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Although methanediamine (CH,(NH,),) has historically been the subject of theoretical
scrutiny, it has never been isolated to date. Here, we report the preparation of methane-
diamine (CH,(NH,),)—the simplest diamine. Low-temperature interstellar analog ices
composed of ammonia and methylamine were exposed to energetic electrons which act
as proxies for secondary electrons produced in the track of galactic cosmic rays. These
experimental conditions, which simulate the conditions within cold molecular clouds,
result in radical formation and initiate aminomethyl (CH,NH,) and amino (NH,)
radical chemistry. Exploiting tunable photoionization reflectron time-of-flight mass
spectrometry (PI-ReToF-MS) to make isomer-specific assignments, methanediamine
was identified in the gas phase upon sublimation, while its isomer methylhydrazine
(CH;NHNH,) was not observed. The molecular formula was confirmed to be CH(N,
through the use of isotopically labeled reactants. Methanediamine is the simplest mol-
ecule to contain the NCN moiety and could be a vital intermediate in the abiotic
formation of heterocyclic and aromatic systems such as nucleobases, which all contain

the NCN moiety.
interstellar ice | astrochemistry | ionization potentials | radical reactions | reaction mechanism

Nitrogen represents a central element in contemporary biomolecules such as in amino
sugars, amino acids, and nucleobases (1). Nitrogen is also incorporated into nearly one-
third of some 300 molecules identified in the interstellar medium (ISM) and around
circumstellar envelopes (2). However, most nitrogen-containing molecules in deep space
carry exclusively nitrile moieties (RC=N) which are weakly electrophilic in contrast to
nucleophilic amines (RNR’R”), imines (R=NR’), and amides (RCONHR’) needed for
life as we know it (2—4). So far, only two closed-shell molecules have been detected astro-
nomically which contain more than one nitrogen-carrying moiety other than nitrile: urea
(CO(NH,),) (5, 6) and carbodiimide (HN=C=NH) (7). An understanding of the origin
and fundamental chemistry of the NCN moiety in deep space is central to the RNA world
hypothesis for the origin of life (8—10) because all nucleobases found in contemporary
RNA and DNA contain this very NCN moiety (Scheme 1). Here, the abiotic synthesis

Significance

Methanediamine (CH,(NH,),)
represents a target of
computational study, and while
its dihydrochloride salt is used in
synthetic preparations, the free
diamine exists only as a transient
in solution. Here, we prepare and
identify methanediamine via
energetic processing of low-
temperature ices followed by
sublimation into the gas phase.
This finding shows that
interstellar ices subjected to
ionizing radiation, such as
galactic cosmic rays and
ultraviolet light, exhibit unique
chemistry in which highly
unstable species are produced
and preserved. Both ammonia
and methane are abundant in
interstellar ices where radical
reactions can readily produce
methanediamine. Its subsequent
sublimation into the gas phase in
star-forming regions indicates

and gas-phase detection of methanediamine (1, CH,(NH,),) are reported as a prototype
system for unraveling the origin and incorporation of the NCN moiety into complex
organic molecules of potential astrobiological importance.

The bulk of prior scholarship has employed methanediamine (1) as a model com-
pound to study systems containing the R—X—C-Y backbone, where X has a lone pair
and Y represents any element more electronegative than carbon such as R-NHCH,NH,.
Molecules carrying this moiety reveal a preference for the gauche configuration resulting
from internal rotation along both the X—C and C-Y bonds in what is known as the
generalized anomeric effect (11-19). Negative hyperconjugation, where electron density
is donated from the non-bonding pair of nitrogen to the CH antibonding (6*) orbital,
contributes to this effect and has a particularly strong influence on the conformational
structure of methanediamine (1) (11, 13, 14, 16). Since the donation increases anti-
bonding character, this tends to weaken the carbon—hydrogen bonds while stabilizing
radicals formed by elimination of atomic hydrogen from carbon (11, 20-23).
Substitution of two hydrogen atoms in methane (CH,) with the amino group (-NH,)
stabilizes the diaminomethyl radical (CH(NH,),) by 43 k] mol™ which allows for
unusual radical reactions like [1] to occur more readily (Scheme 2) (20, 23). The amines
also stabilize the singlet state of diaminocarbene (C(NH,),) by 202 kJ mol™" while
increasing the energy of the triplet (C(NH,),) by 65 k] mol™'; this results in a singlet
ground state which can participate in recombination [2] or spin-allowed carbene inser-
tion [3] (24).

Unlike methanediamine (1), the hydrochloride salt of methanediamine has been
employed in organic preparative solution chemistry as a reactant for more than a century
(25). Upon neutralization of the salt, methanediamine (1) is presumed to exist as a highly

that this species is a candidate
for detection by radio telescopes.
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Scheme 1. Nucleotides found in RNA and DNA, all of which contain the NCN moiety exhibited by methanediamine (1, CH,(NH,),).

reactive intermediate. The nucleophilic nature of amines allows
this transient to participate in substitution reactions [4]—[8] (26—
29). This can take the form of substitution for an alcohol or ether
in [4] (26) or substitution of an aldehyde (RCHO) or ketone
(RC(O)R) via [5] by an imine (29) or a diazaspirane, respectively
(30). Its bifunctional nature allows for participation in ring-closure
reactions accompanied by aromatization as demonstrated in [6]
(27) and [7] (28); these show that both amine and imine bonds
can form resulting in nitrogen-substituted polycyclic aromatic
hydrocarbons (28). The potential formation of aromatic hetero-
cycles from methanediamine (1) via nucleophilic chemistry may
provide a route to the abiotic formation of nucleobases in the ISM.
Pyrimidine (-NCHNCHCHCH) forms the core structure of
cytosine, thymine, and uracil (Scheme 1). Given the recent obser-
vation of 3-hydroxypropenal (OCHCHCHOH) toward the pro-
tostar IRAS 16293-2422 (28), nucleophilic substitution with
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Scheme 2. Representative reactions of methanediamine (CH,(NH,),)
including radical-radical recombination [1]-[3] initiated by energetic photons
(hv) or GCRs and nucleophilic substitution [4]-[8].
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methanediamine (1) in reaction [8] may provide a facile route to
the abiotic formation of pyrimidine via S\2 nucleophilic substi-
tution of amines onto aldehydes which has been demonstrated to
operate in low-temperature acidic ices (31, 32).

Here, by exploiting isomer-selective photoionization combined
with reflectron time-of-flight mass spectrometry (PI-ReToF-MS),
the preparation and gas-phase detection of methanediamine (1)
is reported. Interstellar analog ices of methylamine (CH;NH,)
and ammonia (NH;) were exposed to proxies of galactic cosmic
rays (GCRs) in the form of energetic electrons. Reactions which
may form both methanediamine (1, CH,(NH,),) and methylhy-
drazine (2, CH;NHNH,) in this simulated interstellar environ-
ment were investigated (Fig. 1). Isotopic substitution experiments
along with tunable vacuum ultraviolet light (VUV) photoioniza-
tion at discrete energies reveal unambiguously the selective prepa-
ration of methanediamine (1) via a carbon-nitrogen bond
coupling through the radical-radical reaction of aminomethyl (A,
CH,NH,) and amino (C, NH,) radicals thus providing a facile
to the previously elusive methanediamine (1).

Results

PI-ReToF-MS data collected in these experiments are shown as
a function of temperature in Fig. 2. In these experiments, sin-
gle-photon ionization with VUV laser light is employed to ionize
molecules as they sublime from the ice after the exposure to GCR
proxies (SI Appendix). This is a fragmentation-free or “soft” ion-
ization method, particularly in comparison with electron impact
ionization. By using tunable VUV light, the photon energy can
be selected to selectively ionize and hence to discriminate isomers
with different ionization energy as molecules cannot be ionized
when the photon energy is less than their adiabatic ionization
energy. Furthermore, isotopic labeling was used to verify the
molecular formula, and in some cases the formation mechanism,
of observed molecules. By exploiting these techniques,
PI-ReToF-MS experiments separate molecules by mass, subli-
mation temperature, and ionization energy to confidently assign
the identity of reaction products in the analog ice: methanedi-
amine (1).

The adiabatic ionization energy is unknown for methanedi-
amine (1) and has been measured with substantial error for
methylhydrazine (2) (33). Therefore, adiabatic ionization energies
were computed for all possible conformers of both methanedi-
amine (1) and methylhydrazine (2) with high-qualicy CCSD(T)
complete basis set computations expected to have a maximum
error of £0.05 eV (8] Appendix, Table S1) (34). Accounting for
all conformers, the range of adiabatic ionization energies of meth-
anediamine (1) is 8.54-8.75 ¢V and 7.44-7.67 eV for methylhy-
drazine (2). Photoionization with 9.20 eV photons is therefore
capable of ionizing both of these molecules, while 8.00 eV photons
can only ionize methylhydrazine (2). Collected ion counts at a
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mass-to-charge ratio (m/z) = 46 (CH(N,) are reported as a func-
tion of temperature in Fig. 34. Photoionization at 9.20 eV pro-
duced a small peak at 120 K and a larger sublimation event at 152
K. Neither of these events is observed at 8.00 eV. This reveals that
the molecule(s) responsible for these peaks must have an adiabatic
ionization energy between 8.00 and 9.20 eV. Since we can elim-
inate the possibility of the presence of methylhydrazine (2), this
peak must therefore be linked to methanediamine (1).

To provide further evidence in the observation of this molecule,
isotopic substitution experiments were carried out to ensure that
the observed compound does, in fact, have the molecular formula
(CH¢N,). In detail, isotopically labeled ammonia and methyl-
amine were used to verify the formula of the ions detected in Fig.
3A. The smaller peak at 120 K occurs at the same temperature as
a major peak found at m/z = 45; this sublimation event is con-
nected to dimethylamine which is present as a trace contaminant
in the methylamine sample and observed here as the naturally
occurring dimethylamine-""C. If it is assumed that carbon can
make up to four bonds, nitrogen three, and hydrogen one, then
the only possible molecular formulas for m/z = 46 are H,N; and
CH(N,. When ""N-ammonia—methylamine ice was examined,
the peak at 152 K and m/z = 46 was (Fig. 34) found to shift to
m/z = 47 (Fig. 3B). From this isotopic shift, it is concluded that
there must be at least one nitrogen present in the observed mol-
ecule which must originate in the ammonia component of the ice.
Furthermore, this is in agreement with the reaction shown in Fig. 1

PNAS 2022 Vol.119 No.51 2217329119

+ Methylamine
(CH3NH,)

Fig. 1. Reaction scheme for radical reactions
of ammonia (NH) and methylamine (CH;NH,)
to form methanediamine (1, CH,(NH,),) and
methylhydrazine (2, CH;NHNH,) via radical-
radical recombination or insertion of imidogen
into methylamine. Computed relative (AE) and
adiabatic ionization energies (IE) are presented
as ranges that include all conformers.

which demonstrates the incorporation of one nitrogen from
ammonia via the amino radical (C, NH,). When ammonia-d;—
methylamine-dy ice was examined, the peak at 152 K was found
to shift from m/z = 46 to 52 (Fig. 3C). This can only happen if
the molecule being ionized contains six or more hydrogen atoms,
which excludes the possibility that H;Nj is being observed and
confirms that the correct molecular formula is CH(N,. It was also
noted that the peak of the temperature programmed desorption
(TPD) profiles observed in this deuterated ice shifts from 152 K
to 160 K. This is likely due to an increase of molecular weight by
6 amu resulting in an elevated sublimation temperature (35).

Discussion

Since the ionization energy and the molecular formula match only
those of methanediamine (1), this constitutes the conclusive obser-
vation of this molecule. No signal is observed at 7/z = 46 with a
photon energy of 8.00 eV. Therefore, if methylhydrazine (2, IE =
7.44-7.67 eV) is produced, it is not present in detectable quantities.
If the reaction proceeds by radical-radical recombination, this
would suggest a lack of formation of the methylamino radical (B,
CH,NH). Prior experiments, in which pure methylamine ice was
irradiated under similar conditions as the present experiment, did
not observe reaction products from recombination of the methyl-
amino radical, i.e., 1,2-dimethylhydrazine (CH;NHNHCHj;) or
N-methylmethanediamine (CH;NHCH,NH,) (36). The only
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Fig.2. Photoionization reflectron time-of-flight (PI-ReToF) mass spectra measured during TPD plotted as a function of temperature. Experiments were conducted
with (A) ammonia-methylamine ice without irradiation, and with irradiation of 0.21 + 0.02 eV molecule™ for ammonia and 0.38 + 0.04 eV molecule™ for
methylamine in (B) ammonia-methylamine ices, (C) >’N-ammonia-methylamine ice, and (D) ammonia-d;-methylamine-dj ice.

reaction product identified was ethylenediamine (NH,CH,
CH,NH,), which originates from radical-radical recombination of
aminomethyl radicals (B, CH,NH,) (36). Since solely reaction
products from aminomethyl (B) have been observed in pure meth-
ylamine and mixed ammonia—methylamine ices, the reaction mech-
anism responsible likely proceeds by radical-radical recombination
(Fig. 1).

'The process to form methanediamine (1) via radical-radical reac-
tion [9] is endoergic by 488 + 3 kJ mol™; this energy can be imparted
by the impinging electrons. The distance between the ice surface
and the ionization region of 2.0 + 0.5 mm along with the range of
sublimation temperatures implies that methanediamine (1) has to
“live” at least an average of 7.6 + 1.9 ps. However, lifetimes of the
ions must be at least 26.88 + 0.07 ps to be detected. Note that the
“thermal” decomposition of methanediamine (1) to methanimine
(H,CNH) plus ammonia (NH;) [10] is calculated to be endoergic
by 46 + 3 k] mol™, also supporting its gas-phase stability.

CH;NH, + NH; — CH,(NH,), + 2H [9]

CH,(NH,), — H,CNH + NH, [10]

Previous experimental investigations in ices have shown that isoe-
lectronic molecules methanediol (37) (CH,(OH),) and ami-
nomethanol (38) (NH,CH,OH) form in irradiated ices and
survive into the gas phase and upon photoionization. The

40f7 https://doi.org/10.1073/pnas.2217329119

minimum energy conformers (Scheme 3) (37, 38) of these mol-
ecules demonstrate significant variation in bond angles.
Methanediamine (1) exhibits an NCN angle of 119.0°, while the
NCO angle in aminomethanol is the smallest at 110.6°. Both of
which are larger than the ideal 109.5° tetrahedral angle for the
central carbon atom. Such behavior indicates that electrostatic
repulsion from the non-bonding electron pairs along with steric
repulsion is present in all three molecules but is more significant
for the NH, than for the OH moiety. While the CH, NH, and
OH bond lengths vary little between these molecules, in ami-
nomethanol the C-N single bond is 3 pm shorter, but the C-O
bond is 3 pm longer compared to methanediamine (1) and meth-
anediol. These variations in bond lengths are likely the result of
enhanced transfer of electron density from —-NH, to —OH in
aminomethanol upon increasing electronegativity from nitrogen
to oxygen. The calculations employed here improve on prior
efforts (11, 13, 14) to study methanediamine (1) computationally.
While the gauche configuration was previously expected to be
more stable, higher-level ab initio calculations employed herein
indicate the trans configuration across both C-N bonds to be
most stable. The discrepancy in relative energies between calcula-
tions reported here and prior studies demonstrate the need for the
testing and further development of computational methods. The
existence of the previously “hypothetical” molecules in Scheme 3
reveals an opportunity for future experimental measurements and
detection utilizing the PI-ReToF-MS approach which would aid

pnas.org
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Fig. 3. TPD profiles measured during photoionization reflectron time-of-
flight (PI-ReToF) mass spectra measurement of ammonia-methylamine
ices. Ices formed with natural isotopic abundance (A) were examined with
photon energy of 9.20 and 8.00 eV and at 9.20 eV with isotopic labeled ices (B)
®*N-ammonia-methylamine, and (C) ammonia-d;-methylamine-ds.

in benchmarking the accuracy of quantum chemical calculations
and contribute to the development of more accurate and predictive
quantum chemical methods.

Conclusion

These experiments revealed that methanediamine (1) can be pro-
duced in interstellar ices and is able to sublime intact not only in
the laboratory but also in star-forming regions such as Sagittarius
B2 (Sgr B2) where its signal may be explored by radio telescopes.
Rotational spectroscopy of methanediamine (1) in the millimeter
and sub-millimeter wave regions would be necessary for the iden-
tification of this previously elusive molecule in deep space and
should be pursued, and dipole moments are reported in S/
Appendix, Table S1 to aid in this search. Of the necessary reactants,
ammonia is abundant in interstellar ices at fractions of regularly
above 15% relative to water as determined in, e.g., the c2d Spitzer
survey (39). Methylamine has been detected in the gas phase
toward the Sgr B2(N) molecular cloud on the order of 107 relative
to molecular hydrogen (40, 41). While much less abundant than
ammonia, methylamine has been shown to form in ices from
ammonia and methane (42), and methane is nearly as prevalent
as ammonia in interstellar ices being found with abundances of

96.4
101.5

Methanediamine (1) C,,

Aminomethanol Cg

up to 13% observed toward EC 92 (43). Therefore, the synthesis
and sublimation of methanediamine (1) reported here along with
the prior detection in interstellar space of its precursors indicate
that its preparation in interstellar ices is plausible with ring-closure
reactions (Scheme 2) suggesting that methanediamine (1) can play
avital role in the abiotic formation of heterocycles and nucleobases
in particular.

Methods and Materials

Experimental. All experiments were carried out at the W. M. Keck
Research Laboratory in Astrochemistry (44—46). The apparatus
consists of a hydrocarbon-free stainless steel ultra-high vacuum
chamber with pressures maintained at a few 107" Torr (47). A
closed cycle helium refrigerator (Sumitomo Heavy Industries,
RDK-415E) is used to maintain a polished silver wafer (12.6 x
15.1 mm) at 5.0 + 0.2 K. Ices were prepared by passing ammonia
(ammonia, Matheson, 99.99%; ""N-ammonia, Sigma-Aldrich,
98% '"°N; ammonia-d;, Sigma-Aldrich, 99% D) at a partial
pressure of 1 x 107 Torr and methylamine (methylamine,
99.5% Matheson TriGas; methylamine-d;, Cambridge Isotope
Laboratories, 98% D) at a partial pressure of 1.5 x 10~ through
separate 10 mm diameter glass capillary arrays. Prior to deposition
of deuterated gases, all tubing was filled with deuterated water
vapor (D,0) which was also flowed through the capillary arrays
to prevent isotope exchange from reducing % D purity. The ice
thickness was determined to be 720 + 30 nm by monitoring the
ice deposition with a helium—neon laser (CVI Melles-Griot, 25-
LHP-230, 632.8 nm) at a 4° angle of incidence and measuring
variations in reflected power due to thin film interference by the
ice (48). Ice index of refraction was approximated to be 1.355 by
the average of the indexes of refraction of the two components,
1.33 for ammonia and 1.38 for methylamine in amorphous ices
at 18 K (49). Fourier transform infrared (FTIR) spectra (Thermo
Electron, Nicolet 6700) were measured in the range 6000 to 500
cm" after ice deposition at 5.0 + 0.2 K and used to calculate the
relative abundance of the two components (SI Appendix, Figs.
S1-S3 and Table S2). Relative concentrations of ammonia and
methylamine in ices (SI Appendix, Table S3) were determined
using integrated infrared absorlptions of v, of ammonia (1070
em™', 2.1 x 1077 cm molecule™) and v, (1420 cm ™', 1.8 x 107"
cm molecule™), combined vs and v,, (1433 to 1520 cm™', 1.73
x 107"® cm molecule™), and the CH stretching region with v,
v,, and vy, (2727 to0 3015 ecm ™, 2.3 x 107" cm molecule™) for
methylamine (49, 50).

After deposition, ices were irradiated with 5 keV electrons
(SPECS, EQ PU-22) with electron currents and times as listed in
SI Appendix, Table S3 over an area 160 mm” at a 70° angle of
incidence for an effective dose of 0.20 + 0.02 ¢V molecule™" for

o

109.2

96.4
101.4

¢

112.6

Methanediol C,

Scheme 3. CCSD(T)/aug-cc-pVTZ optimized structures of methanediamine (1, CH,(NH,),), methanolamine (H,NCH,OH), and methanediol (CH,(OH),) with bond

lengths (pm) and selected angles (degrees).
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ammonia and 0.37 + 0.04 ¢V molecule™" for methylamine in ices
without isotopic labeling. A penetration depth of 348 + 10 nm
was determined for ices without isotopic labeling with the aid of
Monte Carlo simulations conducted with CASINO 2.42 (51)
using parameters detailed in S7 Appendix, Table S4. For the pur-
poses of the simulation, the average density of the ice components,
0.680 g cm ™ at 18 K for ammonia and 0.732 g cm™ for methyl-
amine at 18 K, was used as an approximation for the unknown
density of the mixed ices (49). Variations in density due to isotopic
labeling were taken into account. The average penetration depth
(288 t0 358 nm, SI Appendix, Table S4) is significantly less than
the ice thickness (730 + 30 nm) by design to prevent energetic
electron initiated interactions between the ice and the silver sub-
strate. Energetic doses reported in 87 Appendix, Table S3 represent
the calculated total absorbed dose averaged over all molecules
between the ice surface and the average penetration depth. FTIR
spectra were measured before, during, and after irradiation to
verify changes in the spectrum due to reactions and to determine
new functional groups and smaller species produced.
Photoionization reflectron time-of-flight mass spectrometry
(PI-ReToF-MS) utilized in this research has been discussed in
detail previously (44). Ices were heated to 320 K with TPD at a
rate of 1 K min™". During TPD, pulsed 30 Hz coherent VUV
light was passed 2 mm above the surface of the ice to photoionize
subliming molecules. VUV light was produced via several resonant
four-wave mixing (0yyy = 20, + ®,) schemes detailed in 7
Appendix, Table S5. After generation of the selected 0, and ®,,
the lasers were made collinear and focused (Thorlabs, LA5479, /=
300 mm) into a jet of rare gas in the VUV generation vacuum
chamber. Coherent VUV light exiting this chamber was separated
from o, and w, by passing the collinear beams through an off-axis
lithium fluoride (LiF) biconvex lens (Korth Kristalle, R, =R, = 131.22
mm) which collimates the light, imparts an angular separation
between the three wavelengths, and directs the VUV light through
an aperture to the ionization region. VUV intensity is measured
by a Faraday cup on the opposite side of the ionization region,
and ion counts were corrected for variations in VUV power based
on the average power recorded during each mass spectrum accu-
mulation. lons formed are mass-analyzed in a reflectron time-of-
flight mass spectrometer (ReToF-MS; Jordan TOF Products) and
detected with a microchannel plate (MCP) detector (Jordan TOF
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Computational. The optimized geometries and harmonic zero-
point vibrational energies (ZPVEs) are determined with coupled
cluster theory at the singles, doubles, and perturbative triples level
[CCSD(T)] (52) along with the aug-cc-pVTZ basis set (53). The
CCSD(T)/aug-cc-pVQZ single point energies at these same
geometries are then extrapolated to the complete basis set limit
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