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Zooplankton plays a major role in ocean food webs and biogeochemical cycles, and
provides major ecosystem services as a main driver of the biological carbon pump and in
sustaining fish communities. Zooplankton is also sensitive to its environment and reacts to
its changes. To better understand the importance of zooplankton, and to inform prognostic
models that try to represent them, spatially-resolved biomass estimates of key plankton
taxa are desirable. In this study we predict, for the first time, the global biomass distribution
of 19 zooplankton taxa (1-50 mm Equivalent Spherical Diameter) using observations with
the Underwater Vision Profiler 5, a quantitative in situ imaging instrument. After
classification of 466,872 organisms from more than 3,549 profiles (0-500 m) obtained
between 2008 and 2019 throughout the globe, we estimated their individual biovolumes
and converted them to biomass using taxa-specific conversion factors. We then associated
these biomass estimates with climatologies of environmental variables (temperature,
salinity, oxygen, etc.), to build habitat models using boosted regression trees. The results
reveal maximal zooplankton biomass values around 60°N and 55°S as well as minimal
values around the oceanic gyres. An increased zooplankton biomass is also predicted for
the equator. Global integrated biomass (0-500 m) was estimated at 0.403 PgC. It was
largely dominated by Copepoda (35.7%, mostly in polar regions), followed by
Eumalacostraca (26.6%) Rhizaria (16.4%, mostly in the intertropical convergence zone). The
machine learning approach used here is sensitive to the size of the training set and
generates reliable predictions for abundant groups such as Copepoda (R2 = 20-66%) but
not for rare ones (Ctenophora, Cnidaria, R2 < 5%). Still, this study offers a first protocol to
estimate global, spatially resolved zooplankton biomass and community composition from

in situ imaging observations of individual organismsgl?ﬁiﬂﬁﬁ/&gmfm%(?%%@?wfbd
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1 Introduction

1.1 Zooplankton

Present in all the oceans of the globe, zooplankton corresponds to organisms adrift in the
water. They represent a great taxonomic diversity and sizes, ranging from a few micrometers
to several meters (de Vargas et al., 2015; Karsenti et al., 2011; Stemmann and Boss, 2012).
Zooplankton play a central role in the carbon cycle as they contribute to the biological pump
that drives the export of photosynthetically fixed organic carbon from the surface to the
intermediate and deep oceans (Longhurst and Glen Harrison, 1989; Turner, 2002; Turner,
2015; Steinberg and Landry, 2017). As a major link between primary producers and higher
trophic levels (Ikeda, 1985), zooplankton have central ecological and biogeochemical roles,
with associated socio-economic interests. This socio-economic impact of plankton can be
positive, such as their role as food source for fish (Lehodey et al., 2006; van der Lingen et al.,
2006) or as an indicator of water quality (Suthers et al., 2019). It can also be negative, as e.g.
jellyfish blooms that can impact various human activities such as aquaculture and fishing
(Richardson et al., 2009).

1.2 Spatial Distribution of Zooplankton and Its Biomass

Zooplankton organisms are sensitive to environmental conditions and are thus considered
sentinels of ocean changes. Their distribution is finely governed by the interactions between
physical [i.e., temperature (Steinberg and Landry, 2017), currents, light (Hays et al., 2005),
pressure] and chemical constraints [nutrients, oxygen (Steinberg and Landry, 2017)], but also
by biological interactions (e.g. predator-prey, symbiosis, parasitism and commensalism). The
dependence of zooplankton on environmental variables leads to very clear global scale
patterns even at coarse taxonomic levels (Lucas et al., 2014; Biard et al., 2016). On a global
scale, zooplankton diversity is higher at the equator and decreases towards the poles
(Rombouts et al., 2009; Ibarbalz et al., 2019). Conversely, zooplankton biomass tends to be
low in the tropics and increase with latitude with large seasonal fluctuations in temperate
and polar regions (lkeda, 1985; Moriarty et al., 2012; Soviadan et al., 2022). Although a
global quantitative assessment of zooplankton biomass and functional groups is needed (e.g.
to be incorporated in biogeochemical and ecological models), it is often hampered by the
heterogeneity of sampling methods and the uneven distribution of observations, causing
high uncertainty in biomass estimates (Moriarty et al., 2012; Moriarty and O'Brien, 2013; Le

Quéré et al., 2016).
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global distribution of only a few zooplankton groups that generally can be well sampled
using plankton nets, e.g. crustaceans, have been well studied (Rombouts et al., 2009;
Buitenhuis et al., 2013). Indeed, some zooplankton taxa are known to be fragile (cnidarians,
ctenophores, rhizarians, etc.) and their destruction by plankton nets as well as their poor
preservation in fixatives (Beers and Stewart, 1970) resulted in an underestimation of their
biomass and their ecological role in marine ecosystems (Lucas et al., 2014; Biard et al.,
2016). In this context, non-intrusive in situ methods using imaging (Remsen et al., 2004;
Cowen and Guigand, 2008; Sun et al.,, 2008; Stemmann et al., 2008; Schulz et al., 2010;
Picheral et al., 2010; Grossmann et al., 2015) and video (Davis et al., 1992; Davis et al., 2005;
Hoving et al., 2019) instruments have been developed (Lombard et al., 2019). Among the
different systems, only the Underwater Vision Profiler (UVP) version 4 and 5 have been widely
used for plankton on a global scale which allowed comparisons of abundance patterns with
the Longhurst (1995) provinces of the ocean (Stemmann et al., 2008; Biard et al., 2016).
Since 2008, the creation and expansion of such a global dataset could be executed with the
UVP5 thanks to numerous participating teams around the world and the wide
commercialization of this in situ imaging tool. In this study, we used data from the UVP5, an
in situ imaging system designed to detect, measure and quantify the distribution of
zooplankton organisms and marine particles (Picheral et al., 2010). This instrument, designed
for the study of particle size spectra in the ocean (Stemmann et al., 2002; Guidi et al., 2009)
was also previously used to obtain plankton data at a high spatial resolution (Forest et al.,
2012) and to study fragile organisms (Biard et al., 2016; Stukel et al., 2018; Christiansen

et al., 2018; Biard and Ohman, 2020). However, even with the progressive increase in the
spatio-temporal density of observations allowed by the use of imaging instruments, the
unevenness in the distribution of observations remains, preventing large scale biomass
estimations. Such global observations could nevertheless serve as the basis for large scale
estimations through the use of interpolation or extrapolation methods, including statistical
habitat models.

1.4 Statistical Habitat Models

Habitat modeling is a machine learning tool to estimate the abundance of a taxon at a
location where an observation is missing: instead of interpolating between nearby
observation points based on geographical distance, the environmental conditions (i.e. the
habitat) are used to inform the estimation. Statistically, a regression analysis can be used to
define the relationship between the abundance (or presence) of a taxon at observation sites

and the environmental variables at those sites (Guisap el A33883HNAr <2653, @ggygﬂqu)
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taxonomic groups, within a global /n situ imaging dataset. We then applied the habitat model
methodology to each taxonomic group and built models using different regional and vertical
partitions of the data. We separated data of the epipelagic (0-200 m depth layer) from the
upper mesopelagic (200 to 500 m depth layer). We also used a global partitioning to
separate data from low latitudes (40°S to 40°N) from the remaining high latitude data. We
hypothesize that these partitions should allow us to separate subgroups within those broad
taxa, which occupy different horizontal and/or vertical habitats. Finally, we used the models’
output to estimate the global marine zooplankton biomass distribution in the top 500 m of
the water column.

In situ imaging observations with UVP5 have been widely used during the past decade to
study zooplankton in the global ocean. Biard et al. (2016) used 694 stations from the UVP5
dataset to reveal that Rhizaria were strongly underestimated in previous studies. Here, we
use an updated version of this dataset, now including 3,549 stations to study the biomass
distribution of Copepoda, Rhizaria and several other groups of planktonic organisms in the
1.02-50 mm size range. We hypothesize that the total biomass of zooplankton is distributed
according to regional production characteristics, associated with climatic and hydrological
patterns, showing overall a high biomass in high latitudes and lower values in the subtropical
gyres (lkeda, 1985; Moriarty et al., 2012).

2 Materials and Methods

2.1 Plankton Data Collection and Processing

2.1.1 Global Plankton Imaging With the UVP5

UVP5 data (Figure 1) were compiled from all oceans, covering a 10 year period (2008-2018).
A detailed description of the operation of the UVPS is given in Picheral et al. (2010). All
particles large than = 100 ym in Equivalent Spherical Diameter (ESD) were measured and
counted, but only images of particles (zooplankton and aggregates) larger than = 600 ym
ESD were kept by the UVP5 for further processing because smaller objects contained too
few pixels to be identifiable. Acquisition of metadata (geographic location, date, etc.) and
processing of all 8.46 million images (95% being detritus) were carried out by the ZooProcess
software which provided information on 42 morphological features associated with each

object (area, major and minor axis, etc.). The results Wgrrt‘?cil@?ﬂf.tﬁ%W%ﬁ?@%&ﬂgyﬂﬁéf)
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Figure 1l
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FIGURE 1 Map of the UVP5 dataset used in this study. Transparency was used to illustrate the
density of points on the map.

2.1.2 Image Classification and Size Range Covered

Living organisms were separated from detritus (aggregates, fibers, fecal pellets) as well as
artifacts (e.g. bubbles) and classified according to their taxonomic identity. Recognition and
sorting of organisms can be a source of bias depending on the levels of perception and
experience of the people who perform them. Several cognitive factors biases such as
boredom, fatigue or a classification biased towards the most used groups have been
presented by Culverhouse (2007) and Culverhouse et al. (2014). To reduce the risk of poor
identification, a shared UVP5 taxonomic guide was used to homogenize image sorting into
119 taxonomic groups. The image data were thereafter grouped into 25 broader taxonomic
groups (Table S1), and a subset of the resulting dataset was checked for homogeneity of
sorting within these groups. A minimum of 51 images and a maximum of 10% of all images
were extracted from each group and were independently checked after the assembly of the
final data set. The maximum error or uncertainty rate per taxon was 9.8% and a vast majority
of taxa were under 2.5%. We checked the classification and if accuracy was <95%, we
rechecked the categories to assure proper sorting. In addition, only fully validated profiles
were used for this analysis. The resulting global data set consisted of 466,872 images from
3,549 stations. Under-sampled groups with less than 500 images in the dataset which could
not be used for a global study were not included in the analysis.

We computed the organisms’ size spectrum to detect the size range within which the UVP5
can be used to properly quantify their distribution. The concentration of objects in the ocean
is expected to decrease with size; when this is computed as a normalized size spectrum, the
relationship is expected to be linear (Forest et al., 2012). A peak in the size spectrum at the
lower size range generally reflects the minimum size of efficient detection by /in situ imaging
while high variability in the large size range reflects the poor ability to detect rare large
objects (Stemmann and Boss, 2012). With that in mind, the spectrum was linear for the size
range 1.02-50 mm and organisms outside this rangel{@tticlerdt Qi3 danars 2223 839 3/24 pefk
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their body, ellipse fitted to non-ellipsoidal organisms, etc.), we chose the spheroid method: it
is based on the area (Table 1), which is more consistently measured by the image analysis
performed in ZooProcess.

Table 1

ls.www.frontiersin.org (https://www.frontiersin.org/files/Articles/894372/fmars-09-894372-
HTML/image_m/fmars-09-894372-t001.jpg)

TABLE 1 Methods of calculating individual biovolume with area (mm2); ESD, the equivalent
spherical diameter equivalent (mm); major, the major axis (mm) of the best fit ellipse; minor, the
minor axis (mm) of the most suitable ellipse.

For Rhizaria, biovolume (mm?®) to carbon (mgC) conversions were done using factors from
the literature (Figure S1 and Table S2). For other groups, the conversion from individual
volume to individual wet weight assumed a density of 1 g cm™3 (Kigrboe, 2013). Then the
conversion from individual wet weight to individual biomass in carbon units (mgC) was
calculated using taxon-specific linear conversion factors from McConville et al. (2016); when
several conversion factors were available for a taxon, their median was used for each group.
To take into account differences in density of some parts of the organisms, the
Appendicularia group was actually split into Appendicularia_body and Appendicularia_house,
whereby the "body” group contains images with only the animal and the "house” group
contains the house and the animal. For the images labeled Appendicularia_house, we used
the relationship of house diameter (major axis) to Appendicularia trunk length from Lombard
and Kigrboe (2010). We then converted this body size equivalent into carbon weight using
the corresponding relationship from Lombard et al. (2009). For the images labeled
Appendicularia_body, we converted the biovolume of the organism into carbon weight
using the corresponding relationship from Lombard et al. (2009). Two groups also have been
created to separate the Collodaria into solitary Collodaria and colonial Collodaria. This
choice was done based on the fact that solitary Collodaria are smaller than colonial ones and
have a different vertical distribution (Faillettaz et al., 2016). For solitary collodarians with a
dark central capsule (subgroup of solitary Collodaria) described in Biard et al. (2016), the
estimation of carbon (0.189 mgC mm3) by Mansour(frtitlé201D133884fthars20 P2 A84ZTR4pds) of
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In order to develop relationships between regional characteristics of the environment
(Figures S2—4) and observed biomass, climatologies from the World Ocean Atlas (WOA)
(Garcia et al., 2019) were used for temperature (in °C), salinity, oxygen (converted from ymol
kg! to kPa for better physiological interpretation), and macronutrients (nitrate, phosphate
and silicate in umol kg™1). We selected the data sets defined on a 1° horizontal grid, over the
0-500 m depth range, and with a monthly temporal resolution. Temporal coverage was from
2005 to 2017 for salinity and temperature and 1955 to 2017 for the other variables. We also
used monthly averaged surface chlorophyll-a data (Chl a in mg m~3) resolved to 1/24° from
2005 to 2017 from the Copernicus database
(OCEANCOLOUR_GLO_CHL_L4_REP_OBSERVATIONS_009_082) as well as bathymetry
data from NOAA (Amante and Eakins, 2009) with a spatial resolution of 10 minutes; both
were re-gridded to a 1° grid. Finally, distance to coast was computed by calculating the
distance of all 1°X1° cells to the closest cell associated to land using the raster package
(Hijmans, 2021). To obtain annual climatologies, when relevant, each monthly variable was
averaged over its time period of coverage.

This environmental data was then matched to the UVP5 data on the 1°x1° grid. Since the
1°x1° grid used by WOA does not necessarily follow the contour line of the coast perfectly,
some UVP5 profiles could not be directly matched to the environmental grids. This is mostly
the case where e.g. the coast is situated in a 45 degree angle to latitude or longitude,
thereby creating triangle shaped areas that are not covered by the rectangular grid. For
profiles that lie in such corners of the grid, we used the environmental values of the closest
neighboring 1°x1° WOA cell. In the epipelagic world model, 3,002 points did have a direct
match while 156 points did not have a direct match. Out of these 156 points, 14 were not in a
neighboring 1°x1° WOA cell and were removed from the model input. For the mesopelagic,
2,172 did have a direct match, while 104 points had a match in a neighboring grid cell and 2
points did not and were removed from the model input. Maps that show the close vicinity of
non-matching points to adjacent WOA cells are shown in Supplementary Figure 5.

To assess whether we are able to describe various environmental conditions with the UVP5
samples, we compared the distributions of each variable in the worldwide WOA dataset and
in the subset matched to UVP5 profiles (Figures S6, S7). Although the geographical coverage
is not homogeneous (Figure 1), the coverage of environmental conditions is good and
warrants the use of habitat models.

5 2 Habitat Modeling (/articles/10.3389/fmars.2022.894372/pdf)
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FIGURE 2 Methodology followed from data selection to prediction of global biomass.

2.3.1 Modeling Tools

In this work we used boosted regression trees (BRTs) to predict the biomass of different
zooplankton groups as they show different advantages over other commonly used machine
learning approaches for the nature of our dataset and intended application (Elith and
Graham, 2009). This ensemble method uses regression trees, models that link a response
(here biomass) to predictors (environmental variables) by successive dichotomous
separations (Breiman et al., 1984; Hastie et al., 2001). Regression trees automatically select
the relevant explanatory variables, can deal with categorical or continuous inputs, are not
sensitive to the distribution of the continuous ones, can represent relations of arbitrary form
and naturally include interactions among explanatory variables (Elith et al., 2006). With so-
called surrogate splits, they can also deal with missing values in the explanatory variables.
They are therefore very convenient to use, but their predictive power is often limited and
they have difficulties to capture smooth relationships. Boosting is a way to overcome these
drawbacks (Schapire, 2003). It is based on the fact that it is easier to find many rough rules of
thumb than to find a single, highly accurate prediction rule (Schapire, 2003). BRTs combine
many short regression trees in succession, each new tree being adjusted to consider the
observations poorly predicted by the previous ones (Elith et al., 2006; Leathwick et al., 2006;
Elith et al., 2008). This improves predictive performance and the smoothness of the
prediction (Leathwick et al., 2006). In addition, only a random subset of the input data is
used to fit each tree and this stochastic component reduces the variance of the final model
ensemble (Friedman, 2002).

Boosted regression trees (BRTs) have an ability to handle a large number of variables and -
other than Generalised Linear Models (GLMs, Nelder and Wedderburn (1972)) or Generalised
Additive Models (GAMs, Hastie and Tibshirani (1986); De'ath (2007); Elith et al. (2008)) - do
not seek to fit one single model portraying the relationship of the response variable (here
biomass) and its predictors (environmental variables). Various recent studies (Gonzalez
Carman et al,, 2019; Chen et al.,, 2020; Hu et al., 2021) have compared BRTs results to other
modeling tools such as GAMs, GLMs, Random Forests (RFs), Maximum Entropy modeling
(Phillips et al., 2006; Elith and Graham, 2009) or neural networks and have obtained better
predictive performance with BRTs. Other studies (Zhang et al., 2018; Son et al., 2018) used
complementary GAMs and BRTs to study the effects Gardigtastifds3Ufmansc20228394322/PMT s
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modeling taxa which can have a narrow habitat.

In addition, in regression trees, the loss function, used to determine which dichotomous split
to perform, can be changed to be adapted to the distribution of residuals. Here we explored
the classic mean squared error, which assumed a somewhat normal distribution of the
residuals, as well as a Tweedie loss adapted to zero-inflated data (Zhou et al., 2019), and a
Poissonian loss, which considered data as discrete counts, also including many zeros. To use
the Poisson loss, the biomass was scaled so that the value of the 1% quantile was > 1 and
then rounded to the nearest integer; the inverse scaling was performed after prediction. This
later approach proved to produce the best fits and more robust models in a few test taxa and
all models were therefore fitted with Poisson loss. The models and statistics were computed
using the xgboost package (Chen et al., 2021) in R version 4.1.2 (R Core Team, 2021).

2.3.2 Spatial Partitioning of the Data

Individual biomass values derived from UVP5 images and environmental data measured at
various layers were both averaged over a depth range of interest and matched
geographically, on the 1°x1° grid. Biomass values matched to the same 1° pixel, and
therefore associated to exactly the same environmental data, were averaged.

We hypothesized that an association between biomass and environment investigated at a
fine scale could be more efficiently learned by the model because is contains less noise, so
we divided the data vertically between the epipelagic (0-200 m) and mesopelagic (200-500
m) zones and also tried a finer partition, into 100 m depth bins between 0 and 500 m.
Evaluating separate models for each layer could allow to focus on finer subgroups within our
quite coarse taxonomic units (some species being mostly present in one of the layers) and
therefore define biomass-habitat relationships at a finer, more relevant biological level.

For the same reason, we also built models on subsets of data partitioned geographically.
Indeed, polar copepods have a different thermal niche compared to tropical ones
(Rombouts et al., 2009; McGinty et al., 2021). So, in addition to a model fitted on the global
dataset (world), we trained models on data from the region between 40°S and 40°N (low
latitude) and from the data collected outside of this latitudinal band (high latitude). Out of the
3,549 profiles composing the UVP5 dataset, 2,837 are located between 40°S and 40°N and
712 were done outside of this latitudinal band.

2.3.3 Data Splits for Model Training, Assessment and Evaluation
(/articles/10.3389/fmars.2022.894372/pdf)
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resamples; (Hastie et al., 2001)]. For each cross-validation fold, the model was actually
trained on four folds and validated on the last one. The splits into the five folds were also
stratified according to the deciles of biomass, for the same reason invoked above.

2.3.4 Selection of Hyperparameters and Model Evaluation

To extract as much information from the data, while avoiding overfitting, various
combinations of hyperparameters were tested for each model (Elith et al., 2006). They
included: 1) the learning rate per tree determining the contribution of each tree to the
ensemble model (0.05, 0.08 and 0.1 were tested); 2) the maximum depth of a tree (2, 4 and 8
were tested); 3) the minimum number of elements per leaf (which also limits the depth of
the trees; 1, 3 and 5 were used); 4) the number of trees used for the prediction (values up to
600 were tested). For each combination, the model was fitted to the training set and
evaluated on the validation set of each of the 100 resamples; the loss was then averaged
over the 100 resamples. The best set of hyperparameters is usually the one for which this
average loss is minimal. The differences around that minimum are often small and not
always meaningful; to be sure to avoid overfitting, we applied an early stopping criterion
whereby the increase in the number of trees was stopped when the error did not decrease
by more than 1% after adding 10 trees.

Once the best set of hyperparameters had been chosen, the relevance of the corresponding
model was quantified by the Pearson correlation between the observed biomass data in the
test set and the predicted biomass, where prediction is the average of the predictions of the
100 models fitted to the resamples. This metric captures the model's ability to correctly
represent general trends and patterns in the data set and is one way to compute the R2. The
significance of this correlation can also be tested and quantified with a p-value. These
metrics can be readily compared across the various spatial partitions of the data because
they represent the skill of the models on an independent data set, not the quality of the fit to
the training data (like the way the R? is usually computed). To compare the worldwide and
regional approaches fairly, it is important to focus on the same regional subset. To this effect,
two additional R? were computed for the global model: on the test data located inside the
40°S-40°N latitudinal band and on those outside of it (world low latitude and world high
latitude).

2.3.5 Effect of Environmental Variables

To identify which environmental variables drive the change of biomass in each specific
model, the percentage of variance explained by each/asticde$¢10.33 8dlfrodss 29 22.884 31 2ipdf)
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quantile.

2.3.6 Extrapolation to the Globe

To obtain global maps of predicted biomass, the regression between UVP5 biomass data and
environmental variables was applied to all points in the corresponding partition of the world,
in depth and space. Because 100 models were fitted to the resamples of the training data,
the standard deviation of biomass among the 100 predictions (0p) can be computed in

addition to the mean (my), and the coefficient of variation (CV), defined as CV = ;—’; then
gives an indication of the uncertainty of the model predictions.

To get a robust estimate of global zooplankton biomass in the 1.02 mm to 50 mm size range,
we chose to be conservative (i.e. ad minima): only the taxonomic groups in the global
partition for which the correlation between predicted and observed biomass was significant
were used. The surface area of each 1°x1° cell was computed using the following formula:

A= 1%0 X R x (sin (latg) — sin (laty)) x 10°

with the area Ain m?, the south and north latitudinal limits of the cell in radians and #, the
earth radius (6,378.137 km). For each group used, the biomass was integrated over the
relevant layer in each 1°X1° cell by the following calculation

b, =bxAXI

where b is the estimated biomass in mgC.m3, Ain m? is defined above, (is the layer

thickness in m and therefore by is the total biomass in mgC. Finally, the global ad minima
zooplankton biomass estimate was computed by adding up the biomass for all selected
groups and the 0-200 and 200-500 m depth layer.

(/articles/10.3389/fmars.2022.894372/pdf)
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latitudinal band) as well as on different depth layers. We hypothesized that a finer data
selection might enable the respective model to learn the regional or depth specific habitat
more appropriately. Yet, this also meant fitting models to fewer data points. In the end, we
find that no clear trend emerges from the relevant comparisons (Figure 3): global models are
better in 13 comparisons and partitioned models are better in 14 comparisons, whereas for
11 comparisons no clear decision can be made. Comparisons can only be made within a
given depth layer between the same regional partitions (e.g. world low latitude only
containing the data predicted by the global model between 40°N-40°S vs low latitude; world
high latitude only containing data north of 40°N and south of 40°S from the global model vs
high latitude).

Figure 3
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FIGURE 3 Heatmap of the models’ RZ between observed and predicted biomass for all
zooplankton groups arranged from the most important in terms of biomass (Copepoda) to the
least important (Limacinidae) in the different depth layers. The regions correspond to: W for world
(model run on all data); WL for world low (data between 40°N and 40°S from the world model); L
for low latitude (model run between 40°N and 40°S); WH for world high (data outside of 40N and
40S from the world model); H for high latitude (model run outside of 40°N and 40°S). The stars
indicate significant results (p-value < 0.05) obtained with the Pearson correlation test.

For some groups such as Annelida and some Mollusca, the high latitude model could not be
computed (symbolized by a grey cell) either because they were considered as rare (< 500
images in the layer modeled) or because the model could not learn the link between
biomass and environment for this group. However, for other taxa such as Copepoda, solitary
Collodaria or Phaeodaria, high and low latitude models are generally better than the world
model, as indicated by a higher R? value (Figure 3). In the epipelagic layer, for Copepoda, the
R? of world low latitude is 0.26 vs 0.37 in the low latitude model. For the mesopelagic, low
latitude has an R? of 0.07, lower than the one for world low latitude (0.62). For

Appendicularia in the epipelagic layer, the best R val(faeriig(gsﬁm?%%(;fmatgs&glrégigyxé/pdﬂ
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configuration retained for the total, global biomass estimate. In Figure 3, taxa are arranged in
decreasing order of global biomass in the epipelagic layer. For the top five taxa [Copepoda
(R2 = 0.66), Eumalacostraca (R? = 0.31), solitary Collodaria (R? = 0.10), Appendicularia (R? =
0.26) and other Crustacea (R? = 0.15)], the correlation between true and predicted biomass is
significant (p-value < 0.05) in the epipelagic worldwide model. In the mesopelagic layer, the
correlations for all five groups are also significant (p-value < 0.05 with respective R? of 0.22,
0.10, 0.09, 0.30 and 0.72).

3.2 Group-Wise Contribution to Global Zooplankton Biomass

Figure 4 shows the biomass per group predicted for the three spatial partitions and divided
into the epi- (0-200 m) and mesopelagic (200-500 m) layers. For the worldwide model, the
dominant groups in terms of biomass in the epipelagic were Copepoda (0.083 + 0.020 PgC),
Eumalacostraca (0.058 + 0.017 PgC) and solitary Collodaria (0.038 + 0.008 PgC) (Figure 4).
Among the groups displaying a significant correlation (p-value < 0.05) between true and
predicted biomass (and therefore retained for the global estimate), crustaceans (Copepoda,
Eumalacostraca, other Crustacea and Ostracoda) represented 68.4% (0.157 PgC) of the
biomass in this layer; Rhizaria (solitary Collodaria, Foraminifera, Phaeodaria, other Rhizaria
and Acantharea) made up 20.6% (0.047 PgC); but the Cnidaria (other Cnidaria and other
Hydrozoa) represented only 0.56% of the global zooplankton biomass (0.0013 PgC). In other
words, Crustacea and Rhizaria together made up ~89.1% of the biomass predicted in the
epipelagic layer. In the deeper mesopelagic layer, Copepoda (0.061 + 0.016 PgC) were still
the dominant group in terms of biomass, followed by Eumalacostraca (0.049 + 0.014 PgC)
and other Crustaceans (0.017 + 0.001 PgC) combined. Crustacea (Copepoda,
Eumalacostaca, other Crustacea and Ostracoda) represented 0.129 PgC, equivalent to 74.4%
of this layer’'s biomass, while Rhizaria (Foraminifera, solitary Collodaria, other Rhizaria and
Acantharea) totaled 0.014 PgC, representing 10.1%, equivalent to most of the remaining
biomass in the layer. When combining the results from these two layers, Copepoda
represented 44.4% of the global integrated biomass, followed by Eumalacostraca (15.6%),
solitary Collodaria (13.1%) and other Crustacea (11.2%). More broadly, Crustacea (Copepoda,
Eumalacostraca, other Crustacea and Ostracoda) represented 0.222 PgC or 71.3% of the
biomass predicted over 0-500 m, while Rhizaria (Foraminifera, solitary Collodaria, other
Rhizaria and Acantharea) made up 0.019 PgC or 10.8% of biomass.

Figure 4 (/articles/10.3389/fmars.2022.894372/pdf)
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outside 40°N-40°S and inside 40°N-40°S. Error bars correspond to upper interval of the biomass
estimation'’s standard deviation. The stars indicate a significant result (p-value < 0.05) obtained
with the Pearson correlation test.

Copepoda were particularly dominant in high latitudes, especially in the epipelagic layer. In
the low latitude model, solitary Collodaria contributed most in the epipelagic, followed by
Eumalacostraca, Copepoda and Foraminifera. Eumalacostraca dominated biomass in the
mesopelagic layer in low latitudes followed by Copepoda and Foraminifera.

3.3 Spatial Distribution Patterns and Occupied Habitat

Presenting the global distribution patterns of all zooplankton groups is beyond the scope of
this paper. Instead, we focus on the results for the three groups contributing most to the
total global biomass (Copepoda, Eumalacostraca and Solitary Collodaria) as well as on
Phaeodaria and Acantharea, Rhizarians that were shown to be important contributors to
zooplankton biomass that are underestimated by net-based sampling (Biard et al., 2016).
The predicted fields for all modeled groups will be made available in the GitHub repository
linked in the data availability statement upon publication of the article.

3.3.1 Copepoda

Copepoda is one of the best predicted groups in the epipelagic (R = 0.66), likely because it
is the most abundant. The structuring environmental variables were different for the epi-
(Figures S8A, B) and mesopelagic layers (Figures S8C, D): temperature (33%) and oxygen
(19%) for the former and temperature (29%), bathymetry (19%) and chlorophyll a (15%) for the
latter. The highest copepod biomass in the top 200m was found in high latitudes (Figure 5A),
where water temperature is low and oxygen concentrations are relatively high. In the
mesopelagic layer (Figure 5B), high copepod biomass was associated with shallow coastal
and cold water masses. The patterns of distribution predicted by the global models were
similar in both layers (Figures 5A, B), with the highest predicted biomass values in the Baffin
Bay, Labrador Sea and Greenland Sea as well as at the Southern Ocean polar front region.
The lowest predicted biomass was predicted at oceanic gyres and in the Arctic, north of
80°N. For both layers, the highest values of the coefficient of variation (Figure 5C) were
found north of Canada and Greenland, as well as south of 60°S, especially for the epipelagic
layer. These high values depict disagreement among the 100 models fitted to the data
resamples and therefore inform on the uncertainty of the model in these zones. Caution is

therefore advised regarding the interpretation of the ngcllg\sx\é]\%ﬁg? 45?“8@%%%%%%6?8(88%
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Figure 5
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FIGURE 5 Map of the mean biomass (color scale is log-transformed) of Copepoda as predicted by
the model on 0-200 m (A) 200-500 m data (B) as well as the coefficient of variation for the 0-200
m model (C) and 200-500 m one (D). The color scale for the coefficient of variation has the same
range for Figures 5-9.

Figure 6
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FIGURE 6 Map of the mean biomass (color scale is log-transformed) of Copepoda as predicted by
the model on 0-200 m (A) 200-500 m data (B) as well as the coefficient of variation for the 0-200
m model (C) and 200-500 m one (D). The color scale for the coefficient of variation has the same
range for Figures 5-9.

3.3.2 Eumalacostraca

Eumalacostraca contains mostly vignettes of euphausiids, amphipods and decapods. They
were predicted globally with an R? of 0.31 for the epi- and 0.1 for the mesopelagic layer,
both with significant p-values (p-value < 0.05; Figure 3). In the epipelagic, high biomass of
these organisms was associated with high concentrations of phosphate (22%) and low
concentrations of silicate (17%) (Figures S9A, B). In the mesopelagic layer, the distribution of
this group was associated with low concentrations of silicate (16%), bathymetry (15%) and
high chlorophyll a (15%) (Figures S9C, D). In terms of spatial distribution, high biomass is
predicted in eastern boundary currents, especially in the Peruvian and Californian upwelling
systems. Low biomass is predicted in high latitudes and in the oceanic gyres, especially in the
North Atlantic. Similar patterns were predicted in the mesopelagic layer, but with lower
biomass values. The model uncertainties are highest (iaftintesre3380lema i 20258983712/ pdf)
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coast. Solitary collodaria were mainly located between 50°N and 50°S, in a rather diffuse
manner (Figure 7) with maximum biomass predicted at the equator. In the intertropical
region, the highest biomass was found in the epipelagic zones of productive areas such as
the upwelling regions off the western coast of Africa (Cape Verde and Angola) and of the
eastern boundary of the Pacific Ocean (Peru and California). The model also predicted high
biomass in the Mediterranean Sea. The importance of the environmental variable “distance
to coast” in the learning process created unusual patterns in the prediction map such as a
hexagonal shape in the Pacific Ocean. North of 50°N and south of 50°S, environments that
are typically characterized by water masses with low salinity (15t most structuring variable in
the epipelagic) and high nitrate (4" variable), the predicted biomass was rather low especially
in the epipelagic layer.

Figure 7
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FIGURE 7 Map of the mean biomass (color scale is log-transformed) of solitary Collodaria as
predicted by themodel on 0-200 m (A) 200-500 m data (B) as well as the coefficient of variation
for the 0-200 m model (C) and 200-500 m one (D). The color scale for the coefficient of variation
has the same range for Figures 5-9.

3.3.4 Phaeodaria

For this group, the worldwide epipelagic model was statistically significant (p-value < 0.05;
Figure 8) with an R? of 0.27, but the mesopelagic model was not (p-value > 0.05; Figure 3).
Therefore, only the 0-200 m layer is displayed (Figure 8). In this layer, Phaeodaria was one of
the best predicted groups (Figure 3) especially in the upper 200m. The predicted epipelagic
distribution of Phaeodaria is associated with low values of salinity (38%) followed by
bathymetry (11%), surface chlorophyll a (10%), oxygen and temperature (8% each) (Figures
S11A, B). This is visualised on the map of global prediction (Figure 8A) on which high biomass
was mainly predicted in the Californian upwelling (characterized by low salinity, cold and
coastal waters), with lower biomass north of the upwelling up to the Gulf of Alaska. High

biomass values were also predicted in the Bay of Berl(tistes/AB333Minays-PARZB4FE4PE b
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Figure 8
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FIGURE 8 Map of the mean biomass (color scale is log-transformed) of Phaeodaria as predicted by
the model on 0-200 m (A), as well as the coefficient of variation for the 0-200 m model (B). In the
map of predicted biomass, 12 cells in the California upwelling presented a value between 3 and 6
mgC m™3 and were represented here in yellow to observe the distribution of this group on a global
scale. The color scale for the coefficient of variation has the same range for Figures 5-9.

3.3.5 Acantharea

The group Acantharea was predicted with low total biomass (Figure 4). This group was well
predicted in the world model fitted with the epi- (R = 0.26) and mesopelagic (R? = 0.63)
layers (Figure 9). In the epipelagic layer, nitrate (18%), salinity (15%) and phosphate (12%) were
the main driving variables (Figures S12A, B). In the mesopelagic layer, the link between
biomass and environment (Figure 9B) was defined by the influence of several variables:
silicate (19%), phosphate (12%) followed by chlorophyll a (12%) (Figures S12C, D). The highest
epipelagic biomass (Figure 9A) was predicted in the intertropical range, in productive areas
such as the upwellings off the West coast of Africa (Cape Verde, Angola) and America (Peru
and California). These high biomass patches are associated with a salinity around 35 as the
2nd most structuring variable, as well as with high nitrate and phosphate concentrations
(respectively 15t and 3"9). Intermediate biomass values were predicted mostly between 50°N
and 50°S in a diffuse way, except in the oceanic gyres where the predicted biomass was
lowest. The largest uncertainty was present in the Southern and Artic Oceans, Bering Sea and
Gulf of Alaska where low biomass values were predicted (Figure 9C). In the mesopelagic
layer, biomass was predicted to be 16.7-times lower overall (Figure 9B), with highest values
found in the Gulf of Alaska and the Bering Sea. Intermediate biomass values were predicted
for the upwelling regions and the Southern Ocean. In this layer, the high biomass estimates
correspond with low coefficient of variation values (Figure 9D).

Figure 9
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3.4 In Situ Imaging Compared to Net Based Sampling

The latitudinal biomass distribution of Copepoda and Rhizaria obtained by combining the
predictions of global models for the epi- and mesopelagic is shown in Figure 10. It is
compared against data (interpolated on 0-500 m) from the Tara Oceans mission (Pesant

et al., 2015; Soviadan et al., 2022) acquired using 300 ym multinet samples and ZooScan
(Gorsky et al., 2010). To make the comparison meaningful, we only selected organisms in
the ZooScan samples with an ESD >1 mm. For Copepoda, the values observed by the UVP5
and the nets reveal a similar latitudinal pattern between 70°N and 60°S. The trend computed
on the output of the models shows lower biomass between 40°N and 40°S compared to
Tara observations. For Rhizaria, the highest biomass was found in the UVP5 observations and
models around the equator. Generally, almost no Rhizaria were observed in nets whereas
they were consistently observed with the UVP5.

Figure 10
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FIGURE 10 Comparison of the latitudinal distribution of biomass mgC m2) integrated over O-
500m depth between our models’ estimation and the results from the Tara Ocean multinet (300
mm mesh size), for Copepoda (A) and Rhizaria (B). Trends were obtained by using Loess regression
on: BRT models (blue line) using the global model outputs for Copepoda or Rhizaria (summed
across 0-200 m and 200-500 m depth); UVP5 data (green line) using the biomass as seen by the
UVP5 between 0-500m; TARA Ocean net data (red line) using the sampling points between 0O-
500m. The Shaded areas represent the 95% confidence interval of the Loess fit.

3.5 Global Zooplankton Biomass Distribution

The biomass integrated over 0-500 m was predicted to be maximal at around 60°N and
55°S, with values decreasing both north and south of these two latitudes (Figure 11). The
lowest values of biomass were predicted north of 80°N and in the Weddell Sea as well as in
the oceanic gyres (especially in the southern hemisphere). We also observed an increase of
the predicted biomass around the equator. The highésirtiates/dOs358 94 mars20R2R04872/pdf)
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Figure 11

ls_www.frontiersin.org (https://www.frontiersin.org/files/Articles/894372/fmars-09-894372-
HTML/image_m/fmars-09-894372-g011.jpg)

FIGURE 11 Distribution map of the predicted minimum global biomass between 0 and 500m using
taxa which obtained a significant result (p-value < 0.05) in Pearson test between the predicted
biomass and the biomass calculated from UVP5 data.

Finally, by summing only the predictions that significantly correlated with observations, we
can get to a first robust, conservative, global biomass estimate of zooplankton biomass
based on UVP5 in situ imaging. As not all groups could be included in this computation, we
refer to the following numbers as biomass ad minima. With that in mind, the zooplankton
biomass estimated by the models was 0.229 PgC for the epipelagic, and 0.173 PgC for the
mesopelagic. Thus, the estimated biomass for the upper 500m of the ocean is to 0.403 PgC.

4 Discussion

4.1 Sensitivity of Model Prediction to Partitioning

In this study, we explored whether a partitioning approach would improve model
performance through the use of different horizontal and vertical divisions of our dataset. The
aim of using partitioned models was to test if we could model local taxa that otherwise
would be mixed within the coarse taxonomic definition imposed by the dataset. The R?
computed on the models’ output show a high variability across groups, layers and regional
combinations. Overall, when comparing each partitioned model to the same zone in the
global model, the global and the partitioned models had similar performance. The reduction
in dataset size might be the explanation why in many cases global models perform better
than the smaller partitioned models. The high latitude dataset contains 712 UVP5 profiles, the
low latitude 2,837 and the world 3,549 data points. Another drawback of the partitioned
models could be that some groups might have an environmental habitat associated with
regions on both sides of the limits of the two models (here 40°N or 40°S). A vertical
resolution that consists of two layers (0-200 and 200-500m) provided the best results
(Figure 3) compared to a finer depth separation. The (fadigterd 0S8 npase. 234 8AFFR &otiAer
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4.2 Group-Wise Contribution to Global Zooplankton Biomass

Globally, in the 1.02 - 50 mm size range, we observed up to four zooplankton groups
dominating each region and layer (Figure 4), mainly Crustacea (Copepoda, Eumalacostraca,
other Crustacea) and Rhizaria (solitary Collodaria, Phaeodaria, Foraminifera). The dominance
by copepods was expected: they are known to be a central trophic link in marine
ecosystems (Steinberg and Landry, 2017) and their dominance was already shown in several
studies (Turner, 2004; Forest et al., 2012; Dai et al., 2016). Rhizaria were also presented as
substantial participants in the global zooplankton biomass by Biard et al. (2016) with
Phaeodaria and Collodaria being the most important contributors to rhizarian biomass. In
addition, Rhizaria were previously shown to play an important role in the biological carbon
pump by intercepting (Stukel et al., 2018; Stukel et al., 2019) but also generating particle flux
(Lampitt et al., 2009). In contrast, gelatinous predators such as Chaetognatha and other
Cnidaria (other Cnidaria, other Hydrozoa, Siphonophorae) can be well predicted but their
predicted biomass is low. This might be due to different reasons, ranging from their low
carbon content (McConville et al., 2016), their size range which can exceed the specific
range of the UVP5 (1.02 - 50 mm), their lower abundance reducing the probability of
observation in the rather small volume of the UVP5 and the reduced capacity of the UVP5 to
image them due to their transparency. Other instruments, such as the pelagic in situ
observation system (PELAGIOS, Hoving et al. (2019)), the Zooglider (Ohman, 2019) or the /In
Situ Ichthyoplankton Imaging System (ISIIS, Cowen and Guigand (2008)) might be more
adapted to study these organisms, thanks to their larger sampling volumes or different image
approach.

4.3 Distribution Patterns and Occupied Habitats
4.3.1 Copepoda

Copepoda biomass was predicted to be highest in high latitudes in both epi- and
mesopelagic layers of the global models. The lowest values were predicted at the gyres and
an increase of biomass was observed centered at the equator. In the global models,
temperature always appeared within the top three environmental factors explaining the
distribution of copepods (except for 0-100 m model where it appeared 4th), which is in
agreement with previous work suggesting that surface temperature and thermal tolerance of
marine ectotherms, including copepods, are important constraints for their distribution and
abundance (Beaugrand et al., 2009; Sunday et al., 2012). We also predict significant
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The distribution of the predicted Eumalacostraca biomass showed high values in coastal
areas mainly on the eastern boundary currents of the Atlantic and Pacific Oceans and low
values at high latitudes and at the locations of the oceanic gyres. Due to the low image
resolution, a finer taxonomic resolution than Eumalacostraca (mostly euphausiids, decapods
and amphipods) is not possible for UVP5 vignettes. Euphausiids are well known for their
ability to escape standard oceanographic plankton nets (Brinton, 1967; Wiebe et al., 1982;
Sameoto et al., 1993) and even low noise gliders (Guihen et al. 2022). This behavior might
also be dependent on the species and stage development while the UVP5 mostly detects
small Eumalacostraca (< 50 mm) for which taxonomic identification is not possible.
Nevertheless, as Euphausiids are the second most abundant crustacean taxon after
copepods (Castellanos et al., 2009), they may compose a large fraction of the biomass in
this group. They are described as widely distributed in high numbers in the world ocean
between 0-300 m with the exception of the eastern Canadian Arctic and the Arctic Ocean
(Castellanos et al., 2009). This is consistent with our predictions of higher biomass in the
epipelagic zone (0.058 PgC) compared to the mesopelagic (0.049 PgC), and low values
predicted for the Arctic Ocean. The high Eumalacostraca biomass predicted in the North
Atlantic also consistent with other observations that reported high abundances of krill in this
region (Edwards et al., 2021). Euphausia superba and Euphausia mucronata have been
respectively described as keystone species of the Antarctic and the Humboldt Current
System (Antezana, 2010). The comparatively low values of biomass predicted in the Antarctic
in the epipelagic layer (Figure 6A) might be too low, as Euphausia superba is known to show
a patchy distribution (Siegel, 2005; Siegel, 2016). Since we only have very few samples from
the Antarctic Ocean, we probably under-sampled this region and specifically krill. The high
coefficient of variation in this region seems to reflect this problem. Overall, our observations
and models likely underestimate the abundances of Euphausiids and of Eumalacostraca, due
to their escape behaviors, the comparatively small sampling volume of the system and the
low sample size in the Southern Ocean.

4.3.3 Solitary Collodaria

Global models in epi- and mesopelagic layers predicted a widespread distribution of solitary
Collodarians between 50°N and 50°S, from oligotrophic to eutrophic zones. Their
distribution can be explained by the selective advantage of their mixotrophy, since all
collodarian species live in symbiosis with photosynthetic microalgae (Suzuki and Not, 2015;
Biard et al., 2016). Consistently with the models’ prediction of solitary Collodaria as the third

most important group in terms of global biomass in E)/ Qen)lbt%?f%eaqssggﬂ%gxﬁgpdﬂ

at al (201AR) that Calladaria cantrihiite manct tn the hlnm:—\cc nf tha Rhizaria hatwean N-1

:' frontiers | Articles Research Topics Editorial Board

https://www.frontiersin.org/articles/10.3389/fmars.2022.894372/full 22/55



5/25/23, 3:04 PM Frontiers | Global Distribution of Zooplankton Biomass Estimated by In Situ Imaging and Machine Learning

:' frontiers All journals All articles < Submit your research >

Fr... Articles Research Topics Editorial Board

biomass there as 5.5% (range 2.7-13%) of the metazoan biomass sampled using a MOCNESS
(Wiebe et al., 1985). The distribution of this group in the epipelagic (high biomass in coastal
regions especially around the Californian upwelling and low biomass in the gyres conditions)
could be related to food availability which might not be abundant enough in the open
ocean. In the models’ output, this group only accounted for to ~ 1.2% of the global biomass
in the epipelagic. This is consistent with previous work describing these organisms as being
distributed in water below 150-200 m (Stemmann et al., 2008; Nakamura and Suzuki, 2015;
Boltovskoy et al., 2017; Biard and Ohman, 2020). The high (R? = 0.50) and low latitude (R? =
0.39) models for the mesopelagic layer reveal similar patterns as the ones shown for the
epipelagic layer in Figure 8. This pattern of high biomass predicted in the North Pacific can
be put in perspective with a previous study (Ikenoue et al., 2019) which highlighted
Phaeodaria in the Western North Pacific as one of the major carriers of carbon in the twilight
zone (200-1000 m (Buesseler and Boyd, 2009)), with an organic carbon standing stock
reaching its highest value at depths between 200-500 m. A maximum in abundance of
Phaeodaria was observed in the lower epipelagic or mesopelagic zone in the Sea of Japan by
Nakamura et al. (2013) as well as in the Antarctic beneath the sea ice with similar
abundances as the North Atlantic and Pacific (Morley and Stepien, 1984). In the regional
mesopelagic predictions, the mean biomass in the Sea of Japan is not particularly high, but it
reached higher values in the Southern Ocean.

4.3.5 Acantharea

Here, we present results on large Acantharea only, but it should be kept in mind that most
species are smaller than 600 ym (Biard et al., 2016). Most Acantharea species are associated
with symbiotic algae (Michaels, 1991) which could explain the rapid observed biomass
decline with depth. Indeed, the biomass predicted is 16.7-times lower in the mesopelagic
(1.36 107> PgC) compared to the epipelagic layer (2.27 10~4 PgC). These mixotrophs are
present throughout the world oceans (Suzuki and Not, 2015) and commonly distributed in
intertropical latitudes (Bottazzi and Andreoli, 1982) mostly in the surface with an abundance
rapidly declining below 20-50 m depth (Michaels, 1988). The model confirmed this biomass
diminution in the epi- and mesopelagic layers (Figure 9). We also observed latitudinal
patterns with the highest biomass in intertropical areas consistent with these previous
studies. The highest biomass of Acantharea predicted by the mesopelagic global model in
the Gulf of Alaska coincides with a large number of organisms imaged by the UVP5. This is
surprising knowing the above described distribution patterns. More observations from this
region are required to clarify whether this was a temporally limited occurrence or whether it
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The integrated global predicted biomass is dominated by Copepoda (35.7%), Eumalacostraca
(26.6%) and Rhizaria (16.4%). Because of their important contribution to the predicted global
biomass, the distribution map of total biomass ad minima (Figure 11) reflects in part the
major distribution patterns of these three groups: polar waters are dominated by Copepoda
and intertropical waters are dominated by mixotrophic Rhizaria. Eumalacostraca follows the
predicted distribution of zooplankton with 3 peaks of biomass at 60°N (55°N for
zooplankton), at the equator and at 45°S (55°S for zooplankton). The comparison of the
models’ output with data from the Tara Ocean expedition, obtained with a 300 ym mesh size
multinet (Pesant et al., 2015; Soviadan et al., 2022) shows a good agreement for the
latitudinal patterns of Copepod biomass. Net data is estimated to be higher than biomass
estimated from UVP5 data in the intertropical latitude range for this group. Results in the
high latitudes regions with strong seasonality and sea ice cover should be taken with caution
as no data was available in the UVP5 dataset in winter for these latitudes. For Rhizaria, we
observe that at most locations the biomass estimated by the nets is zero, while the UVP5
images suggest a considerable biomass in this group (Figure 10). In the TARA Ocean multinet
samples, only Acantharea, Foraminifera and Phaeodaria are sometimes detected, while
Collodaria are consistently absent from these samples. Indeed, Collodaria and Acantharea
are poorly sampled by nets and are not well preserved in plankton samples fixed with regular
fixatives such as formaldehyde (Suzuki and Not, 2015). Yet, solitary Collodaria are predicted
as the 3'4 most important group in terms of biomass in the upper 200 m of the global model.
Our results show that in situ imaging is far more suitable for the study of this group and all
other fragile plankton groups. As described above, several important zooplankton groups are
generally well modeled, allowing us to combine the taxon-specific models to yield a global
estimate of zooplankton biomass in the 1.02 to 50 mm size range. Previous studies (Table 2)
have computed such global zooplankton biomass obtained largely (Hatton et al., 2021) or
completely (Moriarty et al., 2012; Moriarty and O'Brien, 2013; Buitenhuis et al., 2013) from
net collected organisms. These studies also used a proportionality method for estimating the
global biomass presented in Table 2 by multiplying the median value of biomass with the
surface of the ocean and the studied depth. Our predictions are within the same order of
magnitude — but at the lower limit — of these compilations if one combines their meso- and
macrozooplankton biomass estimates. We refrain from a more detailed comparison due to
the difference in size studied (here 1.02 - 50 mm ESD — equivalent to 765 ymto 37.5 mm
meshsize according to Nichols and Thompson (1991)'s 3/4 law of mesh selection —
compared to = 200 ym for the cited meso- and macrozooplankton studies), sampling
methods and depth covered (Buitenhuis et al., 2013). Contrary to the complementary use of
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Table 2
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TABLE 2 Comparison of global biomass estimates in the literature.

4.5 Global Zooplankton Biomass Distribution

The distribution of the global integrated biomass (0-500 m) ad minima follows the patterns
described by Ikeda (1985), Moriarty et al. (2012) and Hatton et al. (2021) which correspond
to a latitudinal distribution of the biomass with high values north of 55°N and south of 55°S.
Relatively higher values of biomass are predicted around the equator (15°N-15°S). The benefit
of our work and of compiled datasets such as the ones used in Moriarty et al. (2012);
Moriarty and O'Brien (2013), Buitenhuis et al. (2013) and Hatton et al. (2021) is that they
bring together numerous single transects and allow to have an integrated view of global
zooplankton distribution. The results depicted in Figure 11 in the Southern Ocean are
consistent with a recent study done with BRTs (Pinkerton et al., 2020) showing that the
highest environmental suitability for zooplankton was located between the Subantarctic
Front and the southern limit of the Antarctic Circumpolar Current with a lower suitability
north and south of this band. The spatial distribution of plankton biomass thus shows the
importance of oceanographic hydrodynamics leading to oligotrophy in central gyres and
mesotrophy in areas of high latitudes and equatorial and coastal upwellings. Zooplankton
plays a crucial role in fisheries e.g. in the Humboldt Current System which harbors the largest
fishery in the world and most economically important fish species, supported by the
upwelling of Peru (Chavez et al., 2008). Peruvian anchovies and sardines obtain most of their
energy from zooplankton (van der Lingen et al., 2009).

4.6 Conclusions and Outlook

In summary, our results show, for the first time, that spatial patterns and global biomass of
key zooplankton groups can be calculated using a machine learning method (BRT) to
extrapolate individual zooplankton biomass estimates from sparse UVP5 observation. They
also highlight the important contribution of Rhizaria (predicted mainly in the intertropical
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importance of the environmental variables used for the model. The WOA climatologies used
in this study compile data of salinity and temperature (2005-2017) and other variables (1955-
2017). The temporal coverage of the latter being much coarser, we hope to use more
constrained nutrient datasets in our future work as they become available.

The zooplankton biomass predictions based on UVP5 datasets presented here are important
for global biogeochemical modeling of pelagic ecosystems because they usually lack
zooplankton observations to constrain their development (Stemmann and Boss, 2012;
Buitenhuis et al., 2013; Séférian et al., 2020). A current trend is to add a more realistic
representation of plankton in ecosystem models to better predict future ecosystem states
and ocean conditions and to inform sustainable management strategies for climate
mitigation at global scale (Séférian et al., 2020). The UVP5, the newly developed UVP6
(Picheral et al., 2021) and other commercialized in situ systems, provided that they are inter-
calibrated (Lombard et al., 2019), will continue to be used in the foreseeable future,
increasing data availability. Still, the bottleneck lies in the classification of the massive
amount of images which still require human validation, but new algorithms to recognise
plankton types and traits are expected (Irisson et al., 2022). The further anticipated expansion
of image datasets will enable the quantitative assessment of rare groups that were not well
predicted here. In addition, the deployment of the UVP6 on autonomous platforms will also
help to sample certain areas that are difficult to access at certain times of the year such as
polar regions in winter. The large dataset used in this study spans 10 years of data collection
and can be compared to the COPEPOD database collected since about 1960. The
possibilities given by imaging systems could hence help to reach a useful amount of data in a
much smaller time frame. It would be interesting to use other imaging system'’s data sets
such as the ones presented by Lombard et al. (2019) to reconstruct the wider size spectrum
of these groups in terms of biomass. To have a better understanding of the vertical habitat of
zooplanktonic groups, we highly recommend that UVP5 and 6 profiles should be done to at
least 1,000 m when the bathymetry allows it. Long term inter annual data acquisition is also
highly recommended. This will enable us to monitor global zooplankton biomass changes at
pace with the speed of global change.
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