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Abstract

An elastic map T describes the strain-stress relation at a particular point p in some ma-
terial. A symmetry of T is a rotation of the material, about p, that does not change T.
We describe two ways of inferring the group St of symmetries of any elastic map T; one
way is qualitative and visual, the other is quantitative. In the first method, we associate to
each T its “monoclinic distance function” ngNO on the unit sphere. The function f&(mo
is invariant under all of the symmetries of T, so the group St is seen, approximately, in
a contour plot of f;fONO. The second method is harder to summarize, but it complements
the first by providing an algorithm to compute the symmetry group Sy. In addition to Sr,
the algorithm gives a quantitative description of the overall approximate symmetry of T.
Mathematica codes are provided for implementing both the visual and the quantitative ap-
proaches.

Keywords Elastic symmetry - Elasticity - Theoretical seismology

Mathematics Subject Classification 15-02 - 15A90

1 Introduction

Elasticity is about the relation between strain and stress. We refer to the function T from
strain to stress as the elastic map. It expresses the constitutive relations of the material under
consideration, or the generalized Hooke’s Law [1].

The map T describes the strain-stress relation at a particular point p in the material. A
symmetry of T is a rotation of the material, about p, that does not change T.

We assume throughout that T is a linear self-adjoint transformation of 3 x 3 symmetric
matrices. For any such T we describe two methods of finding its group of symmetries. One
method is qualitative and visual, and the other is quantitative; the two methods complement
each other.
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The first method is a reformulation and elaboration of that of Diner et al. [8], who in turn
drew on Francois et al. [10]. The method is so accessible and appealing that we can give a
preliminary description of it here:

To any elastic map T we associate its “monoclinic distance function” f,f ., on the
unit sphere. The zero-contour ZT of fI .. turns out to consist of the points where the
axes of the 2-fold symmetries of T intersect the unit sphere. Since the 2-fold rotations
in any elastic symmetry group generate the group, then ZT determines the elastic sym-
metry group of T. Figure 1 shows eight instances of ZT. These are the only possibili-
ties; regardless of T, the set ZT will look like one of these eight, though probably reori-
ented. Thus the set ZT reveals the group of symmetries of T by displaying the axes of
the 2-fold rotations in the group. Since the identification of elastic symmetries has been
traditionally regarded as a challenging problem, this pictorial solution came as a welcome
surprise.

The first method of inferring elastic symmetries—the visual method—is derived in
Sect. 4. The second method—the quantitative method—is derived in Sect. 5; see especially
Theorem 3. Other approaches to finding the symmetry groups of elastic maps are found in
[24, 6, 8, 10, 11, 13, 15]. Of these, only [6, 8, 10, 15] are directly relevant to the current
paper. Papers [4] and [15] use the eigensystems of elastic maps to find symmetries. Pa-
pers [2, 3, 13] are algebraic and are more sophisticated than the present paper. The papers
[5, 10, 12, 14] have applications to acoustics and seismology. We ourselves, however, do not
treat applications in this paper.

Mathematica code for drawing contour plots of f,} ., and for finding the symmetry group
of any elastic map is available as described in the Code Availability section. Inferring elastic
symmetry—by either method—can be done routinely.

2 Some Prerequisites
Most of this section is abridged from [15]. Details, including proofs, can be found there.

2.1 TheBasis B

We let M be the vector space of 3 x 3 symmetric matrices. The basis B for M consists of
the six elements

L (000 L (001 L {010
B=—|0o o0 1], B=—]0o00]. B=—1|10 0],
v2\o 1 o v2\1 0 o v2\o 0 o
(1)
L (-1 00 L (10 0 L (100
Bi=—1] o0 1 0], Bs=—{0o 1 o). B.=—1{0 1 0
V2o 0 o Velo o —2 V3lo o 1

Our matrix representations of linear transformations S : Ml — M are all with respect to the
basis B. The matrix representation of S is denoted by [S].

2.2 Inner Products and Norms

The inner product of #n x n matrices M = (m;;) and N = (n;;) is defined by
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Two Complementary Methods of Inferring Elastic Symmetry 93

Utriv Uwmono ) UorTH Utric

Urer Ucuge Uxiso Uiso

7 y
X
Fig. 1 The zero contour (blue) of ngNo on the unit sphere for various elastic maps T. Each T here has
as symmetry group one of eight “reference” groups Urryy, ..., Uiso as indicated. The points of the zero
contour of flono are where the axes of the 2-fold symmetries of T intersect the unit sphere. Since the
2-fold rotations in any elastic symmetry group generate the group, the zero contour of ngNO determines

the symmetry group of T. For any elastic map T, the zero contour of ngNo is one of the eight shown here,
though probably reoriented

n

ij=1

(Juxtaposition of matrices, with no dot, signifies matrix multiplication.) Matrix norms are
then defined in terms of the inner product as usual:

IM|| =M M. 3
The inner product of elastic maps T; and T, is defined via their matrix representations:
T, -T,=[T]-[T:]. “
Norms of elastic maps are then defined from the inner product.

2.3 Adjoint

For a linear transformation S : M — M, the adjoint of S is the linear transformation
S* : M — M such that

S*(E\) - E;=E;-S(Ey), (Ei, E;eM. (&)

The matrix of S* with respect to B is
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[S*1=1ISI", ©
where the symbol T denotes matrix transpose.
2.4 Rotation Matrices
A square matrix U is said to be orthogonal if UU T = I. If also det U = 1 then U is a rotation

matrix. We let U be the group of all 3 x 3 rotation matrices. Examples of matrices in U would
be the 3 x 3 rotations X¢, Y¢, Z; through angle & about the x, y, z axes, respectively:

1 0 0 cosé& 0 siné
X;=|0 cosé& —sin& |, Y= 0 1 0 ,
0 siné cosé& —sinf 0 cosé
. @)
cosé —siné 0
Z;=| siné cos& O
0 0 1
For 3 x 3 matrices M and N and for U € U,
UM-UN=M-N=MU-NU. ®)

2.5 Conjugation by a Rotation Matrix

For U € U, the linear transformation U : M — M is defined to be conjugation by U. That
is,

U(E)=UEU', (UeU, EeM). ©)
Since U(E)) - E, = E; - UT (E»), then by comparison with Eq. (5),
U'=UT. (10)
Thus, whereas U is conjugation by U, the transformation U"is conjugation by UT.

2.5.1 The Matrix of U

The matrix of U with respect to the basis B (Eq. (1)) is found to be

(UBUTY-B, ... (UBUT) B
[U]= : : ) (11)
(UB,UTY-Bg ... (UBUT)- By
The matrix of U* is
[U"1=[01". (12)

For any 6 x 6 matrices S and T, and for U € U,
(lU1S)-(l01T)=S8-T=(S[U)) - (T [U]). (13)

@ Springer



Two Complementary Methods of Inferring Elastic Symmetry 95

Table 1 The reference groups Uy, ¥ = TRIV, ..., 1SO. The axes for the 2-fold rotations in Uy, are blue in
Fig. 1. The matrices in Uxjso are the rotations about the z-axis together with the 2-fold rotations about axes
in the xy-plane. A matrix of the form Zg X Zg— , as appears in the group Urgr, is the 2-fold rotation about

the horizontal axis that has polar coordinate 6 = &. A matrix of the form Zg Y Zg—, as in Urgrg, is the same
but with 6 =& + /2

Group Members

Uiso All rotations

Uxiso All rotations U such that Uk = £k

Ucugge The 24 rotational symmetries of the cube with vertices (£1, 1, £1)
Urer Zinjas ZinjaXaZly (=0,1,2.3)

Urrig Zidn/3 Zm/sYnZ;m (i=0,1,2)

Uorrn I, Xp, Y, Zy

Umono I, Zx

Urriv I

It is enough to verify Eq. (13) for U =Y, and U = Z,, since any 3 x 3 rotation matrix can
be written Zy Yy Z, and since [U;U,] = [U;][U,]. From Eq. (13),

|OIT | =ITI=|T[U]|. (14
2.6 The Eight Reference Groups

If T is the elastic map at a point p in some material, then U o T o U" is the elastic map for
the material after it has been rotated about p using U. Thus,

Visasymmetryof T <= VoToV =T. (15a)
In terms of matrices, from Eq. (12),
Visasymmetry of T <= [V][T][V]™ =[T]. (15b)

The symmetry group St of T is the group of all symmetries of T.

A group of 3 x 3 rotation matrices is said to be an elastic symmetry group if it is the
symmetry group of some elastic map. Except for conjugacy, there are exactly eight elastic
symmetry groups (Forte and Vianello [9]). More precisely, each symmetry group Sy is a
conjugate of one of the eight ‘reference’ groups Uy in Table 1, and each of the reference
groups is the symmetry group of some elastic map.

From Eq. (15a),

Visasymmetry of T <= UVU' isasymmetry of UoTo [ (16a)
Hence the symmetry group S, ¢, p* 1S conjugate to Sy by U':
Sgoreg* =USTU. (16b)
2.7 The Eight Reference Matrices

The reference matrices are listed in Table 2. As shown in [15, Sect. 12.1], their fundamental
relation with the reference groups is that the symmetry group of an elastic map T is at least
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96 W. Tape, C. Tape

Table 2 The reference matrices Ty, ¥ = TRIV, ..., 1S0. See Eq. (17)

Trriv Tmono TorTH TreT
a g m g t v a g a a
g b h n r u g b b a
m h ¢ i o s c i o s c c
g n i d j p i d j p d j p d
t r o j e k o j e k j e k e k
v u s p k f s p k f p k k f
Txiso Tcuse Tiso Ttric
a a a a 0 m O
a a a 0 a 0 m
c a a m 0 ¢ 0
c d a 0 m 0 ¢
e k d a e k
k f f f k f
Uy if and only if the matrix of T has the form of the reference matrix Ts:
St DUy < [T]=Tx(a,b,...) forsomea,b,... 17
2.8 The Eight Elastic Symmetry Classes
For ¥ = TRIV, ..., IS0, we define the (elastic) symmetry class Cy to consist of the groups
that are conjugate to Uy:
Cy={UUsgUT:U eU}. (18)

Temporarily abbreviating Cx, and Cs, to C; and C,, we define a partial ordering < of the
eight symmetry classes by

Ci<C <= 33U, €30, €, (U; CcUy). (19a)

Because all members of a symmetry class are conjugate to one another, we get equivalent
formulations of Eq. (19a):

Ci<C <= VU, €30, e, (U, CcUy), (19b)
C1<C <= VU, e 30U, €C; (U; CUy). (19¢)

@ Springer



Two Complementary Methods of Inferring Elastic Symmetry 97

Fig.2 A suggestion of the elastic symmetry class Crgr, showing only three of its infinitely many members.
The class consists of all groups of the form UUrgrU T Here each group is shown by its 2-fold symmetry
axes; compare with the diagram for Urgr in Fig. 1

With an arrow from Cy, to Cx, signifying Cx, < Cx,, we have

CISO

C/ \C
=

CTRIG CTET

1 (20)
\ Corr
/

CMONO

I

CTRIV

For an elastic map T, we define the symmetry class Sy of T to be the symmetry class that
contains the group St (as a member). The symmetry class St is less informative than the
symmetry group S, since the orientation information in Sy is lost in Sy. Figure 2 shows
three members of the symmetry class Crgr.

2.9 Regular Angles, Regular Axes

An angle £ is said to be regular if a rotation through angle £ is neither 1-fold, 2-fold, 3-fold,
nor 4-fold. That is, £ # £27/n (mod 27),n =1,2,3, 4.

If € is regular and if rotation through angle £ about some axis is a symmetry of an elastic
map T, then rotations through all angles about that same axis are symmetries of T [15,
Theorem 5]. The axis is then said to be a regular axis for T.
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98 W. Tape, C. Tape

3 Orthogonal Projection

In an inner product space V, vectors v; and v, in V are said to be orthogonal if v; - v, = 0.
The orthogonal complement of a subspace W is

WL={veV:v-w=0forall we W} (21)

The orthogonal projection P (v, W) of a vector v onto a subspace W of V is characterized
by vectors w; and w; such that

V= W; + W, . (22a)
—— ——
ew eWt
Then
P(v,W) =w,. (22b)

If a vector w is in W, then its distance squared from v is
2 2
lv—wl"=lv—w +w —w|
=(V-—W +W —W)-(V-W +W —W)
= v =wil>+2(v —wp) - (W) — W) + [w; — w|

= v —wilI* + [w; — w|?, (23)

since w; — w € W and since v — w, = w, € WL, The projected vector P(v, W) = w; is
therefore the closest member of W to v. The distance from v to the subspace W is

d(v, W) =[v— P, W) (24)
Suppose a linear transformation U : V — V is unitary, that is, Uo U* =U* o U =1,

where I is the identity transformation. Applying Eqgs. (22a), (22b) to U*(v) rather than to v,
we have

UM = wi + wp , (25a)
—— N——"
ew eWt

P (U*(v), W) =w,. (25b)

If we W then U(w,) - U(W) = w, - w = 0, so that U(w,) € UW)L. Applying U to both
sides of Eq. (25a) gives

V:U(W|)+U(W2), (26)
—— ——

eUW)  eumw)t

and so the projection onto U(W) is related to the projection onto W by

P(v,UW)) =U(w,) =U(P(U*(V),W)). (27)
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Two Complementary Methods of Inferring Elastic Symmetry 99

4 The Zero Contour of f,} . Expresses the Symmetry Group of T

In this section we show that the symmetry group of any elastic map T is determined by the
zero contour of a certain function fgom (Eq. (40)). The exposition draws on ideas from
Diner et al. [8].

We let T be the vector space of all elastic maps, and we let 7 (unbold font)}—also a
vector space—consist of their matrices. Those matrices are the 6 x 6 symmetric matrices.
We define

Tuono ={T € T : T has a 2-fold symmetry axis}. (28)

Thus Tyono consists of the elastic maps whose symmetry class is at least monoclinic.
For U € U and k= (0,0, 1), we also let

Vyono(U) ={T € T : Uk is a 2-fold symmetry axis for T}, (29a)
Vmono(U) = {[T]: T € Vyono(U)}. (29b)

The set Vyono(U) is a subspace of T, whereas Tyono 1S not. The set Vyono (U) is likewise
a subspace of 7.
From Eq. (24), the distance from an elastic map T to the subspace Vyono (U) is

d (T, Vyono(U)) = [IT — P(T, Vyono (U - (30)
The projected matrix P ([T], Vuono(U)) is indeed the matrix of P(T, Vyono(U)), hence
d (T, Vyono(U)) = IT = P(T, Vuono(UNII, (T =[T)). (31

We next find the matrix P (T, Vyono(U)):
(i) The special case where U is the 3 x 3 identity matrix /. For

a g m g t v
g b h n r u
m h ¢ i o s
T= g n i dj pl (32)
t r o j e k
v u s p k f
we let
a g m q t v
g b h n r u
c i o s m h
W= idjopl W, = q n (33)
o j e k t r
s p k f v ou

From Egs. (29a), (29b), the subspace Vyono (1) consists of the matrices of elastic maps that
have k as a 2-fold axis. They are therefore the matrices having the form of Tyoxo in Table 2;
see Eq. (17). Hence W, € Vyono(I). And, from Eq. (2),

W -W,=0, (W€ Vyono(I)), (34
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so that Ws € Vyono (I)*. Thus
T =W, + W,
Wi € VyonoI), Wa € VMONO(I)l- (35)

By comparison with Egs. (22a), (22b), the matrix W; is the orthogonal projection of 7 onto
Vaono (1):

a g
g b
c i o s
P (T, VMONO(I)) = i d i p (36)
o j e k
s p k f

(ii) The general case, where U € U is arbitrary. The elastic map T has a 2-fold symmetry
with axis k if and only if U 0 T o U" has a 2-fold symmetry with axis Uk. Therefore, from
Eq. (29a),

Vwono(U) = Uo Vwono () © U*- (37a)
In terms of matrices,
Viono(U) = [U]Vyono (D [U]". (37b)

From Eq. (27), with the (unitary) function T — U T U playing the role of U, with T
playing the role of v, and with Vyono (1) playing the role of W,

P(T, Vaoxo(U)) = P (T, [U1Vyoxo() [U1")
=[U1P ([U1'T[U]. Vaoro(D) [U]". (38)
Returning to Eq. (31) and then using Eqs. (38) and (14), we have
d (T, Vyono(U) = |IT = P(T, Vyoro(D)) |

=||T = [U1P ([UI'T [U], Vuono(D) [U]"|

= [[T1'T[U] - P ([UI'T [U], VuoxoD)]|
=[S = P (S, Vuoxo()l, (39a)

where

S =[U1"[T][U]. (39b)

From Eq. (29a) we find that Vyono(UZg) = Vwmono(U). Hence we can regard
d(T, Vuono(U)) not as a function of orientations U but as a function fJONo of points v
on the unit sphere S:

I ) =d(T, Vyono(U)) (VES, Uk=v) (40)

From Egs. (29a), (39a), (39b), (40),
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Two Complementary Methods of Inferring Elastic Symmetry 101

Theorem 1 The number fJONO (v) (Eq. (40)) is the distance from T to the subspace of elastic
maps having v as a 2-fold symmetry axis. Analytically, it is

Fono M =118 = P(S, Vwono I,
where
S=SU)=[U]'[TIU],

and where U is any 3 x 3 rotation matrix with UK = v. The matrix P (S, Vuono(I)) is
computed using Eq. (36).

In words: To find f,b,, (V), we choose U € U so that Uk = v, and we calculate the 6 x 6
matrix S = [U]'[T][U]. We then set the entries of S equal to zero, except for those in its
upper right 2 x 4 submatrix and in its lower left 4 x 2 submatrix. The norm of the resulting
6 x 6 matrix is f.X, (V).

From Theorem 1,

foxo(¥) =0 <= vis a 2-fold axis for T 1)
4.1 The Zero Contour 7T Determines St

From Eq. (41), the zero-contour ZT of f¥ consists of the points v where the axes of
the 2-fold symmetries of T intersect the unit sphere. Since the 2-fold rotations in any elas-
tic symmetry group generate the group, then ZT determines the symmetry group St of T.
Except for orientations, there are just eight possibilities for Z*, as shown in Fig. 1.

Since the zero contour of f,\}‘ONO can be calculated (from T), then the symmetry group of
T can be calculated as well. At the moment, however, we are more interested in using the
contour plot of £I  to convey the symmetry of T visually.

4.2 Symmetries of fir o
A 3 x 3 rotation matrix V is said to be a symmetry of fJONO if
faono(VV) = fd o(v) forall veS. (42)
In that case the contour map for & appears unchanged when rotated using V.
Theorem 2 For any elastic map T, the symmetries of T are symmetries of fJONO.

Proof Let V be a symmetry of T and let v € S. The number fX . (v) in Theorem 1 is
determined by S(U), where Uk = v. Since VUk = Vv, then fNTONO(Vv) is determined by
S(VU). Since

S(VU) =[VU]'[T][VU]
=[U1"[VI'[T][V][U]
=[U]'[T][U]
=S(),
then fyiono (VV) = fitono (V) m

The converse of Theorem 2 appears to be true as well, but we have not proved it.
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102 W. Tape, C. Tape

Utric

Urer Ucuse Uxiso Uiso

Fig.3 Contour plots of fMTONo for eight elastic maps T having symmetry groups Urgryy, ..., Uiso, the same
as in Fig. 1. At corresponding locations in this figure and Fig. 1 the zero contours of fMTONO are therefore
the same. Thus in the lower left sphere in the two figures the zero contours are the same; they consist of the
points where the 2-fold axes of Urgr penetrate the sphere. The symmetries of T are symmetries of fMTONO
and hence are seen in the contour plots. The xyz axes are the same here as in Fig. 1

Fig. 4 Four of the contour plots from Fig. 3 but seen looking down the z-axis. (The x-axis is to the right.)
From left to right, the z-axis is a 2-fold, 3-fold, 4-fold, and regular axis, respectively, for the relevant elastic
map. Except in the Uyono diagram, the zero contour is not conspicuous in this view, since most of its points
are in the xy-plane. Compare with Fig. 3

4.3 Some Examples

Although the zero-contour of X entirely determines the symmetry group of T, a sym-
metry of T is often more conspicuous in the contour plot of fu ., as a whole, especially
when the plot is viewed along the axis of the symmetry; see Figs. 3 and 4.

Suppose anisotropic elastic maps T and T, have the same symmetry group St, = Sr,.
The contour plots of fg&No and fh}éNo can be very different, but the zero contours will be
the same for each. In spite of their differences, both plots are invariant under the symmetries
in St,, by Theorem 2. Compare Figs. 4 and 5.
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Two Complementary Methods of Inferring Elastic Symmetry 103

Uwmono

Fig. 5 Contour plots of ngNo for four elastic maps T whose symmetry groups, like the elastic maps in
Fig. 4, are Umono, Utric, Uter, and Ux;so as indicated. The viewpoint is looking down the z-axis, the same
as in Fig. 4. Corresponding diagrams in the two figures have the same zero contours, since their symmetry
groups are the same

With the exception of 3-fold axes, any non-trivial symmetry axis v € S of an elastic map
T is also a 2-fold axis of T. In that case the point v appears in the zero contour ZT of fX .
A 3-fold axis may or may not be a 2-fold axis, but it will nevertheless be recognizable in the
contour plot for f]\}'ONO, due to Theorem 2. Thus in the Uqype diagram in Fig. 3 the center of
each light-colored three-pronged region of the sphere is a 3-fold symmetry axis.

Figs. 6, 7, 8 show contour plots of fJONO for three different elastic maps T =T, T, T;.
The lattices that appear in the figures are explained in Sect. 5; they can largely be ignored at
the moment.

For T = T; (Fig. 8) the zero contour of X appears to be a great circle together with its
poles, as if the symmetry of T were transverse isotropic. In that case, however, the contours
of foONO would all be concentric circles, which they are not. The contours, especially the
cigar-shaped contours, are consistent with tetragonal symmetry. In fact, the symmetry group
of T here is the same as that of the more conspicuously tetragonal T, in Fig. 7.

A too casual glance at the contour plot in Fig. 8 can thus mischaracterize the exact sym-
metry group of T,. We nevertheless think that the contour plot gives a better sense of the
overall symmetry of T than does the symmetry group of T by itself.

The elastic maps T, and T are closely related. Their eigenvectors are exactly the same,
and their eigenvalues are nearly the same: the eigenvalues of T; are 2, 2, 3, 4, 5, 6, and those
of T3 are 2,2,3,32/10,5, 6. We could have made the contours of f,}ONO for T = T5 look
even more nearly transverse isotropic—without changing the symmetry group of T;—just
by making the fourth eigenvalue of T; closer to 3.

5 A Computational Complement to the Contour Plots

In this section we show how to find the symmetry groups of elastic maps by calculation,
independently of the contour plots of £, . Some of the material here appears also in
Diner et al. [7].

5.1 The Set 75 of Elastic Maps with Symmetry at Least Cx

For each ¥ = TRIV, ..., 1S0, we generalize Eq. (28) by defining the set T to consist of the
elastic maps T whose symmetry class Sy is at least Cy, (Sect. 2.8):

Ts={TeT:S5r>Cs}. (43)
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104 W. Tape, C. Tape

Biso = 24.8°
T T
3 Bxiso =0 ><ﬁcuae =16.2°
- T ;
Brric=0 Brer=0
T
Ty BortH =0
T
0 Bmono =0
i }
_ T
fMONO (T - T1) Brriv=0

Fig. 6 Contour plot of ngNO for the elastic map T = T whose matrix is given in Eq. (75). Except for
orientation, the plot is consistent with the diagram labeled Ux;so in Fig. 1. Thus it appears that the symmetry
of T is transverse isotropic and that the symmetry group of T is the conjugate of Uxso (Table 1) that has its
regular axis at vq. Of course such symmetry inferences, based only on a picture, are necessarily approximate.
The role of the lattice in confirming the symmetry of T quantitatively will be explained in Sect. 5. For
¥ =TRIV,..., IS0, the angle ,Bg is a measure of how far T is from having symmetry class at least Cy. Red

arrows accentuate the lattice nodes where ,Bg =0, hence where the symmetry class of T is at least Cy,

Biso = 18.3°
T
3 Bxiso = 4.2° Bcuse =9
T T
[ | Brric = 4.2° Brer=0
T
I 'y BortH =0
T
T 0 Bmono =0
fMONO T
2 (T= Tz) Brrv=0

Fig. 7 Like Fig. 6 but for the elastic map T = T, whose matrix is given in Eq. (76). Except for orientation,
the contour plot on the sphere is consistent with the diagram labeled Urgy in Fig. 1. Thus it appears that the
symmetry of T is tetragonal and that the symmetry group of T is the conjugate of Urgr that has vy as its
4-fold axis and has v, as one of its 2-fold axes. (Quantitative confirmation of the symmetry group is given by
Theorem 3 of Sect. 5, with U from Eq. 60. Also see Eq. 62)

From Egs. (43), (19a), (19¢), we get another characterization of Ty:
Ts ={TeT :SrDUUsU" for some U € U}. (44)
In Appendix A.2 we show that

7'):1 C Tzz <~ CZ1 >C):z. 45)
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Two Complementary Methods of Inferring Elastic Symmetry 105

— 225 /E'TSO = 18‘3:\
: 1.75 ﬁ)«so 0.9° ﬁcuas =12.°
: 1.25 ﬁTRIG 0. 9 ﬁTET =
075 \ /ORTH =0
02 B;ONO =0
}
fJONo (T= T3) ﬁlmv =0

Fig. 8 Like Fig. 7 but for the elastic map T = T3 whose matrix is given in Eq. (77). The zero contour
of ngNO on the sphere appears to be a great circle together with its poles, as if the symmetry of T were
transverse isotropic. The contour plot as a whole, however, shows that the symmetry cannot be transverse
isotropic, since the contours would then have to be concentric circles. Instead, it appears that the symmetry
is tetragonal and that the symmetry group is one of the conjugates of Urgr that have v| as a 4-fold axis. The
2-fold axes, however, are not easy to discern from the contour plot alone. (The point v; is indeed one of them,
but it was found quantitatively, from f]\'fONO.) The elastic maps T, and T3 are closely related, as explained

in the text, and in fact their symmetry groups are the same. Note the much smaller value of /3;550 here as
compared with Fig. 7

The inclusions among the sets Tx are therefore clear from the lattice of symmetry classes
(Eq. (20)).

5.2 The X-Subspaces Vy (U)

For U € U we generalize Eqgs. (29a), (29b) by defining

VsU)={TeT:SyDUUsU"}, (46a)
Vs(U) ={[T]: Te Vs U)}. (46b)
Thus Vx (U) consists of the elastic maps T whose symmetry group Sy is at least UUs U,

and V5 (U) consists of their matrices.
From Egs. (44) and (46a),

Te=Jv=). 47)

Uel
We refer to the sets Vs (U) as the X-subspaces of the vector space 7. Although they are

indeed subspaces, and although T is the union of them, the set Ty is not itself a subspace,
except for ¥ = TRIV and X =1SO. (Trriy =T and Ts0 = Viso(1).)
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The X-subspaces Vx (U) and V5 (1) are related as follows.

TeVs(U) < SyDUUzUT (from Eq. (46a))
< UTST UD U:
= Sgrr.v 2 Us (from Eq. (16b)) (48a)

= U'oToUecVsg(I) (fromEq. (46a))
— TGUOVZ(I)OU*.

Hence
Vs(U)=UoVs(I)oU". (48b)

From Egs. (46a), (46b) and (17), the X-subspace Vs (I) consists of the 6 x 6 matrices
having the form of the reference matrix Ty in Table 2:

Vs(I)={T: T =Tx(a,b,...) forsomea,b,...}. (49a)
Then from Eq. (48b),
Vs(U)={T: T=[U]Ts(a,b,..)[U]" forsomea,b,...}. (49b)
5.3 Distance from T to V5 (U)

If we mimic the derivation of Egs. (39a), (39b), but now starting from Eq. (48b) rather than
from Eq. (37a), we find the distance from an elastic map T to the subspace V5 (U) to be

d(T,vU)) =S - P(S, vs()ll, S=[UI'TIU], (50)
where the projected matrix P (S, Vs ([)) is now computed using Appendix A.1.
5.4 Distance from T to T3

From Eq. (47), the distance from T to the set T is

d(T,Ts)= min d(T,Vs{U)), (€28
UelU

with d(T, Vg (U)) given by Eq. (50). The minimum in Eq. (51) occurs at many different
points (i.e., rotation matrices) of U. We refer to them as X-minimizers for T. Thus,

U is a ¥-minimizer for T <= d (T, Vg(U))= min d (T, Vg(V)). (52)
Vel
Equivalently,
U is a £-minimizer for T <= d(T, V5 (U)) =d(T, Ty). (53)

To calculate the minimum in Eq. (51) we parameterize U. Many parameterizations are
possible. We usually use the function (0, 0, ¢) — ZgY,Z,.
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5.5 The Angle B1 Between T and the Set 7,

We define' the angle BT by

.1 d(T, Ty)

T
= 4
Pz =sin ITII (>4)

where d(T, Ty) is from Eq. (51). The angle ,3% is therefore a measure of how far T is
from having symmetry class at least Cyx. It is a feasible measure due in part to the fact that
T+ is closed under multiplication by scalars: T € Ty = AT € Tx. As a measure, ,85 is
preferable to the distance d(T, T) in that ﬂgT = ; for A # 0. And a small angle, e.g., 1°,
is more easily perceived as small, than is a small distance.

Since d(T, Vg (U)) < ||IT|| (due to Eq. (23)), then d(T, Ts) < || T| as well. Hence AL in
Eq. (54) is real, and 0 < BT < 7/2.

From Eq. (54),

Br=0 = d(T,Ts)=0 < TeTs. (55)

Then from Eq. (43),
By =0 < Sr>Cs. (56a)

As a consequence,
By > 0= Sy #Cs. (56b)

From Egs. (53) and (54),
[I'T|| sin /3% =d(T,Vs(U)) (U isany X-minimizer for T). &)
Hence
,3% =0<<= TeVg(U) (U isany X-minimizer for T). (58)
5.6 Finding the Symmetry Group St from the Angles ﬂ)T: and a Minimizer

The left-hand lattice below is the same as that in Eq. (20) but with each Cy replaced with
T . For a given elastic map T, the right-hand lattice is again the same, but with A% instead
of Cx. From Egs. (45) and (54),

Cx, < Cx, <= Tx, D Tx, = By, < By, (59)

1Temporarlly letting T denote the zero elastic map, we note that it is not possible to define ﬂzo so that the

function T — ﬂ; is continuous at Tq. Our later results involving /3% are assumed, without further mention,
to exclude the case T =Ty.
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Arrow direction in the lattice therefore indicates (1) increasing symmetry, (2) decreasing
size of the sets T of elastic maps, and (3) increasing (rather, non-decreasing) angles SI.

Tiso %o
TN T
Tiso Teuse %o %BE

e
j TT Bl L.
\ TLH ;
/ /
Tiono Blovo
TT =T ﬁTTmlO

Once the eight numbers BT have been calculated, including an appropriate minimizer, the
symmetry group of T will be known. For an example, we consider the elastic map T = T5.
Its A1 -values were calculated and found to be as in the lattice in Fig. 7.

Since BT = 0 then, from Eq. (56a) and from the lattice, the symmetry class St of T is
Crers Cxiso.» Ciso» OF Ceupe- But since Y, BT . and BT .. are positive, then St cannot be
Cxiso.» Ciso, Of Ceupe, by Eq. (56b). Hence St = Crgr.

In finding B (Egs. 54 and 51 with ¥ = TET), we also get a TET-minimizer for T,
namely,

] 1 =3 2
vU=—1|v6 v2 ol. (60)
‘/§—1\/§2

Then T € V1 (U), from Eq. (58). Hence from Eq. (46a), the symmetry group Sy satisfies
ST D UUTETUT' (61)

Since St = Crgr then Sy is a conjugate of Usgr. But no conjugate of Urgr can properly
contain another, so St = UUer U .

Thus the lattice of ﬁg -values determined the symmetry class Sy, and then a TET-
minimizer for T determined the symmetry group St.

To relate the result Sy = UUy: U to the contour plot in Fig. 7, let i, j, k be the standard
basis for R3. Then k is the 4-fold symmetry axis for the group Uy, (Table 1), and so® Uk is
the 4-fold axis for UUx U . Likewise, Ziz4i, 1 =0,1,2,3, are 2-fold axes for Urgr, and
$0 U Z;z 41 are 2-fold axes for UUzr U T. In particular, the points v, and v, in Fig. 7 are

v|:Uk:%(l,0,l), V2:Ui:%(l,\/g,—l), (U as in Eq. (60)). (62)

2We treat members of R3 as column vectors when matrix multiplication is involved, but we continue to write
them as row vectors.
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The vectors Ui and UKk are of course the first and third columns of U.

Theorem 3 (Calculating the symmetry of T) Let T be an elastic map, and let Cs. be a great-
est symmetry class for which ﬂ;g = 0. Then the symmetry class Sy for T is Cx, and the
symmetry group St is UUsUT, where the reference group Uy is from Table 1 and where
U is any X -minimizer for T (Eq. (53)). Here “greatest” means greatest with respect to the
partial order < (Eq. (19a)): precisely, ¥ is chosen so that ,3% =0, and so that, if Cy > Cyx
and Cy # Cx, then /3$ > 0.

Proof The proof is as in the T = T, example that precedes it, but with X substituting for
TET. One needs the fact that no conjugate of the group Uy, properly contains another. This
fact is trivial when Uy is finite, since all conjugates of Uy have the same number of mem-
bers. It is also trivial for ¥ = 15S0. The remaining case ¥ = XISO is a consequence of
Lemma 2 of [15]. O

The code mentioned in the Code Availability section will compute the angles 83 and the
3 -minimizer U that are needed in the theorem.

Note that for a given T there can be only one greatest symmetry class for which 8L =0,
since according to the theorem, that greatest symmetry class must be Sy.

5.7 Theorem 3 in Practice

From a purely mathematical standpoint, almost all elastic maps have only the trivial sym-
metry; the set Tyono, Which includes all elastic maps having non-trivial symmetry, has di-
mension 15, whereas the set T~ of all elastic maps has dimension 21. It is nevertheless easy
to make up elastic maps that have prescribed non-trivial symmetry. For such maps, Theorem
3 will retrieve their symmetry.

The theorem is not so helpful, however, when the elastic map arises empirically, from
observation. Whereas the material under consideration might in principle have some non-
trivial symmetry, its measured elastic map T, being subject to uncertainties, is apt to have
only trivial symmetry. Trivial symmetry is then what the theorem will report, if the theorem
is interpreted to the letter.

One may nevertheless want to examine the lattice of angles BT to see if one of them, say
BY is fairly small, with higher ones being not so small. One might then consider X to be an
approximate symmetry class for T.

Formulating a sensible notion of approximate symmetry group for T, however, is more
challenging, and we are not sure how best to do it. An obvious candidate for “the” approx-
imate symmetry group is UUs U, where ¥ is the approximate symmetry class and where
U is a ¥ -minimizer for T. This may be good enough for many applications, but one needs
to entertain the possibility that UUy U T might not be unique.

Danek et al. [6] discuss determining the approximate symmetry of elastic maps whose
matrix entries are given with uncertainties.

6 Afterthoughts

We have now realized our original goal of describing two methods of inferring elastic sym-
metries; the visual method is summarized in Sect. 4.1, and the quantitative method is sum-
marized in Theorem 3. Some questions may nevertheless remain. We discuss several in this
section.
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6.1 When V5 (Uy) = V5 (U;)

A X-subspace Vy (U) can be specified by U, but the label U is not unique. In this section
we see why.
For ¥ = TRIV,...,ISO,

VUsVT=Uy < V €Gsy, (63a)

where Uy is the reference group as in Table 1 and where the subgroup Gy of U is

) GE

ISO, TRIV Uso=0U

XISO, MONO Uxiso (63b)
CUBE, ORTH Ucugse

TET Dg

TRIG Dg

The group Dy is the 12-element group generated by Z,/3 and X, and Dy is the 16-element
group generated by Z, /4 and X,.

To verify Eq. (63a) for ¥ = ORTH, for example: The 2-fold axes of rotations in the group
Uorrn are i, £j, £k—the face centers of the unit cube. For any V € U the 2-fold axes of
rotations in VUeogry V| are therefore +Vi, £Vj, £Vk. The groups VUory V' and Upgry
coincide when V maps the set of face centers of the unit cube to itself. That is, they coincide
when V € Uqyge.

Theorem4 V5 (U)) = V5 (U,) < U, = U,V for someV € Gy

Proof Suppose Vs (U;) = V5 (U,). Since U, UgU IT is an elastic symmetry group, there is
an elastic map T such that Sy = U, Uy UlT. Then T € V5 (U,) = V5 (U,) and St = Cx.. Then
U, =U,V for some V € Gy, by Lemma 1 of Appendix B.

Conversely, suppose U, = U V for some V € Gyx. Then Vg (U,) = Vs (U V) = Vs (Uy),
the latter equality from Eqs. (46a) and (63a). a

A minor consequence of Theorem 4 is that the union in Eq. (47), as well as the min-
imization in Eq. (51), can be taken not over all of U but over a smaller subset Uy of U.
The setATUXISO = Uwmono turns out to have dimension two rather than three (as for U), and
Uiso = Urpiv = {1}

6.2 Closest Membersof 75 to T

By comparison with Sect. 4, the closest elastic map in the X-subspace Vs (U) to an elastic
map T has matrix

P(T,Vs(U) =[U1P (IUI'T (U], V(D) [UI", (T =[T)). (64)
(Compare Eq. (64) with Eq. (38), and compare Eq. (48b) with Eq. (37a).)

Theorem 5 For an elastic map T, the closest members of Tx to T are the projected maps
P(T, Vs (U)) such that U is a -minimizer for T. (The matrix of P(T, Vs (U)) is then as
in Eq. (64).)
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Proof Suppose that T is a closest member of 7 to T. That is, Tg € T and
d(T, To) =d(T, Tx). (65)

Since Ty € T then Ty € V5 (U) for some U € U, by Eq. (47). Since Ty is then the closest
member of the subspace Vs (U) to T, then from Sect. 3,

To=P(T, V=(U)), d(T,To) =d(T, Vs (U)). (66)

Then d(T, Vs (U)) =d(T, Ty) from Egs. (65) and (66), so that U is a X-minimizer for T
(Eq. (53)).

Conversely, if U is a X-minimizer for T, then d(T,7%) = d(T,Vs(U)) =
d(T, P(T, Vg (U))), so that P(T, Vs (U)) is a closest member of T to T. O

Note that when the symmetry of T is at least X then the closest member of T to T is T
itself.

For a given elastic map T and symmetry X, Diner et al. [7] define the effective elastic
map to be the closest in Ty (our notation) to T. (They give some guidance for specifying
3, based on the qualitative behavior of T.) In Appendix B.4 we show that “the” closest
elastic map in 7Ty, to T is not always unique. This takes some of the luster off the otherwise
appealing notion of effective elastic map.

6.3 X-Reference Matrices for Elastic Maps

Theorem 6 Let T be an elastic map, let U € U, let ¥ = TRIV, ..., IS0, and let Ts, be as in
Table 2. The following four conditions are equivalent:

Br =0and U is a Z-minimizer for T, (672)
TeVsU)., (67b)
[T1=[UlTs(a,b,..)[U]" forsomea,b,... (67¢)
Ts(a,b,..)=[U]"[T]1[U] for somea,b,.... (67d)

(The angle /35 is defined in Eq. (54), and the notion of ¥ -minimizer is defined in Eq. (52).)

Proof To show that Eq. (67a) implies Eq. (67b), suppose BL =0 and U is a E-minimizer
for T. Then

d(T,vs(U))=d(T,Ts) (from Eq. (53))
=0 (from Eq. (55)),
TeVs(U),

as desired. To see the converse, note that V5 (U) C Ty, hence the reasoning reverses.
Egs. (67b) and (67c) are equivalent by Eq. (49b), and Eqgs. (67c) and (67d) are obviously
equivalent. O

The matrix Tx(a, b, ...) in Egs. (67c) and (67d) is said to be a X -reference matrix for T.
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To illustrate Theorem 6, we find TET-reference matrices for the elastic map T =T,
(Fig. 7). Recall from the discussion preceding Theorem 3 that BI_ = 0 and that the ma-
trix U in Eq. (60) is a TET-minimizer for T. From Eq. (53) and Theorem 4:

UV is a TET-minimizer for T, (U from Eq. (60), V € Dg). (68)

Although there are 16 such minimizers UV, they give rise to only two distinct TET-reference
matrices Ty and T for T. Letting U; = U and U, = U Z, 4, we have, from Eq. (67d),

2
2
T = [Th]'[T1 (7] = Y , (69a)
112 —1,2
—-1/2 11)2
2
2
T2 =051 [T (Th] = > (69b)
11/2 =172
12 112

Eq. (71) of Appendix B.3 guarantees that Eq. (68) gives all the TET-minimizers for T
and hence that 7y and T2 are the only TET-reference matrices for T. There will, however,
be X-reference matrices for T for ¥ = ORTH and ¥ = MONO (and trivially for ¥ = TRIV),

since ﬁgRTH = /31\1/;0N0 = ﬂTTRlv =0.
6.4 Some History

Equation (69a) (for example) says that if the material in question is reoriented using U,
then the matrix of its elastic map takes the form 7. Until fairly recently, finding U, from
T =T, (and hence finding TE') would have been tantamount (in a small circle of enthusiasts)
to finding the Holy Grail, since Eq. (67c) would then imply that the symmetry group of T
was at least Uy Uqgr UIT. Thus Chapman [5, p. 131] wrote in 2004:

Interpreting general anisotropic elastic parameters is difficult. If all 21 parameters are
non-zero, is the medium in fact one with a high-order of symmetry, e.g. TI, but with
tilted axes ... ? In other words, would a simple rotation reduce the number of non-zero
parameters’ significantly?

More precisely, for a given T and X, is there a rotation U satisfying Eq. (67d), and if so,
how does one find it?

By 2007 Béna et al. [4] had made impressive headway in responding. We ourselves [15]
treated the question in 2021. Neither our method nor theirs, however, can handle every elas-
tic map, and both methods are slow, since they require some thought and are not easily
automated. Now, however, the angle 8% and a ¥ -minimizer U for T are readily found from

3The emphasis on the number of non-zero entries is misguided. More zero entries does not guarantee more
symmetry.
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T, using Egs. (54) and (52). Theorem 6 thus gives a complete* answer to Chapman’s ques-
tions: If ﬂg =0, then U can serve as the desired rotation. If ,3% > 0, then no such rotation
exists (for the specified ¥ and T).

We included Theorem 6 in part for historical reasons. For finding symmetry groups of
elastic maps, we still recommend Theorem 3.

7 Summary

An elastic map T describes the strain-stress relation at a particular point p in a material. A
symmetry of T is a rotation of the material, about p, that does not change T.

For a point v on the unit sphere, the number £ (v) is the distance from T to the space
of elastic maps having v as a 2-fold symmetry axis. The function fh}‘ONO is invariant under
all of the symmetries of T, so the symmetries are visible in a contour plot of £ ... In
fact, the zero contour alone reveals the symmetry group St of T, and information about the
approximate symmetry of T is seen in the contour plot as a whole. The function fJONO is
calculated using Theorem 1.

To complement the visual approach of the contour plots, we treat elastic symmetry quan-
titatively, in Sect. 5. For an elastic map T and for ¥ = TRIV, ..., ISO, the angle AT (Eq. (54))
is a measure of how far T is from having symmetry class at least Cy. The lattice of the eight
angles BT determines the symmetry class St of T, and the lattice and an appropriate -
minimizer for T (Eq. (52)) determine the symmetry group St. The angles 8L as well as
3 -minimizers for T can be computed using the code mentioned in the Code Availability
section. Theorem 3 then gives St immediately.

In practice, where an elastic map T arises from observations rather than being constructed
mathematically, its symmetry group St by itself is not helpful; random errors in the observa-
tions mean that the exact symmetry group can never be anything but trivial. Section 5.7 has
some thoughts on the notion of an approximate symmetry group. Whether or not that notion
turns out to be viable, the approximate symmetry of T is well expressed by the contour plot
of fl\}oNO’ the lattice of angles ,85, and X -minimizers for T.

Appendix A: Supplement for Sect. 5
A.1 The Projected Matrices P (T, Vx (1))

The subspace Vyx (1) consists of the 6 x 6 matrices having the form of the reference ma-
trix Ty, in Table 2; see Eq. (49a). One verifies Egs. (70a)—(70h), below, as was done for
P(T, Vyono (1)) in Egs. (33)—(36).

For T as in Eq. (32) the projection of T onto Vs (I) is

P(T, Viry(1) =T, (70a)

P(T, Vyono(1)) is as in Eq. (36), (70b)

4Conceivably there are elastic maps so perverse that the needed minimization in Eq. (51) would defeat the
mathematical software, but we have yet to encounter one.
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P(T, Vormu (1)) = ) (70c)

T~ X
0 .
~ s

Q\

Q\O

o3 o
[\]

P(T, V(1)) = (70d)

oo o 3
[
I

o3 o
[
[\®)

P(T, V(1)) = (70e)

FalN
~ =

P(T. Veuae (1)) = ¢ , 3 (700)

P(T, Vysso(D)) = < .2 (70g)

a a+b+c+d+e
P(T,Viso(I)) = , , ad=—

u 5 (70h)

f

The matrices P(T, Vs (1)) in Egs. (70b)—(70g) are the analogs of the matrices C* in
Sect. 4.2 of Diner et al. [7]. Our matrices are simpler due to the fact that our matrix rep-
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resentations of elastic maps are with respect to the basis B in Eq. (1). (The Diner et al.
matrices are with respect to the basis ® in Eq. (S23) of [15].) The Diner et al. matrices in
their Sect. 4.2 are consistent with ours,’ with the exception of their C™" (their Eq. (4.10)).
Our disagreement also applies to their matrix X, (‘)r CXo)™ in their Sect. 5.3.

A.2 Proof That 73, C T3, <= Cx, > Cs, (Eq. 45)

Suppose T, C Tx,. Since Uy, is an elastic symmetry group, there is an elastic map T such
that St = Uy, . Then

TeTs, (from Eq. (44)),
Te Tzz,
SrD UUEZUT for some U € U  (from Eq. (44)),
Us, D UUs,U" (from Eq. (18)),
—_ ——
GC):] GCEZ
Cs, >Cs, (from Eq. (19a)).

Hence Ty, C Ty, = Cx, > Cs,. The converse is immediate from the definition of Ty
(Eq. (43)).

Appendix B: Supplement for Sect. 6
Lemma 1 Let Sy =Cs and T € Vs (Uy) N Vs (U,). Then U = U,V for some V € Gy.

Proof Fori=1,2,

Sro U UsU] (since T € V5, (U))),
Sr=UUxUT for some U (since St = Cx),
UUzU" D U UsU;,
UUsU"=UUsU/,
U,Us U = U Us U,
UU,Us(U,'Uy) " =TUs,
U'U, Gy (from Eq. (632)),
U, =U,V for some V € Gs.

The fourth step is due to the fact that no conjugate of Uy, can properly contain another. [
B.3 Number of X-Minimizers for T

We let N % be the number of X -minimizers for the elastic map T. Equations (52), (53), and
Theorem 4 give N} > |G|, where |G| is the number of elements of G.

50ur analog of C'1ig° of Diner et al. is P(T, Vrrig(U)) with U = Zyp2,notU=1.
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If the symmetry of T is exactly X and if U; and U, are X-minimizers for T, then T €
Vs (Uy) N Vs (Us), by Theorem 6, and then U, = U,V for some V € Gy, by Lemma 1.
Thus N% < |Gy, so that in fact

Sr=Cx = Nj =|Gx|. (71
The assumption Sy = Cy in Eq. (71) matters. The monoclinic map T in Eq. (72), for

example, has Ngm = 48, whereas |Gorry| = 24. The ORTH-minimizers are Z,V, where
t==xn/12and V € Ucyge.

B.4 An Elastic Map and Two Distinct Elastic Maps That Are Closest Orthorhombic
Maps to It

Let T be the monoclinic elastic map whose matrix is

V32
NG
31
[T] L 3 (72)
1
1
For U; = Z,/12 and U, = U]" we have, from Eq. (64),
15v2 —/6
-6 92
1 1243 3
P(T,V, U))=- s
(T, Vormu(U1)) ) 3 12_ 3
4
(73)
15v2 6
NI NG)
! 12-4/3 3
P(T,V, Uy))=-
( ORTH( 2)) 4 3 12+\/§
4

Then

3
||T — P(T, vORTH(Ul))” = ”T — P(T, Vormu(U2)) ” = \/; =d(T, Torrn)- 74)

The first two equalities are from Egs. (72) and (73), and the last equality is from Eq. (51).
Thus both P (T, Vorru(U1)) and P (T, Vorru(Us)) are closest elastic maps in Topry to T,
but they are not the same.
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Appendix C: Definition of the Elastic Maps Ty, T», T3
The elastic maps T, T, T3 in Figs. 6, 7, 8 are defined via their matrices:

532 924/3 122 23  —60 48
348 —2J3 126 —203 163

1 . . 4 1 —12 24
[T)]= — 349 31V3 6 , (75)
128 .. . . 287 —42/3 83
212 —16
704
168 46 —40 646 642 0
324 —4J6 —42  —14/3 1643
1 _ _
= | -~ - 18 -6/6 —6v2 0 | 76)
64| .. . . 233 353 —83
163 -8
352
808 446 —168 646 642 0
. 1572 —4J6  —282 —943 803
1 _ _
M= | -~ - 88 -6/6 —6v2 0 a7
320 . . . 1057 13943 —403
779 —40
1760

The map T is the same as the elastic map T’ whose symmetries were found in Sect. 15.4
of [15], and T} is the same as T’ whose symmetries were found in Sect. 15.3. The method of
finding symmetries in [15] can therefore be compared with the two methods of the present

paper.
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