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ABSTRACT: Since the observation of the first sulfur-containing molecule, carbon @@
monosulfide (CS), in the interstellar medium (ISM) half a century ago, sulfur-bearing

species have attracted great attention from the astrochemistry, astrobiology, and l*H
planetary geology communities. Nevertheless, it is still not clear in which forms most

of the sulfur resides in molecular clouds, an unsolved problem referred to as “sulfur V
depletion”. Reported herein is the formation of thioformic acid (HCOSH)—the
simplest thioacid—in interstellar ice analogues containing carbon monoxide (CO) 50 100 150 200 250 300
and hydrogen sulfide (H,S) at S K. Utilizing single photoionization reflectron time- Temperstura ()
of-flight mass spectrometry and isotopically labeled molecules, thioformic acid

molecules were selectively photoionized in the temperature-programmed desorption ; /

Signal

phase. These studies unravel a key reaction pathway to thioformic acid, an organic
molecule recently detected toward the giant molecular cloud G+0.693—0.027 and the
hot core G31.41+0.31, thus shedding light on interstellar sulfur chemistry.

1. INTRODUCTION morphology, projectile ion-charge state, and energy are much
needed.”

Very recently, thioformic acid (1, HCOSH) was detected
toward the giant molecular cloud G+0.693—0.027, using both
3 ) ) the IRAM 30 m telescope and the Yebes 40 m telescope,14 as
interest of the z}s.trozchemlstry, astrobiology, and planetaf’y well as toward the hot core G31.41+0.31 in the GUAPOS
geology communities.” To date, more than 270 moleculegs in spectral survey conducted with the ALMA interferometer. s
interstellar and circumstellar regions have been reported,” 33 Thioformic acid (1) exists in two stable planar conformations,
of which contain sulfur (Figure 1). These sulfur-bearing cis and trans with respect to two hydrogen atoms. Rodriguez—

Since the discovery of the first sulfur-containing molecule—
carbon monosulfide (CS)—in the interstellar medium (ISM)
half a century ago," sulfur chemistry has attracted particular

molecules include thiols, thioaldehydes, acids, and thioke- Almeida et al. detected only the trans conformer in G+0.693—
tenes/thiocumulenes. Interestingly, 13 new sulfur-bearing 0.027 with a fractional abundance of (1.2 + 0.2) X 107'°, while
species have been identified within the last S years, accounting the derived upper limit abundance of the cis-HCOSH
for about 40% of all known sulfur-bearing species. Sulfur- conformer was less than 0.2 X 107'°."* The column density
bearing compounds are detected in distinct astrophysical and excitation temperature were (1.6 + 0.1) X 108 cm™2 and
environments such as in the interstellar and intergalactic 10+ 1K respectively.14 Compared with its cis conformer, the
media, planetary surfaces, and icy moons.” These representa- trans conformer is 2.8 k] mol™' more stable," resulting in the
tive molecules are frequently used as tracers for the kinematics equilibrium trans/cis ratio of 3:1 in the vapor phase at room
and chemical evolution of star- and planet-forming regions.” temperature.16 However, the pure excess of the detected trans
The detections of sulfur-bearing molecules motivate laboratory conformer in this giant molecular cloud is particularly
experiments on sulfur-containing interstellar ice analogues puzzling."” Following this question, Garcia de la Concepcion
under simulated astrophysical conditions, which commonly et al. searched for thioformic acid (1) conformers toward the
involve reactions with atomic hydrogen,s’() thermal process- hot core G31.4140.31 to compare their abundances with the

ing,7’8 radiolysis with energetic electrons, protons, and helium

ions,” photolysis exploiting photons ranging from visible light Received: September 27, 2022
to X—rays,7’10 and neutral—neutral gas-phase reactions.””' Revised: ~ November 16, 2022
However, it is not yet clear in which forms most of the sulfur Published: December 19, 2022

resides in molecular clouds."> To solve this "missing sulfur”
problem, systematic experimental studies under controlled
chemical and physical conditions such as temperature, ice
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Figure 1. Key classes of sulfur-bearing molecules identified in the ISM. The colors correspond to the following elements: hydrogen (white), carbon

(gray), nitrogen (blue), oxygen (red), sulfur (yellow), and silicon (purple).

expected theoretical equilibrium ratio.”” They tentatively
detected both conformers with abundances of (2.0 + 0.6)
x107™° and (5.4 + 1.8) X107 for trans- and cis-HCOSH,
respectively, providing a trans/cis ratio of 3.7 + 1.3 for
thioformic acid (1). Compared with observational results,
Garcia de la Concepcion et al. found that the ratios of the rate
constants for the forward (cis to trans) and backward (trans to
cis) isomerizations in the gas phase are consistent with the
trans/cis ratios measured toward both G+0.693—0.027 and
G31.41+0.31 sources."”

Several synthetic routes have been proposed for the
formation mechanisms of thioformic acid (1) based on simple
sulfur-bearing precursors. First, a possible pathway to the
formation of thioformic acid (1) has been suggested to be

reactions la and 1b.'*
CO + SH — HSCO (1a)

HSCO + H —» HCOSH (1b)

9700

Alternatively, Molpeceres et al. theoretically characterized
the hydrogenation channels of carbonyl sulfide (OCS) on the
surface of amorphous solid water as an interstellar dust grain
proxy in molecular clouds via reaction 1b.”"”

(2)

According to their calculations, reaction 2 may provide a
possible pathway to trans-HCOSH, which explains the lower
abundance of the cis conformer in astronomical observations.'”
Third, the radical-radical recombination pathway was
proposed via reaction 4."*

OCS + 2H —» HCOSH

H + CO - HCO (3)

(4)

The formyl radical (HCO) can be formed from CO and H
produced by energetic electron irradiation (reaction 3),'* while

HCO + SH —» HCOSH

https://doi.org/10.1021/acs.jpca.2c06860
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SH can be produced even within ices via radiolysis of hydrogen
sulfide (H,S).

Here, we present surface-science experiments on the
formation of thioformic acid (1)—the simplest thioacid—in
low-temperature interstellar model ices composed of carbon
monoxide and hydrogen sulfide. Binary ice (CO—H,S)
mixtures were irradiated at temperatures as low as 5 K by
energetic electrons, which were used to simulate secondary
electrons generated in the track of galactic cosmic rays (GCRs)
over typical lifetimes of molecular clouds of few million
years.'”” Note that hydrogen sulfide-containing ices have
received great attention in the context of interstellar and
planetary surface science chemistry.”'”*° Until now, UV
photolysis and proton exposure of ices containing hydrogen
sulfide as the sulfur source and carbon monoxide as the carbon
source have been studied and products such as hydrogen
disulfide (H,S,), formaldehyde (H,CO), OCS, and carbon
disulfide (CS,) were formed.'”*°™** To our knowledge, no
study has examined the effect of electron irradiation on carbon
monoxide (CO) hydrogen sulfide (H,S) ice mixtures.
Exploiting the advantages of vacuum ultraviolet (VUV)
photoionization reflectron time-of-flight mass spectrometry
(PI-ReToF-MS) in the present experiments, the subliming
products in the irradiated ices were detected in the gas phase
via fragment-free isomer-specific photoionization during the
temperature-programmed desorption (TPD), as the irradiated
ices are heated from 5 K to 320 K.’ The identification of
thioformic acid (1) has important implications for the
formation of prebiotic sulfur-bearing molecules, such as
cysteine which may be a catalyst and precursor in the prebiotic
synthesis of peptides.”**> Such molecules formed in the
interstellar ices can be eventually incorporated into comets and
may be delivered to planets such as Earth.”® Therefore, our
results further contribute to the understanding of the
formation pathways of sulfur-bearing molecules detected in
the ISM, shed light on the prebiotic synthesis of proteins,"*
and thus expand our knowledge on the evolution of biorelevant
molecules in the universe.

2. METHODS

2.1. Experimental. The experiments were conducted in an
ultrahigh vacuum (UHV) chamber evacuated to a few 107!
Torr.”” Carbon monoxide (CO, Sigma-Aldrich, > 99%) and
hydrogen sulfide (H,S, Sigma-Aldrich, > 99.5%) were
premixed in a separate chamber at a ratio of 2.5:1. The pre-
mixed gas was introduced to the main chamber at a pressure of
4 X 107® Torr via a glass capillary array and deposited onto a
rhodium-coated silver substrate, which was mounted on an
oxygen-free copper cold finger and cooled to 5 K by a closed-
cycle helium refrigerator (Sumitomo Heavy Industries, RDK-
41SE). During deposition, the ice growth was monitored in
situ via laser interferometry with a helium—neon laser (Melles
Griot; 25-LHP-230) operating at 632.8 nm.”® Considering the
concentration-weighted average of 1.32 + 0.12 between the
refractive indices of amorphous carbon monoxide ice (n = 1.25
+ 0.03)*°7*" and hydrogen sulfide (n = 1.41 + 0.01),*” the ice
thickness was determined to be 720 + 90 nm.”* After
deposition, the ices were irradiated with S keV electrons at a
current of 20 nA for 10 min, resulting in a dose of up to 0.30
and 0.49 eV per molecule for carbon monoxide and hydrogen
sulfide, respectively. For an interstellar ice grain, these doses
are equivalent to few million years of exposure to galactic
cosmic rays in the interior of a molecular cloud."” Using the
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densities of carbon monoxide (0.8 g cm™)**" and hydrogen

sulfide (1.1 g em™3),>** the average electron penetration
depth of the ice was calculated to be 400 + 40 nm according to
Monte Carlo simulations carried out in the CASINO software
suite.”* This average depth was much less than the thicknesses
of the ice, preventing electrons from reaching the substrate.
Fourier transform infrared (FTIR) spectra were collected
before, during, and after the irradiation to track changes in the
chemical composition using the FTIR spectrometer (Thermo
Nicolet 6700, 4 cm™' resolution). The ratio of the CO: H,S
ices of (1.7 + 0.3):1 was determined by utilizing the bands and
the absorption coefficients of 2090 cm™ (v, BCO, 1.3 X
1077 cm molecule™), 4249 cm™ (2v,, CO, 1.04 X 107" cm
molecule™), and 2548 cm™ (v; H,S, 1.12 X 1077 cm
molecule™).?”**5 After irradiation, the TPD scheme heated
the ice from 5 to 320 K at a rate of 1 K min™" to desorb the
reactants and reaction products. During the TPD phase, the
subliming species were photoionized, utilizing a pulsed VUV
source, and the resulting ions were detected with a reflectron
time-of-flight mass spectrometer (Jordan TOF Products, Inc.)
equipped with two microchannel plates (MCPs) in a chevron
geometry. Considering the computed ionization energy of
thioformic acid (1, IE = 10.48—10.58 V) (Table 1), photon
energies at 10.82 and 10.39 eV were chosen to distinguish
between CH,SO isomers based on their ionization energies
(Figure 2). A 10.82 €V photon, if present, is capable of ionizing
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Figure 2. Computed ionization energies (IEs) of CH,SO isomers
(solid line) along with error limits (Table 1). The numbers 1 to 11
correspond to the isomers 1 to 11 in Table 1. Two vacuum ultraviolet
(VUV) photon energies at 10.39 eV and 10.82 eV (dashed lines) were
exploited in distinct experiments to ionize the subliming molecules
during the TPD process.

all isomers; however, a 10.39 eV photon was chosen to ionize
isomers 2—11 but not thioformic acid (1). The VUV photons
(10.82 and 10.39 eV) were generated through resonant four-
wave mixing (FWM) of two synchronized pulsed laser beams,
which are produced by two dye lasers (Sirah, Cobra-Stretch)
pumped by two Nd/YAG (neodymium-doped yttrium
aluminum garnet) lasers (Spectra-Physics, Quanta Ray Pro
250—30 and 270-30, 30 Hz) (Table S1). The 10.82 eV
(114.588 nm) photons were produced by difference FWM

https://doi.org/10.1021/acs.jpca.2c06860
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(2w, - ,) in pulsed jets of krypton gas with @, = 202.316 nm
and @, = 863.117 nm. An Nd:YAG laser pumped a Rhodamine
610/640 dye mixture to obtain 606.948 nm, producing @,
202.316 nm via third harmonic generation. A second Nd:YAG
laser pumped LDS 867 dye to obtain @, = 863.117 nm. To
produce 10.39 eV (119.330 nm) light, difference FWM was
performed in pulsed jets of krypton gas with @, = 202.316 nm
and w, = 664.271 nm, which was generated from DCM (2-[2-
[(E)-2-[4-(dimethylamino)phenyl]ethenyl]-6-methylpyran-4-
ylidene]propanedinitrile) dye (in DMSO) pumped by
Nd:YAG laser. The VUV photons were separated from
photons with other energies using a biconvex lithium fluoride
lens (Korth Kristalle GmbH) in an off-axis geometry and
passed 2 mm above the silver substrate to ionize subliming
molecules. The ion signals were amplified by a fast preamplifier
(Ortec 9305) and recorded by a multichannel scaler (FAST
ComTec, MCS6A). For each recorded mass spectra during the
TPD phase, the accumulation time was 2 min (3600 sweeps)
in 3.2 ns bin widths. The sublimed molecules during the TPD
were also monitored by the electron impact quadrupole mass
spectrometer (QMS; Extrel, model 5221) operating at 70 eV
and an emission current of 2 mA. An additional experiment
without electron irradiation (blank) was performed at 10.82 eV
to verify that the observed signals were produced by an
external energy source. Isotopically labeled ices, such as C'*O—
H,S (C'®0, Sigma-Aldrich, 95 atom % '*0) ice, *CO—H,S
(**CO, Sigma-Aldrich, < § atom % '*0, 90 atom % *C) ice,
and CO-D,S (D,S, Sigma Aldrich, 97 atom % D) ice, were
used to confirm the assigned species at the photon energy of
10.82 eV.

2.2, Electronic Structure Calculations of Geometries
and lonization Energies. All calculations are performed in
the gas phase. The long-range corrected hybrid wB97XD
density functional®® with Dunning’s correlation-consistent
triple-C cc-pVTZ basis set’” was used for the geometry
optimization of the variety of neutral CH,SO isomers and their
cations. The same wB97XD/cc-pVTZ method was employed
to compute their vibrational frequencies and zero-point
vibrational energy corrections (ZPE). Then, coupled-cluster
theory was applied to refine single-point energies using the
optimized wB97XD/cc-pVIZ geometries of the neutral and
cationic molecules and to assess relative energies and adiabatic
ionization energies (AIE) of the neutral CH,SO species. In
particular, we utilized the explicitly correlated RCCSD(T)-
F12b method® including single and double excitations with
the perturbative treatment of triple excitations with Dunning’s
quadruple-{ cc-pVQZ-F12 basis set. The anticipated accuracy
of the CCSD(T)-F12b/cc-pVQZ-F12//wB97XD/cc-pVTZ +
ZPE(wB97XD/cc-pVTZ) computational scheme is within
0.01-0.02 A for bond lengths, 1-2° for bond angles, and
about 0.04 eV for AIE.* The electronic structure calculations
were carried out employing the Gaussian 16*° and MOLPRO
2021 packages*' for @B97XD and CCSD(T)-F12b, respec-
tively. Note that the ionization energies of the subliming
molecules decrease by up to 0.03 eV due to the static-electric-
field-induced Stark shift.”” Based on the electrical effect of
—0.03 eV and computed IE error of +0.04 eV, the error
analyses of computed ionization energies of CH,SO isomers
are listed in Table 1. Furthermore, Table S3 shows the
optimized molecular coordinates and calculated harmonic
vibrational frequencies.
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3. RESULTS AND DISCUSSION

3.1. IR Spectroscopy. IR spectroscopy represents an
elegant tool for the identification of small molecules along with
functional groups of complex organics during the irradiation
process of ices.” The FTIR spectra of the carbon monoxide
(CO)hydrogen sulfide (H,S) ice mixture before (black) and
after (red) irradiation along with assignments are shown in
Figure 3. All absorptions in the IR spectrum taken before
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Figure 3. IR spectrum of pristine (black) and irradiated (red) carbon
monoxide (CO) hydrogen sulfide (H,S) ice at S K. Detailed
assignments are compiled in Table S2. Inset: zoomed region from
2700 to 1700 cm™, revealing new peaks after irradiation.

irradiation can be associated with carbon monoxide and
hydrogen sulfide, such as the CO stretch (v;, 2136 cm™") of
carbon monoxide® and S—H stretching modes (v, 2603
em™; vy, 2566 cm™') of hydrogen sulfide.”'®?°  After
irradiation, several new absorptions emerged in the 2700—
1700 cm™ region (red line in Figure 3). The difference IR
spectrum between the irradiated and pristine CO—H,S ice is
shown in Figure S1. Table S2 summarizes the IR absorption
features of the pristine ice and new absorption features after
irradiation. The formyl radical (HCO) is identified from the v,
fundamental (CO stretch) at 1840 cm™ in irradiated ices.”***
The feature at 2045 cm™ was present prior to the irradiation
and was assigned to the overtone mode (2v,) of hydrogen
sulfide; however, this peak increased after irradiation,
suggesting that it is also associated with the formed products.
Ferrante et al. reported the absorption features of OCS (v3) at
2047 and 2054 cm™ in CO—OCS ice and CO,—OCS ice at 11
K, respectively.”' Therefore, this absorption feature can be
assigned to OCS, which was formed in both UV photolysis and
proton radiolysis of CO—H,S ice.'””°™** As absorption
features for S—H stretching of sulfur—containin§ molecules
are located in the 2650—2400 cm™' region, ° the new
absorption feature at 2518 cm™ could be associated with S—H
stretching of sulfur-containing products such as H,S, (n > 2).
Based on the computed anharmonic vibrational spectrum of
thioformic acid,”® no absorption peaks from thioformic acid
were observed after irradiation (Figure 3). It should be noted
that our experimental conditions with low-dose irradiation (20
nA, 10 min) are selected to obtain mechanistic information
which requires an investigation of the initial reaction steps.
Since FTIR spectroscopy in the case of complex mixtures
primarily identifies only functional groups of organic
molecules, the newly formed molecules cannot be uniquely
assigned and therefore, an additional experimental technique is
required to probe discrete reaction products.
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Table 1. Error Analysis of Computed Ionization Energies of CH,SO Isomers; Adiabatic Ionization Energies (IE) and Relative
Energies E,; Were Computed at the CCSD(T)-F12/cc-pVQZ-F12//@wB97XD/cc-pVTZ + ZPE(wB97XD/cc-pVTZ) Level of
Theory”

Computed IE

Isomer Erel Computed IE range IE range
(kJ mol) ev) ( eVg) (eV)
1a
‘w_@' 3 10.57 10.53 - 10.61 10.50 - 10.58
Fi &
1b
© ; 0 10.55 10.51 -10.59 10.48 - 10.56
e
2a
}', ° 14 9.55 9.51-9.59 9.48 -9.56
< L
2b
&g Py 35 9.30 9.26-9.34 9.23-9.31
(%
3a
& 221 9.21 9.17-9.25 9.14-9.22
< l
3b
« »- 219 9.21 9.17-9.25 9.14-9.22
&<
3¢
Lc\/ e 242 8.95 8.91-8.99 8.88 —8.96
4
&Lfe. 404 6.12 6.08 -6.16 6.05-6.13
<
5a
e 351 8.67 8.63 —8.71 8.60 — 8.68
¢ [
5b
e W« 355 8.54 8.50 — 8.58 8.47-8.55
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“The IE ranges are calculated based on the electrical effect of —0.03 €V and computed IE error of + 0.04 eV. The isomers 1a and 1b correspond to
cis- and trans-HCOSH, respectively.

3.2. PI-ReToF-MS. PI-ReToF-MS is exploited to under- is utilized here to identify individual CH,SO isomers formed in
stand the formation pathways of complex organic molecules irradiated CO—H,S ice based on their ionization energies. The
(COMs) within interstellar analogue ices.””** This technique PI-ReToF-MS data of the photoionized, desorbing molecules
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Figure 4. PI-ReToF-MS spectra collected during the TPD phase of the subliming carbon monoxide—hydrogen sulfide ices: (a,e) from CO—H,S ice
photoionized at (a) 10.82 and (e) 10.39 eV, (b) from C'*O—H,S ice photoionized at 10.82 eV, (c) from *CO—H,S ice photoionized at 10.82 eV,
and (d) from CO—D,S ice photoionized at 10.82 eV. (f) Blank experiment of the CO—H,S ice (10.82 eV).

from the irradiated ices are compiled in Figure 4; these raw
data are required to extract TPD profiles of m/z = 62 at two
photon energies of 10.82 and 10.39 eV (Figure Sa). The TPD
profile at m/z = 62 recorded at a photon energy of 10.82 eV
reveals two distinct sublimation events. The first event has a
peak sublimation temperature at 89 K in both irradiated and
unirradiated (blank experiment) ices. The desorption of H,S
ices peaks at 86 K (Figure S2); this weak sublimation event is
due to saturation of the detector upon sublimation of H,S (IE
= 10.453 + 0.008 eV). The second, strong sublimation event
starts at 116 K, peaks around 131 K, and returns to baseline
level at 225 K. It should be noted that these ion counts are not
present in the blank experiments, that is, in experiments
conducted with subliming unirradiated CO—H,S ice at a
photon energy of 10.82 eV (Figure Sa). Given the molecular
weights of the reactants, m/z = 62 could belong to the formula
for CH,0;, CH,SO, C,HS, C,H4O,, and CsH,. By matching
the TPD profiles for the isotopically labeled molecules in
irradiated C'®0—H,S ice (CH,S'*0", m/z = 64), 3CO—H,S
ice (*CH,SO", m/z = 63), and CO—D,S ice (CD,SO", m/z =
64) (Figure Sb), the assignment of this signal peaking at about
131 K can be clearly linked to the CH,SO isomers. In
particular, the replacement of the CO—H,S ice by *CO—H,S
ice shifts the m/z by 1 amu from m/z = 62 to 63, indicating the
presence of a single carbon atom. Furthermore, the shift by 2
amu from m/z = 62 to 64 in the C'*O—H,S and CO—D,S$ ices
indicates the presence of one oxygen atom and of two
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deuterium atoms, respectively. Therefore, the sublimation
event peaking at about 131 K can be clearly linked to a
molecule of the formula CH,SO. Note that the sublimation
events peaking at 161 K for m/z = 64 in the C'*0—H,S or
CO—D,S ice originates from the S,” photofragment of H,S;
(m/z = 98) or D,S; (m/z = 100), respectively (Figure S3).
The formula H,S; for the ion signal at m/z = 98 was confirmed
based on the results of isotopically labeled experiments (Figure
S3).

Having identified the molecular formula of the molecule
subliming at about 131 K as CH,SO, we are now distinguish-
ing thioformic acid (1) from the other remaining CH,SO
isomers. This requires carrying out experiments at photon
energies of 10.82 and 10.39 eV as indicated in Figure 2. The
ionization energies for all possible CH,SO isomers were
calculated (Table 1). At 10.82 eV, all CH,SO isomers can be
photoionized. Therefore, at 10.82 €V, the second sublimation
event peaking at 131 K in the irradiated CO—H,S ice at m/z =
62 (Figures 5a) can be associated with any isomer from 1-11
(IE = 6.05—10.58 eV). The experiment at a photon energy of
10.39 eV can only ionize—if present—isomers 2-11 (IE =
6.05—10.30 eV), but not thioformic acid (1). No ions were
observed in irradiated CO—H,S ice at m/z = 62 (Figures Sa),
eliminating isomers 2—11 as potential products. Thus, the
sublimation event peaking at 131 K at 10.82 eV is connected
solely to thioformic acid (1).
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Note that the two most abundant sulfur isotopes are *2S and
34S with natural abundances of 95.02 and 4.21%, respectively.
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Figure 5. (a) TPD profiles for CH,*’SO (m/z = 62) from the
irradiated CO—H,S ice at 10.82 eV (red), 10.39 eV (blue), and in
unirradiated (blank) CO—H,S ice at 10.82 eV (gray). (b) TPD
profiles at 10.82 eV for isotopically labeled CO—H,S ice mixtures.

Figure 6 shows the TPD profiles for different isotopologues of
thioformic acid (1) collected at 10.82 eV in CO—H,S ice
(HCO¥SH and HCO*SH), C'*0—H,S ice (HC'®0*SH and
HC®0*SH), *CO-H,S ice (H"*CO*SH and H*CO*SH),
and CO-D,S ice (DCO*SD and DCO**SD). The dashed

lines indicate the sublimation peak of thioformic acid (1). In
the irradiated CO—H,S ice, the sublimation event peaking at
131 K at m/z = 62 corresponds to the HCO**SH and
comprises 3020 + 300 ion counts. The TPD profile at m/z =
64 in CO—H,S ice reveals three distinct sublimation events
(Figure Sa). It should be noted that the first sublimation event
peaking at 89 K results from the saturation of the H,S signal.
The third event, peaking at 162 K at m/z = 64, corresponds to
the S,* fragment. The second event has 145 + 15 ion counts
and an intensity of 4.8 + 0.7% compared to HCO**SH at m/z
= 62, with a peak sublimation temperature at 131 K. Likewise,
a similar fraction of 4.9 + 0.7% is obtained in *CO—H,S ice
(Figure Sc). These two ratios match the natural abundance
ratio of about 4.5% of 328:34S, suggesting that the sublimation
events peaking at 131 K in Figures Sa,c are linked to HCO**SH
and H"®CO%SH, respectively. The sublimation events that
peak at 128 K at m/z = 66 in C'®*O—H,S ice (Figure 5b) or
C'®0-D,S ice (Figure 5d) are associated with H,S," and
HC'"®0*SH or DCO*SD.

Having provided compelling evidence for the synthesis of
thioformic acid (1) in interstellar ice analogues, we shift our
attention to the formation pathways. It is important to note
that there have been extensive studies on CO—-H,O ice
analogues under simulated astrophysical conditions, which
involve reactions initiated by VUV photolysis,** protons (0.8
MeV),* electrons (5 keV),"” ™ X-rays,’” and energetic heavy
ions (46 MeV *Ni''*).>" These results reported the
production of formyl radical (HCO) and formic acid
(HCOOH), which is one of the most abundant products.
The IR spectroscopy and isotopic substitution results showed
that the hydrogen atom and hydroxyl radical from H,O can
add to CO to form HCO and HCOOH.*® The astrochemical
pathways for thioformic acid (1) could be similar to the
formation of HCOOH in the processed CO—H,O ice."”
Therefore, we propose the potential reaction mechanism for its
formation in Figure 7. First, the path toward thioformic acid
(1) begins with hydrogen sulfide molecule being radiolyzed to
a mercapto radical (SH) plus a hydrogen atom (reaction
(5));”" this process is endoergic by 378 k] mol™' and can be
supplied by the impinging GCR proxy. Second, the addition of
a hydrogen atom to carbon monoxide leads to the formation of
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Figure 6. TPD profiles for different isotopologues of thioformic acid (1, HC(O)SH) recorded at 10.82 eV in CO—H,S ice (a), C'*O—H,S ice (b),
BCO-H,S ice (c), and CO—D,S ice (d). The dashed line indicates the sublimation peak of thioformic acid (1).
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Figure 7. Reaction pathways from carbon monoxide and hydrogen
sulfide leading to thioformic acid (1) determined by PI-ReToF-MS.

formyl radical (HCO) via reaction (3) as detected via FTIR
(Table S2). The entrance barrier for this reaction is 11 kJ
mol™!, while the overall formation of the formyl radical is
exoergic by 60 kJ mol™'.>* Note that the entrance barrier of 11
k] mol™" could be overcome by the energy contributed by
GCRs. The barrierless radical—radical recombination of formyl
radical (HCO) and mercapto radical (SH) leads to the
formation of thioformic acid (1) via reaction (4). Note that no
evidence was observed for the formation of ionic species in the
FTIR spectra after irradiation (Figure 3); the role of ions
involved in the formation of thioformic acid (1) has not been
considered. Overall, the reaction of hydrogen sulfide with
carbon monoxide to form thioformic acid (1) is endoergic by
10 kJ mol™’, thus highlighting the critical role of irradiation-
stimulated chemistry in the formation of thioformic acid (1).

H,S - SH + H (s)

Carbon monoxide is the second most abundant molecule on
icy grains and has been detected at levels up to 50% relative to
water in the interstellar medium toward the envelope around
the intermediate-mass class I Young Stellar Objects (YSOs).*
Suggested to be formed by hydrogenation on dust grains,>*
hydrogen sulfide has an abundance in the range of 10™'° —107¢
relative to molecular hydrogen.”> Both carbon monoxide and
hydrogen sulfide are present in hot core G31.41+0.31°*°” and
the G+0.693 molecular cloud.”®*” The molecular gases in G
+0.693 are located in the Galactic Center and are affected by
an enhanced cosmic ray ionization rate (CRIR), which is 2-3
orders of magnitude higher than that of the standard CRIR.®
It is important to note that thioformic acid (1) was detected
toward the giant molecular cloud G+0.693—0.027 recently;"*
therefore, our findings may be particularly relevant for the
formation of thioformic acid (1) toward G+0.693. Through
radical recombination reactions of the formyl radical (HCO)
with the mercapto radical (SH) within interstellar ices, carbon
monoxide and hydrogen sulfide could represent critical
precursors for the formation of thioformic acid (1). After
formation, thioformic acid (1) may react with other adsorbed
species on the grains and produce other organo-sulfur
molecules, contributing to interstellar sulfur depletion.
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4. CONCLUSIONS

To conclude, our results present the first formation of
thioformic acid (1) in laboratory interstellar ice analogues
composed of carbon monoxide (CO) and hydrogen sulfide
(H,S), providing crucial information on the formation of
thioformic acid (1) in interstellar space. Thioformic acid (1)
was detected in the gas phase during the TPD phase with a
sublimation peak at 131 K at 10.82 eV. Alternative CH,SO
isomers were ruled out as contributors to the signal by
lowering the photon energy to 10.39 eV. Recent work by
Nguyen et al. identified the formation of thioformic acid based
on the IR spectrum of the products in the reaction of solid
OCS with hydrogen atoms on amorphous solid water.’
However, earlier studies'”*°™** did not identify thioformic
acid (1) in sulfur-containing systems, such as CO—H,S ice, via
IR spectroscopy and/or mass spectrometry utilizing electron
impact ionization, possibly due to the small amount in the
product’ and the overlap of the fundamentals of thioformic
acid (1) with precursor molecules. Therefore, our results
demonstrate the unique power of PI-ReToF-MS to identify
complex sulfur-containing molecules in space simulation
experiments. Thioacids have been proposed as one of the
key agents in the prebiotic polymerization of amino acids into
peptides and proteins;'“** therefore, our findings shed light on
the prebiotic synthesis of biorelevant molecules in deep space.
Since water is the main constituent of ice in realistic interstellar
conditions, future experiments incorporating water into the ice
mixture may unravel the formation mechanisms of more
organosulfur species, such as hydrogen thioperoxide (HSOH),
and thus may help clarify the sulfur depletion problem.’
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