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Zooplankton plays a major role in ocean food webs and biogeochemical cycles, and
provides major ecosystem services as a main driver of the biological carbon pump and in
sustaining �sh communities. Zooplankton is also sensitive to its environment and reacts to
its changes. To better understand the importance of zooplankton, and to inform prognostic
models that try to represent them, spatially-resolved biomass estimates of key plankton
taxa are desirable. In this study we predict, for the �rst time, the global biomass distribution
of 19 zooplankton taxa (1-50 mm Equivalent Spherical Diameter) using observations with
the Underwater Vision Pro�ler 5, a quantitative in situ imaging instrument. After
classi�cation of 466,872 organisms from more than 3,549 pro�les (0-500 m) obtained
between 2008 and 2019 throughout the globe, we estimated their individual biovolumes
and converted them to biomass using taxa-speci�c conversion factors. We then associated
these biomass estimates with climatologies of environmental variables (temperature,
salinity, oxygen, etc.), to build habitat models using boosted regression trees. The results
reveal maximal zooplankton biomass values around 60°N and 55°S as well as minimal
values around the oceanic gyres. An increased zooplankton biomass is also predicted for
the equator. Global integrated biomass (0-500 m) was estimated at 0.403 PgC. It was
largely dominated by Copepoda (35.7%, mostly in polar regions), followed by
Eumalacostraca (26.6%) Rhizaria (16.4%, mostly in the intertropical convergence zone). The
machine learning approach used here is sensitive to the size of the training set and
generates reliable predictions for abundant groups such as Copepoda (R2 ≈ 20-66%) but
not for rare ones (Ctenophora, Cnidaria, R2 < 5%). Still, this study o�ers a �rst protocol to
estimate global, spatially resolved zooplankton biomass and community composition from
in situ imaging observations of individual organisms. The underlying dataset covers a period
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of 10 years while approaches that rely on net samples utilized datasets gathered since the
1960s. Increased use of digital imaging approaches should enable us to obtain zooplankton
biomass distribution estimates at basin to global scales in shorter time frames in the future.

1 Introduction

1.1 Zooplankton

Present in all the oceans of the globe, zooplankton corresponds to organisms adrift in the

water. They represent a great taxonomic diversity and sizes, ranging from a few micrometers

to several meters (de Vargas et al., 2015; Karsenti et al., 2011; Stemmann and Boss, 2012).

Zooplankton play a central role in the carbon cycle as they contribute to the biological pump

that drives the export of photosynthetically �xed organic carbon from the surface to the

intermediate and deep oceans (Longhurst and Glen Harrison, 1989; Turner, 2002; Turner,
2015; Steinberg and Landry, 2017). As a major link between primary producers and higher

trophic levels (Ikeda, 1985), zooplankton have central ecological and biogeochemical roles,

with associated socio-economic interests. This socio-economic impact of plankton can be

positive, such as their role as food source for �sh (Lehodey et al., 2006; van der Lingen et al.,
2006) or as an indicator of water quality (Suthers et al., 2019). It can also be negative, as e.g.

jelly�sh blooms that can impact various human activities such as aquaculture and �shing

(Richardson et al., 2009).

1.2 Spatial Distribution of Zooplankton and Its Biomass

Zooplankton organisms are sensitive to environmental conditions and are thus considered

sentinels of ocean changes. Their distribution is �nely governed by the interactions between

physical [i.e., temperature (Steinberg and Landry, 2017), currents, light (Hays et al., 2005),

pressure] and chemical constraints [nutrients, oxygen (Steinberg and Landry, 2017)], but also

by biological interactions (e.g. predator-prey, symbiosis, parasitism and commensalism). The

dependence of zooplankton on environmental variables leads to very clear global scale

patterns even at coarse taxonomic levels (Lucas et al., 2014; Biard et al., 2016). On a global

scale, zooplankton diversity is higher at the equator and decreases towards the poles

(Rombouts et al., 2009; Ibarbalz et al., 2019). Conversely, zooplankton biomass tends to be

low in the tropics and increase with latitude with large seasonal �uctuations in temperate

and polar regions (Ikeda, 1985; Moriarty et al., 2012; Soviadan et al., 2022). Although a

global quantitative assessment of zooplankton biomass and functional groups is needed (e.g.

to be incorporated in biogeochemical and ecological models), it is often hampered by the

heterogeneity of sampling methods and the uneven distribution of observations, causing

high uncertainty in biomass estimates (Moriarty et al., 2012; Moriarty and O’Brien, 2013; Le
Quéré et al., 2016).
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1.3 The Study of Zooplankton and Its Di�culties

Assessments of the global distribution of zooplankton organisms are often based on regional

datasets, obtained with heterogeneous sampling tools traditionally biased towards non-

gelatinous taxa (Lucas et al., 2014), and combined using di�erent standardization procedures

(Moriarty et al., 2012; Moriarty and O’Brien, 2013; Buitenhuis et al., 2013). Consequently, the

global distribution of only a few zooplankton groups that generally can be well sampled

using plankton nets, e.g. crustaceans, have been well studied (Rombouts et al., 2009;

Buitenhuis et al., 2013). Indeed, some zooplankton taxa are known to be fragile (cnidarians,

ctenophores, rhizarians, etc.) and their destruction by plankton nets as well as their poor

preservation in �xatives (Beers and Stewart, 1970) resulted in an underestimation of their

biomass and their ecological role in marine ecosystems (Lucas et al., 2014; Biard et al.,
2016). In this context, non-intrusive in situ methods using imaging (Remsen et al., 2004;

Cowen and Guigand, 2008; Sun et al., 2008; Stemmann et al., 2008; Schulz et al., 2010;

Picheral et al., 2010; Grossmann et al., 2015) and video (Davis et al., 1992; Davis et al., 2005;

Hoving et al., 2019) instruments have been developed (Lombard et al., 2019). Among the

di�erent systems, only the Underwater Vision Pro�ler (UVP) version 4 and 5 have been widely

used for plankton on a global scale which allowed comparisons of abundance patterns with

the Longhurst (1995) provinces of the ocean (Stemmann et al., 2008; Biard et al., 2016).

Since 2008, the creation and expansion of such a global dataset could be executed with the

UVP5 thanks to numerous participating teams around the world and the wide

commercialization of this in situ imaging tool. In this study, we used data from the UVP5, an

in situ imaging system designed to detect, measure and quantify the distribution of

zooplankton organisms and marine particles (Picheral et al., 2010). This instrument, designed

for the study of particle size spectra in the ocean (Stemmann et al., 2002; Guidi et al., 2009)

was also previously used to obtain plankton data at a high spatial resolution (Forest et al.,
2012) and to study fragile organisms (Biard et al., 2016; Stukel et al., 2018; Christiansen
et al., 2018; Biard and Ohman, 2020). However, even with the progressive increase in the

spatio-temporal density of observations allowed by the use of imaging instruments, the

unevenness in the distribution of observations remains, preventing large scale biomass

estimations. Such global observations could nevertheless serve as the basis for large scale

estimations through the use of interpolation or extrapolation methods, including statistical

habitat models.

1.4 Statistical Habitat Models

Habitat modeling is a machine learning tool to estimate the abundance of a taxon at a

location where an observation is missing: instead of interpolating between nearby

observation points based on geographical distance, the environmental conditions (i.e. the

habitat) are used to inform the estimation. Statistically, a regression analysis can be used to

de�ne the relationship between the abundance (or presence) of a taxon at observation sites

and the environmental variables at those sites (Guisan and Zimmermann, 2000; Elith and
Leathwick, 2009). Then, continuous maps of those environmental variables can be used to

predict continuous maps of the taxon’s abundance (or presence), by applying the regression.Articles Research Topics Editorial Board
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The objective of this work was the development of a method to estimate zooplankton

biomass on a global scale and to study the spatial distribution of zooplankton in relation to

its habitat. To obtain such a global view we used global data from the UVP5 in situ imaging

system. In most cases, it is di�cult to identify the imaged organisms to species level. We

therefore applied the habitat modeling approach to broader taxonomic groups. We �rst

estimated the individual biovolume and biomass of organisms classi�ed in 25 broad

taxonomic groups, within a global in situ imaging dataset. We then applied the habitat model

methodology to each taxonomic group and built models using di�erent regional and vertical

partitions of the data. We separated data of the epipelagic (0-200 m depth layer) from the

upper mesopelagic (200 to 500 m depth layer). We also used a global partitioning to

separate data from low latitudes (40°S to 40°N) from the remaining high latitude data. We

hypothesize that these partitions should allow us to separate subgroups within those broad

taxa, which occupy di�erent horizontal and/or vertical habitats. Finally, we used the models’

output to estimate the global marine zooplankton biomass distribution in the top 500 m of

the water column.

In situ imaging observations with UVP5 have been widely used during the past decade to

study zooplankton in the global ocean. Biard et al. (2016) used 694 stations from the UVP5

dataset to reveal that Rhizaria were strongly underestimated in previous studies. Here, we

use an updated version of this dataset, now including 3,549 stations to study the biomass

distribution of Copepoda, Rhizaria and several other groups of planktonic organisms in the

1.02-50 mm size range. We hypothesize that the total biomass of zooplankton is distributed

according to regional production characteristics, associated with climatic and hydrological

patterns, showing overall a high biomass in high latitudes and lower values in the subtropical

gyres (Ikeda, 1985; Moriarty et al., 2012).

2 Materials and Methods

2.1 Plankton Data Collection and Processing

2.1.1 Global Plankton Imaging With the UVP5

UVP5 data (Figure 1) were compiled from all oceans, covering a 10 year period (2008-2018).

A detailed description of the operation of the UVP5 is given in Picheral et al. (2010). All

particles large than ≈ 100 μm in Equivalent Spherical Diameter (ESD) were measured and

counted, but only images of particles (zooplankton and aggregates) larger than ≈ 600 μm

ESD were kept by the UVP5 for further processing because smaller objects contained too

few pixels to be identi�able. Acquisition of metadata (geographic location, date, etc.) and

processing of all 8.46 million images (95% being detritus) were carried out by the ZooProcess

software which provided information on 42 morphological features associated with each

object (area, major and minor axis, etc.). The results were imported into EcoTaxa (Picheral
et al., 2017), an application which allows a taxonomic classi�cation of images via supervised

learning algorithms, followed by manual validation (Irisson et al., 2022). As 61% of the

pro�les have a maximum depth ≤500 m, only images of organisms between 0-500 m were
Articles Research Topics Editorial Board
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kept and the overall estimates of biomass were restricted to this depth range. To ensure that

pro�les were representative, a �lter was also applied to only keep pro�les that covered at

least 80% of the layer of interest.

Figure 1

www.frontiersin.org (https://www.frontiersin.org/�les/Articles/894372/fmars-09-894372-

HTML/image_m/fmars-09-894372-g001.jpg)

FIGURE 1 Map of the UVP5 dataset used in this study. Transparency was used to illustrate the

density of points on the map.

2.1.2 Image Classi�cation and Size Range Covered

Living organisms were separated from detritus (aggregates, �bers, fecal pellets) as well as

artifacts (e.g. bubbles) and classi�ed according to their taxonomic identity. Recognition and

sorting of organisms can be a source of bias depending on the levels of perception and

experience of the people who perform them. Several cognitive factors biases such as

boredom, fatigue or a classi�cation biased towards the most used groups have been

presented by Culverhouse (2007) and Culverhouse et al. (2014). To reduce the risk of poor

identi�cation, a shared UVP5 taxonomic guide was used to homogenize image sorting into

119 taxonomic groups. The image data were thereafter grouped into 25 broader taxonomic

groups (Table S1), and a subset of the resulting dataset was checked for homogeneity of

sorting within these groups. A minimum of 51 images and a maximum of 10% of all images

were extracted from each group and were independently checked after the assembly of the

�nal data set. The maximum error or uncertainty rate per taxon was 9.8% and a vast majority

of taxa were under 2.5%. We checked the classi�cation and if accuracy was <95%, we

rechecked the categories to assure proper sorting. In addition, only fully validated pro�les

were used for this analysis. The resulting global data set consisted of 466,872 images from

3,549 stations. Under-sampled groups with less than 500 images in the dataset which could

not be used for a global study were not included in the analysis.

We computed the organisms’ size spectrum to detect the size range within which the UVP5

can be used to properly quantify their distribution. The concentration of objects in the ocean

is expected to decrease with size; when this is computed as a normalized size spectrum, the

relationship is expected to be linear (Forest et al., 2012). A peak in the size spectrum at the

lower size range generally re�ects the minimum size of e�cient detection by in situ imaging

while high variability in the large size range re�ects the poor ability to detect rare large

objects (Stemmann and Boss, 2012). With that in mind, the spectrum was linear for the size

range 1.02-50 mm and organisms outside this range were not included in the analysis since

large mobile fauna (including large crustaceans) are likely to be undersampled and small
Articles Research Topics Editorial Board
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zooplankton organisms close to the UVP5’s threshold of detection are di�cult to identify.

This size range selection ensures that the data used in this study was properly quanti�ed by

the UVP5.

2.1.3 Individual Biomass Estimation

To avoid errors due to incorrect ellipse �ts (around appendages of organisms rather than

their body, ellipse �tted to non-ellipsoidal organisms, etc.), we chose the spheroid method: it

is based on the area (Table 1), which is more consistently measured by the image analysis

performed in ZooProcess.

Table 1

www.frontiersin.org (https://www.frontiersin.org/�les/Articles/894372/fmars-09-894372-

HTML/image_m/fmars-09-894372-t001.jpg)

TABLE 1 Methods of calculating individual biovolume with area (mm2); ESD, the equivalent

spherical diameter equivalent (mm); major, the major axis (mm) of the best �t ellipse; minor, the

minor axis (mm) of the most suitable ellipse.

For Rhizaria, biovolume (mm ) to carbon (mgC) conversions were done using factors from

the literature (Figure S1 and Table S2). For other groups, the conversion from individual

volume to individual wet weight assumed a density of 1 g cm  (Kiørboe, 2013). Then the

conversion from individual wet weight to individual biomass in carbon units (mgC) was

calculated using taxon-speci�c linear conversion factors from McConville et al. (2016); when

several conversion factors were available for a taxon, their median was used for each group.

To take into account di�erences in density of some parts of the organisms, the

Appendicularia group was actually split into Appendicularia_body and Appendicularia_house,

whereby the “body” group contains images with only the animal and the “house” group

contains the house and the animal. For the images labeled Appendicularia_house, we used

the relationship of house diameter (major axis) to Appendicularia trunk length from Lombard
and Kiørboe (2010). We then converted this body size equivalent into carbon weight using

the corresponding relationship from Lombard et al. (2009). For the images labeled

Appendicularia_body, we converted the biovolume of the organism into carbon weight

using the corresponding relationship from Lombard et al. (2009). Two groups also have been

created to separate the Collodaria into solitary Collodaria and colonial Collodaria. This

choice was done based on the fact that solitary Collodaria are smaller than colonial ones and

have a di�erent vertical distribution (Faillettaz et al., 2016). For solitary collodarians with a

dark central capsule (subgroup of solitary Collodaria) described in Biard et al. (2016), the

estimation of carbon (0.189 mgC mm ) by Mansour et al. (2021) was done on the capsule of

the organisms. As Zooprocess measures the area of the whole organism, we determined the

3
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ratio  and applied this factor to avoid overestimation of carbon

biomass for this group. For the rest of the collodarians, the estimation of Mansour et al.
(2021) was directly applied.

2.2 Environmental Data Collection and Processing

In order to develop relationships between regional characteristics of the environment

(Figures S2–4) and observed biomass, climatologies from the World Ocean Atlas (WOA)

(Garcia et al., 2019) were used for temperature (in °C), salinity, oxygen (converted from μmol
kg  to kPa for better physiological interpretation), and macronutrients (nitrate, phosphate

and silicate in µmol kg ). We selected the data sets de�ned on a 1° horizontal grid, over the

0-500 m depth range, and with a monthly temporal resolution. Temporal coverage was from

2005 to 2017 for salinity and temperature and 1955 to 2017 for the other variables. We also

used monthly averaged surface chlorophyll-a data (Chl a in mg m ) resolved to 1/24° from

2005 to 2017 from the Copernicus database

(OCEANCOLOUR_GLO_CHL_L4_REP_OBSERVATIONS_009_082) as well as bathymetry

data from NOAA (Amante and Eakins, 2009) with a spatial resolution of 10 minutes; both

were re-gridded to a 1° grid. Finally, distance to coast was computed by calculating the

distance of all 1°×1° cells to the closest cell associated to land using the raster package

(Hijmans, 2021). To obtain annual climatologies, when relevant, each monthly variable was

averaged over its time period of coverage.

This environmental data was then matched to the UVP5 data on the 1°×1° grid. Since the

1°x1° grid used by WOA does not necessarily follow the contour line of the coast perfectly,

some UVP5 pro�les could not be directly matched to the environmental grids. This is mostly

the case where e.g. the coast is situated in a 45 degree angle to latitude or longitude,

thereby creating triangle shaped areas that are not covered by the rectangular grid. For

pro�les that lie in such corners of the grid, we used the environmental values of the closest

neighboring 1°×1° WOA cell. In the epipelagic world model, 3,002 points did have a direct

match while 156 points did not have a direct match. Out of these 156 points, 14 were not in a

neighboring 1°×1° WOA cell and were removed from the model input. For the mesopelagic,

2,172 did have a direct match, while 104 points had a match in a neighboring grid cell and 2

points did not and were removed from the model input. Maps that show the close vicinity of

non-matching points to adjacent WOA cells are shown in Supplementary Figure 5.

To assess whether we are able to describe various environmental conditions with the UVP5

samples, we compared the distributions of each variable in the worldwide WOA dataset and

in the subset matched to UVP5 pro�les (Figures S6, S7). Although the geographical coverage

is not homogeneous (Figure 1), the coverage of environmental conditions is good and

warrants the use of habitat models.

2.3 Habitat Modeling

The steps of this process are summarized in Figure 2.
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Figure 2
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FIGURE 2 Methodology followed from data selection to prediction of global biomass.

2.3.1 Modeling Tools

In this work we used boosted regression trees (BRTs) to predict the biomass of di�erent

zooplankton groups as they show di�erent advantages over other commonly used machine

learning approaches for the nature of our dataset and intended application (Elith and
Graham, 2009). This ensemble method uses regression trees, models that link a response

(here biomass) to predictors (environmental variables) by successive dichotomous

separations (Breiman et al., 1984; Hastie et al., 2001). Regression trees automatically select

the relevant explanatory variables, can deal with categorical or continuous inputs, are not

sensitive to the distribution of the continuous ones, can represent relations of arbitrary form

and naturally include interactions among explanatory variables (Elith et al., 2006). With so-

called surrogate splits, they can also deal with missing values in the explanatory variables.

They are therefore very convenient to use, but their predictive power is often limited and

they have di�culties to capture smooth relationships. Boosting is a way to overcome these

drawbacks (Schapire, 2003). It is based on the fact that it is easier to �nd many rough rules of

thumb than to �nd a single, highly accurate prediction rule (Schapire, 2003). BRTs combine

many short regression trees in succession, each new tree being adjusted to consider the

observations poorly predicted by the previous ones (Elith et al., 2006; Leathwick et al., 2006;

Elith et al., 2008). This improves predictive performance and the smoothness of the

prediction (Leathwick et al., 2006). In addition, only a random subset of the input data is

used to �t each tree and this stochastic component reduces the variance of the �nal model

ensemble (Friedman, 2002).

Boosted regression trees (BRTs) have an ability to handle a large number of variables and -

other than Generalised Linear Models (GLMs, Nelder and Wedderburn (1972)) or Generalised

Additive Models (GAMs, Hastie and Tibshirani (1986); De’ath (2007); Elith et al. (2008)) - do

not seek to �t one single model portraying the relationship of the response variable (here

biomass) and its predictors (environmental variables). Various recent studies (González
Carman et al., 2019; Chen et al., 2020; Hu et al., 2021) have compared BRTs results to other

modeling tools such as GAMs, GLMs, Random Forests (RFs), Maximum Entropy modeling

(Phillips et al., 2006; Elith and Graham, 2009) or neural networks and have obtained better

predictive performance with BRTs. Other studies (Zhang et al., 2018; Son et al., 2018) used

complementary GAMs and BRTs to study the e�ects of explanatory variables. However, BRTs

could be slower than RFs (Chen et al., 2020) and training parameters need to be chosen

carefully to avoid over�tting (Leathwick et al., 2006; Elith and Graham, 2009). BRTs wereArticles Research Topics Editorial Board
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chosen over RFs because of their capacity to reduce both the bias and the variance of model

results (Hastie et al., 2001). BRTs are also less sensitive to the e�ect of extreme outliers and

the inclusion of irrelevant predictors (Leathwick et al., 2006). This makes them suitable for

plankton datasets, as sometimes very high plankton biomass values do occur during blooms

(Brodeur et al., 2018; Pettitt-Wade et al., 2020). BRTs also have the ability to handle sharp

discontinuities which is not the case of the GAMs (Elith et al., 2008). This is important when

modeling taxa which can have a narrow habitat.

In addition, in regression trees, the loss function, used to determine which dichotomous split

to perform, can be changed to be adapted to the distribution of residuals. Here we explored

the classic mean squared error, which assumed a somewhat normal distribution of the

residuals, as well as a Tweedie loss adapted to zero-in�ated data (Zhou et al., 2019), and a

Poissonian loss, which considered data as discrete counts, also including many zeros. To use

the Poisson loss, the biomass was scaled so that the value of the 1% quantile was ≥ 1 and

then rounded to the nearest integer; the inverse scaling was performed after prediction. This

later approach proved to produce the best �ts and more robust models in a few test taxa and

all models were therefore �tted with Poisson loss. The models and statistics were computed

using the xgboost package (Chen et al., 2021) in R version 4.1.2 (R Core Team, 2021).

2.3.2 Spatial Partitioning of the Data

Individual biomass values derived from UVP5 images and environmental data measured at

various layers were both averaged over a depth range of interest and matched

geographically, on the 1°×1° grid. Biomass values matched to the same 1° pixel, and

therefore associated to exactly the same environmental data, were averaged.

We hypothesized that an association between biomass and environment investigated at a

�ne scale could be more e�ciently learned by the model because is contains less noise, so

we divided the data vertically between the epipelagic (0-200 m) and mesopelagic (200-500

m) zones and also tried a �ner partition, into 100 m depth bins between 0 and 500 m.

Evaluating separate models for each layer could allow to focus on �ner subgroups within our

quite coarse taxonomic units (some species being mostly present in one of the layers) and

therefore de�ne biomass-habitat relationships at a �ner, more relevant biological level.

For the same reason, we also built models on subsets of data partitioned geographically.

Indeed, polar copepods have a di�erent thermal niche compared to tropical ones

(Rombouts et al., 2009; McGinty et al., 2021). So, in addition to a model �tted on the global

dataset (world), we trained models on data from the region between 40°S and 40°N (low

latitude) and from the data collected outside of this latitudinal band (high latitude). Out of the

3,549 pro�les composing the UVP5 dataset, 2,837 are located between 40°S and 40°N and

712 were done outside of this latitudinal band.

2.3.3 Data Splits for Model Training, Assessment and Evaluation

For each taxon in each spatial partition, the data was split to distribute 80% of it in a training

and validation sets, on which the model was �tted and assessed, and 20% to a test set, on

which predictive performance was evaluated. This split was strati�ed according to the deciles
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of biomass in the data, to ensure that both the learning and test sets contained low and high

biomass points.

To choose model hyperparameters (i.e. parameters of the model adjustment algorithm) and

to evaluate the variability in the prediction due to the constitution of the training set, each

80% portion set was resampled through �ve-fold cross validation repeated 20 times [i.e. 100

resamples; (Hastie et al., 2001)]. For each cross-validation fold, the model was actually

trained on four folds and validated on the last one. The splits into the �ve folds were also

strati�ed according to the deciles of biomass, for the same reason invoked above.

2.3.4 Selection of Hyperparameters and Model Evaluation

To extract as much information from the data, while avoiding over�tting, various

combinations of hyperparameters were tested for each model (Elith et al., 2006). They

included: 1) the learning rate per tree determining the contribution of each tree to the

ensemble model (0.05, 0.08 and 0.1 were tested); 2) the maximum depth of a tree (2, 4 and 8

were tested); 3) the minimum number of elements per leaf (which also limits the depth of

the trees; 1, 3 and 5 were used); 4) the number of trees used for the prediction (values up to

600 were tested). For each combination, the model was �tted to the training set and

evaluated on the validation set of each of the 100 resamples; the loss was then averaged

over the 100 resamples. The best set of hyperparameters is usually the one for which this

average loss is minimal. The di�erences around that minimum are often small and not

always meaningful; to be sure to avoid over�tting, we applied an early stopping criterion

whereby the increase in the number of trees was stopped when the error did not decrease

by more than 1% after adding 10 trees.

Once the best set of hyperparameters had been chosen, the relevance of the corresponding

model was quanti�ed by the Pearson correlation between the observed biomass data in the

test set and the predicted biomass, where prediction is the average of the predictions of the

100 models �tted to the resamples. This metric captures the model’s ability to correctly

represent general trends and patterns in the data set and is one way to compute the R . The

signi�cance of this correlation can also be tested and quanti�ed with a p-value. These

metrics can be readily compared across the various spatial partitions of the data because

they represent the skill of the models on an independent data set, not the quality of the �t to

the training data (like the way the R  is usually computed). To compare the worldwide and

regional approaches fairly, it is important to focus on the same regional subset. To this e�ect,

two additional R  were computed for the global model: on the test data located inside the

40°S-40°N latitudinal band and on those outside of it (world low latitude and world high

latitude).

2.3.5 E�ect of Environmental Variables

To identify which environmental variables drive the change of biomass in each speci�c

model, the percentage of variance explained by each variable was calculated as the sum of

the e�ects of the variable at each node of each tree where it was used. To describe the

shape of the e�ect of each variable, univariate partial dependence plots were computed as
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the average ± standard deviation marginal e�ect of the variable in the 100 resamples.

Practically, the variable of interest was set at a given value at all training points, the other

variables were left at their original values, the average biomass predicted over all points was

computed, for each resample; then the mean and standard deviation of those averages were

computed across resamples. Finally, the variable was set to another value and so on. To

describe the full range of each variable, the partial dependence was estimated at 10%

quantile.

2.3.6 Extrapolation to the Globe

To obtain global maps of predicted biomass, the regression between UVP5 biomass data and

environmental variables was applied to all points in the corresponding partition of the world,

in depth and space. Because 100 models were �tted to the resamples of the training data,

the standard deviation of biomass among the 100 predictions (σ ) can be computed in

addition to the mean (m ), and the coe�cient of variation (CV), de�ned as , then

gives an indication of the uncertainty of the model predictions.

To get a robust estimate of global zooplankton biomass in the 1.02 mm to 50 mm size range,

we chose to be conservative (i.e. ad minima): only the taxonomic groups in the global

partition for which the correlation between predicted and observed biomass was signi�cant

were used. The surface area of each 1°×1° cell was computed using the following formula:

with the area A in m , the south and north latitudinal limits of the cell in radians and ℛ, the

earth radius (6,378.137 km). For each group used, the biomass was integrated over the

relevant layer in each 1°×1° cell by the following calculation

where  is the estimated biomass in mgC.m , A in m  is de�ned above, l is the layer

thickness in m and therefore  is the total biomass in mgC. Finally, the global ad minima
zooplankton biomass estimate was computed by adding up the biomass for all selected

groups and the 0-200 and 200-500 m depth layer.

b

b
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3 Results

3.1 Model Comparison

We estimated model performance on the worldwide UVP5 dataset and on a spatial partition

of the dataset in low (inside 40°N and 40°S) and high latitudes (outside of the 40°N-40°S

latitudinal band) as well as on di�erent depth layers. We hypothesized that a �ner data

selection might enable the respective model to learn the regional or depth speci�c habitat

more appropriately. Yet, this also meant �tting models to fewer data points. In the end, we

�nd that no clear trend emerges from the relevant comparisons (Figure 3): global models are

better in 13 comparisons and partitioned models are better in 14 comparisons, whereas for

11 comparisons no clear decision can be made. Comparisons can only be made within a

given depth layer between the same regional partitions (e.g. world low latitude only

containing the data predicted by the global model between 40°N-40°S vs low latitude; world

high latitude only containing data north of 40°N and south of 40°S from the global model vs

high latitude).

Figure 3
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FIGURE 3 Heatmap of the models’ R  between observed and predicted biomass for all

zooplankton groups arranged from the most important in terms of biomass (Copepoda) to the

least important (Limacinidae) in the di�erent depth layers. The regions correspond to: W for world

(model run on all data); WL for world low (data between 40°N and 40°S from the world model); L

for low latitude (model run between 40°N and 40°S); WH for world high (data outside of 40N and

40S from the world model); H for high latitude (model run outside of 40°N and 40°S). The stars

indicate signi�cant results (p-value < 0.05) obtained with the Pearson correlation test.

For some groups such as Annelida and some Mollusca, the high latitude model could not be

computed (symbolized by a grey cell) either because they were considered as rare (< 500

images in the layer modeled) or because the model could not learn the link between

biomass and environment for this group. However, for other taxa such as Copepoda, solitary

Collodaria or Phaeodaria, high and low latitude models are generally better than the world

model, as indicated by a higher R  value (Figure 3). In the epipelagic layer, for Copepoda, the

R  of world low latitude is 0.26 vs 0.37 in the low latitude model. For the mesopelagic, low

latitude has an R  of 0.07, lower than the one for world low latitude (0.62). For

Appendicularia in the epipelagic layer, the best R  values are obtained in the world low

latitude (0.41) and world high latitude (0.24) models respectively compared to low latitude

(0.01) and high latitude (0.19).
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As for the vertical 100 m-bin layers partition, we obtained the best results overall with the

global model. The �ner vertical de�nition also gives better results for multiple other groups

such as Appendicularia, Phaeodaria and Ostracoda between 0 and 300 m. In most cases,

only the top 100 m layer model worked for this 100 m vertical partition. Overall, the most

consistently good choice, when considering all taxa, is a worldwide model �tted separately

to the epipelagic (0-200 m) and mesopelagic (200-500 m) layers. This is therefore the

con�guration retained for the total, global biomass estimate. In Figure 3, taxa are arranged in

decreasing order of global biomass in the epipelagic layer. For the top �ve taxa [Copepoda

(R  = 0.66), Eumalacostraca (R  = 0.31), solitary Collodaria (R  = 0.10), Appendicularia (R  =

0.26) and other Crustacea (R  = 0.15)], the correlation between true and predicted biomass is

signi�cant (p-value < 0.05) in the epipelagic worldwide model. In the mesopelagic layer, the

correlations for all �ve groups are also signi�cant (p-value < 0.05 with respective R  of 0.22,

0.10, 0.09, 0.30 and 0.72).

3.2 Group-Wise Contribution to Global Zooplankton Biomass

Figure 4 shows the biomass per group predicted for the three spatial partitions and divided

into the epi- (0-200 m) and mesopelagic (200-500 m) layers. For the worldwide model, the

dominant groups in terms of biomass in the epipelagic were Copepoda (0.083 ± 0.020 PgC),

Eumalacostraca (0.058 ± 0.017 PgC) and solitary Collodaria (0.038 ± 0.008 PgC) (Figure 4).

Among the groups displaying a signi�cant correlation (p-value < 0.05) between true and

predicted biomass (and therefore retained for the global estimate), crustaceans (Copepoda,

Eumalacostraca, other Crustacea and Ostracoda) represented 68.4% (0.157 PgC) of the

biomass in this layer; Rhizaria (solitary Collodaria, Foraminifera, Phaeodaria, other Rhizaria

and Acantharea) made up 20.6% (0.047 PgC); but the Cnidaria (other Cnidaria and other

Hydrozoa) represented only 0.56% of the global zooplankton biomass (0.0013 PgC). In other

words, Crustacea and Rhizaria together made up ~89.1% of the biomass predicted in the

epipelagic layer. In the deeper mesopelagic layer, Copepoda (0.061 ± 0.016 PgC) were still

the dominant group in terms of biomass, followed by Eumalacostraca (0.049 ± 0.014 PgC)

and other Crustaceans (0.017 ± 0.001 PgC) combined. Crustacea (Copepoda,

Eumalacostaca, other Crustacea and Ostracoda) represented 0.129 PgC, equivalent to 74.4%

of this layer’s biomass, while Rhizaria (Foraminifera, solitary Collodaria, other Rhizaria and

Acantharea) totaled 0.014 PgC, representing 10.1%, equivalent to most of the remaining

biomass in the layer. When combining the results from these two layers, Copepoda

represented 44.4% of the global integrated biomass, followed by Eumalacostraca (15.6%),

solitary Collodaria (13.1%) and other Crustacea (11.2%). More broadly, Crustacea (Copepoda,

Eumalacostraca, other Crustacea and Ostracoda) represented 0.222 PgC or 71.3% of the

biomass predicted over 0-500 m, while Rhizaria (Foraminifera, solitary Collodaria, other

Rhizaria and Acantharea) made up 0.019 PgC or 10.8% of biomass.

Figure 4
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FIGURE 4 Barplots showing the mean biomass predicted in PgC at 0-200 m (A) and 200-500 m

(B) depth for each group ranked from highest to lowest biomass in 3 types of models: world,

outside 40°N-40°S and inside 40°N-40°S. Error bars correspond to upper interval of the biomass

estimation’s standard deviation. The stars indicate a signi�cant result (p-value < 0.05) obtained

with the Pearson correlation test.

Copepoda were particularly dominant in high latitudes, especially in the epipelagic layer. In

the low latitude model, solitary Collodaria contributed most in the epipelagic, followed by

Eumalacostraca, Copepoda and Foraminifera. Eumalacostraca dominated biomass in the

mesopelagic layer in low latitudes followed by Copepoda and Foraminifera.

3.3 Spatial Distribution Patterns and Occupied Habitat

Presenting the global distribution patterns of all zooplankton groups is beyond the scope of

this paper. Instead, we focus on the results for the three groups contributing most to the

total global biomass (Copepoda, Eumalacostraca and Solitary Collodaria) as well as on

Phaeodaria and Acantharea, Rhizarians that were shown to be important contributors to

zooplankton biomass that are underestimated by net-based sampling (Biard et al., 2016).

The predicted �elds for all modeled groups will be made available in the GitHub repository

linked in the data availability statement upon publication of the article.

3.3.1 Copepoda

Copepoda is one of the best predicted groups in the epipelagic (R  = 0.66), likely because it

is the most abundant. The structuring environmental variables were di�erent for the epi-

(Figures S8A, B) and mesopelagic layers (Figures S8C, D): temperature (33%) and oxygen

(19%) for the former and temperature (29%), bathymetry (19%) and chlorophyll a (15%) for the

latter. The highest copepod biomass in the top 200m was found in high latitudes (Figure 5A),

where water temperature is low and oxygen concentrations are relatively high. In the

mesopelagic layer (Figure 5B), high copepod biomass was associated with shallow coastal

and cold water masses. The patterns of distribution predicted by the global models were

similar in both layers (Figures 5A, B), with the highest predicted biomass values in the Ba�n

Bay, Labrador Sea and Greenland Sea as well as at the Southern Ocean polar front region.

The lowest predicted biomass was predicted at oceanic gyres and in the Arctic, north of

80°N. For both layers, the highest values of the coe�cient of variation (Figure 5C) were

found north of Canada and Greenland, as well as south of 60°S, especially for the epipelagic

layer. These high values depict disagreement among the 100 models �tted to the data

resamples and therefore inform on the uncertainty of the model in these zones. Caution is

therefore advised regarding the interpretation of the very low values of biomass predicted in

those regions. In the northern hemisphere, except for the Arctic ocean, the values of the
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coe�cient of variation were rather low at locations where either low or high biomass values

were predicted. In the southern hemisphere, model predictions varied relatively strongly at

the level of the Antarctic polar front (Figures 5C, D).

Figure 5
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FIGURE 5 Map of the mean biomass (color scale is log-transformed) of Copepoda as predicted by

the model on 0-200 m (A) 200-500 m data (B) as well as the coe�cient of variation for the 0-200

m model (C) and 200-500 m one (D). The color scale for the coe�cient of variation has the same

range for Figures 5–9.

Figure 6
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FIGURE 6 Map of the mean biomass (color scale is log-transformed) of Copepoda as predicted by

the model on 0-200 m (A) 200-500 m data (B) as well as the coe�cient of variation for the 0-200

m model (C) and 200-500 m one (D). The color scale for the coe�cient of variation has the same

range for Figures 5–9.

3.3.2 Eumalacostraca

Eumalacostraca contains mostly vignettes of euphausiids, amphipods and decapods. They

were predicted globally with an R  of 0.31 for the epi- and 0.1 for the mesopelagic layer,

both with signi�cant p-values (p-value < 0.05; Figure 3). In the epipelagic, high biomass of

these organisms was associated with high concentrations of phosphate (22%) and low

concentrations of silicate (17%) (Figures S9A, B). In the mesopelagic layer, the distribution of

this group was associated with low concentrations of silicate (16%), bathymetry (15%) and

high chlorophyll α (15%) (Figures S9C, D). In terms of spatial distribution, high biomass is

predicted in eastern boundary currents, especially in the Peruvian and Californian upwelling

systems. Low biomass is predicted in high latitudes and in the oceanic gyres, especially in the

North Atlantic. Similar patterns were predicted in the mesopelagic layer, but with lower

biomass values. The model uncertainties are highest in the zones of low biomass (high

latitudes and oceanic gyres).

3.3.3 Solitary Collodaria
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Solitary Collodaria were predicted globally with an R  of 0.1 for the epi- and 0.09 for the

mesopelagic layer, both with signi�cant p-values (p-value < 0.05; Figure 3). In the epipelagic,

the distribution of solitary Collodaria were mainly associated with low salinity (21%, between

35 and 37) and bathymetry (14%) (Figures S10A, B). In the mesopelagic, high abundances of

this group were associated with distance to shore (18%) and high chlorophyll a (17%)(Figures
S10C, D). In this layer, 65% of the biomass was predicted at less than 1,000 km from the

coast. Solitary collodaria were mainly located between 50°N and 50°S, in a rather di�use

manner (Figure 7) with maximum biomass predicted at the equator. In the intertropical

region, the highest biomass was found in the epipelagic zones of productive areas such as

the upwelling regions o� the western coast of Africa (Cape Verde and Angola) and of the

eastern boundary of the Paci�c Ocean (Peru and California). The model also predicted high

biomass in the Mediterranean Sea. The importance of the environmental variable “distance

to coast” in the learning process created unusual patterns in the prediction map such as a

hexagonal shape in the Paci�c Ocean. North of 50°N and south of 50°S, environments that

are typically characterized by water masses with low salinity (1  most structuring variable in

the epipelagic) and high nitrate (4  variable), the predicted biomass was rather low especially

in the epipelagic layer.

Figure 7
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FIGURE 7 Map of the mean biomass (color scale is log-transformed) of solitary Collodaria as

predicted by themodel on 0-200 m (A) 200-500 m data (B) as well as the coe�cient of variation

for the 0-200 m model (C) and 200-500 m one (D). The color scale for the coe�cient of variation

has the same range for Figures 5–9.

3.3.4 Phaeodaria

For this group, the worldwide epipelagic model was statistically signi�cant (p-value < 0.05;

Figure 8) with an R  of 0.27, but the mesopelagic model was not (p-value > 0.05; Figure 3).

Therefore, only the 0-200 m layer is displayed (Figure 8). In this layer, Phaeodaria was one of

the best predicted groups (Figure 3) especially in the upper 200m. The predicted epipelagic

distribution of Phaeodaria is associated with low values of salinity (38%) followed by

bathymetry (11%), surface chlorophyll a (10%), oxygen and temperature (8% each) (Figures
S11A, B). This is visualised on the map of global prediction (Figure 8A) on which high biomass

was mainly predicted in the Californian upwelling (characterized by low salinity, cold and

coastal waters), with lower biomass north of the upwelling up to the Gulf of Alaska. High

biomass values were also predicted in the Bay of Bengal and Adaman Sea. The coe�cient of
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variation in zones of high biomass is very low, providing strong con�dence in this pattern.

The lowest predicted biomass for this group are found in oceanic gyres and high latitudes of

the northern hemisphere.

Figure 8
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FIGURE 8 Map of the mean biomass (color scale is log-transformed) of Phaeodaria as predicted by

the model on 0-200 m (A), as well as the coe�cient of variation for the 0-200 m model (B). In the

map of predicted biomass, 12 cells in the California upwelling presented a value between 3 and 6

mgC m  and were represented here in yellow to observe the distribution of this group on a global

scale. The color scale for the coe�cient of variation has the same range for Figures 5–9.

3.3.5 Acantharea

The group Acantharea was predicted with low total biomass (Figure 4). This group was well

predicted in the world model �tted with the epi- (R  = 0.26) and mesopelagic (R  = 0.63)

layers (Figure 9). In the epipelagic layer, nitrate (18%), salinity (15%) and phosphate (12%) were

the main driving variables (Figures S12A, B). In the mesopelagic layer, the link between

biomass and environment (Figure 9B) was de�ned by the in�uence of several variables:

silicate (19%), phosphate (12%) followed by chlorophyll a (12%) (Figures S12C, D). The highest

epipelagic biomass (Figure 9A) was predicted in the intertropical range, in productive areas

such as the upwellings o� the West coast of Africa (Cape Verde, Angola) and America (Peru

and California). These high biomass patches are associated with a salinity around 35 as the

2  most structuring variable, as well as with high nitrate and phosphate concentrations

(respectively 1  and 3 ). Intermediate biomass values were predicted mostly between 50°N

and 50°S in a di�use way, except in the oceanic gyres where the predicted biomass was

lowest. The largest uncertainty was present in the Southern and Artic Oceans, Bering Sea and

Gulf of Alaska where low biomass values were predicted (Figure 9C). In the mesopelagic

layer, biomass was predicted to be 16.7-times lower overall (Figure 9B), with highest values

found in the Gulf of Alaska and the Bering Sea. Intermediate biomass values were predicted

for the upwelling regions and the Southern Ocean. In this layer, the high biomass estimates

correspond with low coe�cient of variation values (Figure 9D).

Figure 9
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FIGURE 9 Map of the mean biomass (color scale is log-transformed) of Acantharea as predicted by

the model on 0-200 m (A), 200-500 m data (B), as well as the coe�cient of variation for the 0-

200 m model (C) and 200-500 m one (D). The color scale for the coe�cient of variation has the

same range for Figures 5–9.

3.4 In Situ Imaging Compared to Net Based Sampling

The latitudinal biomass distribution of Copepoda and Rhizaria obtained by combining the

predictions of global models for the epi- and mesopelagic is shown in Figure 10. It is

compared against data (interpolated on 0-500 m) from the Tara Oceans mission (Pesant
et al., 2015; Soviadan et al., 2022) acquired using 300 μm multinet samples and ZooScan

(Gorsky et al., 2010). To make the comparison meaningful, we only selected organisms in

the ZooScan samples with an ESD >1 mm. For Copepoda, the values observed by the UVP5

and the nets reveal a similar latitudinal pattern between 70°N and 60°S. The trend computed

on the output of the models shows lower biomass between 40°N and 40°S compared to

Tara observations. For Rhizaria, the highest biomass was found in the UVP5 observations and

models around the equator. Generally, almost no Rhizaria were observed in nets whereas

they were consistently observed with the UVP5.

Figure 10

www.frontiersin.org (https://www.frontiersin.org/�les/Articles/894372/fmars-09-894372-

HTML/image_m/fmars-09-894372-g010.jpg)

FIGURE 10 Comparison of the latitudinal distribution of biomass mgC m ) integrated over 0-

500m depth between our models’ estimation and the results from the Tara Ocean multinet (300

mm mesh size), for Copepoda (A) and Rhizaria (B). Trends were obtained by using Loess regression

on: BRT models (blue line) using the global model outputs for Copepoda or Rhizaria (summed

across 0-200 m and 200-500 m depth); UVP5 data (green line) using the biomass as seen by the

UVP5 between 0-500m; TARA Ocean net data (red line) using the sampling points between 0-

500m. The Shaded areas represent the 95% con�dence interval of the Loess �t.

3.5 Global Zooplankton Biomass Distribution

The biomass integrated over 0-500 m was predicted to be maximal at around 60°N and

55°S, with values decreasing both north and south of these two latitudes (Figure 11). The

lowest values of biomass were predicted north of 80°N and in the Weddell Sea as well as in

the oceanic gyres (especially in the southern hemisphere). We also observed an increase of

the predicted biomass around the equator. The highest biomass values were predicted

between 50 and 80°N, in coastal waters of the Labrador Sea and Ba�n Bay, as well as in the
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Greenland Sea. Relatively high biomass was predicted around these locations as well as in

the Gulf of Alaska, Bering Sea and Sea of Okhotsk. A band of high biomass was predicted

between 40 and 50°S, a region associated with the Arctic polar front.

Figure 11
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FIGURE 11 Distribution map of the predicted minimum global biomass between 0 and 500m using

taxa which obtained a signi�cant result (p-value < 0.05) in Pearson test between the predicted

biomass and the biomass calculated from UVP5 data.

Finally, by summing only the predictions that signi�cantly correlated with observations, we

can get to a �rst robust, conservative, global biomass estimate of zooplankton biomass

based on UVP5 in situ imaging. As not all groups could be included in this computation, we

refer to the following numbers as biomass ad minima. With that in mind, the zooplankton

biomass estimated by the models was 0.229 PgC for the epipelagic, and 0.173 PgC for the

mesopelagic. Thus, the estimated biomass for the upper 500m of the ocean is to 0.403 PgC.

4 Discussion

4.1 Sensitivity of Model Prediction to Partitioning

In this study, we explored whether a partitioning approach would improve model

performance through the use of di�erent horizontal and vertical divisions of our dataset. The

aim of using partitioned models was to test if we could model local taxa that otherwise

would be mixed within the coarse taxonomic de�nition imposed by the dataset. The R

computed on the models’ output show a high variability across groups, layers and regional

combinations. Overall, when comparing each partitioned model to the same zone in the

global model, the global and the partitioned models had similar performance. The reduction

in dataset size might be the explanation why in many cases global models perform better

than the smaller partitioned models. The high latitude dataset contains 712 UVP5 pro�les, the

low latitude 2,837 and the world 3,549 data points. Another drawback of the partitioned

models could be that some groups might have an environmental habitat associated with

regions on both sides of the limits of the two models (here 40°N or 40°S). A vertical

resolution that consists of two layers (0-200 and 200-500m) provided the best results

(Figure 3) compared to a �ner depth separation. The reduction of data per model with a �ner

depth layer resolution probably made it impossible for some models to learn the association

between a group’s biomass distribution and the associated habitat properties, either because

2
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the model could not learn this association or because the group was considered rare (< 500

images). If enough data are available, however, a �ner vertical model might perform better,

because it better delimits the vertical habitat structure. This seems to be the case for the

Phaeodaria for which models with 100 m resolution obtained higher R  results, especially for

those between 0 and 300 m depth.

4.2 Group-Wise Contribution to Global Zooplankton Biomass

Globally, in the 1.02 - 50 mm size range, we observed up to four zooplankton groups

dominating each region and layer (Figure 4), mainly Crustacea (Copepoda, Eumalacostraca,

other Crustacea) and Rhizaria (solitary Collodaria, Phaeodaria, Foraminifera). The dominance

by copepods was expected: they are known to be a central trophic link in marine

ecosystems (Steinberg and Landry, 2017) and their dominance was already shown in several

studies (Turner, 2004; Forest et al., 2012; Dai et al., 2016). Rhizaria were also presented as

substantial participants in the global zooplankton biomass by Biard et al. (2016) with

Phaeodaria and Collodaria being the most important contributors to rhizarian biomass. In

addition, Rhizaria were previously shown to play an important role in the biological carbon

pump by intercepting (Stukel et al., 2018; Stukel et al., 2019) but also generating particle �ux

(Lampitt et al., 2009). In contrast, gelatinous predators such as Chaetognatha and other

Cnidaria (other Cnidaria, other Hydrozoa, Siphonophorae) can be well predicted but their

predicted biomass is low. This might be due to di�erent reasons, ranging from their low

carbon content (McConville et al., 2016), their size range which can exceed the speci�c

range of the UVP5 (1.02 - 50 mm), their lower abundance reducing the probability of

observation in the rather small volume of the UVP5 and the reduced capacity of the UVP5 to

image them due to their transparency. Other instruments, such as the pelagic in situ
observation system (PELAGIOS, Hoving et al. (2019)), the Zooglider (Ohman, 2019) or the In
Situ Ichthyoplankton Imaging System (ISIIS, Cowen and Guigand (2008)) might be more

adapted to study these organisms, thanks to their larger sampling volumes or di�erent image

approach.

4.3 Distribution Patterns and Occupied Habitats

4.3.1 Copepoda

Copepoda biomass was predicted to be highest in high latitudes in both epi- and

mesopelagic layers of the global models. The lowest values were predicted at the gyres and

an increase of biomass was observed centered at the equator. In the global models,

temperature always appeared within the top three environmental factors explaining the

distribution of copepods (except for 0-100 m model where it appeared 4 ), which is in

agreement with previous work suggesting that surface temperature and thermal tolerance of

marine ectotherms, including copepods, are important constraints for their distribution and

abundance (Beaugrand et al., 2009; Sunday et al., 2012). We also predict signi�cant

Copepoda biomass centered at 50°S in the Southern Ocean, at the location of the strongest

horizontal gradient of temperature within the epipelagic layer. This geographic pattern is in

agreement with earlier observations of high Copepoda occurrence along the Polar front
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(Pinkerton et al., 2020). Hence, despite a low number of UVP5 pro�les in this latitudinal

band, the model is able to retrieve this fundamental pattern. Higher values of the coe�cient

of variation (Figure 5C) are found in the Arctic Ocean, as well as south of 60°S. More data

from these regions could help to further reduce the uncertainty of our models.

4.3.2 Eumalacostraca

The distribution of the predicted Eumalacostraca biomass showed high values in coastal

areas mainly on the eastern boundary currents of the Atlantic and Paci�c Oceans and low

values at high latitudes and at the locations of the oceanic gyres. Due to the low image

resolution, a �ner taxonomic resolution than Eumalacostraca (mostly euphausiids, decapods

and amphipods) is not possible for UVP5 vignettes. Euphausiids are well known for their

ability to escape standard oceanographic plankton nets (Brinton, 1967; Wiebe et al., 1982;

Sameoto et al., 1993) and even low noise gliders (Guihen et al. 2022). This behavior might

also be dependent on the species and stage development while the UVP5 mostly detects

small Eumalacostraca (≤ 50 mm) for which taxonomic identi�cation is not possible.

Nevertheless, as Euphausiids are the second most abundant crustacean taxon after

copepods (Castellanos et al., 2009), they may compose a large fraction of the biomass in

this group. They are described as widely distributed in high numbers in the world ocean

between 0-300 m with the exception of the eastern Canadian Arctic and the Arctic Ocean

(Castellanos et al., 2009). This is consistent with our predictions of higher biomass in the

epipelagic zone (0.058 PgC) compared to the mesopelagic (0.049 PgC), and low values

predicted for the Arctic Ocean. The high Eumalacostraca biomass predicted in the North

Atlantic also consistent with other observations that reported high abundances of krill in this

region (Edwards et al., 2021). Euphausia superba and Euphausia mucronata have been

respectively described as keystone species of the Antarctic and the Humboldt Current

System (Antezana, 2010). The comparatively low values of biomass predicted in the Antarctic

in the epipelagic layer (Figure 6A) might be too low, as Euphausia superba is known to show

a patchy distribution (Siegel, 2005; Siegel, 2016). Since we only have very few samples from

the Antarctic Ocean, we probably under-sampled this region and speci�cally krill. The high

coe�cient of variation in this region seems to re�ect this problem. Overall, our observations

and models likely underestimate the abundances of Euphausiids and of Eumalacostraca, due

to their escape behaviors, the comparatively small sampling volume of the system and the

low sample size in the Southern Ocean.

4.3.3 Solitary Collodaria

Global models in epi- and mesopelagic layers predicted a widespread distribution of solitary

Collodarians between 50°N and 50°S, from oligotrophic to eutrophic zones. Their

distribution can be explained by the selective advantage of their mixotrophy, since all

collodarian species live in symbiosis with photosynthetic microalgae (Suzuki and Not, 2015;

Biard et al., 2016). Consistently with the models’ prediction of solitary Collodaria as the third

most important group in terms of global biomass in 0-200 m, it has been shown by Biard
et al. (2016) that Collodaria contribute most to the biomass of the Rhizaria between 0-100

m.
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4.3.4 Phaeodaria

The distribution of Phaeodaria shows a latitudinal pattern with three peaks in biomass, at

50°N (with high biomass values at the level of the subarctic gyres), at 5°N and at 60°S. These

three peaks were not observed by Biard et al. (2016). The highest values being predicted in

the subarctic gyre are consistent with Steinberg et al. (2008) who estimated their mean

biomass there as 5.5% (range 2.7–13%) of the metazoan biomass sampled using a MOCNESS

(Wiebe et al., 1985). The distribution of this group in the epipelagic (high biomass in coastal

regions especially around the Californian upwelling and low biomass in the gyres conditions)

could be related to food availability which might not be abundant enough in the open

ocean. In the models’ output, this group only accounted for to ~ 1.2% of the global biomass

in the epipelagic. This is consistent with previous work describing these organisms as being

distributed in water below 150-200 m (Stemmann et al., 2008; Nakamura and Suzuki, 2015;

Boltovskoy et al., 2017; Biard and Ohman, 2020). The high (R  = 0.50) and low latitude (R  =

0.39) models for the mesopelagic layer reveal similar patterns as the ones shown for the

epipelagic layer in Figure 8. This pattern of high biomass predicted in the North Paci�c can

be put in perspective with a previous study (Ikenoue et al., 2019) which highlighted

Phaeodaria in the Western North Paci�c as one of the major carriers of carbon in the twilight

zone (200-1000 m (Buesseler and Boyd, 2009)), with an organic carbon standing stock

reaching its highest value at depths between 200-500 m. A maximum in abundance of

Phaeodaria was observed in the lower epipelagic or mesopelagic zone in the Sea of Japan by

Nakamura et al. (2013) as well as in the Antarctic beneath the sea ice with similar

abundances as the North Atlantic and Paci�c (Morley and Stepien, 1984). In the regional

mesopelagic predictions, the mean biomass in the Sea of Japan is not particularly high, but it

reached higher values in the Southern Ocean.

4.3.5 Acantharea

Here, we present results on large Acantharea only, but it should be kept in mind that most

species are smaller than 600 μm (Biard et al., 2016). Most Acantharea species are associated

with symbiotic algae (Michaels, 1991) which could explain the rapid observed biomass

decline with depth. Indeed, the biomass predicted is 16.7-times lower in the mesopelagic

(1.36 10  PgC) compared to the epipelagic layer (2.27 10  PgC). These mixotrophs are

present throughout the world oceans (Suzuki and Not, 2015) and commonly distributed in

intertropical latitudes (Bottazzi and Andreoli, 1982) mostly in the surface with an abundance

rapidly declining below 20-50 m depth (Michaels, 1988). The model con�rmed this biomass

diminution in the epi- and mesopelagic layers (Figure 9). We also observed latitudinal

patterns with the highest biomass in intertropical areas consistent with these previous

studies. The highest biomass of Acantharea predicted by the mesopelagic global model in

the Gulf of Alaska coincides with a large number of organisms imaged by the UVP5. This is

surprising knowing the above described distribution patterns. More observations from this

region are required to clarify whether this was a temporally limited occurrence or whether it

represents a region of permanent abundance maxima. The predicted biomass in Antarctic

waters in this depth layer is also surprising. Acantharea are marine planktonic unicellular

eukaryotes in the Rhizaria group and produce a mineral skeleton made of strontium sulfate

2 2
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(Michaels, 1991; Decelle and Not, 2015). The surprisingly high abundance at high latitudes

might be important for studies done on the strontium biogeochemical cycle (Bernstein et al.,
1987; Decelle et al., 2013).

4.4 Comparison Between Net Sampling and In Situ Imaging

The integrated global predicted biomass is dominated by Copepoda (35.7%), Eumalacostraca

(26.6%) and Rhizaria (16.4%). Because of their important contribution to the predicted global

biomass, the distribution map of total biomass ad minima (Figure 11) re�ects in part the

major distribution patterns of these three groups: polar waters are dominated by Copepoda

and intertropical waters are dominated by mixotrophic Rhizaria. Eumalacostraca follows the

predicted distribution of zooplankton with 3 peaks of biomass at 60°N (55°N for

zooplankton), at the equator and at 45°S (55°S for zooplankton). The comparison of the

models’ output with data from the Tara Ocean expedition, obtained with a 300 μm mesh size

multinet (Pesant et al., 2015; Soviadan et al., 2022) shows a good agreement for the

latitudinal patterns of Copepod biomass. Net data is estimated to be higher than biomass

estimated from UVP5 data in the intertropical latitude range for this group. Results in the

high latitudes regions with strong seasonality and sea ice cover should be taken with caution

as no data was available in the UVP5 dataset in winter for these latitudes. For Rhizaria, we

observe that at most locations the biomass estimated by the nets is zero, while the UVP5

images suggest a considerable biomass in this group (Figure 10). In the TARA Ocean multinet

samples, only Acantharea, Foraminifera and Phaeodaria are sometimes detected, while

Collodaria are consistently absent from these samples. Indeed, Collodaria and Acantharea

are poorly sampled by nets and are not well preserved in plankton samples �xed with regular

�xatives such as formaldehyde (Suzuki and Not, 2015). Yet, solitary Collodaria are predicted

as the 3  most important group in terms of biomass in the upper 200 m of the global model.

Our results show that in situ imaging is far more suitable for the study of this group and all

other fragile plankton groups. As described above, several important zooplankton groups are

generally well modeled, allowing us to combine the taxon-speci�c models to yield a global

estimate of zooplankton biomass in the 1.02 to 50 mm size range. Previous studies (Table 2)

have computed such global zooplankton biomass obtained largely (Hatton et al., 2021) or

completely (Moriarty et al., 2012; Moriarty and O’Brien, 2013; Buitenhuis et al., 2013) from

net collected organisms. These studies also used a proportionality method for estimating the

global biomass presented in Table 2 by multiplying the median value of biomass with the

surface of the ocean and the studied depth. Our predictions are within the same order of

magnitude — but at the lower limit — of these compilations if one combines their meso- and

macrozooplankton biomass estimates. We refrain from a more detailed comparison due to

the di�erence in size studied (here 1.02 - 50 mm ESD — equivalent to 765 μm to 37.5 mm

meshsize according to Nichols and Thompson (1991)’s 3/4 law of mesh selection —

compared to ≥ 200 μm for the cited meso- and macrozooplankton studies), sampling

methods and depth covered (Buitenhuis et al., 2013). Contrary to the complementary use of

nets and Zooscan, such as with the TARA dataset, these previous studies are based on data

rd

Articles Research Topics Editorial Board

Fr… Articles Research Topics Editorial Board

All journals All articles Submit your research

(/articles/10.3389/fmars.2022.894372/pdf)



5/25/23, 3:04 PM Frontiers | Global Distribution of Zooplankton Biomass Estimated by In Situ Imaging and Machine Learning

https://www.frontiersin.org/articles/10.3389/fmars.2022.894372/full 25/55

obtained through methods which do not allow to split the organisms based on �xed criteria

(size, area of the organism or taxonomy). One would expect a large contribution to biomass

in the 200 to 765 μm mesh size range (Gallienne, 2001; Hwang et al., 2007).

Table 2
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TABLE 2 Comparison of global biomass estimates in the literature.

4.5 Global Zooplankton Biomass Distribution

The distribution of the global integrated biomass (0-500 m) ad minima follows the patterns

described by Ikeda (1985), Moriarty et al. (2012) and Hatton et al. (2021) which correspond

to a latitudinal distribution of the biomass with high values north of 55°N and south of 55°S.

Relatively higher values of biomass are predicted around the equator (15°N-15°S). The bene�t

of our work and of compiled datasets such as the ones used in Moriarty et al. (2012);
Moriarty and O’Brien (2013), Buitenhuis et al. (2013) and Hatton et al. (2021) is that they

bring together numerous single transects and allow to have an integrated view of global

zooplankton distribution. The results depicted in Figure 11 in the Southern Ocean are

consistent with a recent study done with BRTs (Pinkerton et al., 2020) showing that the

highest environmental suitability for zooplankton was located between the Subantarctic

Front and the southern limit of the Antarctic Circumpolar Current with a lower suitability

north and south of this band. The spatial distribution of plankton biomass thus shows the

importance of oceanographic hydrodynamics leading to oligotrophy in central gyres and

mesotrophy in areas of high latitudes and equatorial and coastal upwellings. Zooplankton

plays a crucial role in �sheries e.g. in the Humboldt Current System which harbors the largest

�shery in the world and most economically important �sh species, supported by the

upwelling of Peru (Chavez et al., 2008). Peruvian anchovies and sardines obtain most of their

energy from zooplankton (van der Lingen et al., 2009).

4.6 Conclusions and Outlook

In summary, our results show, for the �rst time, that spatial patterns and global biomass of

key zooplankton groups can be calculated using a machine learning method (BRT) to

extrapolate individual zooplankton biomass estimates from sparse UVP5 observation. They

also highlight the important contribution of Rhizaria (predicted mainly in the intertropical

range) and Copepoda (predicted mainly in high latitudes) to the global estimate of

zooplankton biomass. Within the size range covered, Copepoda contributes 35.7%,

Eumalacostraca 26.6% and Rhizaria 16.4% to global zooplankton biomass. This suggests that

it is especially crucial to extend work on the fragile Rhizaria, which are comparatively little
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studied. As a biogeographical study, our aim was not to represent proximal mechanisms that

drive the distribution of zooplankton, or to describe seasonal or transient (e.g. mesoscale)

features, but rather to represent the global distribution patterns of biomass according to

general properties of the water masses. This method worked well in general as seen in

Figure 3 for at least 3 of the combinations of regions and depths. It made it possible to

model 19 groups of zooplankton and obtain corresponding maps with the relative

importance of the environmental variables used for the model. The WOA climatologies used

in this study compile data of salinity and temperature (2005-2017) and other variables (1955-

2017). The temporal coverage of the latter being much coarser, we hope to use more

constrained nutrient datasets in our future work as they become available.

The zooplankton biomass predictions based on UVP5 datasets presented here are important

for global biogeochemical modeling of pelagic ecosystems because they usually lack

zooplankton observations to constrain their development (Stemmann and Boss, 2012;

Buitenhuis et al., 2013; Séférian et al., 2020). A current trend is to add a more realistic

representation of plankton in ecosystem models to better predict future ecosystem states

and ocean conditions and to inform sustainable management strategies for climate

mitigation at global scale (Séférian et al., 2020). The UVP5, the newly developed UVP6

(Picheral et al., 2021) and other commercialized in situ systems, provided that they are inter-

calibrated (Lombard et al., 2019), will continue to be used in the foreseeable future,

increasing data availability. Still, the bottleneck lies in the classi�cation of the massive

amount of images which still require human validation, but new algorithms to recognise

plankton types and traits are expected (Irisson et al., 2022). The further anticipated expansion

of image datasets will enable the quantitative assessment of rare groups that were not well

predicted here. In addition, the deployment of the UVP6 on autonomous platforms will also

help to sample certain areas that are di�cult to access at certain times of the year such as

polar regions in winter. The large dataset used in this study spans 10 years of data collection

and can be compared to the COPEPOD database collected since about 1960. The

possibilities given by imaging systems could hence help to reach a useful amount of data in a

much smaller time frame. It would be interesting to use other imaging system’s data sets

such as the ones presented by Lombard et al. (2019) to reconstruct the wider size spectrum

of these groups in terms of biomass. To have a better understanding of the vertical habitat of

zooplanktonic groups, we highly recommend that UVP5 and 6 pro�les should be done to at

least 1,000 m when the bathymetry allows it. Long term inter annual data acquisition is also

highly recommended. This will enable us to monitor global zooplankton biomass changes at

pace with the speed of global change.

Data Availability Statement

The inputs and outputs of the world models for 0-200 m and 200-500 m were uploaded to

the GitHub repository: https://github.com/dlaetitia/Global_zooplankton_biomass_distribu-
tion.git (https://github.com/dlaetitia/Global_zooplankton_biomass_distribution.git). The

code used for the models and the post treatment of their outputs was also made available in
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the same GitHub repository. The dataset of environmental data from World Ocean Atlas is

available at https://www.ncei.noaa.gov/products/world-ocean-atlas (https://www.n-
cei.noaa.gov/products/world-ocean-atlas). The surface chlorophyll a data is available on the

Copernicus website at https://resources.marine.copernicus.eu/productdetail/OCEAN-
COLOUR_GLO_CHL_L4_REP_OBSERVATIONS_009_082/
(https://resources.marine.copernicus.eu/productdetail/OCEANCOLOUR_GLO_CH-
L_L4_REP_OBSERVATIONS_009_082/).
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