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Abstract
An elastic map T describes the strain-stress relation at a particular point p in some ma-
terial. A symmetry of T is a rotation of the material, about p, that does not change T.
We describe two ways of inferring the group ST of symmetries of any elastic map T; one
way is qualitative and visual, the other is quantitative. In the first method, we associate to
each T its “monoclinic distance function” f T

MONO on the unit sphere. The function f T
MONO

is invariant under all of the symmetries of T, so the group ST is seen, approximately, in
a contour plot of f T

MONO. The second method is harder to summarize, but it complements
the first by providing an algorithm to compute the symmetry group ST. In addition to ST,
the algorithm gives a quantitative description of the overall approximate symmetry of T.
Mathematica codes are provided for implementing both the visual and the quantitative ap-
proaches.

Keywords Elastic symmetry · Elasticity · Theoretical seismology

Mathematics Subject Classification 15-02 · 15A90

1 Introduction

Elasticity is about the relation between strain and stress. We refer to the function T from
strain to stress as the elastic map. It expresses the constitutive relations of the material under
consideration, or the generalized Hooke’s Law [1].

The map T describes the strain-stress relation at a particular point p in the material. A
symmetry of T is a rotation of the material, about p, that does not change T.

We assume throughout that T is a linear self-adjoint transformation of 3 × 3 symmetric
matrices. For any such T we describe two methods of finding its group of symmetries. One
method is qualitative and visual, and the other is quantitative; the two methods complement
each other.
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The first method is a reformulation and elaboration of that of Diner et al. [8], who in turn
drew on François et al. [10]. The method is so accessible and appealing that we can give a
preliminary description of it here:

To any elastic map T we associate its “monoclinic distance function” f T
MONO on the

unit sphere. The zero-contour Z
T of f T

MONO turns out to consist of the points where the
axes of the 2-fold symmetries of T intersect the unit sphere. Since the 2-fold rotations
in any elastic symmetry group generate the group, then Z

T determines the elastic sym-
metry group of T. Figure 1 shows eight instances of Z

T. These are the only possibili-
ties; regardless of T, the set ZT will look like one of these eight, though probably reori-
ented. Thus the set ZT reveals the group of symmetries of T by displaying the axes of
the 2-fold rotations in the group. Since the identification of elastic symmetries has been
traditionally regarded as a challenging problem, this pictorial solution came as a welcome
surprise.

The first method of inferring elastic symmetries—the visual method—is derived in
Sect. 4. The second method—the quantitative method—is derived in Sect. 5; see especially
Theorem 3. Other approaches to finding the symmetry groups of elastic maps are found in
[2–4, 6, 8, 10, 11, 13, 15]. Of these, only [6, 8, 10, 15] are directly relevant to the current
paper. Papers [4] and [15] use the eigensystems of elastic maps to find symmetries. Pa-
pers [2, 3, 13] are algebraic and are more sophisticated than the present paper. The papers
[5, 10, 12, 14] have applications to acoustics and seismology. We ourselves, however, do not
treat applications in this paper.

Mathematica code for drawing contour plots of f T
MONO and for finding the symmetry group

of any elastic map is available as described in the Code Availability section. Inferring elastic
symmetry—by either method—can be done routinely.

2 Some Prerequisites

Most of this section is abridged from [15]. Details, including proofs, can be found there.

2.1 The Basis B

We let M be the vector space of 3 × 3 symmetric matrices. The basis B for M consists of
the six elements

B1 = 1√
2

⎛
⎝

0 0 0
0 0 1
0 1 0

⎞
⎠ , B2 = 1√

2

⎛
⎝

0 0 1
0 0 0
1 0 0

⎞
⎠ , B3 = 1√

2

⎛
⎝

0 1 0
1 0 0
0 0 0

⎞
⎠ ,

B4 = 1√
2

⎛
⎝

−1 0 0
0 1 0
0 0 0

⎞
⎠ , B5 = 1√

6

⎛
⎝

1 0 0
0 1 0
0 0 −2

⎞
⎠ , B6 = 1√

3

⎛
⎝

1 0 0
0 1 0
0 0 1

⎞
⎠ .

(1)

Our matrix representations of linear transformations S : M → M are all with respect to the
basis B. The matrix representation of S is denoted by [S].

2.2 Inner Products and Norms

The inner product of n × n matrices M = (mij ) and N = (nij ) is defined by
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Fig. 1 The zero contour (blue) of f T
MONO on the unit sphere for various elastic maps T. Each T here has

as symmetry group one of eight “reference” groups UTRIV, . . . ,UISO as indicated. The points of the zero
contour of f T

MONO are where the axes of the 2-fold symmetries of T intersect the unit sphere. Since the
2-fold rotations in any elastic symmetry group generate the group, the zero contour of f T

MONO determines
the symmetry group of T. For any elastic map T, the zero contour of f T

MONO is one of the eight shown here,
though probably reoriented

M · N =
n∑

i, j=1

mij nij . (2)

(Juxtaposition of matrices, with no dot, signifies matrix multiplication.) Matrix norms are
then defined in terms of the inner product as usual:

‖M‖ = √
M · M. (3)

The inner product of elastic maps T1 and T2 is defined via their matrix representations:

T1 · T2 = [T1] · [T2]. (4)

Norms of elastic maps are then defined from the inner product.

2.3 Adjoint

For a linear transformation S : M → M, the adjoint of S is the linear transformation
S∗ :M → M such that

S∗(E1) · E2 = E1 · S(E2), (E1,E2 ∈M). (5)

The matrix of S∗ with respect to B is



94 W. Tape, C. Tape

[S∗] = [S]�, (6)

where the symbol � denotes matrix transpose.

2.4 Rotation Matrices

A square matrix U is said to be orthogonal if UU� = I . If also detU = 1 then U is a rotation
matrix. We let U be the group of all 3×3 rotation matrices. Examples of matrices in U would
be the 3 × 3 rotations Xξ , Yξ , Zξ through angle ξ about the x, y, z axes, respectively:

Xξ =
⎛
⎝

1 0 0
0 cos ξ − sin ξ

0 sin ξ cos ξ

⎞
⎠ , Yξ =

⎛
⎝

cos ξ 0 sin ξ

0 1 0
− sin ξ 0 cos ξ

⎞
⎠ ,

Zξ =
⎛
⎝

cos ξ − sin ξ 0
sin ξ cos ξ 0

0 0 1

⎞
⎠ .

(7)

For 3 × 3 matrices M and N and for U ∈U,

UM · UN = M · N = MU · NU. (8)

2.5 Conjugation by a Rotation Matrix

For U ∈ U, the linear transformation U : M → M is defined to be conjugation by U . That
is,

U(E) = UE U�, (U ∈U, E ∈M). (9)

Since U(E1) · E2 = E1 · U�(E2), then by comparison with Eq. (5),

U
∗ = U�. (10)

Thus, whereas U is conjugation by U , the transformation U
∗

is conjugation by U�.

2.5.1 The Matrix of U

The matrix of U with respect to the basis B (Eq. (1)) is found to be

[U ] =
⎛
⎜⎝

(UB1U
�) · B1 . . . (UB6U

�) · B1
...

...

(UB1U
�) · B6 . . . (UB6U

�) · B6

⎞
⎟⎠ . (11)

The matrix of U
∗

is

[U∗] = [U ]�. (12)

For any 6 × 6 matrices S and T , and for U ∈U,

([U ]S) · ([U ]T ) = S · T = (
S [U ]) · (T [U ]) . (13)
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Table 1 The reference groups U� , � = TRIV, . . . , ISO. The axes for the 2-fold rotations in U� are blue in
Fig. 1. The matrices in UXISO are the rotations about the z-axis together with the 2-fold rotations about axes
in the xy-plane. A matrix of the form Zξ XπZ�

ξ , as appears in the group UTET, is the 2-fold rotation about

the horizontal axis that has polar coordinate θ = ξ . A matrix of the form Zξ YπZ�
ξ , as in UTRIG, is the same

but with θ = ξ + π/2

Group Members

UISO All rotations

UXISO All rotations U such that Uk = ±k

UCUBE The 24 rotational symmetries of the cube with vertices (±1,±1,±1)

UTET Ziπ/2, Ziπ/4XπZ�
iπ/4 (i = 0,1,2,3)

UTRIG Zi2π/3, Ziπ/3YπZ�
iπ/3 (i = 0,1,2)

UORTH I, Xπ , Yπ , Zπ

UMONO I, Zπ

UTRIV I

It is enough to verify Eq. (13) for U = Yt and U = Zt , since any 3 × 3 rotation matrix can
be written ZθYφZσ and since [U1U2] = [U1][U2]. From Eq. (13),

∥∥ [U ]T ∥∥ = ‖T ‖ = ∥∥T [U ]∥∥ . (14)

2.6 The Eight Reference Groups

If T is the elastic map at a point p in some material, then U ◦ T ◦ U
∗

is the elastic map for
the material after it has been rotated about p using U . Thus,

V is a symmetry of T ⇐⇒ V ◦ T ◦ V
∗ = T. (15a)

In terms of matrices, from Eq. (12),

V is a symmetry of T ⇐⇒ [V ] [T] [V ]� = [T]. (15b)

The symmetry group ST of T is the group of all symmetries of T.
A group of 3 × 3 rotation matrices is said to be an elastic symmetry group if it is the

symmetry group of some elastic map. Except for conjugacy, there are exactly eight elastic
symmetry groups (Forte and Vianello [9]). More precisely, each symmetry group ST is a
conjugate of one of the eight ‘reference’ groups U� in Table 1, and each of the reference
groups is the symmetry group of some elastic map.

From Eq. (15a),

V is a symmetry of T ⇐⇒ UV U� is a symmetry of U ◦ T ◦ U
∗
. (16a)

Hence the symmetry group SU ◦T◦U
∗ is conjugate to ST by U :

SU ◦T◦U
∗ = USTU�. (16b)

2.7 The Eight Reference Matrices

The reference matrices are listed in Table 2. As shown in [15, Sect. 12.1], their fundamental
relation with the reference groups is that the symmetry group of an elastic map T is at least
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Table 2 The reference matrices T� , � = TRIV, . . . , ISO. See Eq. (17)

TTRIV TMONO TORTH TTET

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a g m q t v

g b h n r u

m h c i o s

q n i d j p

t r o j e k

v u s p k f

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a g

g b

c i o s

i d j p

o j e k

s p k f

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a

b

c

d j p

j e k

p k f

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a

a

c

d

e k

k f

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

TXISO TCUBE TISO TTRIG

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a

a

c

c

e k

k f

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a

a

a

d

d

f

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a

a

a

a

a

f

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a 0 m 0

0 a 0 m

m 0 c 0

0 m 0 c

e k

k f

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

U� if and only if the matrix of T has the form of the reference matrix T� :

ST ⊃ U� ⇐⇒ [T] = T�(a, b, . . .) for some a, b, . . . (17)

2.8 The Eight Elastic Symmetry Classes

For � = TRIV, . . . , ISO, we define the (elastic) symmetry class C� to consist of the groups
that are conjugate to U� :

C� = {UU�U� : U ∈U}. (18)

Temporarily abbreviating C�1 and C�2 to C1 and C2, we define a partial ordering ≺ of the
eight symmetry classes by

C1≺ C2 ⇐⇒ ∃U1 ∈ C1 ∃U2 ∈ C2 (U1 ⊂ U2). (19a)

Because all members of a symmetry class are conjugate to one another, we get equivalent
formulations of Eq. (19a):

C1≺ C2 ⇐⇒ ∀U1 ∈ C1 ∃U2 ∈ C2 (U1 ⊂ U2), (19b)

C1≺ C2 ⇐⇒ ∀U2 ∈ C2 ∃U1 ∈ C1 (U1 ⊂ U2). (19c)
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Fig. 2 A suggestion of the elastic symmetry class CTET, showing only three of its infinitely many members.
The class consists of all groups of the form UUTETU� . Here each group is shown by its 2-fold symmetry
axes; compare with the diagram for UTET in Fig. 1

With an arrow from C�1 to C�2 signifying C�1 ≺ C�2 , we have

CISO

CXISO CCUBE

CTRIG CTET

CORTH

CMONO

CTRIV

(20)

For an elastic map T, we define the symmetry class ST of T to be the symmetry class that
contains the group ST (as a member). The symmetry class ST is less informative than the
symmetry group ST, since the orientation information in ST is lost in ST. Figure 2 shows
three members of the symmetry class CTET.

2.9 Regular Angles, Regular Axes

An angle ξ is said to be regular if a rotation through angle ξ is neither 1-fold, 2-fold, 3-fold,
nor 4-fold. That is, ξ �= ±2π/n (mod 2π), n = 1,2,3,4.

If ξ is regular and if rotation through angle ξ about some axis is a symmetry of an elastic
map T, then rotations through all angles about that same axis are symmetries of T [15,
Theorem 5]. The axis is then said to be a regular axis for T.
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3 Orthogonal Projection

In an inner product space V, vectors v1 and v2 in V are said to be orthogonal if v1 · v2 = 0.
The orthogonal complement of a subspace W is

W
⊥ = {v ∈ V : v · w = 0 for all w ∈W}. (21)

The orthogonal projection P (v,W) of a vector v onto a subspace W of V is characterized
by vectors w1 and w2 such that

v = w1︸︷︷︸
∈W

+ w2︸︷︷︸
∈W⊥

. (22a)

Then

P (v,W) = w1. (22b)

If a vector w is in W, then its distance squared from v is

‖v − w‖2 = ‖v − w1 + w1 − w‖2

= (v − w1 + w1 − w) · (v − w1 + w1 − w)

= ‖v − w1‖2 + 2(v − w1) · (w1 − w) + ‖w1 − w‖2

= ‖v − w1‖2 + ‖w1 − w‖2, (23)

since w1 − w ∈ W and since v − w1 = w2 ∈ W
⊥. The projected vector P (v,W) = w1 is

therefore the closest member of W to v. The distance from v to the subspace W is

d(v,W) = ‖v − P (v,W)‖. (24)

Suppose a linear transformation U : V → V is unitary, that is, U ◦ U∗ = U∗ ◦ U = I,
where I is the identity transformation. Applying Eqs. (22a), (22b) to U∗(v) rather than to v,
we have

U∗(v) = w1︸︷︷︸
∈W

+ w2︸︷︷︸
∈W⊥

, (25a)

P
(
U∗(v),W

) = w1. (25b)

If w ∈ W then U(w2) · U(w) = w2 · w = 0, so that U(w2) ∈ U(W)⊥. Applying U to both
sides of Eq. (25a) gives

v = U(w1)︸ ︷︷ ︸
∈U(W)

+ U(w2)︸ ︷︷ ︸
∈U(W)⊥

, (26)

and so the projection onto U(W) is related to the projection onto W by

P (v,U(W)) = U(w1) = U
(
P (U∗(v),W)

)
. (27)
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4 The Zero Contour of f T
MONO Expresses the Symmetry Group of T

In this section we show that the symmetry group of any elastic map T is determined by the
zero contour of a certain function f T

MONO (Eq. (40)). The exposition draws on ideas from
Diner et al. [8].

We let T be the vector space of all elastic maps, and we let T (unbold font)—also a
vector space—consist of their matrices. Those matrices are the 6 × 6 symmetric matrices.
We define

TMONO = {T ∈ T : T has a 2-fold symmetry axis}. (28)

Thus TMONO consists of the elastic maps whose symmetry class is at least monoclinic.
For U ∈U and k = (0,0,1), we also let

VMONO(U) = {T ∈ T : Uk is a 2-fold symmetry axis for T}, (29a)

VMONO(U) = {[T] : T ∈ VMONO(U)}. (29b)

The set VMONO(U) is a subspace of T , whereas TMONO is not. The set VMONO(U) is likewise
a subspace of T .

From Eq. (24), the distance from an elastic map T to the subspace VMONO(U) is

d (T,VMONO(U)) = ‖T − P (T, VMONO(U))‖ . (30)

The projected matrix P ([T],VMONO(U)) is indeed the matrix of P (T, VMONO(U)), hence

d (T,VMONO(U)) = ‖T − P (T ,VMONO(U))‖ , (T = [T]). (31)

We next find the matrix P (T ,VMONO(U)):
(i) The special case where U is the 3 × 3 identity matrix I . For

T =

⎛
⎜⎜⎜⎜⎜⎜⎝

a g m q t v

g b h n r u

m h c i o s

q n i d j p

t r o j e k

v u s p k f

⎞
⎟⎟⎟⎟⎟⎟⎠

, (32)

we let

W1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

a g

g b

c i o s

i d j p

o j e k

s p k f

⎞
⎟⎟⎟⎟⎟⎟⎠

, W2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

m q t v

h n r u

m h

q n

t r

v u

⎞
⎟⎟⎟⎟⎟⎟⎠

. (33)

From Eqs. (29a), (29b), the subspace VMONO(I ) consists of the matrices of elastic maps that
have k as a 2-fold axis. They are therefore the matrices having the form of TMONO in Table 2;
see Eq. (17). Hence W1 ∈ VMONO(I ). And, from Eq. (2),

W · W2 = 0, (W ∈ VMONO(I )), (34)
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so that W2 ∈ VMONO(I )⊥. Thus

T = W1 + W2,

W1 ∈ VMONO(I ), W2 ∈ VMONO(I )⊥. (35)

By comparison with Eqs. (22a), (22b), the matrix W1 is the orthogonal projection of T onto
VMONO(I ):

P (T ,VMONO(I )) =

⎛
⎜⎜⎜⎜⎜⎜⎝

a g

g b

c i o s

i d j p

o j e k

s p k f

⎞
⎟⎟⎟⎟⎟⎟⎠

. (36)

(ii) The general case, where U ∈U is arbitrary. The elastic map T has a 2-fold symmetry
with axis k if and only if U ◦ T ◦ U

∗
has a 2-fold symmetry with axis Uk. Therefore, from

Eq. (29a),

VMONO(U) = U ◦VMONO(I ) ◦ U
∗
. (37a)

In terms of matrices,

VMONO(U) = [U ]VMONO(I ) [U ]�. (37b)

From Eq. (27), with the (unitary) function T → U T U
�

playing the role of U, with T

playing the role of v, and with VMONO(I ) playing the role of W,

P (T ,VMONO(U)) = P
(
T , [U ]VMONO(I ) [U ]�)

= [U ]P ([U ]�T [U ], VMONO(I )
) [U ]�. (38)

Returning to Eq. (31) and then using Eqs. (38) and (14), we have

d (T,VMONO(U)) = ‖T − P (T ,VMONO(U))‖
= ∥∥T − [U ]P ([U ]�T [U ], VMONO(I )

) [U ]�∥∥

= ∥∥[U ]�T [U ] − P
([U ]�T [U ], VMONO(I )

)∥∥

= ‖S − P (S, VMONO(I ))‖ , (39a)

where

S = [U ]�[T] [U ]. (39b)

From Eq. (29a) we find that VMONO(UZξ ) = VMONO(U). Hence we can regard
d(T,VMONO(U)) not as a function of orientations U but as a function f T

MONO of points v
on the unit sphere S:

f T
MONO(v) = d(T,VMONO(U)) (v ∈ S, Uk = v) (40)

From Eqs. (29a), (39a), (39b), (40),
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Theorem 1 The number f T
MONO(v) (Eq. (40)) is the distance from T to the subspace of elastic

maps having v as a 2-fold symmetry axis. Analytically, it is

f T
MONO(v) = ‖S − P (S, VMONO(I ))‖ ,

where

S = S(U) = [U ]�[T] [U ],
and where U is any 3 × 3 rotation matrix with Uk = v. The matrix P (S, VMONO(I )) is
computed using Eq. (36).

In words: To find f T
MONO(v), we choose U ∈U so that Uk = v, and we calculate the 6 × 6

matrix S = [U ]�[T] [U ]. We then set the entries of S equal to zero, except for those in its
upper right 2 × 4 submatrix and in its lower left 4 × 2 submatrix. The norm of the resulting
6 × 6 matrix is f T

MONO(v).
From Theorem 1,

f T
MONO(v) = 0 ⇐⇒ v is a 2-fold axis for T (41)

4.1 The Zero Contour ZT Determines ST

From Eq. (41), the zero-contour Z
T of f T

MONO consists of the points v where the axes of
the 2-fold symmetries of T intersect the unit sphere. Since the 2-fold rotations in any elas-
tic symmetry group generate the group, then Z

T determines the symmetry group ST of T.
Except for orientations, there are just eight possibilities for ZT, as shown in Fig. 1.

Since the zero contour of f T
MONO can be calculated (from T), then the symmetry group of

T can be calculated as well. At the moment, however, we are more interested in using the
contour plot of f T

MONO to convey the symmetry of T visually.

4.2 Symmetries of f T
MONO

A 3 × 3 rotation matrix V is said to be a symmetry of f T
MONO if

f T
MONO(V v) = f T

MONO(v) for all v ∈ S. (42)

In that case the contour map for f T
MONO appears unchanged when rotated using V .

Theorem 2 For any elastic map T, the symmetries of T are symmetries of f T
MONO.

Proof Let V be a symmetry of T and let v ∈ S. The number f T
MONO(v) in Theorem 1 is

determined by S(U), where Uk = v. Since V Uk = V v, then f T
MONO(V v) is determined by

S(V U). Since

S(V U) = [V U ]�[T] [V U ]
= [U ]�[V ]�[T] [V ] [U ]
= [U ]�[T] [U ]
= S(U),

then f T
MONO(V v) = f T

MONO(v). �

The converse of Theorem 2 appears to be true as well, but we have not proved it.
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Fig. 3 Contour plots of f T
MONO for eight elastic maps T having symmetry groups UTRIV, . . . ,UISO, the same

as in Fig. 1. At corresponding locations in this figure and Fig. 1 the zero contours of f T
MONO are therefore

the same. Thus in the lower left sphere in the two figures the zero contours are the same; they consist of the
points where the 2-fold axes of UTET penetrate the sphere. The symmetries of T are symmetries of f T

MONO
and hence are seen in the contour plots. The xyz axes are the same here as in Fig. 1

Fig. 4 Four of the contour plots from Fig. 3 but seen looking down the z-axis. (The x-axis is to the right.)
From left to right, the z-axis is a 2-fold, 3-fold, 4-fold, and regular axis, respectively, for the relevant elastic
map. Except in the UMONO diagram, the zero contour is not conspicuous in this view, since most of its points
are in the xy-plane. Compare with Fig. 3

4.3 Some Examples

Although the zero-contour of f T
MONO entirely determines the symmetry group of T, a sym-

metry of T is often more conspicuous in the contour plot of f T
MONO as a whole, especially

when the plot is viewed along the axis of the symmetry; see Figs. 3 and 4.
Suppose anisotropic elastic maps T1 and T2 have the same symmetry group ST1 = ST2 .

The contour plots of f
T1

MONO and f
T2

MONO can be very different, but the zero contours will be
the same for each. In spite of their differences, both plots are invariant under the symmetries
in STi

, by Theorem 2. Compare Figs. 4 and 5.
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Fig. 5 Contour plots of f T
MONO for four elastic maps T whose symmetry groups, like the elastic maps in

Fig. 4, are UMONO, UTRIG, UTET, and UXISO as indicated. The viewpoint is looking down the z-axis, the same
as in Fig. 4. Corresponding diagrams in the two figures have the same zero contours, since their symmetry
groups are the same

With the exception of 3-fold axes, any non-trivial symmetry axis v ∈ S of an elastic map
T is also a 2-fold axis of T. In that case the point v appears in the zero contour ZT of f T

MONO.
A 3-fold axis may or may not be a 2-fold axis, but it will nevertheless be recognizable in the
contour plot for f T

MONO, due to Theorem 2. Thus in the UCUBE diagram in Fig. 3 the center of
each light-colored three-pronged region of the sphere is a 3-fold symmetry axis.

Figs. 6, 7, 8 show contour plots of f T
MONO for three different elastic maps T = T1,T2,T3.

The lattices that appear in the figures are explained in Sect. 5; they can largely be ignored at
the moment.

For T = T3 (Fig. 8) the zero contour of f T
MONO appears to be a great circle together with its

poles, as if the symmetry of T were transverse isotropic. In that case, however, the contours
of f T

MONO would all be concentric circles, which they are not. The contours, especially the
cigar-shaped contours, are consistent with tetragonal symmetry. In fact, the symmetry group
of T here is the same as that of the more conspicuously tetragonal T2 in Fig. 7.

A too casual glance at the contour plot in Fig. 8 can thus mischaracterize the exact sym-
metry group of T2. We nevertheless think that the contour plot gives a better sense of the
overall symmetry of T than does the symmetry group of T by itself.

The elastic maps T2 and T3 are closely related. Their eigenvectors are exactly the same,
and their eigenvalues are nearly the same: the eigenvalues of T2 are 2,2,3,4,5,6, and those
of T3 are 2,2,3,32/10,5,6. We could have made the contours of f T

MONO for T = T3 look
even more nearly transverse isotropic—without changing the symmetry group of T3—just
by making the fourth eigenvalue of T3 closer to 3.

5 A Computational Complement to the Contour Plots

In this section we show how to find the symmetry groups of elastic maps by calculation,
independently of the contour plots of f T

MONO. Some of the material here appears also in
Diner et al. [7].

5.1 The Set T� of Elastic Maps with Symmetry at Least C�

For each � = TRIV, . . . , ISO, we generalize Eq. (28) by defining the set T� to consist of the
elastic maps T whose symmetry class ST is at least C� (Sect. 2.8):

T� = {T ∈ T : ST � C�}. (43)
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Fig. 6 Contour plot of f T
MONO for the elastic map T = T1 whose matrix is given in Eq. (75). Except for

orientation, the plot is consistent with the diagram labeled UXISO in Fig. 1. Thus it appears that the symmetry
of T is transverse isotropic and that the symmetry group of T is the conjugate of UXISO (Table 1) that has its
regular axis at v1. Of course such symmetry inferences, based only on a picture, are necessarily approximate.
The role of the lattice in confirming the symmetry of T quantitatively will be explained in Sect. 5. For
� = TRIV, . . . , ISO, the angle βT

� is a measure of how far T is from having symmetry class at least C� . Red

arrows accentuate the lattice nodes where βT
� = 0, hence where the symmetry class of T is at least C�

Fig. 7 Like Fig. 6 but for the elastic map T = T2 whose matrix is given in Eq. (76). Except for orientation,
the contour plot on the sphere is consistent with the diagram labeled UTET in Fig. 1. Thus it appears that the
symmetry of T is tetragonal and that the symmetry group of T is the conjugate of UTET that has v1 as its
4-fold axis and has v2 as one of its 2-fold axes. (Quantitative confirmation of the symmetry group is given by
Theorem 3 of Sect. 5, with U from Eq. 60. Also see Eq. 62)

From Eqs. (43), (19a), (19c), we get another characterization of T� :

T� = {T ∈ T : ST ⊃ UU�U� for some U ∈U}. (44)

In Appendix A.2 we show that

T �1 ⊂ T �2 ⇐⇒ C�1 � C�2 . (45)
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Fig. 8 Like Fig. 7 but for the elastic map T = T3 whose matrix is given in Eq. (77). The zero contour
of f T

MONO on the sphere appears to be a great circle together with its poles, as if the symmetry of T were
transverse isotropic. The contour plot as a whole, however, shows that the symmetry cannot be transverse
isotropic, since the contours would then have to be concentric circles. Instead, it appears that the symmetry
is tetragonal and that the symmetry group is one of the conjugates of UTET that have v1 as a 4-fold axis. The
2-fold axes, however, are not easy to discern from the contour plot alone. (The point v2 is indeed one of them,
but it was found quantitatively, from f T

MONO.) The elastic maps T2 and T3 are closely related, as explained
in the text, and in fact their symmetry groups are the same. Note the much smaller value of βT

XISO here as
compared with Fig. 7

The inclusions among the sets T � are therefore clear from the lattice of symmetry classes
(Eq. (20)).

5.2 The �-Subspaces V�(U)

For U ∈U we generalize Eqs. (29a), (29b) by defining

V�(U) = {T ∈ T : ST ⊃ UU�U�}, (46a)

V�(U) = {[T] : T ∈ V�(U)}. (46b)

Thus V�(U) consists of the elastic maps T whose symmetry group ST is at least UU�U�,
and V�(U) consists of their matrices.

From Eqs. (44) and (46a),

T� =
⋃
U∈U

V�(U). (47)

We refer to the sets V�(U) as the �-subspaces of the vector space T . Although they are
indeed subspaces, and although T� is the union of them, the set T� is not itself a subspace,
except for � = TRIV and � = ISO. (T TRIV = T and T ISO = V ISO(I ).)
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The �-subspaces V�(U) and V�(I) are related as follows.

T ∈ V�(U) ⇐⇒ ST ⊃ UU�U� (from Eq. (46a))

⇐⇒ U�ST U ⊃ U�

⇐⇒ SU
∗◦T◦U ⊃ U� (from Eq. (16b))

⇐⇒ U
∗◦ T ◦ U ∈ V�(I) (from Eq. (46a))

⇐⇒ T ∈ U ◦V�(I) ◦ U
∗
.

(48a)

Hence

V�(U) = U ◦V�(I) ◦ U
∗
. (48b)

From Eqs. (46a), (46b) and (17), the �-subspace V�(I) consists of the 6 × 6 matrices
having the form of the reference matrix T� in Table 2:

V�(I) = {T : T = T�(a, b, . . .) for some a, b, . . .} . (49a)

Then from Eq. (48b),

V�(U) = {
T : T = [U ]T�(a, b, . . .) [U ]� for some a, b, . . .

}
. (49b)

5.3 Distance from T to V�(U)

If we mimic the derivation of Eqs. (39a), (39b), but now starting from Eq. (48b) rather than
from Eq. (37a), we find the distance from an elastic map T to the subspace V�(U) to be

d (T,V�(U)) = ‖S − P (S, V�(I))‖ , S = [U ]�[T] [U ], (50)

where the projected matrix P (S, V�(I)) is now computed using Appendix A.1.

5.4 Distance from T to T�

From Eq. (47), the distance from T to the set T� is

d(T,T�) = min
U ∈U

d (T,V�(U)) , (51)

with d(T,V�(U)) given by Eq. (50). The minimum in Eq. (51) occurs at many different
points (i.e., rotation matrices) of U. We refer to them as �-minimizers for T. Thus,

U is a �-minimizer for T ⇐⇒ d (T,V�(U)) = min
V ∈U

d (T,V�(V )) . (52)

Equivalently,

U is a �-minimizer for T ⇐⇒ d(T,V�(U)) = d(T,T�). (53)

To calculate the minimum in Eq. (51) we parameterize U. Many parameterizations are
possible. We usually use the function (θ, σ,φ) → ZθYφZσ .
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5.5 The Angle βT
� Between T and the Set T�

We define1 the angle βT
� by

βT
� = sin−1 d(T,T�)

‖T‖ , (54)

where d(T,T�) is from Eq. (51). The angle βT
� is therefore a measure of how far T is

from having symmetry class at least C� . It is a feasible measure due in part to the fact that
T� is closed under multiplication by scalars: T ∈ T� =⇒ λT ∈ T� . As a measure, βT

� is
preferable to the distance d(T,T�) in that βλT

� = βT
� for λ �= 0. And a small angle, e.g., 1◦,

is more easily perceived as small, than is a small distance.
Since d(T,V�(U)) ≤ ‖T‖ (due to Eq. (23)), then d(T,T�) ≤ ‖T‖ as well. Hence βT

� in
Eq. (54) is real, and 0 ≤ βT

� ≤ π/2.
From Eq. (54),

βT
� = 0 ⇐⇒ d(T,T�) = 0 ⇐⇒ T ∈ T�. (55)

Then from Eq. (43),

βT
� = 0 ⇐⇒ ST � C�. (56a)

As a consequence,

βT
� > 0 =⇒ ST �= C�. (56b)

From Eqs. (53) and (54),

‖T‖ sinβT
� = d (T,V�(U)) (U is any �-minimizer for T). (57)

Hence

βT
� = 0 ⇐⇒ T ∈ V�(U) (U is any �-minimizer for T). (58)

5.6 Finding the Symmetry Group ST from the Angles βT
� and a Minimizer

The left-hand lattice below is the same as that in Eq. (20) but with each C� replaced with
T� . For a given elastic map T, the right-hand lattice is again the same, but with βT

� instead
of C� . From Eqs. (45) and (54),

C�1 ≺ C�2 ⇐⇒ T�1 ⊃ T�2 =⇒ βT
�1

≤ βT
�2

. (59)

1Temporarily letting T0 denote the zero elastic map, we note that it is not possible to define β
T0
� so that the

function T → βT
� is continuous at T0. Our later results involving βT

� are assumed, without further mention,
to exclude the case T = T0.
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Arrow direction in the lattice therefore indicates (1) increasing symmetry, (2) decreasing
size of the sets T� of elastic maps, and (3) increasing (rather, non-decreasing) angles βT

� .

T ISO

T XISO T CUBE

T TRIG T TET

T ORTH

TMONO

T TRIV = T

βT
ISO

βT
XISO βT

CUBE

βT
TRIG βT

TET

βT
ORTH

βT
MONO

βT
TRIV = 0

Once the eight numbers βT
� have been calculated, including an appropriate minimizer, the

symmetry group of T will be known. For an example, we consider the elastic map T = T2.
Its βT

�-values were calculated and found to be as in the lattice in Fig. 7.
Since βT

TET = 0 then, from Eq. (56a) and from the lattice, the symmetry class ST of T is
CTET, CXISO,, CISO, or CCUBE. But since βT

XISO, βT
ISO, and βT

CUBE are positive, then ST cannot be
CXISO,, CISO, or CCUBE, by Eq. (56b). Hence ST = CTET.

In finding βT
TET (Eqs. 54 and 51 with � = TET), we also get a TET-minimizer for T,

namely,

U = 1√
8

⎛
⎝

1 −√
3 2√

6
√

2 0
−1

√
3 2

⎞
⎠ . (60)

Then T ∈ VTET(U), from Eq. (58). Hence from Eq. (46a), the symmetry group ST satisfies

ST ⊃ UUTETU
�. (61)

Since ST = CTET then ST is a conjugate of UTET. But no conjugate of UTET can properly
contain another, so ST = UUTETU

�.
Thus the lattice of βT

�-values determined the symmetry class ST, and then a TET-
minimizer for T determined the symmetry group ST.

To relate the result ST = UUTETU
� to the contour plot in Fig. 7, let i, j, k be the standard

basis for R3. Then k is the 4-fold symmetry axis for the group UTET (Table 1), and so2 Uk is
the 4-fold axis for UUTETU

�. Likewise, Ziπ/4 i, i = 0,1,2,3, are 2-fold axes for UTET, and
so UZiπ/4 i are 2-fold axes for UUTETU

�. In particular, the points v1 and v2 in Fig. 7 are

v1 = Uk = 1√
2
(1,0,1), v2 = U i = 1√

8
(1,

√
6,−1), (U as in Eq. (60)). (62)

2We treat members of R3 as column vectors when matrix multiplication is involved, but we continue to write
them as row vectors.
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The vectors U i and Uk are of course the first and third columns of U .

Theorem 3 (Calculating the symmetry of T) Let T be an elastic map, and let C� be a great-
est symmetry class for which βT

� = 0. Then the symmetry class ST for T is C� , and the
symmetry group ST is UU�U�, where the reference group U� is from Table 1 and where
U is any �-minimizer for T (Eq. (53)). Here “greatest” means greatest with respect to the
partial order ≺ (Eq. (19a)): precisely, � is chosen so that βT

� = 0, and so that, if C
 � C�

and C
 �= C� then βT

 > 0.

Proof The proof is as in the T = T2 example that precedes it, but with � substituting for
TET. One needs the fact that no conjugate of the group U� properly contains another. This
fact is trivial when U� is finite, since all conjugates of U� have the same number of mem-
bers. It is also trivial for � = ISO. The remaining case � = XISO is a consequence of
Lemma 2 of [15]. �

The code mentioned in the Code Availability section will compute the angles βT

 and the

�-minimizer U that are needed in the theorem.
Note that for a given T there can be only one greatest symmetry class for which βT

� = 0,
since according to the theorem, that greatest symmetry class must be ST.

5.7 Theorem 3 in Practice

From a purely mathematical standpoint, almost all elastic maps have only the trivial sym-
metry; the set TMONO, which includes all elastic maps having non-trivial symmetry, has di-
mension 15, whereas the set T of all elastic maps has dimension 21. It is nevertheless easy
to make up elastic maps that have prescribed non-trivial symmetry. For such maps, Theorem
3 will retrieve their symmetry.

The theorem is not so helpful, however, when the elastic map arises empirically, from
observation. Whereas the material under consideration might in principle have some non-
trivial symmetry, its measured elastic map T, being subject to uncertainties, is apt to have
only trivial symmetry. Trivial symmetry is then what the theorem will report, if the theorem
is interpreted to the letter.

One may nevertheless want to examine the lattice of angles βT

 to see if one of them, say

βT
� , is fairly small, with higher ones being not so small. One might then consider � to be an

approximate symmetry class for T.
Formulating a sensible notion of approximate symmetry group for T, however, is more

challenging, and we are not sure how best to do it. An obvious candidate for “the” approx-
imate symmetry group is UU�U�, where � is the approximate symmetry class and where
U is a �-minimizer for T. This may be good enough for many applications, but one needs
to entertain the possibility that UU�U� might not be unique.

Danek et al. [6] discuss determining the approximate symmetry of elastic maps whose
matrix entries are given with uncertainties.

6 Afterthoughts

We have now realized our original goal of describing two methods of inferring elastic sym-
metries; the visual method is summarized in Sect. 4.1, and the quantitative method is sum-
marized in Theorem 3. Some questions may nevertheless remain. We discuss several in this
section.
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6.1 When V�(U1) = V�(U2)

A �-subspace V�(U) can be specified by U , but the label U is not unique. In this section
we see why.

For � = TRIV, . . . , ISO,

VU�V �=U� ⇐⇒ V ∈G�, (63a)

where U� is the reference group as in Table 1 and where the subgroup G� of U is

� G�

ISO, TRIV UISO =U

XISO, MONO UXISO

CUBE, ORTH UCUBE

TET D8

TRIG D6

(63b)

The group D6 is the 12-element group generated by Zπ/3 and Xπ , and D8 is the 16-element
group generated by Zπ/4 and Xπ .

To verify Eq. (63a) for � = ORTH, for example: The 2-fold axes of rotations in the group
UORTH are ±i, ±j, ±k—the face centers of the unit cube. For any V ∈ U the 2-fold axes of
rotations in VUORTHV � are therefore ±V i, ±V j, ±V k. The groups VUORTHV � and UORTH

coincide when V maps the set of face centers of the unit cube to itself. That is, they coincide
when V ∈UCUBE.

Theorem 4 V�(U1) = V�(U2) ⇐⇒ U2 = U1V for some V ∈G�

Proof Suppose V�(U1) = V�(U2). Since U1U�U�
1 is an elastic symmetry group, there is

an elastic map T such that ST = U1U�U�
1 . Then T ∈ V�(U1) = V�(U2) and ST = C� . Then

U2 = U1V for some V ∈G� , by Lemma 1 of Appendix B.
Conversely, suppose U2 = U1V for some V ∈G� . Then V�(U2) = V�(U1V ) = V�(U1),

the latter equality from Eqs. (46a) and (63a). �

A minor consequence of Theorem 4 is that the union in Eq. (47), as well as the min-
imization in Eq. (51), can be taken not over all of U but over a smaller subset Û� of U.
The set ÛXISO = ÛMONO turns out to have dimension two rather than three (as for U), and
ÛISO = ÛTRIV = {I }.

6.2 Closest Members of T� to T

By comparison with Sect. 4, the closest elastic map in the �-subspace V�(U) to an elastic
map T has matrix

P (T ,V�(U)) = [U ]P ([U ]�T [U ], V�(I)
) [U ]�, (T = [T]). (64)

(Compare Eq. (64) with Eq. (38), and compare Eq. (48b) with Eq. (37a).)

Theorem 5 For an elastic map T, the closest members of T � to T are the projected maps
P (T,V�(U)) such that U is a �-minimizer for T. (The matrix of P (T,V�(U)) is then as
in Eq. (64).)
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Proof Suppose that T0 is a closest member of T � to T. That is, T0 ∈ T � and

d(T,T0) = d(T,T �). (65)

Since T0 ∈ T � then T0 ∈ V�(U) for some U ∈ U, by Eq. (47). Since T0 is then the closest
member of the subspace V�(U) to T, then from Sect. 3,

T0 = P (T,V�(U)), d(T,T0) = d(T,V�(U)). (66)

Then d(T,V�(U)) = d(T,T�) from Eqs. (65) and (66), so that U is a �-minimizer for T
(Eq. (53)).

Conversely, if U is a �-minimizer for T, then d(T,T�) = d(T,V�(U)) =
d(T,P (T,V�(U))), so that P (T,V�(U)) is a closest member of T � to T. �

Note that when the symmetry of T is at least � then the closest member of T � to T is T
itself.

For a given elastic map T and symmetry �, Diner et al. [7] define the effective elastic
map to be the closest in T � (our notation) to T. (They give some guidance for specifying
�, based on the qualitative behavior of T.) In Appendix B.4 we show that “the” closest
elastic map in T � to T is not always unique. This takes some of the luster off the otherwise
appealing notion of effective elastic map.

6.3 �-Reference Matrices for Elastic Maps

Theorem 6 Let T be an elastic map, let U ∈ U, let � = TRIV, . . . , ISO, and let T� be as in
Table 2. The following four conditions are equivalent:

βT
� = 0 and U is a �-minimizer for T, (67a)

T ∈ V�(U), (67b)

[T] = [U ]T�(a, b, . . .) [U ]� for some a, b, . . ., (67c)

T�(a, b, . . .) = [U ]�[T] [U ] for some a, b, . . .. (67d)

(The angle βT
� is defined in Eq. (54), and the notion of �-minimizer is defined in Eq. (52).)

Proof To show that Eq. (67a) implies Eq. (67b), suppose βT
� = 0 and U is a �-minimizer

for T. Then

d(T,V�(U)) = d(T,T�) (from Eq. (53))

= 0 (from Eq. (55)),

T ∈ V�(U),

as desired. To see the converse, note that V�(U) ⊂ T� , hence the reasoning reverses.
Eqs. (67b) and (67c) are equivalent by Eq. (49b), and Eqs. (67c) and (67d) are obviously

equivalent. �

The matrix T�(a, b, . . .) in Eqs. (67c) and (67d) is said to be a �-reference matrix for T.
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To illustrate Theorem 6, we find TET-reference matrices for the elastic map T = T2

(Fig. 7). Recall from the discussion preceding Theorem 3 that βT
TET = 0 and that the ma-

trix U in Eq. (60) is a TET-minimizer for T. From Eq. (53) and Theorem 4:

UV is a TET-minimizer for T, (U from Eq. (60), V ∈D8). (68)

Although there are 16 such minimizers UV , they give rise to only two distinct TET-reference
matrices T 1

� and T 2
� for T. Letting U1 = U and U2 = UZπ/4, we have, from Eq. (67d),

T 1
� = [U1]�[T] [U1] =

⎛
⎜⎜⎜⎜⎜⎜⎝

2
2

4
3

11/2 −1/2
−1/2 11/2

⎞
⎟⎟⎟⎟⎟⎟⎠

, (69a)

T 2
� = [U2]�[T] [U2] =

⎛
⎜⎜⎜⎜⎜⎜⎝

2
2

3
4

11/2 −1/2
−1/2 11/2

⎞
⎟⎟⎟⎟⎟⎟⎠

. (69b)

Eq. (71) of Appendix B.3 guarantees that Eq. (68) gives all the TET-minimizers for T
and hence that T 1

� and T 2
� are the only TET-reference matrices for T. There will, however,

be �-reference matrices for T for � = ORTH and � = MONO (and trivially for � = TRIV),
since βT

ORTH = βT
MONO = βT

TRIV = 0.

6.4 Some History

Equation (69a) (for example) says that if the material in question is reoriented using U�
1

then the matrix of its elastic map takes the form T 1
� . Until fairly recently, finding U1 from

T = T2 (and hence finding T 1
�) would have been tantamount (in a small circle of enthusiasts)

to finding the Holy Grail, since Eq. (67c) would then imply that the symmetry group of T
was at least U1UTETU

�
1 . Thus Chapman [5, p. 131] wrote in 2004:

Interpreting general anisotropic elastic parameters is difficult. If all 21 parameters are
non-zero, is the medium in fact one with a high-order of symmetry, e.g. TI, but with
tilted axes . . . ? In other words, would a simple rotation reduce the number of non-zero
parameters3 significantly?

More precisely, for a given T and �, is there a rotation U satisfying Eq. (67d), and if so,
how does one find it?

By 2007 Bóna et al. [4] had made impressive headway in responding. We ourselves [15]
treated the question in 2021. Neither our method nor theirs, however, can handle every elas-
tic map, and both methods are slow, since they require some thought and are not easily
automated. Now, however, the angle βT

� and a �-minimizer U for T are readily found from

3The emphasis on the number of non-zero entries is misguided. More zero entries does not guarantee more
symmetry.
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T, using Eqs. (54) and (52). Theorem 6 thus gives a complete4 answer to Chapman’s ques-
tions: If βT

� = 0, then U can serve as the desired rotation. If βT
� > 0, then no such rotation

exists (for the specified � and T).
We included Theorem 6 in part for historical reasons. For finding symmetry groups of

elastic maps, we still recommend Theorem 3.

7 Summary

An elastic map T describes the strain-stress relation at a particular point p in a material. A
symmetry of T is a rotation of the material, about p, that does not change T.

For a point v on the unit sphere, the number f T
MONO(v) is the distance from T to the space

of elastic maps having v as a 2-fold symmetry axis. The function f T
MONO is invariant under

all of the symmetries of T, so the symmetries are visible in a contour plot of f T
MONO. In

fact, the zero contour alone reveals the symmetry group ST of T, and information about the
approximate symmetry of T is seen in the contour plot as a whole. The function f T

MONO is
calculated using Theorem 1.

To complement the visual approach of the contour plots, we treat elastic symmetry quan-
titatively, in Sect. 5. For an elastic map T and for � = TRIV, . . . , ISO, the angle βT

� (Eq. (54))
is a measure of how far T is from having symmetry class at least C� . The lattice of the eight
angles βT

� determines the symmetry class ST of T, and the lattice and an appropriate �-
minimizer for T (Eq. (52)) determine the symmetry group ST. The angles βT

� as well as
�-minimizers for T can be computed using the code mentioned in the Code Availability
section. Theorem 3 then gives ST immediately.

In practice, where an elastic map T arises from observations rather than being constructed
mathematically, its symmetry group ST by itself is not helpful; random errors in the observa-
tions mean that the exact symmetry group can never be anything but trivial. Section 5.7 has
some thoughts on the notion of an approximate symmetry group. Whether or not that notion
turns out to be viable, the approximate symmetry of T is well expressed by the contour plot
of f T

MONO, the lattice of angles βT
� , and �-minimizers for T.

Appendix A: Supplement for Sect. 5

A.1 The Projected Matrices P(T,V�(I))

The subspace V�(I) consists of the 6 × 6 matrices having the form of the reference ma-
trix T� in Table 2; see Eq. (49a). One verifies Eqs. (70a)–(70h), below, as was done for
P (T ,VMONO(I )) in Eqs. (33)–(36).

For T as in Eq. (32) the projection of T onto V�(I) is

P (T ,VTRIV(I )) = T , (70a)

P (T ,VMONO(I )) is as in Eq. (36), (70b)

4Conceivably there are elastic maps so perverse that the needed minimization in Eq. (51) would defeat the
mathematical software, but we have yet to encounter one.



114 W. Tape, C. Tape

P (T ,VORTH(I )) =

⎛
⎜⎜⎜⎜⎜⎜⎝

a

b

c

d j p

j e k

p k f

⎞
⎟⎟⎟⎟⎟⎟⎠

, (70c)

P (T ,VTRIG(I )) =

⎛
⎜⎜⎜⎜⎜⎜⎝

a′ 0 m′ 0
0 a′ 0 m′
m′ 0 c′ 0
0 m′ 0 c′

e k

k f

⎞
⎟⎟⎟⎟⎟⎟⎠

,

a′ = a + b

2
,

c′ = c + d

2
,

m′ = m + n

2
,

(70d)

P (T ,VTET(I )) =

⎛
⎜⎜⎜⎜⎜⎜⎝

a′
a′

c

d

e k

k f

⎞
⎟⎟⎟⎟⎟⎟⎠

, a′ = a + b

2
, (70e)

P (T ,VCUBE(I )) =

⎛
⎜⎜⎜⎜⎜⎜⎝

a′
a′

a′
d ′

d ′
f

⎞
⎟⎟⎟⎟⎟⎟⎠

,

a′ = a + b + c

3
,

d ′ = d + e

2
,

(70f)

P (T ,VXISO(I )) =

⎛
⎜⎜⎜⎜⎜⎜⎝

a′
a′

c′
c′

e k

k f

⎞
⎟⎟⎟⎟⎟⎟⎠

,

a′ = a + b

2
,

c′ = c + d

2
,

(70g)

P (T ,VISO(I )) =

⎛
⎜⎜⎜⎜⎜⎜⎝

a′
a′

a′
a′

a′
f

⎞
⎟⎟⎟⎟⎟⎟⎠

, a′ = a + b + c + d + e

5
. (70h)

The matrices P (T ,V�(I)) in Eqs. (70b)–(70g) are the analogs of the matrices C� in
Sect. 4.2 of Diner et al. [7]. Our matrices are simpler due to the fact that our matrix rep-
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resentations of elastic maps are with respect to the basis B in Eq. (1). (The Diner et al.
matrices are with respect to the basis � in Eq. (S23) of [15].) The Diner et al. matrices in
their Sect. 4.2 are consistent with ours,5 with the exception of their CTI (their Eq. (4.10)).
Our disagreement also applies to their matrix (X̃�

0 CX̃0)
TI in their Sect. 5.3.

A.2 Proof That T�1 ⊂ T�2 ⇐⇒ C�1 � C�2 (Eq. 45)

Suppose T �1 ⊂ T �2 . Since U�1 is an elastic symmetry group, there is an elastic map T such
that ST = U�1 . Then

T ∈ T �1 (from Eq. (44)),

T ∈ T �2 ,

ST ⊃ UU�2U
� for some U ∈U (from Eq. (44)),

U�1︸︷︷︸
∈C�1

⊃ UU�2U
�

︸ ︷︷ ︸
∈C�2

(from Eq. (18)),

C�1 � C�2 (from Eq. (19a)).

Hence T �1 ⊂ T �2 =⇒ C�1 � C�2 . The converse is immediate from the definition of T �

(Eq. (43)).

Appendix B: Supplement for Sect. 6

Lemma 1 Let ST = C� and T ∈ V�(U1) ∩V�(U2). Then U2 = U1V for some V ∈G� .

Proof For i = 1,2,

ST ⊃ UiU�U�
i (since T ∈ V�(Ui)),

ST = UU�U� for some U (since ST = C�),

UU�U�⊃ UiU�U�
i ,

UU�U�= UiU�U�
i ,

U2U�U�
2 = U1U�U�

1 ,

U�
1 U2 U�(U�

1 U2)
�= U�,

U�
1 U2 ∈G� (from Eq. (63a)),

U2 = U1V for some V ∈G�.

The fourth step is due to the fact that no conjugate of U� can properly contain another. �

B.3 Number of �-Minimizers for T

We let NT
� be the number of �-minimizers for the elastic map T. Equations (52), (53), and

Theorem 4 give NT
� ≥ |G� |, where |G� | is the number of elements of G� .

5Our analog of Ctrigo of Diner et al. is P(T ,VTRIG(U)) with U = Zπ/2, not U = I .
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If the symmetry of T is exactly � and if U1 and U2 are �-minimizers for T, then T ∈
V�(U1) ∩ V�(U2), by Theorem 6, and then U2 = U1V for some V ∈ G� , by Lemma 1.
Thus NT

� ≤ |G� |, so that in fact

ST = C� =⇒ NT
� = |G� |. (71)

The assumption ST = C� in Eq. (71) matters. The monoclinic map T in Eq. (72), for
example, has NT

ORTH = 48, whereas |GORTH| = 24. The ORTH-minimizers are ZtV , where
t = ±π/12 and V ∈UCUBE.

B.4 An Elastic Map and Two Distinct Elastic Maps That Are Closest Orthorhombic
Maps to It

Let T be the monoclinic elastic map whose matrix is

T = [T] =

⎛
⎜⎜⎜⎜⎜⎜⎝

√
32 √

8
3 1
1 3

1
1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (72)

For U1 = Zπ/12 and U2 = U�
1 we have, from Eq. (64),

P (T ,VORTH(U1)) = 1

4

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

15
√

2 −√
6

−√
6 9

√
2

12 + √
3 3

3 12 − √
3

4
4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

P (T ,VORTH(U2)) = 1

4

⎛
⎜⎜⎜⎜⎜⎜⎝

15
√

2
√

6√
6 9

√
2

12 − √
3 3

3 12 + √
3

4
4

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(73)

Then

∥∥T − P (T,VORTH(U1))
∥∥ = ∥∥T − P (T,VORTH(U2))

∥∥ =
√

3

2
= d(T,T ORTH). (74)

The first two equalities are from Eqs. (72) and (73), and the last equality is from Eq. (51).
Thus both P (T,VORTH(U1)) and P (T,VORTH(U2)) are closest elastic maps in T ORTH to T,
but they are not the same.
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Appendix C: Definition of the Elastic Maps T1, T2, T3

The elastic maps T1, T2, T3 in Figs. 6, 7, 8 are defined via their matrices:

[T1] = 1

128

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

532 92
√

3 122 −2
√

3 −60 48

.. 348 −2
√

3 126 −20
√

3 16
√

3

.. .. 349 31
√

3 −126 24

.. .. .. 287 −42
√

3 8
√

3
.. .. .. .. 212 −16
.. .. .. .. .. 704

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (75)

[T2] = 1

64

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

168 4
√

6 −40 6
√

6 6
√

2 0

.. 324 −4
√

6 −42 −14
√

3 16
√

3

.. .. 168 −6
√

6 −6
√

2 0

.. .. .. 233 35
√

3 −8
√

3
.. .. .. .. 163 −8
.. .. .. .. .. 352

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (76)

[T3] = 1

320

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

808 4
√

6 −168 6
√

6 6
√

2 0

.. 1572 −4
√

6 −282 −94
√

3 80
√

3

.. .. 808 −6
√

6 −6
√

2 0

.. .. .. 1057 139
√

3 −40
√

3
.. .. .. .. 779 −40
.. .. .. .. .. 1760

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (77)

The map T1 is the same as the elastic map T′ whose symmetries were found in Sect. 15.4
of [15], and T2 is the same as T′ whose symmetries were found in Sect. 15.3. The method of
finding symmetries in [15] can therefore be compared with the two methods of the present
paper.
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