid of parameter values, then builds a model for every 
combination of hyperparameters specified and evaluates the 
accuracy of each model. 

Hyperparameter Tuning: We conducted a grid search for 
each ML classifier, four kernels of SVM, including linear, 
polynomial, radial basis function (RBF), and sigmoid with a 
set of regularization parameter 𝐶 ∈ [0.01,0.05, 0.1, 1, 10] are 
tuned. For the DT, two attribute selection methods, entropy to 
calculate information gain and ‘Gini index’ for the Gini 
impurity, are tuned. For the RF, we tune a wide range of values 
from 10 to 700 for the number of trees (n_estimators) in the 
forest. For the KNN, grid search is performed over various 
values of K. For the MLP, different numbers and sizes of 
hidden layers, activation functions including Rectified Linear 
unit (ReLU), tanh, logistic, and diverse learning rates are 
employed. For the GP the best kernel is chosen from RBF, 
DotProduct, Matern, RationalQuadratic, WhiteKernal. The 
model with the highest validation accuracy is eventually 
selected for the test. The best hyperparameters configuration 
for each classifier is listed in  

Table 2. Classification performance was evaluated using 
several performance metrics such as accuracy, precision, 
sensitivity, specificity, and the Matthews correlation 
coefficient (MCC). Accuracy is the ratio of correctly identified 
samples out of all predictions. Sensitivity, or recall, also 
known as true positive rate (TPR), refers to the proportion of 
true positives to actual total positive predictions. It is a 
measure of how well a model can identify true positives. 
Specificity, or true negative rate (TNR), on the other hand, 
refers to the ratio of true negatives to total negatives in the 
data. Precision is the ratio of true positives to the combined 
number of true positives and false positives, which measures 
the model’s accuracy in classifying a sample as positive. F1-
score is the harmonic mean of the precision and recall. The 
Matthews correlation coefficient (MCC) measures the overall 
association between actual classes and predicted classes by 
calculating the correlation coefficient. It is, in essence, a 
correlation coefficient value between -1 and +1. A coefficient 
of +1 represents a perfect prediction. Conversely, -1 represents 
the worst prediction where a classifier labels all the positives 
as negatives and all the negatives as positives. 0 indicates an 
average random prediction. More concretely, the metrics are 
calculated using the following formulas:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 (7) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (8) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (9) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (10) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 (11) 

 
TP, FN, FP, and TN represent true positive, false negative, 
false positive, and true negative. TP and TN imply the number 
of the positive/negative classes that have been correctly 
categorized; FN (false negative) are the reverses, indicating 
the number of positive/negative samples categorized wrong.  

 
TABLE 2 BEST HYPERPARAMETERS CONFIGURATIONS FOR DIFFERENT ML 
ALGORITHMS USED FOR CLASSIFICATION OF TOE WALKING (TW) VERSUS 

BEST HEEL STRIKE (BHS)  
Model Best Parameter Configuration 

SVM C: 0.05, kernel:poly, degree:3 

DT criterion: gini, max_depth: 18, min_samples_leaf: 10 

RF 
bootstrap: True, max_depth: 20, max_features: auto, 

n_estimators: 600 

KNN 
leaf_size: 20, metric: minkowski, n_neighbors: 2, p: 1, 

weights: distance 

MLP 

activation: relu, alpha: 0.0001, 

hidden_layer_sizes: (50, 10), learning_rate: invscaling, 
solver: adam 

GP kernel: 1**2 * Matern (length_scale=1, 𝜐=1.5) 

 

III. RESULTS 
 
TABLE 3  PERFORMANCE METRICS OF THE CLASSIFICATION MODELS WITH 

ALL FOUR BODY ATTACHED SENSORS. THE HIGHEST PERFORMING 
CLASSIFIER IS HIGHLIGHTED IN BOLD. 

Mod
el 

Performance metrics 

Accura
cy 

Precisi
on 

Sensitivi
ty 

Specifici
ty 

F1-
score 

MCC 

SVM 0.8585 0.8800 0.8461 0.8723 0.862
7 

0.717
6 

DT 0.7474 0.7547 0.7692 0.7234 0.761
9 

0.493
2 

RF 0.8282 0.8571 0.8076 0.8510 0.831
6 

0.657
9 

KNN 0.9292 0.9411 0.9230 0.9361 0.932
0 

0.858
5 

MLP 0.8585 0.8958 0.8269 0.8936 0.860
0 

0.719 
9 

GP 0.8686 0.9148 0.8269 0.9148 0.868
6 

0.741
8 

 
Classification capabilities of six different classifiers to 
distinguish the toe walking (TW) and best heel strike (BHS) 
was evaluated. We found all of these six algorithms can 
classify BHS and TW gait patterns from the data correctly 
with an average prediction accuracy of 84.84%. We found 
KNN showed the best classification accuracy of 92.92%, 
specificity of 93.61% and sensitivity of 92.30%, F1-score of 
93.20%, MCC of 0.8585 to distinguish between TW and BHS, 
which is significantly higher (6.9%) than GP (Table 3 and 
Figure 6). Among 99 test samples, only 3 BHS and 4 TW 
samples are misclassified. We found GP achieves satisfiable 
performance with an accuracy of 86.86% when using Matern 
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kernel with smooth parameter ν=1.5. The  atern kernel is a 
generalization of the RBF. Compared to RBF, Matern has an
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FIGURE 6. Confusion Matrix using all four body affixed sensors 

FIGURE 7. ROC curves and AUC values are presented for a) all four sensors, b) sacrum sensor, c) Trunk sensor, d) left shank sensor, and e) right 
shank sensor for different ML algorithms. 

 
additional parameter ν to control the smoothness of the 
estimated function. The smaller ν, the less smooth the function 
gets. When ν→∞, the kernel gets equivalent to RBF.  LP 
with 2-hidden-layers and SVM with a polynomial kernel 
achieve the same accuracy of 85.85% with 14 samples 
misclassified. 
Nevertheless, the specificity of MLP is slightly higher than 
that of SVM. MLP and SVM perform better than RF and far 
better than DT in toe walking classification accuracy. We 
found that for all the classifiers except DT, the specificity 
values are higher than those of sensitivity, indicating that the 

BHS samples are more rarely misclassified than the Toe 
walking samples.  
Table 4 shows the performance results with four different 
sensor locations, and the best performing metrics are 
highlighted in bold. The comparison of receiver operating 
characteristic (ROC) curves with varying sensor locations 
using six classifiers in Figure 7. The ROC curve is created by 
plotting the TPR against the FPR at various threshold settings, 
which is a typical plot to characterize the diagnostic ability 
[43]. The area under the ROC curve (AUC) is also 
demonstrated in Figure 7.  
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FIGURE 8. Confusion matrix for the six ML classifiers using the gait cycle segmented data of all sensors. 
 
TABLE 4  PERFORMANCE METRICS OF THE CLASSIFICATION MODELS WITH 
DIFFERENT SENSOR LOCATIONS 

Sensor 
Location Model 

Performance  

Accuracy Precision Sensitivity Specificity F1-
score MCC 

Sacrum 

SVM 0.7878 0.7818 0.8269 0.7446 0.8037 0.5744 
DT 0.7692 0.8222 0.7115 0.8297 0.7628 0.5428 
RF 0.7575 0.7692 0.7692 0.7446 0.7692 0.5139 

KNN 0.7979 0.8076 0.8076 0.7872 0.8076 0.5949 
MLP 0.7979 0.8200 0.7884 0.8085 0.8039 0.5962 
GP 0.7676 0.7959 0.7500 0.7872 0.7722 0.5365 

Trunk 

SVM 0.7878 0.8444 0.7307 0.8510 0.7835 0.5835 
DT 0.6363 0.6481 0.6730 0.5957 0.6603 0.2695 
RF 0.7575 0.8043 0.7115 0.8085 0.7551 0.5206 

KNN 0.7777 0.8750 0.6730 0.8936 0.7608 0.5766 
MLP 0.6666 0.6727 0.7115 0.6170 0.6915 0.3301 
GP 0.7474 0.7647 0.7500 0.7446 0.7572 0.4942 

Left 
shank 

SVM 0.8585 0.8958 0.8269 0.8936 0.8600 0.7199 
DT 0.6464 0.6808 0.6153 0.6464 0.6464 0.2962 
RF 0.8585 0.8958 0.8269 0.8936 0.8686 0.7199 

KNN 0.8181 0.8541 0.7884 0.8510 0.8200 0.6390 
MLP 0.7777 0.8000 0.7692 0.7872 0.7843 0.5557 
GP 0.8282 0.8301 0.8461 0.8085 0.8380 0.6554 

Right 
shank 

SVM 0.8282 0.8070 0.8846 0.7659 0.8440 0.6573 
DT 0.6666 0.7209 0.5961 0.7446 0.6526 0.3433 
RF 0.7777 0.8125 0.7500 0.8085 0.7800 0.5580 

KNN 0.8383 0.8214 0.8846 0.7872 0.8518 0.6768 
MLP 0.7979 0.7758 0.8653 0.7234 0.8181 0.5969 
GP 0.8686 0.8823 0.8653 0.8723 0.8737 0.7371 

 
The AUC summarizes the classification quality and is a 
measure of accuracy, where an AUC of 0.5 indicates a random 
classifier with no value. The best accuracy for all six classifiers 
is obtained using all four sensors for each algorithm. The 

maximum AUC value (0.94) is achieved from KNN, MLP, 
and RF when applied the algorithms to the data that combines 
all sensors. Another phenomenon is that none of the 
algorithms consistently outperformed the others in terms of 
accuracy. For example, SVM performs best at trunk location 
but does not perform well than GP when using the suitable 
shank sensor. We found performance at left and right shank 
locations is better than at sacrum and trunk. Sensor signal 
segmentation into gait cycles resulted in a large number of 
samples.  
After the segmentation into gait cycles, the data size increases 
to 4044 (3233 for training and 811 for the test), close to 10 
times the original size. The classification results using the 
same feature extraction strategy were evaluated. Figure 8 
shows the confusion matrix for the six classifiers using the gait 
cycle segmented data. The quantitative results are provided in 
Table 5. We found SVM had an accuracy of 85.69%. 
However, KNN yielded the best precision and specificity but 
relatively low sensitivity. GP demonstrated the best 
sensitivity, indicating the best diagnostic ability to identify the 
TW patterns. Similarly, the DT showed poor ability to 
distinguish the TW and BHS and had the lowest accuracy of 
68.06% and smallest MCC value of 0.3607. The performance 
is still promising despite the lower average accuracy of 
81.60% and F1-score of 82.23% than that of using raw data.  
The effects of the number of sensors and sensor placement are 
explored, and the ROC curves and classification performance 
are provided in Figure 9 and Table 5. The results show that 
using all sensors gains the best classification results, implying 
that richer information leads to better discriminative power.
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FIGURE 9.  ROC curves and AUC values are presented for a) all four sensors, b) sacrum sensor, c) Trunk sensor, d) left shank sensor, and e) right 
shank sensor for different ML algorithms. 

TABLE 5  PERFORMANCE METRICS OF THE CLASSIFICATION MODELS USING SEGMENTED DATA 

Sensor Location Model Performance 
Accuracy Precision Sensitivity Specificity F1-score MCC 

All Sensors 

SVM 0.8569 0.8652 0.8611 0.8523 0.8632 0.7133 
DT 0.6806 0.7004 0.6823 0.6787 0.6912 0.3607 
RF 0.8397 0.8624 0.8258 0.8549 0.8437 0.6800 

KNN 0.8335 0.8698 0.8023 0.8678 0.8347 0.6698 
MLP 0.8310 0.8380 0.8400 0.8212 0.8390 0.6613 
GP 0.8545 0.8545 0.8705 0.8367 0.8624 0.7081 

Sacrum 

SVM 0.8076 0.8225 0.8070 0.8082 0.8147 0.6148 
DT 0.6461 0.6546 0.6823 0.6062 0.6689 0.2894 
RF 0.7718 0.7803 0.7858 0.7564 0.7831 0.5425 

KNN 0.7903 0.8179 0.7717 0.8108 0.7941 0.5820 
MLP 0.7558 0.7609 0.7788 0.7305 0.7697 0.5101 
GP 0.8027 0.8192 0.8000 0.8056 0.8095 0.6051 

Trunk 

SVM 0.7644 0.7896 0.7505 0.7797 0.7696 0.5297 
DT 0.6461 0.6691 0.6423 0.6502 0.6554 0.2922 
RF 0.7533 0.7892 0.7223 0.7875 0.7542 0.5097 

KNN 0.7459 0.7717 0.7317 0.7616 0.7512 0.4928 
MLP 0.7287 0.7506 0.7223 0.7357 0.7362 0.4575 
GP 0.7570 0.7864 0.7364 0.7797 0.7606 0.5157 

Left shank 

SVM 0.8014 0.8055 0.8188 0.7823 0.8121 0.6017 
DT 0.7003 0.7136 0.7152 0.6839 0.7144 0.3992 
RF 0.7817 0.7966 0.7835 0.7797 0.7900 0.5629 

KNN 0.7755 0.8060 0.7529 0.8005 0.7785 0.5529 
MLP 0.7965 0.8201 0.7835 0.8108 0.8014 0.5937 
GP 0.8014 0.8142 0.8047 0.7979 0.8094 0.6023 

Right shank 

SVM 0.7940 0.7905 0.8258 07590 0.8078 0.5869 
DT 0.6744 0.6968 0.6705 0.6787 0.6834 0.3489 
RF 0.8027 0.7977 0.8352 0.7668 0.8160 0.6043 

KNN 0.7731 0.7822 0.7858 0.7590 0.7840 0.5450 
MLP 0.7657 0.7701 0.7882 0.7409 0.7790 0.5299 
GP 0.7903 0.7972 0.8047 0.7746 0.8009 0.5796 
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This is consistent with classification results obtained using raw 
signals. Figure 9 shows that except DT all other 5 classifiers 
are comparable and could be good candidates for the ITW 
monitoring system. In terms of the location of sensors, 
configuring all four sensors together always performed the 
best. Power spectral density evaluations were conducted for 
accelerations in anterior posterior, medial-lateral and vertical 
directions. Power in four frequency bands was computed i) 0 
Hz < f  ≤ 2 Hz, ii) i) 2 Hz < f  ≤ 4 Hz, iii)  4 Hz < f  ≤ 6 Hz, 
and iv) 6 Hz < f ≤ 8Hz  Figure 10). The dominant frequencies 
for BHS and TW are presented in Figure 11.  

FIGURE 10. Area under the power spectral density (PSD) 
curves were computed for 4 frequency bands i) 0Hz < f ≤ 2Hz, ii) 2Hz < 
f ≤ 4 Hz, iii) 4Hz < f  ≤ 6 Hz, iv) 6 Hz < f ≤ 8Hz for all three directions of 
accelerations.  

IV. DISCUSSION 
This study aimed to determine optimal sensor location and ML 
algorithms that can classify toe walking among children 
diagnosed with ITW with high accuracy. Previous studies 
have used the accelerometer to differentiate the toe-walking 
stance from the normal stance [14, 44-46] among children 
with ITW. In this study, we demonstrated the influence of i) 
15 m walk continuous timeseries versus SGC, ii) body sensor 
locations (right and left shank, trunk, and sacrum), and iii) 

various ML algorithms (SVM, DT, RF, KNN, MLP and GP) 
in accurately classifying toe walking gait. This research 
provides a platform for ML-based automated classification of 
toe walking needed for intervention among ITW children. The 
highest classification of 92.9% was observed using all four 
sensors using KNN. This was followed by GP (86.8%), SVM 
and MLP (85.8%), RF (82.8%) and DT (74.7%). 
ITW participants demonstrated reduced variability when 
mimicking BHS, as shown in Fig. 3(a-c). Gait variability is 
associated with the energy cost of walking in people with 
multiple sclerosis [47]. Thus, more variability found during 
toe walking could increase walking energetics [48-51]. Lower 
limb muscle fatigue is more commonly found in children who 
walk than in typically developing peers [52, 53]. 
We evaluated the effects of input timeseries lengths for ML 
classification. We utilized a simple yet effective peak 
detection method similar to our previous study to truncate raw 
signals to gait cycles [36]. We tested the influence of input 
timeseries by employing i) 15 m long walking timeseries 
signals versus SGC. Although the number of samples 
increased, classification accuracy was not affected due to the 
truncation of time series into gait cycles. We found increased 
number of samples reduced overfitting of the classifier and 
boosted classification performance. 
We used both temporal and frequency domain features (Table 
1). The frequency components of accelerations at the sacrum 
were analyzed at different frequency bins (0-2 Hz, 2-4Hz, 4-
6Hz, and 6-8Hz). Paired t-test was carried out to compare the 
median frequencies between BHS and TW. We found BHS 
resulted in significantly higher frequencies in medial-lateral 
(ML) and anterior-posterior (AP) directions, whereas TW 
resulted in significantly higher accelerations in the vertical 
direction (Figure 10). Specifically, vertical accelerations 
produced during TW in the sacrum consist mainly of high 
frequencies. TW could potentially lead to low back pain 
among children diagnosed with ITW[54]. The dominant 
frequency during TW was higher than BHS (28Hz versus 
26.6) (Figure 11).  
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FIGURE 11. Mean dominant acceleration frequencies during 
TW and BHS. 
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Six ML algorithms are tested, and hyperparameter 
configurations are tabulated in Table 2. To avoid the 
overfitting of ML models, we used five-fold cross-validation 
techniques. The confusion matrix using all four sensors among 
six ML algorithms is provided in Figure 6. The accuracy of all 
six classifiers was compared using Receiver Operating 
Characteristics (ROC) curves (Figure 7), confusion matrices, 
and other performance metrics like Mathews Correlation 
Coefficient (MCC) (Table 5). We found KNN classified the 
TW patterns with highest accuracy (92.9%), highest precision 
(94.1%), sensitivity (92.3%), specificity (93.6%) with F1 
score (93.2%) and MCC (85.8%).   
We evaluated the effects of body sensor locations on the 
accuracy of toe gait classification. Four sensors affixed at both 
shanks, trunk, and sacrum. To perform comparisons, same 
hyperparameter tuning methods were conducted. We found a 
single sensor located at the shank could classify TW versus 
BHS with an accuracy of 86.8%, followed by sacrum (79.7%) 
and trunk (78.7%). Our results demonstrate that sensors 
located at the shank have added advantages for accurate gait 
classification. It may be attributed to knee and hip joints that 
may absorb or produce counteractive movements peculiar to 
gait type, thus reducing classification accuracy. We thus 
observed lower accuracies at sacrum and trunk positions. The 
ROC curves and AUC values are shown in Figure 9. 
There is insufficient research on whether existing clinical 
interventions are adequate ITW treatment options. We 
propose that if TW is accurately identified using sensors 
affixed at the shank level, appropriate real-time feedback 
interventions can be implemented. Gait classification accuracy 
may be affected by intra-subject variability and severity of toe 
walking. Thus, the heterogeneity in toe walking severity 
among children diagnosed with ITW may challenge ML 
algorithms to classify gait accurately. In addition, the effects 
of an environment may influence walking behavior in 
children. For example, in the presence of an 
experimenter/clinician, the children may present the best 
performance to maintain good foot contact. Participants were 
asked to look forward at the target (20 m far) while walking in 
laboratory settings. The consistency was held in every trial 
during data collection.  
Since the classification accuracy is also affected by the sample 
size of the data. If the data size is small, even a few 
misclassified samples will reduce the performance obviously 
from a statistical perspective. However, a higher classification 
performance can be achieved if more datasets are available. 
Nevertheless, the ML algorithms, especially SVM, KNN, and 
GP, have good discriminative power for gait classification of 
ITW children and can potentially be integrated into an expert 
gait system for monitoring and diagnosis. We found that all 
ML algorithms showed good specificity, which indicates that 
the ML algorithms can accurately identify BHS patterns, so 
the number of false positives is low, and this is helpful from 
the treatment perspective. The children will be less interrupted 
by the false alarm. Finally, this study provides evidence that 

an ML-enabled low-cost gait monitoring device can give a 
good capability for monitoring without hindrance. 

V. CONCLUSION 
There is limited research on using automated algorithms to 
identify TW in children diagnosed with ITW using wearable 
sensors and providing real-time feedback for correcting gait. 
In this study, we evaluated the performance of wearable 
sensors located at four different body locations using six ML 
algorithms to classify TW. We found ML algorithms 
successfully classified the TW strides from BHS in the 
children with ITW. This study demonstrates the significant 
potential of using low-cost wearable devices and ML 
algorithms to diagnose and monitor the gait of ITW children 
and further intervene using feedback. Accurate quantification 
of toe walking steps is critical for designing new real-time 
interventions for children diagnosed with ITW. Using 
wearable sensors and ML, real-time TW stride detection can 
be integrated with closed-loop control in assistive devices for 
intervention and motor rehabilitation. This will reduce costs 
and the burden on both clinicians and parents of the children. 
Future work will include additional participants and model 
personalization to improve performance.  
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