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Principal Component Analysis (PCA) is a powerful tool in statistics and
machine learning. While existing study of PCA focuses on the recovery of
principal components and their associated eigenvalues, there are few pre-
cise characterizations of individual principal component scores that yield
low-dimensional embedding of samples. That hinders the analysis of various
spectral methods. In this paper, we first develop an `p perturbation theory for
a hollowed version of PCA in Hilbert spaces which provably improves upon
the vanilla PCA in the presence of heteroscedastic noises. Through a novel
`p analysis of eigenvectors, we investigate entrywise behaviors of principal
component score vectors and show that they can be approximated by linear
functionals of the Gram matrix in `p norm, which includes `2 and `1 as spe-
cial cases. For sub-Gaussian mixture models, the choice of p giving optimal
bounds depends on the signal-to-noise ratio, which further yields optimality
guarantees for spectral clustering. For contextual community detection, the
`p theory leads to simple spectral algorithms that achieve the information
threshold for exact recovery and the optimal misclassification rate.

1. Introduction.

1.1. Overview. Modern technologies generate enormous volumes of data that present
new statistical and computational challenges. The high throughput data come inevitably with
tremendous amount of noise, from which very faint signals are to be discovered. Moreover,
the analytic procedures must be affordable in terms of computational costs. While likelihood-
based approaches usually lead to non-convex optimization problems that are NP-hard in gen-
eral, the method of moments provides viable solutions to the computation challenges.

Principal Component Analysis (PCA) (Pearson, 1901) is arguably the most prominent tool
of this type. It significantly reduces the dimension of data using eigenvalue decomposition of
a second-order moment matrix. Unlike the classical settings where the dimension d is much
smaller than the sample size n, nowadays it could be the other way around in numerous
applications (Ringnér, 2008; Novembre et al., 2008; Yeung and Ruzzo, 2001). Reliability of
the low-dimensional embedding is of crucial importance, as all downstream tasks are based
on that. Unfortunately, existing theories often fail to provide sharp guarantees when both the
dimension and noise level are high, especially in the absence of sparsity structures. The matter
is further complicated by the use of nonlinear kernels for dimension reduction (Schölkopf,
Smola and Müller, 1997), which is de facto PCA in some infinite-dimensional Hilbert space.

In this paper, we investigate the spectral embedding returned by a hollowed version of
PCA. Consider the signal-plus-noise model

xi = x̄i + zi 2R
d
, i 2 [n].(1.1)
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Here {xi}ni=1
are noisy observations of signals {x̄i}ni=1

contaminated by {zi}ni=1
. De-

fine the data matrices X = (x1, · · · ,xn)> 2 R
n⇥d and X̄ = (x̄1, · · · , x̄n)> 2 R

n⇥d. Let
Ḡ = X̄X̄

> 2 R
n⇥n be the Gram matrix of {x̄i}ni=1

, and G =H(XX
>) be the hollowed

Gram matrix of {xi}ni=1
where H(·) is the hollowing operator, zeroing out all diagonal en-

tries of a square matrix. Denote by {�j ,uj}nj=1
and {�̄j , ūj}nj=1

the eigen-pairs of G and Ḡ,
respectively, where the eigenvalues are sorted in descending order. While PCA computes the
embedding by eigen-decomposition of XX

>, here we delete its diagonal to enhance con-
centration and handle heteroscedasticity (Koltchinskii and Giné, 2000). We seek an answer
to the following fundamental question: how do the eigenvectors of G relate to those of Ḡ?

Roughly speaking, our main results state that

uj =Guj/�j ⇡Gūj/�̄j ,(1.2)

where the approximation relies on the `p norm for a proper choice of p. In words, the eigen-
vector uj is a nonlinear function of G but can be well approximated by the linear function
Gūj/�̄j in the `p norm where p is given by the model’s signal-to-noise ratio (SNR). This
linearization facilitates the analysis and allows to quantify how the magnitude of the signal-
to-noise ratio affects theoretical guarantees for signal recovery.

In many statistical problems such as mixture models, the vectors {x̄i}ni=1
live in a low-

dimensional subspace of Rd. Their latent coordinates reflect the geometry of the data, which
can be decoded from eigenvalues and eigenvectors of Ḡ. Our results show how well the spec-
tral decomposition of G reveals that of Ḡ, characterizing the behavior of individual embed-
ded samples. From there we easily derive the optimality of spectral clustering in sub-Gaussian
mixture models and contextual stochastic block models, in terms of both the misclassification
rates and the exact recovery thresholds. In particular, the linearization of eigenvector (1.2)
helps develop a simple spectral method for contextual stochastic block models, efficiently
combining the information from the network and the node attributes.

Our general results hold for Hilbert spaces. It is easily seen that construction of the hol-
lowed Gram matrix G and the subsequent steps only depend on pairwise inner products
{hxi,xji}1i,jn. This makes the “kernel trick” applicable (Cristianini and Shawe-Taylor,
2000), and our analysis readily handles (a hollowed version of) kernel PCA.

1.2. A canonical example. We demonstrate the merits of the `p analysis using spec-
tral clustering for a mixture of two Gaussians. Let y 2 {±1}n be a label vector with i.i.d.
Rademacher entries and µ 2R

d be a deterministic mean vector, both of which are unknown.
Consider the model

xi = yiµ+ zi, i 2 [n],(1.3)

where {zi}ni=1
are i.i.d. N(0,Id) vectors. The goal is to estimate y from {xi}ni=1

. (1.3)
is a special case of the signal-plus-noise model (1.1) with x̄i = yiµ. Since P(yi = 1) =
P(yi =�1) = 1/2, {xi}ni=1

are i.i.d. samples from a mixture of two Gaussians 1

2
N(µ,Id)+

1

2
N(�µ,Id).
By construction, X̄ = (x̄1, · · · , x̄n)> = yµ

> and Ḡ = kµk2
2
yy

> with ū1 = y/
p
n and

�̄1 = nkµk2
2
. Hence, sgn(u1) becomes a natural estimator for y, where sgn(·) is the en-

trywise sign function. A fundamental question is whether the empirical eigenvector u1 is
informative enough to accurately recover the labels in competitive regimes. To formalize the
discussion, we denote by

SNR=
kµk4

2

kµk2
2
+ d/n

(1.4)
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the signal-to-noise ratio of model (1.3). Consider the challenging asymptotic regime where
n ! 1 and 1 ⌧ SNR . logn1. The dimension d may or may not diverge. According to
Theorem 3.2, the spectral estimator sgn(u1) achieves the minimax optimal misclassification
rate

e
� 1

2
SNR[1+o(1)]

.(1.5)

In order to get this, we start from an `p analysis of u1. Theorem 3.3 shows that

P

⇣
min
s=±1

ksu1 �Gū1/�̄1kp < "nkū1kp
⌘
> 1�Ce

�p(1.6)

for p = SNR, some constant C > 0 and some deterministic sequence {"n}1n=1
tending to

zero. On the event ksu1 �Gū1/�̄1kp < "nkū1kp, we apply a Markov-type inequality to the
entries of (su1 �Gū1/�̄1):

1

n
|{i : |(su1 �Gū1/�̄1)i|>

p
"n/n}|

1

n

Pn
i=1

|(su1 �Gū1/�̄1)i|p

(
p

"n/n)p

(i)

=

✓
ksu1 �Gū1/�̄1kpp

"nkū1kp

◆p

 "
p/2
n ,(1.7)

where (i) follows from ū1 = y/
p
n and kū1kpp = n(1/

p
n)p. Hence all but an "

SNR/2
n frac-

tion of u1’s entries are well-approximated by those of Gū1/�̄1. On the other hand, since the
misclassification error is always bounded by 1, the exceptional event in (1.6) may at most
contribute an Ce

�SNR amount to the final error. Both "
SNR/2
n and Ce

�SNR are negligible
compared to the optimal rate e

�SNR/2 in (1.5). This helps us show that the `p bound (1.6)
ensures sufficient proximity between u1 and Gū1/�̄1, and the analysis boils down to the
latter term.

We now explain why Gū1/�̄1 is a good target to aim at. Observe that

(Gū1)i = [H(XX
>)ū1]i =

X

j 6=i

hxi,xjiyj/
p
n/ hxi, µ̂

(�i)i,(1.8)

where µ̂
(�i) = 1

n�1

P
j 6=ixjyj is the leave-one-out sample mean. Consequently, the (unsu-

pervised) spectral estimator sgn[(u1)i] for yi is approximated by sgn(hxi, µ̂
(�i)i), which

coincides with the (supervised) linear discriminant analysis (Fisher, 1936) given additional
labels {yj}j 6=i. This oracle estimator turns out to capture the difficulty of label recovery. That
is, sgn(Gū1/�̄1) achieves the optimal misclassification rate in (1.5).

Above we provide high-level ideas about why the spectral estimator sgn(u1) is optimal.
Inequality (1.6) ties u1 and its linearization Gū1/�̄1 together. The latter is connected to the
genie-aided estimator through (1.8). As a side remark, the relation (1.8) hinges on the fact that
G is hollowed. Otherwise there would be a square term hxi,xii making things entangled.

1.3. Related work. Early works on PCA focus on classical settings where the dimension
d is fixed and the sample size n goes to infinity (Anderson, 1963). Motivated by modern
applications, in the past two decades there has been a surge of interest in high-dimensional
PCA. Most papers in this direction study the consistency of empirical eigenvalues (John-
stone, 2001; Baik, Arous and Péché, 2005) or Principal Component (PC) directions (Paul,
2007; Nadler, 2008; Jung and Marron, 2009; Benaych-Georges and Nadakuditi, 2012; Perry

1In Theorem 3.2 we derive results for the exact recovery of the spectral estimator, i.e. P(sgn(u1) =±y)! 1,
when SNR� logn. Here we omit that case and discuss error rates.
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et al., 2016; Wang and Fan, 2017) under various spiked covariance models with d growing
with n. Similar results are also available for infinite-dimensional Hilbert spaces (Koltchinskii
and Giné, 2000; Zwald and Blanchard, 2006; Koltchinskii and Lounici, 2016). The analysis
of PCs amounts to showing how the leading eigenvectors of X>

X =
Pn

i=1
xix

>
i 2 R

d⇥d

recover those of E(xix
>
i ). When it comes to dimension reduction, one projects the data onto

these PCs and get PC scores. This is directly linked to leading eigenvectors of the Gram ma-
trix XX

> 2 R
n⇥n. In high-dimensional problems, the n-dimensional PC scores may still

consistently reveal meaningful structures even if the d-dimensional PCs fail to do so (Cai
and Zhang, 2018).

Analysis of PC scores is crucial to the theoretical study of spectral methods. However,
existing results (Blanchard, Bousquet and Zwald, 2007; Amini and Razaee, 2021) in related
areas cannot precisely characterize individual embedded samples under general conditions.
This paper aims to bridge the gap by a novel analysis. In addition, our work is orthogonal
to those with sparsity assumptions (Johnstone and Lu, 2009; Jin and Wang, 2016). Here
we are concerned with (i) the non-sparse regime where most components contribute to the
main variability and (ii) the infinite-dimensional regime in kernel PCA where the sparsity
assumption is not appropriate.

There is a vast literature on perturbation theories of eigenvectors. Most classical bounds
are deterministic and use the `2 norm or other orthonormal-invariant norms as error met-
rics. This includes the celebrated Davis-Kahan theorem (Davis and Kahan, 1970) and its
extensions (Wedin, 1972); see Stewart and Sun (1990) for a review. Improved `2-type results
are available for stochastic settings (O’Rourke, Vu and Wang, 2018). For many problems
in statistics and machine learning, entrywise analysis is more desirable because that helps
characterize the spectral embedding of individual samples. Fan, Wang and Zhong (2019),
Eldridge, Belkin and Wang (2018), Cape, Tang and Priebe (2019) and Damle and Sun (2020)
provide `1 perturbation bounds in deterministic settings. Their bounds are often too conser-
vative when the noise is stochastic. Recent papers (Koltchinskii and Xia, 2016; Abbe et al.,
2020; Mao, Sarkar and Chakrabarti, 2020; Zhong and Boumal, 2018; Chen et al., 2019; Lei,
2019) take advantage of the randomness to obtain sharp `1 results for challenging tasks.

The random matrices considered therein are mostly Wigner-type, with independent en-
tries or similar structures. On the contrary, our hollowed Gram matrix G has Wishart-type
distribution since its off-diagonal entries are inner products of samples and thus dependent.
What is more, our `p bounds with p determined by the signal strength are adaptive. If the
signal is weak, existing `1 analysis does not go through as strong concentration is required
for uniform control of all the entries. However, our `p analysis still manages to control a vast
majority of the entries. If the signal is strong, our results imply `1 bounds. The `p eigen-
vector analysis in this paper shares some features with the study on `p-delocalization (Erdős,
Schlein and Yau, 2009), yet the settings are very different. It would be interesting to establish
further connections.

The applications in this paper are canonical problems in clustering and have been exten-
sively studied. For the sub-Gaussian mixture model, the settings and methods in Giraud and
Verzelen (2019), Ndaoud (2018) and Löffler, Zhang and Zhou (2019) are similar to ours. The
contextual network problem concerns grouping the nodes based on their attributes and pair-
wise connections, see Binkiewicz, Vogelstein and Rohe (2017), Deshpande et al. (2018) and
Yan and Sarkar (2020) for more about the model. We defer detailed discussions on these to
Sections 3 and 4.

1.4. Organization of the paper. We present the general setup and results for `p eigenvec-
tor analysis in Section 2; apply them to clustering under mixture models in Section 3 and
contextual community detection in Section 4; show a sketch of main proofs in Section 5; and
conclude the paper with possible future directions in Section 6.
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1.5. Notation. We use [n] to refer to {1,2, · · · , n} for n 2 Z+. Denote by | · | the absolute
value of a real number or cardinality of a set. For real numbers a and b, let a^ b=min{a, b}
and a_ b=max{a, b}. For nonnegative sequences {an}1n=1

and {bn}1n=1
, we write an ⌧ bn

or an = o(bn) if bn > 0 and an/bn ! 0; an . bn or an = O(bn) if there exists a positive
constant C such that an  Cbn; an & bn or an = ⌦(bn) if bn . an. In addition, we write
an ⇣ bn if an . bn and bn . an. We let 1S be the binary indicator function of a set S.

Let {ej}dj=1
be the canonical bases of Rd, Sd�1 = {x 2 R

d : kxk2 = 1} and B(x, r) =

{y 2 R
d : ky � xk2  r}. For a vector x = (x1, · · · , xd)> 2 R

d and p � 1, define its `p

norm kxkp = (
Pd

i=1
|xi|p)1/p. For i 2 [d], let x�i be the (d � 1)-dimensional sub-vector

of x without the i-th entry. For a matrix A 2 R
n⇥m, we define its spectral norm kAk2 =

supkxk2=1 kAxk2 and Frobenius norm kAkF = (
P

i,j a
2

ij)
1/2. Unless otherwise specified,

we use Ai and aj to refer to the i-th row and j-th column of A, respectively. For 1 p, q 
1, we define the `q,p norm as an entrywise matrix norm

kAkq,p =
 nX

i=1

✓ mX

j=1

|aij |q
◆p/q�1/p

.

The notation is not to be confused with (q, p)-induced norm, which is not used in the current
paper. In words, we concatenate the `q norms of the row vectors of A into an n-dimensional
vector and then compute its `p norm. A special case is kAk2,1 =maxi2[n] kAik2.

Define the sub-Gaussian norms kXk 2
= supp�1{p�1/2

E
1/p|X|p} for random variable

X and kXk 2
= supkuk2=1 khu,Xik 2

for random vector X . Denote by �
2
n refers to the

�
2-distribution with n degrees of freedom. P! represents convergence in probability. In ad-

dition, we adopt the following convenient notations from Wang (2019) to make probabilistic
statements compact2.

DEFINITION 1.1. Let {Xn}1n=1
, {Yn}1n=1

be two sequences of random variables and
{rn}1n=1

✓ (0,+1) be deterministic. We write

Xn =OP(Yn; rn)

if there exists a constant C1 > 0 such that

8C > 0, 9C 0
> 0 and N > 0, s.t. P(|Xn|�C

0|Yn|)C1e
�Crn , 8 n�N.

We write Xn = oP(Yn; rn) if Xn = OP(wnYn; rn) holds for some deterministic sequence
{wn}1n=1

tending to zero.

Both the new notation OP(·; ·) and the conventional one OP(·) help avoid dealing with
tons of unspecified constants in operations. Moreover, the former is more informative as it
controls the convergence rate of exceptional probabilities. This is particularly useful when
we take union bounds over a growing number of random variables. If {Yn}1n=1

are positive
and deterministic, then Xn = OP(Yn; 1) is equivalent to Xn = OP(Yn). Similar facts hold
for oP(·; ·) as well.

2. Main results.

2In the reference above, OP(·; ·) and oP(·; ·) appear as ÔP(·; ·) and ôP(·; ·). For simplicity we drop their hats
in this paper.
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2.1. Basic setup. Consider the signal-plus-noise model

xi = x̄i + zi 2R
d
, i 2 [n].(2.1)

For simplicity, we assume that the signals {x̄i}ni=1
are deterministic and the noises {zi}ni=1

are the only source of randomness. The results readily extend to the case where the signals
are random but independent of the noises.

Define the hollowed Gram matrix G 2 R
n⇥n of samples {xi}ni=1

through Gij =
hxi,xji1{i 6=j}, and the Gram matrix Ḡ 2 R

n⇥n of signals {x̄i}ni=1
through Ḡij = hx̄i, x̄ji.

Denote the eigenvalues of G by �1 � · · ·� �n and their associated eigenvectors by {uj}nj=1
.

Similarly, we define the eigenvalues �̄1 � · · · � �̄n and eigenvectors {ūj}nj=1
of Ḡ. Since

Ḡ = X̄X̄
> ⌫ 0, we have �̄j � 0 for all j 2 [n]. By convention, �0 = �̄0 = +1 and

�n+1 = �̄n+1 = �1. Some groups of eigenvectors may only be defined up to orthonormal
transforms as we allow for multiplicity of eigenvalues.

Let s and r be two integers in [n] satisfying 0 s n� r. Define U = (us+1, · · · ,us+r),
Ū = (ūs+1, · · · , ūs+r), ⇤= diag(�s+1, · · · ,�s+r) and ⇤̄= diag(�̄s+1, · · · , �̄s+r). In order
to study how U relates to Ū , we adopt the standard notion of eigen-gap (Davis and Kahan,
1970):

�̄=min{�̄s � �̄s+1, �̄s+r � �̄s+r+1}.(2.2)

This is the separation between the set of target eigenvalues {�̄s+j}rj=1
and the rest, reflect-

ing the signal strength. Define  = �̄1/�̄, which plays the role of condition number. Most
importantly, we use a parameter � to characterize the signal-to-noise ratio and impose the
regularity assumptions below. It is worth mentioning that we consider the asymptotic setting
n!1 throughout the paper to make the results clean and easy to read. They can be easily
translated to finite-sample versions similar to those in Abbe et al. (2020), since our tools such
as concentration inequalities and spectral perturbation bounds are non-asymptotic by nature.

ASSUMPTION 2.1 (Incoherence). As n!1 we have

µ

r
r

n
 � ⌧ 1

µ
where µ=max

⇢
kX̄k2,1
kX̄k2

r
n

r
, 1

�
.

ASSUMPTION 2.2 (Sub-Gaussianity). {zi}ni=1
are independent, zero-mean random vec-

tors in R
d. There exists a constant ↵> 0 and ⌃⌫ 0 such that Eehu,zii  e

↵2h⌃u,ui/2 holds
for all u 2R

d and i 2 [n].

ASSUMPTION 2.3 (Concentration).
p
nmax{(k⌃k2/�̄)1/2, k⌃kF/�̄} �.

By construction, X̄ = (x̄1, · · · , x̄n)> and kX̄k2,1 = maxi2[n] kx̄ik2. Assumption 2.1
regulates the magnitudes of {kx̄ik2}ni=1

in order to control the bias induced by the hollowing
step. It naturally holds under various mixture models. The incoherence parameter µ is similar
to the usual definition (Candès and Recht, 2009) except for the facts that X̄ does not have or-
thonormal columns and r is not its rank. When r = 1, we have µ=

p
nkX̄k2,1/kX̄k2 � 1.

Assumption 2.2 is a standard one on sub-Gaussianity (Koltchinskii and Lounici, 2017). Here
{zi}ni=1

are independent but may not have identical distributions, which allows for het-
eroscedasticity. Assumption 2.3 governs the concentration of G around its population version
Ḡ. To gain some intuition, we define Z = (z1, · · · ,zn)> 2R

n⇥d and observe that

G=H[(X̄ +Z)(X̄ +Z)>] =H(X̄X̄
>) +H(X̄Z

> +ZX̄
>) +H(ZZ

>)

= X̄X̄
> + (X̄Z

> +ZX̄
>) +H(ZZ

>)� D̄,
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where D̄ is the diagonal part of X̄X̄
> + X̄Z

> +ZX̄
>. Hence

kG� Ḡk2  kX̄Z
> +ZX̄

>k2 + kH(ZZ
>)k2 +max

i2[n]
|(X̄X̄

> + X̄Z
> +ZX̄

>)ii|.

The individual terms above are easy to work with. For instance, we may control kH(ZZ
>)k2

using concentration bounds for random quadratic forms such as Hanson-Wright-type inequal-
ities (Chen and Yang, 2021a). The spectral and Frobenius norms of ⌃ collectively character-
ize the effective dimension of the noise distribution. That gives the reason why Assumption
2.3 is formulated as it is. It turns out that Assumptions 2.1, 2.2 and 2.3 lead to a matrix con-
centration bound kG� Ḡk2 =OP(��̄; n), paving the way for eigenvector analysis. Hence
�
�1 measures the signal strength, similar to the quantity in Abbe et al. (2020).

2.2. `2,p analysis of eigenspaces. Note that {us+j}rj=1
and {ūs+j}rj=1

are only identi-
fiable up to sign flips, and things become even more complicated if some eigenvalues are
identical. To that end, we need to align U with Ū using certain orthonormal transform. De-
fine H = U

>
Ū 2 R

r⇥r and let Ũ⇤̃Ṽ
> denote its singular value decomposition, where

Ũ , Ṽ 2 Or⇥r and ⇤̃ 2 R
r⇥r is diagonal with nonnegative entries. The orthonormal matrix

Ũ Ṽ
>, denoted by the matrix sign function sgn(H) in the literature (Gross, 2011), is the best

rotation matrix that aligns U with Ū and will play an important role throughout our analysis.
In addition, define Z = (z1, · · · ,zn)> 2R

n⇥d as the noise matrix. Recall that for A 2R
n⇥r

with row vectors {Ai}ni=1
, the `2,p norm is

kAk2,p =
✓ nX

i=1

kAikp2
◆1/p

.

THEOREM 2.1. Suppose that Assumptions 2.1, 2.2 and 2.3 hold. As long as 2  p .
(µ�)�2, we have

kU sgn(H)�GŪ⇤̄�1k2,p = oP(kŪk2,p; p),

kU sgn(H)� [Ū +H(ZX
>)Ū⇤̄�1]k2,p = oP(kŪk2,p; p),

kU sgn(H)k2,p =OP(kŪk2,p; p).

In addition, if 3/2� ⌧ 1, then

kU⇤1/2 sgn(H)�GŪ⇤̄�1/2k2,p = oP(kŪk2,pk⇤̄1/2k2; p),

kU⇤1/2 sgn(H)� [Ū⇤̄1/2 +H(ZX
>)Ū⇤̄�1/2]k2,p = oP(kŪk2,pk⇤̄1/2k2; p).

The first equation in Theorem 2.1 asserts that although U is a highly nonlinear function of
G, it can be well-approximated by a linear form GŪ⇤̄�1 up to an orthonormal transform.
This can be understood from the hand-waving deduction:

U =GU⇤�1 ⇡GŪ⇤̄�1
.

The second equation in Theorem 2.1 talks about the difference between U and its population
version Ū . Ignoring the orthonormal transform sgn(H), we have that for a large fraction of
m 2 [n], the following entrywise approximation holds

Um ⇡ [Ū +H(ZX
>)Ū⇤̄�1]m = Ūm +

⌧
zm,

X

j 6=m

xjŪj⇤̄
�1

�
.(2.3)

If we keep {xj}j 6=m fixed, then the spectral embedding Um for the m-th sample is roughly
linear in zm or equivalently xm itself. This relation is crucial for our analysis of spectral
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clustering algorithms. The third equation in Theorem 2.1 relates to the delocalization property
of U to that of Ū , showing that the mass of U is spread out across its rows as long as Ū

behaves in a similar way.
Many spectral methods use the rows of U 2 R

n⇥r to embed the samples {xi}ni=1
✓ R

d

into R
r (Shi and Malik, 2000; Ng, Jordan and Weiss, 2002) and perform downstream tasks.

By precisely characterizing the embedding, the first three equations in Theorem 2.1 facilitate
their analysis under statistical models. In PCA, however, the embedding is defined by PC
scores. Recall that the PCs are eigenvectors of the covariance matrix 1

nX
>
X 2 R

d⇥d and
PC scores are derived by projecting the data onto them. Therefore, the PC scores in our
setting correspond to the rows of U⇤1/2 rather than U . The last two equations in Theorem
2.1 quantify their behavior.

Theorem 2.1 is written to be easily applicable. It forms the basis of our applications in
Sections 3 and 4. General results under relaxed conditions are given by Theorem B.1.

Let us now gain some intuition about the `2,p error metric. For large p, kAk2,p is small if
a vast majority of the rows have small `2 norms, but there could be a few rows that are large.
Roughly speaking, the number of those outliers is exponentially small in p. We illustrate
this using a toy example with r = 1, i.e., A = x 2 R

n is a vector and k · k2,p = k · kp. If
kxkp  "k1nkp for some "> 0, then Markov’s inequality yields

1

n
|{i : |xi|> t"}| n

�1kxkpp
(t")p

 n
�1

"
pk1nkpp

(t")p
= t

�p
, 8t > 0.

Larger p implies stronger bounds. In particular, the following fact states that when p& logn,
an upper bound in `2,p yields one in `2,1, controlling all the row-wise errors simultaneously.

FACT 2.1. kxk1  kxkc logn  e
1/ckxk1 for any n 2 Z+, x 2R

n, c > 0.

Fact 2.1 immediately follows from the relation

kxk1  kxkp =
✓ nX

i=1

|xi|p
◆1/p

 (nkxkp1)1/p = n
1/pkxk1, 8p� 1.

Recall that in Theorem 2.1 we require µ� ! 0 (Assumption 2.1) but the convergence rate can
be arbitrarily slow. The largest p is of order (µ�)�2. Now we consider a stronger condition
µ� . 1/

p
logn so that we can take p⇣ logn and obtain `2,1 approximation bounds.

COROLLARY 2.1. Suppose that Assumptions 2.1, 2.2 and 2.3 hold. As long as µ� .
1/
p
logn, we have

kU sgn(H)�GŪ⇤̄�1k2,1 = oP(kŪk2,1; logn),

kU sgn(H)� [Ū +H(ZX
>)Ū⇤̄�1]k2,1 = oP(kŪk2,1; logn),

kU sgn(H)k2,1 =OP(kŪk2,1; 1).

In addition, if 3/2� ⌧ 1, then

kU⇤1/2 sgn(H)�GŪ⇤̄�1/2k2,1 = oP(kŪk2,1k⇤̄1/2k2; logn),

kU⇤1/2 sgn(H)� [Ū⇤̄1/2 +H(ZX
>)Ū⇤̄�1/2]k2,1 = oP(kŪk2,1k⇤̄1/2k2; logn).

However, p cannot be arbitrarily large in general. When the signal is weak, we can no
longer obtain uniform error bounds as the above and should allow for exceptions. The quan-
tity (µ�)�2 in Theorem 2.1 measures the signal strength, putting a cap on the largest p we
can take. That makes the results adaptive and superior to the `2,1 ones in (Abbe et al., 2020).
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2.3. Extension to Hilbert spaces. Since G 2 R
n⇥n is constructed purely based on pair-

wise inner products of samples, the whole procedure can be extended to kernel settings.
Here we briefly discuss the kernel PCA (Schölkopf, Smola and Müller, 1997). Suppose that
{xi}ni=1

are samples from some space X and K(·, ·) : X ⇥X !R is a symmetric and pos-
itive semi-definite kernel. The kernel PCA is PCA based on a new Gram matrix K 2 R

n⇥n

with Kij =K(xi,xj). PCA is a special case of kernel PCA with X = R
d and K(x,y) =

x
>
y. Commonly-used nonlinear kernels include the Gaussian kernel K(x,y) = e

�⌘kx�yk2
2

with ⌘ > 0 and polynomial kernel. They offer flexible nonlinear embedding techniques which
have achieved great success in machine learning (Cristianini and Shawe-Taylor, 2000).

According to the Moore-Aronszajn Theorem (Aronszajn, 1950), there exists a reproduc-
ing kernel Hilbert space H with inner product h·, ·i and a function � : X ! H such that
K(x,y) = h�(x),�(y)i for any x,y 2 X . Hence, kernel PCA of {xi}ni=1

✓ X is de facto
PCA of transformed data {�(xi)}ni=1

✓H. The transform � can be rather complicated since
H has infinite dimensions in general. Fortunately, the inner products {h�(xi),�(xj)i} in H

can be conveniently computed in the original space X , which is Kij .
Motivated by the kernel PCA, we extend the basic setup to Hilbert spaces. Let H be a real

separable Hilbert space with inner product h·, ·i, norm k · k, and orthonormal bases {hj}.

DEFINITION 2.1 (Basics of Hilbert spaces). A linear operator A :H!H is said to be
bounded if its operator norm kAkop = supkuk=1 kAuk is finite. Define L(H) as the collec-
tion of all bounded linear operators over H. For any A 2 L(H), we use A

⇤ to refer to its
adjoint operator and let Tr(A) =

P
jhAhj ,hji. Define

S+(H) = {A 2 L(H) : A=A
⇤
, hAx,xi � 0, 8x 2H and Tr(A)<1}.

Any A 2 S+(H) is said to be positive semi-definite. We use kAkHS =
p

Tr(A⇤A) =
(
P

j kAhjk2)1/2 to refer to its Hilbert-Schmidt norm, and define A1/2 2 T (H) as the unique
operator such that A1/2

A
1/2 =A.

REMARK 1. When H=R
d, we have L(H) =R

d⇥d, Tr(A) =
Pd

i=1
Aii, k · kop = k · k2

and k · kHS = k · kF. Further, S+(H) consists of all d⇥ d positive semi-definite matrices.

We now generalize model (2.1) to the following one in H:

xi = x̄i + zi 2H, i 2 [n].(2.4)

When H = R
d, the data matrix X = (x1, · · · ,xn)> 2 R

n⇥d corresponds to a linear trans-
form from R

d to R
n. For any general H, we can always define X as a bounded linear

operator from H to R
n through its action h 7! (hx1,hi, · · · , hxn,hi). With slight abuse

of notation, we formally write X = (x1, · · · ,xn)>, use kXkop to refer to its norm, let
kXk2,1 =maxi2[n] kxik, and do the same for X̄ and Z . We generalize Assumptions 2.1,
2.2 and 2.3 accordingly.

ASSUMPTION 2.4 (Incoherence). As n!1 we have

µ

r
r

n
 � ⌧ 1

µ
where µ=max

⇢
kX̄k2,1
kX̄kop

r
n

r
, 1

�
.

ASSUMPTION 2.5 (Sub-Gaussianity). {zi}ni=1
are independent, zero-mean random vec-

tors in H. There exists a constant ↵ > 0 and an operator ⌃ 2 T (H) such that Eehu,zii 
e
↵2h⌃u,ui/2 holds for all u 2H and i 2 [n].
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ASSUMPTION 2.6 (Concentration).
p
nmax{(k⌃kop/�̄)1/2, k⌃kHS/�̄} �.

Again, Assumption 2.4 on incoherence holds for various mixture models. Assumption
2.5 appears frequently in the study of sub-Gaussianity in Hilbert spaces (Koltchinskii and
Lounici, 2017). For kernel PCA, Assumption 2.5 automatically holds when the kernel is
bounded, i.e. K(x,x)C for some constant C . Assumption 2.6 naturally arises in the study
of Gram matrices and quadratic forms in Hilbert spaces (Chen and Yang, 2021a). The same
results in Theorem 2.1 continue to hold under the Assumptions 2.4, 2.5 and 2.6. The proof is
in Appendix C.

3. Mixture models.

3.1. Sub-Gaussian mixture model. Sub-Gaussian and Gaussian mixture models serve as
testbeds for clustering algorithms. Maximum likelihood estimation requires well-specified
models and often involves non-convex or combinatorial optimization problems that are hard
to solve. The recent years have seen a boom in the study of efficient approaches. The Lloyd’s
algorithm (Lloyd, 1982) with good initialization and its variants are analyzed under certain
separation conditions (Kumar and Kannan, 2010; Lu and Zhou, 2016; Ndaoud, 2018; Gao
and Zhang, 2019). Semi-definite programming (SDP) yields reliable results in more general
scenarios (Awasthi et al., 2015; Mixon, Villar and Ward, 2017; Royer, 2017; Fei and Chen,
2018; Giraud and Verzelen, 2019; Chen and Yang, 2021a,b). Spectral methods are more effi-
cient in terms of computation and have attracted much attention (Vempala and Wang, 2004;
Cai and Zhang, 2018; Löffler, Zhang and Zhou, 2019; Srivastava, Sarkar and Hanasusanto,
2019). However, much less is known about spectral methods compared with SDP.

We apply the `p theory of PCA to spectral clustering under a sub-Gaussian mixture model
in a Hilbert space H. Suppose that we collect samples {xi}ni=1

✓H from a mixture model

xi =µyi + zi, i 2 [n].(3.1)

Here {µj}Kj=1
✓ H are cluster centers, {yi}ni=1

✓ [K] are true labels, and {zi}ni=1
✓ H are

noise vectors satisfying Assumption 2.5. For simplicity, we assume that the centers and labels
are deterministic. A conditioning argument extends the results to the case where they are
independent of {zi}ni=1

. Heteroscedasticity is allowed, as the covariance matrices of {zi}ni=1

may be different as long as they are uniformly dominated by some ⌃. The goal of clustering
is to recover {yi}ni=1

from {xi}ni=1
. Below is the spectral algorithm under investigation, based

on PCA and approximate k-means. Here r 2 [K] is the target dimension of embedding.

1. Compute the r leading eigenvalues {�j}rj=1
and their associated eigenvectors {uj}rj=1

of
the hollowed Gram matrix H(XX

>). Let U = (u1, · · · ,ur) and ⇤= diag(�1, · · · ,�r).
2. Conduct (1 + ")-approximate k-means clustering on the rows of U⇤1/2, getting

{µ̂j}Kj=1
✓R

r and {ŷi}ni=1
✓ [K] such that

nX

i=1

k(U⇤1/2)i � µ̂ŷi
k22  (1 + ") min

{eµj}K
j=1✓RK

{eyi}n
i=1✓[K]

⇢ nX

i=1

k(U⇤1/2)i � eµeyi
k22
�
.

Return {ŷi}ni=1
as the estimated labels.

The rows of the PC score matrix U⇤1/2 embed the n samples into R
r , which greatly re-

duces the dimensionality. When "= 0, ({µ̂j}Kj=1
,{ŷi}ni=1

) is an exact solution to the k-means
program but may be NP-hard to compute in the worst case. Fortunately, for any constant "> 0



AN `p THEORY OF PCA 11

there exists a linear-time algorithm that returns a (1+ ")-approximate solution (Kumar, Sab-
harwal and Sen, 2004). In that case, the spectral algorithm above is computationally efficient
as both steps run in nearly linear time. Our theory handles any constant "� 0.

Define the misclassification rate of ŷ 2 [K]n as

M(ŷ,y) = n
�1 min

⌧2SK

|{i 2 [n] : ŷi 6= ⌧(yi)}|.(3.2)

Here SK is the set of all permutations of [K]. We will derive sharp bounds on EM(ŷ,y). To
facilitate presentation and highlight key ideas, we assume that K,r are given and make some
regularity assumptions. Estimation of K and r in general scenarios is left for future work.

ASSUMPTION 3.1 (Regularities). Let B 2R
K⇥K be the Gram matrix of {µj}Kj=1

with
Bij = hµi,µji. Suppose that rank(B) = r and there is a constant 0 that bounds

n

mink2[K] |{i 2 [n] : yi = k}| ,
�1(B)

�r(B)
and

maxj2[K] kµjk
mini 6=j kµi �µjk

from above. Here �j(·) denotes the j-th largest eigenvalue of a symmetric matrix.

The lower bound on the smallest cluster forces K  0. Hence K is a constant and all
clusters have comparable sizes. The spectral assumption on B holds if {µj}Kj=1

span a sub-
space of dimension r K but do not concentrate near any smaller subspace. Such condition
is commonly used in the study of spectral methods for mixture models (Hsu and Kakade,
2013). The last regularity condition in Assumption 3.1 is likely an artifact of proof. Our cur-
rent results on the empirical embedding U⇤1/2 (Theorem 2.1) controls its deviation from the
truth using k⇤̄k2, which is related to maxj2[K] kµjk. We need such deviation to be smaller
than the minimum separation mini 6=j kµi�µjk in order to ensure the accuracy of clustering.

Before presenting the general results, we illustrate Assumption 3.1 by two examples. Sup-
pose that H= R

d for d�K = 3 and the 3 clusters are equally-sized. When µj = ej for all
j 2 {1,2,3}, we have B = I3, r = 3 and 0 = 3. When µ1 = e1, µ2 = (�1/2,

p
3/2,0)>

and µ3 = (�1/2,�
p
3/2,0)>, we have B = (3/2)I3 � (1/2)13⇥3, r = 2 and 0 = 3.

THEOREM 3.1. Consider the mixture model (3.1). Let Assumptions 2.5, 3.1 hold and
"� 0 be a constant. Define s̄=mini 6=j kµi �µjk and

SNR=min

⇢
s̄
2

k⌃kop
,

ns̄
4

k⌃k2
HS

�
.(3.3)

There exist constants C > 0 and c > 0 such that the followings hold:

1. If SNR>C logn, then limn!1 P[M(ŷ,y) = 0] = 1;
2. If 1⌧ SNRC logn, then limsupn!1 SNR�1 logEM(ŷ,y)<�c.

The proof is in Appendix D.1. Theorem 3.1 asserts that the spectral algorithm exactly
recovers all the labels with high probability when SNR exceeds some constant multiple of
logn. When SNR is not that large but still diverges, we have an exponential bound e

�⌦(SNR)

for the misclassification rate. To understand why the quantity SNR in (3.3) measures the
signal-to-noise ratio, note that

SNR⇣
minj 6=k kµj �µkk2

k⌃kop
·min

⇢
1,

minj 6=k kµj �µkk2

k⌃kop
· n

r(⌃)

�
.(3.4)

Here r(⌃) = k⌃k2
HS

/k⌃k2op captures the effective rank of ⌃. In the isotropic case with
H = R

d and ⌃ = Id, we have r(⌃) = d. Thus SNR characterizes the strength of signal
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relative to the noise, together with the effect of dimension. It is equivalent to the signal-to-
noise ratio in Giraud and Verzelen (2019) and Chen and Yang (2021a) when K =O(1).

The SNR differs from the classical notion of signal-to-noise ratio

minj 6=k kµj �µkk2

k⌃kop
.(3.5)

frequently used for quantifying the misclassification rates (Lu and Zhou, 2016; Fei and Chen,
2018; Löffler, Zhang and Zhou, 2019; Srivastava, Sarkar and Hanasusanto, 2019; Gao and
Zhang, 2019). Those results hinge on an extra assumption

minj 6=k kµj �µkk2

k⌃kop
�max

⇢
1,

r(⌃)

n

�
,(3.6)

or the one with � replaced by &. In that case, (3.4) shows that our SNR is equivalent to
the classical one in (3.5). The error bound EM(ŷ,y) = e

�⌦(SNR) and the condition SNR=
⌦(logn) for exact recovery in Theorem 3.1 are optimal (Fei and Chen, 2018).

In general, our assumption SNR� 1 in Theorem 3.1 translates to

minj 6=k kµj �µkk2

k⌃kop
�max

⇢
1,

r
r(⌃)

n

�
.(3.7)

It is weaker than (3.6) when the noise has high effective dimensions r(⌃)� n.
For the sub-Gaussian mixture model (3.1) with the regularity Assumption 3.1, the results

in Theorem 3.1 are the best available in the literature. They have only been established for an
SDP relaxation of k-means under sub-Gaussian mixture models in Euclidean spaces (Giraud
and Verzelen, 2019) and Hilbert spaces (Chen and Yang, 2021a). Our analysis of spectral
method is powered by the `2,p approximation of the PC score matrix U⇤1/2 in Theorem 2.1.
It would be interesting to precisely characterize the constants C and c in Theorem 3.1, relax
the regularity conditions in Assumption 3.1, and investigate the optimality of spectral method
in more general regimes.

Löffler, Zhang and Zhou (2019) study the spectral algorithm without the hollowing step
under the isotropic Gaussian mixture model, with H = R

d, ⌃ = Id and {zi}ni=1
being

i.i.d. from N(0,Id). They prove an error bound that is exponential in minj 6=k kµj � µkk2,
with a sharp constant factor in the exponent. However, as we mentioned above, they require
a strong condition (3.6). On the other hand, our Theorem 3.1 covers a much broader class of
sub-Gaussian mixtures in Hilbert spaces. It only involves the effective dimension instead of
the ambient one, which is possibly infinite. Our requirement (3.7) is weaker than theirs.

3.2. Gaussian mixture model. The symmetries and other structural properties of Gaus-
sian mixture models allow for more precise characterizations than the above. While a main
focus of interest is parameter estimation by likelihood-based methods (Dempster, Laird and
Rubin, 1977) and methods of moments (Pearson, 1894), the problem of clustering is less ex-
plored. Recently there is a surge of interest in sharp statistical guarantees, mostly under the
isotropic Gaussian mixture model (Lu and Zhou, 2016; Cai and Zhang, 2018; Ndaoud, 2018;
Löffler, Zhang and Zhou, 2019; Chen and Yang, 2021b). In another line of study, sparsity as-
sumptions are adopted for high-dimensional regimes (Azizyan, Singh and Wasserman, 2013;
Jin and Wang, 2016). We study spectral clustering under the following model.

DEFINITION 3.1 (Gaussian mixture model). For y 2 {±1}n and µ 2R
d with n,d� 2,

we write {xi}ni=1
⇠GMM(µ,y) if

xi = yiµ+ zi 2R
d
, i 2 [n],(3.8)

and {zi}ni=1
✓R

d are i.i.d. N(0,Id) vectors.
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It is natural to use the spectral estimator ŷ = sgn(u1) to recover y, where u1 is the leading
eigenvector of G=H(XX

>). This method can be viewed as a special case of the spectral
algorithm in Section 3.1 that uses k-means for two classes and symmetric centroids. To gauge
the misclassification rate of ŷ, define

M(ŷ,y) = min
s=±1

|{i 2 [n] : ŷi 6= syi}|.(3.9)

Note that for the Gaussian mixture model (3.8), x̄i = yiµ, X̄ = yµ
> and Ḡ = X̄X̄

> =
kµk2

2
yy

>. Then �̄1 = nkµk2
2

and ū1 = y/
p
n.

THEOREM 3.2. Let {xi}ni=1
⇠GMM(µ,y) and n!1. Define

SNR=
kµk4

2

kµk2
2
+ d/n

.(3.10)

1. If SNR> (2 + ") logn for some constant "> 0, then limn!1 P[M(ŷ,y) = 0] = 1;
2. If 1⌧ SNR 2 logn, then limsupn!1 SNR�1 logEM(ŷ,y)�1/2.

Theorem 3.2 characterizes the spectral estimator with explicit constants. Here we do not
impose any specific assumption on the dimension d = dn so long as SNR ! 1. It may
be bounded or diverge at any rate. When SNR exceeds 2 logn, sgn(u1) exactly recovers
all the labels (up to a global sign flip) with high probability. When 1⌧ SNR 2 logn, the
misclassification rate is bounded from above by e

�SNR/[2+o(1)]. According to Ndaoud (2018),
both results are optimal in the minimax sense. The proof of Theorem 3.2 is in Appendix E.2.

Cai and Zhang (2018) prove that SNR!1 is necessary for any estimator to achieve van-
ishingly small misclassification rate and derive an upper bound EM(sgn(ũ1),y). 1/SNR
for ũ1 being the leading eigenvector of the unhollowed Gram matrix XX

>. Ndaoud (2018)
obtains exact recovery guarantees as well as an optimal exponential error bound for an itera-
tive algorithm starting from sgn(u1). Our analysis shows that the initial estimator is already
good enough and no refinement is needed. Chen and Yang (2021b) study the information
threshold for exact recovery in multi-class setting and use an SDP to achieve that.

The SNR in (3.10) is closely related to (indeed equivalent to in the order of magnitude)
that in (3.4). One can immediately see this by setting µ1 =µ, µ2 =�µ and ⌃= Id in (3.4).
The SNR precisely quantifies the signal-to-noise ratio for clustering and is always dominated
by the classical one kµk2

2
. When d� n, the condition SNR!1 is equivalent to

kµk2 � (d/n)1/4.(3.11)

This is weaker than the commonly-used assumption

kµk2 �
p

d/n(3.12)

for clustering (Lu and Zhou, 2016; Löffler, Zhang and Zhou, 2019), under which SNR is
asymptotically equivalent to kµk2

2
. Their discrepancy reflects an interesting high-dimensional

phenomenon.
For the Gaussian mixture model in Definition 3.1, parameter estimation and clustering

amount to recovering µ 2R
d and y 2 {±1}n, respectively. A good estimate of µ yields that

of y. Hence clustering should be easier than parameter estimation. The difference becomes
more significant when d � n as clustering targets fewer unknowns. To see this, we write
X = (x1, · · · ,xn)> 2R

n⇥d and observe that

X = yµ
> +Z,

where Z = (z1, · · · ,zn)> ✓ R
n⇥d has i.i.d. N(0,1) entries. Clustering and parameter esti-

mation correspond to estimating the left and right singular vectors of the signal matrix EX .
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According to the results by Cai and Zhang (2018) on singular subspace estimation, (3.11)
and (3.12) are sharp conditions for consistent clustering and parameter estimation. They en-
sure concentration of the Gram matrix XX

> and the covariance matrix 1

nX
>
X . When

(d/n)1/4 ⌧ kµk2 ⌧
p

d/n, consistent clustering is possible even without consistent esti-
mation of the model parameter µ. Intuitively, there are many discriminative directions that
can tell the classes apart but they are not necessarily aligned with the direction of µ.

Below we outline the proof of Theorem 3.2. The following `p approximation result for the
regime 1⌧ SNR. logn helps illustrate main ideas. Its proof is deferred to Appendix E.3.

THEOREM 3.3. Under the GMM model in Definition 3.1 with n!1 and 1⌧ SNR.
logn, there exist "n ! 0 and positive constants C,N such that

P(ku1 �Gū1/�̄1kSNR < "nkū1kSNR)> 1�Ce
�SNR

, 8n�N.

In a hand-waving way, the analysis right after (1.6) in the introduction suggests that the
expected misclassification rate of sgn(u1) differs from that of sgn(Gū1/�̄1) by at most
O(e�SNR). Then, it boils down to studying sgn(Gū1/�̄1). Note that

(Gū1/�̄1)i / (Gy)i =
nX

j=1

[H(XX
>)]ijyj =

X

j 6=i

hxi,xjyji= (n� 1)hxi, µ̂
(�i)i, 8i 2 [n].

Here µ̂
(�i) = 1

n�1

P
j 6=ixjyj is an estimate of µ based on the samples {xj}j 6=i and their

labels {yj}j 6=i. It is straightforward to prove

EM(sgn(Gū1/�̄1),y) =
1

n

nX

i=1

P[sgn(hxi, µ̂
(�i)i) 6= yi] e

�SNR/[2+o(1)]

and get the same bound for EM(sgn(u1),y). When SNR > (2 + ") logn, this leads to
an n

�(1+"/2) upper bound for the misclassification rate, which implies exact recovery
with high probability as any misclassified sample contributes n

�1 to the error rate. When
SNR 2 logn, we get the second part in Theorem 3.2. The proof is then finished.

The quantity sgn(hxi, µ̂
(�i)i) is the prediction of yi by linear discriminant analysis (LDA)

given features {xi}ni=1
and additional labels {yj}j 6=i. It resembles an oracle (or genie-aided)

estimator that is usually linked to the fundamental limits of clustering (Abbe, Bandeira and
Hall, 2016; Zhang and Zhou, 2016), which plays an important role in our analysis as well.
By connecting u1 with Gū1/�̄1 and thus {hxi, µ̂

(�i)i}ni=1
, Theorem 3.3 already hints the

optimality of sgn(u1). Our analysis may also apply to spectral algorithms in similar problems
such as the bipartite stochastic block model (Ndaoud, Sigalla and Tsybakov, 2021).

Perhaps surprisingly, both the (unsupervised) spectral clustering and (supervised) LDA
achieve the minimax optimal misclassification error e

�SNR/[2+o(1)]. The missing labels
do not hurt much. This phenomenon is also observed by Ndaoud (2018). On the other
hand, the Bayes classifier sgn(hµ,xi) given the true parameter µ achieves error rate
1 � �(kµk2), where � is the cumulative distribution function of N(0,1). As kµk2 ! 1,
this is e�kµk2

2/[2+o(1)] and it is always superior to the minimax error without the knowledge
of µ. From there we get the followings for spectral clustering and LDA.

• If kµk2 �
p

d/n, then SNR = kµk2
2
[1 + o(1)] and both estimators achieve the Bayes

error exponent;
• If kµk2 C

p
d/n for some constant C > 0, then SNR kµk2

2
/(1+C

�2) and both esti-
mators achieve the minimax optimal exponent that is worse than the Bayes error exponent.

4. Contextual stochastic block model.
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4.1. Problem setup. Contextual network analysis concerns discovering interesting struc-
tures such as communities in a network with the help of node attributes. Large-scale appli-
cations call for computationally efficient procedures incorporating the information from both
sources. For community detection in the contextual setting, various models and algorithms
have been proposed and analyzed (Zhang, Levina and Zhu, 2016; Weng and Feng, 2016;
Binkiewicz, Vogelstein and Rohe, 2017; Ma and Ma, 2017; Deshpande et al., 2018; Mele
et al., 2019; Yan and Sarkar, 2020). How to quantify the benefits of aggregation is a funda-
mental and challenging question. We study community detection under a canonical model
for contextual network data and prove the optimality of a simple spectral method.

To begin with, we present a binary version of the stochastic block model (Holland, Laskey
and Leinhardt, 1983) that plays a central role in statistical network analysis (Abbe, 2017).
We use a label vector y = (y1, · · · , yn)> 2 {±1}n to encode the block (community) mem-
berships of nodes. For any pair of nodes i and j, we connect them with probability ↵ if they
are from the same block. Otherwise, the connection probability is �.

DEFINITION 4.1 (Stochastic Block Model). For n 2 Z+, y 2 {±1}n and 0 < ↵,� <

1, we write A ⇠ SBM(y,↵,�) if A 2 {0,1}n⇥n is symmetric, Aii = 0 for all i 2 [n],
{Aij}1i<jn are independent, and

P(Aij = 1) =

(
↵ if yi = yj

� if yi 6= yj
, 8i 6= j.

In addition to the network, we also observe an attribute vector xi 2 R
d of each node

i and postulate the Gaussian mixture model in Definition 3.1. Given the labels and other
parameters, the network A and node attributes {xi}ni=1

are assumed to be independent. We
borrow the name “contextual stochastic block model” from Deshpande et al. (2018). More
general versions can be found in Binkiewicz, Vogelstein and Rohe (2017), Deshpande et al.
(2018) and Yan and Sarkar (2020). In another line of research, the network A is generated
based on the covariates {xi}ni=1

(Weng and Feng, 2016; Ma and Ma, 2017; Mele et al., 2019).
For simplicity, we impose uniform priors on the label vector y and the direction of sepa-

ration vector µ. The two blocks are then approximately balanced.

DEFINITION 4.2 (Contextual Stochastic Block Model). For n 2 Z+, 0< ↵,� < 1, d�
2 and R> 0, we write (y,µ,A,{xi}ni=1

)⇠CSBM(n,d,↵,�,R) if

1. the label vector y and separation vector µ are independently generated from the uniform
distributions over {±1}n and {u 2R

d : kuk2 =R}, respectively;
2. given y and µ, the network A and attributes {xi}ni=1

are independently generated from
SBM(y,↵,�) and GMM(µ,y), respectively.

The goal of contextual community detection is to reconstruct y based on A and {xi}ni=1
.

We consider a commonly-used regime of the network where the connection probabilities ↵,
� scale like qn/n for some 1⌧ qn  logn and differ by a constant factor. When qn � logn,
one can easily recover the communities perfectly from A (Abbe, 2017). When qn =O(1), it
is not possible to achieve vanishingly small misclassification error (Zhang and Zhou, 2016).
We are interested in the intermediate regime 1⌧ qn  logn. Meanwhile, recall that SNR=
R

4
/(R2 + d/n) in (3.10) is the signal-to-noise ratio of the Gaussian mixture model. We take

SNR⇣ qn to ensure that the signal strengths of A and {xi}ni=1
are comparable. There is no

specific assumption on the dimension d= dn. It may be bounded or diverge at any rate.

ASSUMPTION 4.1 (Asymptotics). Let a, b and c be positive constants. (y,µ,A,{xi}ni=1
)⇠

CSBM(n,d,↵,�,R) with 1⌧ qn  logn, ↵= aqn
n , � = bqn

n and R
4
/(R2 + d/n) = cqn.
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4.2. An aggregated spectral estimator. On the one hand, Section 3.2 shows that the lead-
ing eigenvector u1 of the hollowed Gram matrix G=H(XX

>) is optimal for the Gaussian
mixture model. From now on we rename it as u1(G) to avoid ambiguity. On the other hand,
the second eigenvector u2(A) of A estimates the labels under the stochastic block model
(Abbe et al., 2020). To get some intuition, suppose that half of the entries in {yi}ni=1

are +1’s
and the others are �1’s so that 1>n y = 0. For such y, it is easy to see from

E(A|y) = ↵+ �

2
1n1

>
n +

↵� �

2
yy

>(4.1)

that its second eigenvector y/
p
n reveals the community structure. We propose an estimator

for the integrated problem by aggregating the two individual spectral estimators u2(A) and
u1(G). Without loss of generality, we assume hu2(A),u1(G)i � 0 to avoid cancellation.

Let us begin the construction. The ideal ‘estimator’

ŷ
genie

i = argmax
y=±1

P(yi = y|A,X,y�i).

is the best guess of yi given the network, attributes, and labels of all nodes (assisted by
Genie) except the i-th one. It is referred to as a genie-aided estimator or oracle estimator in
the literature and is closely related to fundamental limits in clustering (Abbe, Bandeira and
Hall, 2016; Zhang and Zhou, 2016), see Theorem F.3. To mimic ŷ

genie

i , we first approximate
its associated odds ratio.

LEMMA 4.1. Under Assumption 4.1, for each given i, we have
���� log

✓
P(yi = 1|A,X,y�i)

P(yi =�1|A,X,y�i)

◆
�
✓

log(a/b)A+
2

n+ d/R2
G

◆
y

�

i

����= oP(qn; qn).

The i-th coordinate of Ay corresponds to the log odds ratio log[P(yi = 1|A,y�i)/P(yi =
�1|A,y�i)] for the stochastic block model (Abbe, Bandeira and Hall, 2016). From
Aii = 0 we see that (Ay)i =

P
j 6=iAijyj tries to predict the label yi via majority voting

among the neighbors of node i. Similarly, (Gy)i relates to the log odds ratio log[P(yi =
1|X,y�i)/P(yi =�1|X,y�i)] for the Gaussian mixture model. The overall log odds ratio
is linked to a linear combination of Ay and Gy thanks to the conditional independence
between A and X in Definition 4.2. The proof of Lemma 4.1 can be found in Appendix F.2.

Intuitively, Lemma 4.1 reveals that

sgn

✓
log(a/b)Ay+

2

n+ d/R2
Gy

◆
⇡ (ŷgenie

1
, · · · , ŷgenien )>

The left-hand side still involves unknown parameters a/b, R and y. Once these unknowns
are consistently estimated, the substitution version of the left-hand side provides a valid es-
timator that mimics well the genie-aided estimator and hence is optimal. Heuristics of linear
approximation in Theorem 3.3 above and Abbe et al. (2020) suggest

u2(A)⇡Aū/�̄A and u1(G)⇡Gū/�̄G.

Here ū = y/
p
n, �̄A = n(↵ � �)/2 is the second largest (in absolute value) eigenvalue of

E(A|y) when ↵ 6= � and the two blocks are equally-sized, and �̄G = nR
2 is the leading

eigenvalue of Ḡ= X̄X̄
>. Hence

log(a/b)Ay+
2

n+ d/R2
Gy

⇡ log(a/b)
p
n�̄Au2(A) +

2

n+ d/R2

p
n�̄Gu1(G)
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/ n(↵� �)

2
log

✓
↵

�

◆
u2(A) +

2R4

R2 + d/n
u1(G),(4.2)

which yields a linear combination of u2(A) and u1(G). The coefficient in front of u1(G)
is twice the SNR in (3.10) for Gaussian mixture model. Analogously, we may regard
n(↵��)

4
log(↵/�) as a signal-to-noise ratio for the stochastic block model.

An legitimate estimator for y is obtained by replacing the unknown parameters ↵, � and
R in (4.2) by their estimates. When the two classes are balanced, i.e. y>1n = 0, (4.1) yields
�1[E(A|y)] = n(↵+�)/2 and �2[E(A|y)] = n(↵��)/2. Here �j(·) denotes the j-th largest
(in absolute value) eigenvalue of a real symmetric matrix. Hence,

n(↵� �)

2
log

✓
↵

�

◆
= �2[E(A|y)] log

✓
�1[E(A|y)] + �2[E(A|y)]
�1[E(A|y)]� �2[E(A|y)]

◆

⇡ �2(A) log

✓
�1(A) + �2(A)

�1(A)� �2(A)

◆
.

It can be consistently estimated using the plug-in method. Similarly, using �1(Ḡ) = nR
2, we

have
2R4

R2 + d/n
=

2[�1(Ḡ)/n]2

�1(Ḡ)/n+ d/n
⇡ 2�2

1
(G)

n�1(G) + nd
.

Based on these, we get an aggregated spectral estimator sgn(û) with

û= log

✓
�1(A) + �2(A)

�1(A)� �2(A)

◆
�2(A)u2(A) +

2�2

1
(G)

n�1(G) + nd
u1(G).(4.3)

Our estimator uses a weighted sum of two individual estimators without any tuning parame-
ter. When there are K > 2 communities, it is natural to compute spectral embeddings using
(K � 1) eigenvectors of A and G, respectively. One may apply Procrustes analysis (Wahba,
1965) to align the two embeddings and then use their linear combination for clustering. It
would be nice to develop a tuning-free procedure similar to the above.

Binkiewicz, Vogelstein and Rohe (2017) propose a spectral method based on a weighted
sum of the graph Laplacian matrix and XX

>. Yan and Sarkar (2020) develop an SDP using
a weighted sum of A and a kernel matrix of {xi}ni=1

. Deshpande et al. (2018) study a belief
propagation algorithm. Their settings are different from ours.

4.3. Analysis of the estimator when qn = logn. There are very few theoretical results on
the information gain in combining the network and node attributes. Binkiewicz, Vogelstein
and Rohe (2017) and Yan and Sarkar (2020) derive upper bounds for the misclassification
error that depend on both sources of information. However, those bounds are not tight and
cannot rigorously justify the benefits. Deshpande et al. (2018) use techniques from statistical
physics to derive an information threshold for weak recovery (i.e. better than random guess-
ing) in some regimes. The threshold is smaller than those for the stochastic block model and
the Gaussian mixture model. Their calculation is under the sparse regime where the max-
imum expected degree n(↵ + �)/2 of the network remains bounded as n goes to infinity.
They obtain a formal proof by taking certain large-degree limits. To our best knowledge, the
result below gives the first characterization of the information threshold for exact recovery
and provides an efficient method achieving it by aggregating the two pieces of information.

We now investigate the aggregated spectral estimator (4.3) under the Assumption 4.1 with
qn = logn. Our study shows that sgn(û) achieves the information threshold for exact recov-
ery as well as the optimal misclassification rate, both of which are better than those based on
a single form of data in terms of the mismatch M in (3.9). To state the results, define

I
⇤(a, b, c) =

(
p
a�

p
b)2 + c

2
.(4.4)
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THEOREM 4.1. Let Assumption 4.1 hold with qn = logn and a 6= b.

1. When I
⇤(a, b, c)> 1, we have limn!1 P[M(sgn(û),y) = 0] = 1.

2. When I
⇤(a, b, c)< 1, we have lim infn!1 P[M(ŷ,y)> 0]> 0 for any sequence of esti-

mators ŷ = ŷn(A,{xi}ni=1
).

Theorem 4.1 asserts that I⇤(a, b, c) quantifies the signal-to-noise ratio and the phase transi-
tion of exact recovery takes place at I⇤(a, b, c) = 1. When c= 0 (node attributes are uninfor-
mative), we have I

⇤(a, b,0) = (
p
a�

p
b)2/2; the threshold reduces to that for the stochastic

block model [|
p
a�

p
b|=

p
2 by Abbe, Bandeira and Hall (2016)]. Similarly, when a= b

(the network is uninformative), we have I
⇤(a, a, c) = c/2; the threshold reduces to that for

the Gaussian mixture model [c= 2 by Ndaoud (2018)]. The relation (4.4) indicates that com-
bining two sources of information adds up the powers of each part. The proof of Theorem
4.1 is deferred to Appendix F.5.

Figure 1 demonstrates the efficacy of our aggregated estimator sgn(û). The two experi-
ments use c = 0.5 and c = 1.5 respectively. We fix n = 500, d = 2000 and vary a (y-axis),
b (x-axis) from 0 to 8. For each parameter configuration (a, b, c), we compute the frequency
of exact recovery (i.e. sgn(û) =±y) over 100 independent runs. Light color represents high
chance of success. The red curves (

p
a�

p
b)2 + c= 2 correspond to theoretical boundaries

for phase transitions, which match the empirical results pretty well. Also, larger c implies
stronger signal in node attributes and makes exact recovery easier.

FIG 1. Exact recovery for CSBM: c= 0.5 (left) and c= 1.5 (right).

When I
⇤(a, b, c) < 1, exact recovery of y with high probability is no longer possible. In

that case, we justify the benefits of aggregation using misclassification rates, by presenting
an upper bound for sgn(û) as well as a matching lower bound for all possible estimators.
Their proofs can be found in Appendices F.6 and F.7.

THEOREM 4.2. Let Assumption 4.1 hold, qn = logn, a 6= b and I
⇤(a, b, c) 1. Then

limsup
n!1

q
�1

n logEM(sgn(û),y)�I
⇤(a, b, c).

THEOREM 4.3. Let Assumption 4.1 hold. For any sequence of estimators ŷ = ŷn(A,{xi}ni=1
),

lim inf
n!1

q
�1

n logEM(ŷ,y)��I
⇤(a, b, c).
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Theorems 4.2 and 4.3 imply that in the logn-regime, the aggregated spectral estimator
sgn(û) achieves the optimal misclassification rate:

EM(sgn(û),y) = n
�I⇤

(a,b,c)+o(1)
.

When c= 0, it reduces to the optimal rate n
�(

p
a�

p
b)2/2+o(1) for the stochastic block model

(Definition 4.1) and when a = b, the result reduces n
�c/2+o(1) for the Gaussian mixture

model (Definition 3.1), respectively. It is easy to show that they are achieved by u2(A)
(Abbe et al., 2020) and u1(G) (Theorem 3.2), which are asymptotically equivalent to our
aggregated estimator û in extreme cases c! 0 and a! b, respectively. In other words, our
result and procedure encompass those for the stochastic block model and Gaussian mixture
model as two specific examples.

4.4. A modified estimator for the general case. While Theorem 4.3 establishes a lower
bound e

�qn[I⇤
(a,b,c)+o(1)] for misclassification under Assumption 4.1 without restricting

qn = logn, our aggregated spectral estimator sgn(û) is only analyzed for the logn-regime.
If the network becomes sparser (qn ⌧ logn), the empirical eigenvalues �1(A) and �2(A)
no longer concentrate around ↵+�

2
and ↵��

2
(Feige and Ofek, 2005). The eigenvector anal-

ysis of u2(A) in Abbe et al. (2020) breaks down. Consequently, the estimator (4.3) fails to
approximate the (scaled) vector of log odds n�1/2 log(a/b)Ay+ n

�1/2 2

n+d/R2Gy.
Fortunately, the `p results for u1(G) in the current paper continue to hold, and ŷG =

sgn[u1(G)] faithfully recovers y. Hence, we need only to modify the first term in (4.3)
concerning the network A, which aims to approximate n

�1/2 log(a/b)Ay. To approximate
log(a/b), we resort to 1>A1/n ⇡ ↵+�

2
= (a+b)qn

n and yAy/n ⇡ ↵��
2

= (a�b)qn
n so that

a/b⇡ 1>A1+yAy
1>A1�yAy . Thus, we propose a new estimator sgn(ũ) with

ũ=
1p
n
log

✓
1>A1+ ŷ

>
GAŷG

1>A1� ŷ
>
GAŷG

◆
AŷG +

2�2

1
(G)

n�1(G) + nd
u1(G),(4.5)

where ŷG estimates y. The new estimator sgn(ũ) achieves the fundamental limit e�qn[I⇤
(a,b,c)+o(1)]

even if qn ⌧ logn. See Theorem 4.4 below and its proof in Appendix F.8.

THEOREM 4.4. Let Assumption 4.1 hold and a 6= b. We have

limsup
n!1

q
�1

n logEM(sgn(ũ),y)�I
⇤(a, b, c).

In addition, if qn = logn and I
⇤(a, b, c)> 1 then limn!1 P[M(sgn(ũ),y) = 0] = 1.

5. Proof ideas. To illustrate the key ideas behind the `p analysis in Theorem 2.1, we use
a simple rank-1 model

xi =µyi + zi 2R
d
, i 2 [n],(5.1)

where y = (y1, · · · , yn)> ✓ {±1}n and µ 2 R
d are deterministic; {zi}ni=1

are independent
and zi ⇠N(0,⌃i) for some ⌃i � 0. We assume further ⌃i � CId for all i 2 [n] and some
constant C > 0.

Model (5.1) is a heteroscedastic version of the Gaussian mixture model in Definition 3.1.
We have x̄i = yiµ, X̄ = (x̄1, · · · , x̄n)> = yµ

>, Ḡ= X̄X̄
> = kµk2

2
yy

>, �̄1 = nkµk2
2

and
ū1 = y/

p
n. For simplicity, we suppress the subscript 1 in u1, ū1, �1 and �̄1. The goal is to

show that for p that satisfies our technical condition,

min
c=±1

kcu�Gū/�̄kp = oP(kūkp; p).(5.2)

For simplicity, we assume that u is already aligned with Gū/�̄ and the optimal c above is 1.
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FIG 2. Benefits of hollowing. Presented are the components of true eigenvector y/
p
n (black, n = 100), the

leading eigenvectors u (red) and û (blue) of the Gram matrix and its hollowed version.

5.1. Benefits of hollowing. The hollowing procedure conducted on the Gram matrix has
been commonly used in high-dimensional PCA and spectral methods (Koltchinskii and Giné,
2000; Montanari and Sun, 2018; Ndaoud, 2018; Cai et al., 2021). When the noises {zi}ni=1

are strong and heteroscedastic, it drives G closer to Ḡ and thus ensures small angle between
u and ū. Such `2 proximity is the starting point of our refined `p analysis.

Observe that

hxi,xji= hx̄i, x̄ji+ hx̄i, z̄ji+ hzi, x̄ji+ hzi,zji,

Ehxi,xji= hx̄i, x̄ji+Ekzik221{i=j}.

Hence the diagonal and off-diagonal entries of the Gram matrix behave differently. In high-
dimensional and heteroscedastic case, the difference in noise levels {Ekzik22}ni=1

could have
a severe impact on the spectrum of Gram matrix XX

>. In particular, the following lemma
shows that the leading eigenvector of XX

> could be asymptotically perpendicular to that of
X̄X̄

>, while H(XX
>) is still faithful. The proof is in Appendix G.1.

LEMMA 5.1. Consider the model (5.1) with ⌃1 = 2Id and ⌃2 = · · · = ⌃n = Id. Let
û and u be the leading eigenvectors of the Gram matrix XX

> and its hollowed version
H(XX

>). Suppose that n ! 1 and (d/n)1/4 ⌧ kµk2 ⌧
p

d/n. We have |hû, ūi| P! 0

and |hu, ūi| P! 1.

Figure 2 visualizes the entries of eigenvectors ū (black), û (red) and u (blue) in a typical
realization with n= 100, d= 500, kµk2 = 3 and y = (1>n/2,�1>n/2)

>. The population eigen-
vector ū perfectly reveals class labels, and the eigenvector u of the hollowed Gram matrix
is aligned with that. Without hollowing, the eigenvector û is localized due to heteroscedas-
ticity and fails to recover the labels. The error rates of sgn(û) and sgn(u) are 48% and 3%,
respectively.

With the help of hollowing, we obtain the following results on spectral concentration. See
Appendix G.2 for the proof.

LEMMA 5.2. Consider the model (5.1). When n!1 and kµk2 �max{1, (d/n)1/4},
we have kG� Ḡk2 = oP(�̄; n), |�� �̄|= oP(�̄; n) and minc=±1 kcu� ūk2 = oP(1; n).

It is worth pointing out that hollowing inevitably creates bias as the diagonal information
of Ḡ is lost. Under incoherence conditions on the signals {x̄i}ni=1

(Assumption 2.1), this
effect is under control. It becomes negligible when the noise is strong. While the simple hol-
lowing already suffices for our need, general problems may benefit from more sophisticated
procedures such as the heteroscedastic PCA in Zhang, Cai and Wu (2018).
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5.2. Moment bounds and the choice of p. As hollowing has been shown to tackle het-
eroscedasticity, from now on we focus on the homoscedastic case

⌃1 = · · ·=⌃n = Id

to facilitate presentation. We want to approximate u with Gū/�̄. By definition,

ku�Gū/�̄kp = kGu/��Gū/�̄kp  kG(u� ū)kp/|�|+ kGūkp|��1 � �̄
�1|.

The spectral concentration of G (Lemma 5.2) forces 1/|�|=OP(�̄�1; n) and |��1� �̄
�1|=

oP(�̄�1; n). In order to get (5.2), it suffices to choose some p. n such that

kG(u� ū)kp = oP(�̄kūkp; p),(5.3)

kGūkp =OP(�̄kūkp; p).(5.4)

The target (5.4) sheds light on the choice of p. Let Z̄ = (z1, · · · ,zn)> and observe that

G=H(XX
>) =H(X̄X̄

>) +H(X̄Z
>) +H(ZX̄

>) +H(ZZ
>).

As an example, we show how to obtain

kH(ZX̄
>)ūkp =OP(�̄kūkp; p).(5.5)

By Markov’s inequality, a convenient and sufficient condition for (5.5) is

E
1/pkH(ZX̄

>)ūkpp . �̄kūkp = nkµk22 · n1/p�1/2
.(5.6)

We now establish (5.6). The facts [H(ZX̄
>)]ij = hzi, yjµi1{i 6=j} and ū= y/

p
n yield

[H(ZX̄
>)ū]i =

X

j 6=i

hzi, yjµiyj/
p
n=

n� 1p
n

hzi,µi, 8i 2 [n].(5.7)

By {zi}ni=1
are i.i.d. N(0,Id) random vectors, we have hzi,µi ⇠N(0,kµk2

2
). By moment

bounds for Gaussian distribution (Vershynin, 2010), supq�1{q�1/2
E
1/q|hzi,µi|q}  ckµk2

holds for some constant c. Then

EkH(ZX̄
>)ūkpp =

nX

i=1

E|[H(ZX̄
>)ū]i|p  n(ckµk2

p
np)p.(5.8)

We can achieve (5.6) if p. kµk2
2
. Hence p cannot be arbitrarily large. Moment bounds are

used throughout the proof. The final choice of p depends on the most stringent condition.
Moments bounds are natural choices for `p control and they adapt to the signal strength.

In contrast, the `1 analysis in Abbe et al. (2020) targets quantities like kGūk1 and
kH(ZX̄

>)ūk1 by applying concentration inequality to each entry and taking union bounds.
We now demonstrate why `1 analysis requires stronger signal than the `p one. Similar to
(5.5), suppose that we want to prove

kH(ZX̄
>)ūk1 =OP(�̄kūk1) =OP(nkµk22/

p
n) =OP(

p
nkµk22).(5.9)

According to (5.7), we have H(ZX̄
>)ū⇠N(0, kµk2

2(n�1)
2

n In). By Inequality A.3 in Chat-
terjee (2014), EkH(ZX̄

>)ūk1 ⇣
p
n lognkµk2 and there exists a constant c > 0 such that

P[kH(ZX̄
>)ūk1 >

p
n lognkµk2]! 1.(5.10)

The
p
logn factor is the price of uniform control of n coordinates, as opposed to p

p in the
adaptive `p bound (5.8). If kµk2 ⌧

p
logn, (5.10) contradicts the desired result (5.9). Then

the `1 analysis breaks down.
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5.3. Leave-one-out analysis. Finally we come to (5.3). Let Gi denote the i-th row of G.
By definition,

kG(u� ū)kp =
✓ nX

i=1

|Gi(u� ū)|p
◆1/p

.

We need to study |Gi(u � ū)| for each individual i 2 [n]. By Cauchy-Schwarz inequality,
the upper bound

|Gi(u� ū)| kGik2ku� ūk2
always holds. Unfortunately, it is too large to be used, as we have not exploited the weak
dependence between Gi and u. We should resort to probabilistic analysis for tighter control.

For any i 2 [n], we construct a new data matrix

X
(i) = (x1, · · · ,xi�1,0,xi+1, · · · ,xn)

> = (In � eie
>
i )X

by deleting the i-th sample. Then
Gi = (hxi,x1i, · · · , hxi,xi�1i,0, hxi,xi+1i, · · · , hxi,xni) = x

>
i X

(i)>
,

Gi(u� ū) = hxi,X
(i)>(u� ū)i.

Recall that u is the eigenvector of the whole matrix G constructed by n independent samples.
It should not depend too much on any individual xi. Also, X(i)> is independent of xi.
Hence the dependence between xi and X

(i)>(u � ū) is weak. We would like to invoke
sub-Gaussian concentration inequalities to control their inner product.

To decouple them in a rigorous way, we construct leave-one-out auxiliaries {G(i)}ni=1
✓

R
n⇥n where

G
(i) =H(X(i)

X
(i)>) =H[(I � eie

>
i )XX

>(I � eie
>
i )]

is the hollowed Gram matrix of the dataset {x1, · · · ,xi�1,0,xi+1, · · · ,xn} with xi zeroed
out. Equivalently, G(i) is obtained by zeroing out the i-th row and column of G. Let u(i) be
the leading eigenvector of G(i). Then
|Gi(u� ū)|= |hxi,X

(i)>(u� ū)i| |hxi,X
(i)>(u(i) � ū)i|| {z }

"1

+ |hxi,X
(i)>(u�u

(i))i|| {z }
"2

.

We have the luxury of convenient concentration inequalities for "1 as xi and X
(i)>(u(i)� ū)

are completely independent. In addition, we can safely apply the Cauchy-Schwarz inequality
to "2 because u

(i) should be very similar to u.
The leave-one-out technique is a powerful tool in random matrix theory (Erdős, Schlein

and Yau, 2009) and high-dimensional statistics (Javanmard and Montanari, 2018; El Karoui,
2018). Zhong and Boumal (2018), Abbe et al. (2020) and Chen et al. (2019) apply it to
`1 eigenvectors analysis of Wigner-type random matrices. Here we focus on `p analysis of
Wishart-type matrices with dependent entries.

6. Discussion. We conduct a novel `p analysis of PCA and derive linear approxima-
tions of eigenvectors. The results yield optimality guarantees for spectral clustering in several
challenging problems. Meanwhile, this study leads to new research directions that are worth
exploring. First, we hope to extend the analysis from Wishart-type matrices to more general
random matrices. One example is the normalized Laplacian matrix frequently used in spectral
clustering. Second, our general results hold for Hilbert spaces and they are potentially useful
in the study of kernel PCA, such as quantifying the performances of different kernels. Third,
the linearization of eigenvectors provides tractable characterizations of spectral embedding
that serve as the starting point of statistical inference. Last but not least, it would be nice
to generalize the results for contextual community detection to multi-class and imbalanced
settings. That is of great practical importance.



AN `p THEORY OF PCA 23

Acknowledgements. EA was supported by the NSF CAREER Award CCF-1552131. JF
was supported by the ONR grant N00014-19-1-2120 and NSF grants DMS-2052926, DMS-
1712591, and DMS-2053832. KW was supported by the NIH grant 2R01-GM072611-15
when he was a graduate student at Princeton University.

REFERENCES
ABBE, E. (2017). Community detection and stochastic block models: recent developments. The Journal of Ma-

chine Learning Research 18 6446–6531.
ABBE, E., BANDEIRA, A. S. and HALL, G. (2016). Exact recovery in the stochastic block model. IEEE Trans-

actions on Information Theory 62 471–487.
ABBE, E., FAN, J., WANG, K. and ZHONG, Y. (2020). Entrywise eigenvector analysis of random matrices with

low expected rank. Annals of Statistics 48 1452–1474.
AMINI, A. A. and RAZAEE, Z. S. (2021). Concentration of kernel matrices with application to kernel spectral

clustering. The Annals of Statistics 49 531–556.
ANDERSON, T. W. (1963). Asymptotic theory for principal component analysis. The Annals of Mathematical

Statistics 34 122–148.
ARONSZAJN, N. (1950). Theory of reproducing kernels. Transactions of the American mathematical society 68

337–404.
AWASTHI, P., BANDEIRA, A. S., CHARIKAR, M., KRISHNASWAMY, R., VILLAR, S. and WARD, R. (2015).

Relax, no need to round: Integrality of clustering formulations. In Proceedings of the 2015 Conference on
Innovations in Theoretical Computer Science 191–200.

AZIZYAN, M., SINGH, A. and WASSERMAN, L. (2013). Minimax theory for high-dimensional Gaussian mix-
tures with sparse mean separation. In Advances in Neural Information Processing Systems 2139–2147.

BAIK, J., AROUS, G. B. and PÉCHÉ, S. (2005). Phase transition of the largest eigenvalue for nonnull complex
sample covariance matrices. The Annals of Probability 33 1643–1697.

BENAYCH-GEORGES, F. and NADAKUDITI, R. R. (2012). The singular values and vectors of low rank perturba-
tions of large rectangular random matrices. Journal of Multivariate Analysis 111 120–135.

BINKIEWICZ, N., VOGELSTEIN, J. T. and ROHE, K. (2017). Covariate-assisted spectral clustering. Biometrika
104 361–377.

BLANCHARD, G., BOUSQUET, O. and ZWALD, L. (2007). Statistical properties of kernel principal component
analysis. Machine Learning 66 259–294.

CAI, T. T. and ZHANG, A. (2018). Rate-optimal perturbation bounds for singular subspaces with applications to
high-dimensional statistics. The Annals of Statistics 46 60–89.

CAI, C., LI, G., CHI, Y., POOR, H. V. and CHEN, Y. (2021). Subspace estimation from unbalanced and incom-
plete data matrices: `2,1 statistical guarantees. The Annals of Statistics 49 944–967.

CANDÈS, E. J. and RECHT, B. (2009). Exact matrix completion via convex optimization. Foundations of Com-
putational mathematics 9 717.

CAPE, J., TANG, M. and PRIEBE, C. E. (2019). The two-to-infinity norm and singular subspace geometry with
applications to high-dimensional statistics. The Annals of Statistics 47 2405–2439.

CHATTERJEE, S. (2014). Superconcentration and related topics 15. Springer.
CHEN, X. and YANG, Y. (2021a). Hanson-Wright inequality in Hilbert spaces with application to K-means

clustering for non-Euclidean data. Bernoulli 27 586–614.
CHEN, X. and YANG, Y. (2021b). Cutoff for exact recovery of Gaussian mixture models. IEEE Transactions on

Information Theory 67 4223–4238.
CHEN, Y., FAN, J., MA, C. and WANG, K. (2019). Spectral method and regularized MLE are both optimal for

top-K ranking. Annals of Statistics 47 2204.
CRISTIANINI, N. and SHAWE-TAYLOR, J. (2000). An introduction to support vector machines and other kernel-

based learning methods. Cambridge university press.
DAMLE, A. and SUN, Y. (2020). Uniform bounds for invariant subspace perturbations. SIAM Journal on Matrix

Analysis and Applications 41 1208–1236.
DAVIS, C. and KAHAN, W. M. (1970). The rotation of eigenvectors by a perturbation. III. SIAM Journal on

Numerical Analysis 7 1–46.
DEMPSTER, A. P., LAIRD, N. M. and RUBIN, D. B. (1977). Maximum likelihood from incomplete data via the

EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological) 39 1–22.
DESHPANDE, Y., SEN, S., MONTANARI, A. and MOSSEL, E. (2018). Contextual stochastic block models. In

Advances in Neural Information Processing Systems 8581–8593.
EL KAROUI, N. (2018). On the impact of predictor geometry on the performance on high-dimensional ridge-

regularized generalized robust regression estimators. Probability Theory and Related Fields 170 95–175.



24

ELDRIDGE, J., BELKIN, M. and WANG, Y. (2018). Unperturbed: spectral analysis beyond Davis-Kahan. In
Algorithmic Learning Theory 321–358. PMLR.
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APPENDIX A: USEFUL FACTS

Here we list some elementary results about operations using the new notations OP(·; ·)
and oP(·; ·). Most of them can be found in Wang (2019).

FACT A.1. The following two statements hold.

1
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1. Xn = OP(Yn; rn) is equivalent to the following: there exist positive constants C1, C2

and N , a non-decreasing function f : [C2,+1)! (0,+1) satisfying limx!+1 f(x) =
+1, and a positive deterministic sequence {Rn}

1
n=1

tending to infinity such that

P(|Xn|� t|Yn|)C1e
�rnf(t), 8 n�N, C2  tRn.

2. When Xn = oP(Yn; rn), we have

lim
n!1

r
�1

n logP(|Xn|� c|Yn|) =�1

for any constant c > 0. Here we adopt the convention log 0 =�1.

FACT A.2 (Truncation). If Xn1{|Zn||Wn|} =OP(Yn; rn) and Zn = oP(Wn; rn), then

Xn =OP(Yn; rn).

Fact A.2 directly follows from Fact A.1 above and Lemma 4 in Wang (2019).

FACT A.3. If E1/rn |Xn|
rn . Yn or E1/rn |Xn|

rn ⌧ Yn for deterministic Yn, then Xn =
OP(Yn; rn) or Xn = oP(Yn; rn), respectively.

FACT A.4 (Lemma 2 in Wang (2019)). If Xn = OP(Yn; rn) and Wn = OP(Zn; sn),
then

Xn +Wn =OP(|Yn|+ |Zn|; rn ^ sn),

XnWn =OP(YnZn; rn ^ sn).

FACT A.5 (Lemma 3 in Wang (2019)). We have the followings:

1. if Xn =OP(Yn; rn), then |Xn|
↵ =OP(|Yn|↵; rn) for any ↵> 0;

2. if Xn = oP(1; rn), then f(Xn) = oP(1; rn) for any f : R!R that is continuous at 0.

DEFINITION A.1 (A uniform version of OP(·, ·)). Let {⇤n}
1
n=1

be a sequence of finite
index sets. For any n� 1, {Xn�}�2⇤n

, {Yn�}�2⇤n
are two collections of random variables;

{rn�}�2⇤n
✓ (0,+1) are deterministic. We write

{Xn�}�2⇤n
=OP({Yn�}�2⇤n

; {rn�}�2⇤n
)(A.1)

if there exist positive constants C1, C2 and N , a non-decreasing function f : [C2,+1)!
(0,+1) satisfying limx!+1 f(x) = +1, and a positive deterministic sequence {Rn}

1
n=1

tending to infinity such that

P(|Xn|� t|Yn|)C1e
�rnf(t), 8 n�N, C2  tRn.

When Yn� = Yn and/or rn� = rn for all n and �, we may replace {Yn�}�2⇤n
and/or

{rn�}�2⇤n
in (A.1) by Yn and/or rn for simplicity.

FACT A.6. If rn & log |⇤n|, then {Xn�}�2⇤n
=OP({Yn�}�2⇤n

; rn) implies that

max
�2⇤n

|Xn�|=OP(max
�2⇤n

Yn�; rn).
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APPENDIX B: MORE ON `2,p ANALYSIS OF EIGENSPACES

In this section, we provide a generalized version of Theorem 2.1 and its proof. Instead
of Assumption 2.4, we use a weaker version of that (Assumption B.1) at the cost of a more
nested regularity condition for p= pn (Assumption B.2). Assumptions 2.5 and 2.6 are still in
use.

ASSUMPTION B.1 (Incoherence). n!1 and kḠk2,1/�̄ � ⌧ 1/.

ASSUMPTION B.2 (Regularity of p= pn). p
npkX̄⌃1/2

k2,p . �̄kŪk2,p and

n
1/pp

rpmax{k⌃kHS,
p
nk⌃kop}. �̄kŪk2,p.

THEOREM B.1. Let Assumptions 2.5, 2.6, B.1 and B.2 hold. We have

kU sgn(H)k2,p =OP
�
kŪk2,p + ��̄�1

kḠk2,p; p^ n
�
,

kU sgn(H)�GŪ⇤̄�1
k2,p =OP

�
�kŪk2,p + ��̄�1

kḠk2,p; p^ n
�
,

kU⇤1/2 sgn(H)�GŪ⇤̄�1/2
k2,p =OP(

3/2
��̄1/2

kŪk2,p + 
1/2

��̄�1/2
kḠk2,p; p^ n).

B.1. Proof of Theorem B.1. The following lemmas provide useful intermediate results,
whose proofs can be found in Sections B.2 and B.3.

LEMMA B.1. Let Assumptions 2.5, 2.6 and B.1 hold. We have kG� Ḡk2 =OP(��̄; n),
k⇤� ⇤̄k2 =OP(��̄; n) and kUU

>
� ŪŪ

>
k2 =OP(�; n).

LEMMA B.2. Let Assumptions 2.5, 2.6, B.1 and B.2 hold. We have

kGŪ � Ū⇤̄�H(ZX
>)Ūk2,p = (� +

p
r/n)OP(�̄kŪk2,p; p),

kH(ZX
>)Ūk2,p =OP

⇣
p
npkX̄⌃1/2

k2,p + n
1/pp

rpmax{k⌃kHS,
p
nk⌃kop}; p^ n

⌘
,

kGŪ⇤̄�1
k2,p =OP(kŪk2,p; p^ n).

We now prove Theorem B.1. Let �̄ = kG� Ḡk2/�̄. It follows from Lemma 1 in Abbe
et al. (2020) that when �̄  1/10,

kUH �GŪ⇤̄�1
k2,p  6�̄�̄�1

kGŪk2,p + 2�̄�1
kG(UH � Ū)k2,p.

By Lemma B.1 and � ! 0 in Assumption B.1, �̄ =OP(�; n) = oP(1; n). Lemma B.2 asserts
that kGŪk2,p  kGŪ⇤̄�1

k2,pk⇤̄k2 =OP(�̄kŪk2,p; p^ n), respectively. Hence

kUH �GŪ⇤̄�1
k2,p =OP(�kŪk2,p; p^ n) + kG(UH � Ū)k2,pOP(�̄

�1; n),

(B.1)

kUHk2,p  kGŪ⇤̄�1
k2,p + kUH �GŪ⇤̄�1

k2,p =OP(kŪk2,p; p^ n)

+ kG(UH � Ū)k2,pOP(�̄
�1; n).(B.2)

We construct leave-one-out auxiliaries {G
(m)

}
n
m=1

✓ R
n⇥n where G

(m) is obtained by
zeroing out the m-th row and column of G. Mathematically, we define a new data matrix

X
(m) = (x1, · · · ,xm�1,0,xm+1, · · · ,xn)

> = (In � eme
>
m)X

by deleting the m-th sample and

G
(m) =H(X(m)

X
(m)>) =H[(In � eme

>
m)XX

>(In � eme
>
m)].
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Let {u(m)

j }
n
j=1

be the eigenvectors of G(m), U (m) = (u(m)

s+1
, · · · ,u

(m)

s+r) 2R
n⇥r and H

(m) =

U
(m)>

Ū . The construction is also used by Abbe et al. (2020) in entrywise eigenvector anal-
ysis.

By Minkowski’s inequality,

kG(UH � Ū)k2,p 

✓ nX

m=1

[kGm(UH �U
(m)

H
(m))k2 + kGm(U (m)

H
(m)

� Ū)k2]
p

◆1/p



✓ nX

m=1

kGm(UH �U
(m)

H
(m))kp

2

◆1/p

+

✓ nX

m=1

kGm(U (m)
H

(m)
� Ū)kp

2

◆1/p

.

(B.3)

The first term on the right hand side of (B.3) corresponds to leave-one-out perturbations.
When max{kḠk2,1,kG� Ḡk2} �̄/32, Lemma 3 in Abbe et al. (2020) forces

kUU
>
�U

(m)(U (m))>k2  3k(UH)mk2, 8m 2 [n],

max
m2[n]

kU
(m)

H
(m)

� Ūk2  6max{kḠk2,1,kG� Ḡk2}/�̄.

The fact kḠk2,1  ��̄, the result kG� Ḡk2 =OP(��̄; n) in Lemma B.1, and Assumption
B.1 imply that

kGk2,1  kḠk2,1 + kG� Ḡk2 =OP(��̄; n),
✓ nX

m=1

kUU
>
�U

(m)(U (m))>kp
2

◆1/p

=OP(kUHk2,p; n),

max
m2[n]

kU
(m)

H
(m)

� Ūk2 =OP(�; n).(B.4)

The definitions H =U
>
Ū and H

(m) = (U (m))>Ū yield

kUH �U
(m)

H
(m)

k2 = k(UU
>
�U

(m)(U (m))>)Ūk2  kUU
>
�U

(m)(U (m))>k2.

Based on these estimates,
✓ nX

m=1

kGm(UH �U
(m)

H
(m))kp

2

◆1/p

 kGk2,1

✓ nX

m=1

kUH �U
(m)

H
(m)

k
p
2

◆1/p

 kGk2,1

✓ nX

m=1

kUU
>
�U

(m)(U (m))>kp
2

◆1/p

=OP(��̄kUHk2,p; n)

=OP(��̄kŪk2,p; p^ n) +OP(�kG(UH � Ū)k2,p; n).
(B.5)

The last equality follows from (B.2). We use (B.3), (B.5) and � = o(1) from Assumption
B.1 to derive

kG(UH � Ū)k2,p 

✓ nX

m=1

kGm(U (m)
H

(m)
� Ū)kp

2

◆1/p

+OP(��̄kŪk2,p; p^ n).

By plugging this into (B.1) and (B.2) and using � = o(1), we obtain that

kUH �GŪ⇤̄�1
k2,p =OP(�kŪk2,p; p^ n) +

✓ nX

m=1

kGm(U (m)
H

(m)
� Ū)kp

2

◆1/p

OP(�̄
�1; n),

(B.6)
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kUHk2,p =OP(kŪk2,p; p^ n) +

✓ nX

m=1

kGm(U (m)
H

(m)
� Ū)kp

2

◆1/p

OP(�̄
�1; n).

(B.7)

We now control the second term in (B.3). From the decompositions

G=H[(X̄ +Z)(X̄ +Z)>] =H(X̄X̄
> + X̄Z

> +ZX̄
>) +H(ZZ

>),

we have
✓ nX

m=1

kGm(U (m)
H

(m)
� Ū)kp

2

◆1/p

 kH(X̄X̄
> + X̄Z

> +ZX̄
>)k2,p max

m2[n]
kU

(m)
H

(m)
� Ūk2

+

✓ nX

m=1

k[H(ZZ
>)]m(U (m)

H
(m)

� Ū)kp
2

◆1/p

.(B.8)

We now work on the first term on the right hand side of (B.8). Define M 2R
n⇥n through

Mij = k(X̄Z
>)ijk 2

. Then EMij = 0 and Mij = khx̄i,zjik 2
. k⌃1/2

x̄ik, where . only
hides a universal constant.

kMk2,p =

 nX

i=1

✓ nX

j=1

|Mij |
2

◆p/2�1/p
.
 nX

i=1

✓ nX

j=1

k⌃1/2
x̄ik

2

◆p/2�1/p
=
p
nkX̄⌃1/2

k2,p,

kM
>
k2,p =

 nX

j=1

✓ nX

i=1

|Mij |
2

◆p/2�1/p
.
 nX

j=1

✓ nX

i=1

k⌃1/2
x̄ik

2

◆p/2�1/p

= n
1/p

kX̄⌃1/2
k2,2 

p
nkX̄⌃1/2

k2,p.

By Lemma H.3 and p� 2,

kX̄Z
>
k2,p =OP(

p
pkMk2,p; p) =OP(

p
npkX̄⌃1/2

k2,p; p),

kZX̄
>
k2,p =OP(

p
pkM

>
k2,p; p) =OP(

p
npkX̄⌃1/2

k2,p; p).

These estimates and p
npkX̄⌃1/2

k2,p . �̄kŪk2,p in Assumption B.2 yield

kH(X̄Z
> +ZX̄

>)k2,p  kX̄Z
> +ZX̄

>
k2,p =OP(�̄kŪk2,p; p).

This and (B.4) lead to

kH(X̄X̄
> + X̄Z

> +ZX̄
>)k2,p max

m2[n]
kU

(m)
H

(m)
� Ūk2

=OP(�(kX̄X̄
>
k2,p + �̄kŪk2,p); p^ n).(B.9)

We use (B.6), (B.8) and (B.9) to get

kUH �GŪ⇤̄�1
k2,p = OP(�kŪk2,p; p^ n) +OP(��̄

�1
kX̄X̄

>
k2,p; p^ n)

+

✓ nX

m=1

k[H(ZZ
>)]m(U (m)

H
(m)

� Ū)kp
2

◆1/p

OP(�̄
�1; n).(B.10)
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By construction, U (m)
H

(m)
� Ū 2 R

n⇥r is independent of zm. We invoke Lemma H.2
to get
✓ nX

m=1

k[H(ZZ
>)]m(U (m)

H
(m)

� Ū)kp
2

◆1/p

=

✓ nX

m=1

����
X

j 6=m

hzm,zji(U
(m)

H
(m)

� Ū)j

����
p

2

◆1/p

= n
1/p max

m2[n]
kU

(m)
H

(m)
� Ūk2OP

�p
rpmax{k⌃kHS,

p
nk⌃kop}; p^ n

�

=OP(��̄kŪk2,p; p^ n),
(B.11)

where we also used (B.4) and Assumption B.2.
We use (B.10) and (B.11) to derive

kUH �GŪ⇤̄�1
k2,p =OP(�kŪk2,p; p^ n) +OP(��̄

�1
kḠk2,p; p^ n).(B.12)

Consequently, Lemma B.2 yields

kUHk2,p  kGŪ⇤̄�1
k2,p + kUH �GŪ⇤̄�1

k2,p

=OP(kŪk2,p; p^ n) +OP(��̄
�1

kḠk2,p; p^ n).(B.13)

Lemma 2 in Abbe et al. (2020) and the result kG � Ḡk2 = OP(��̄; n) in Lemma B.1
imply that kH � sgn(H)k2 =OP(�2; n). As sgn(H) is orthonormal, we have kH

�1
k2 =

OP(1, n) and

kU sgn(H)�UHk2,p  kUHH
�1(sgn(H)�H)k2,p

 kUHk2,pkH
�1

k2k sgn(H)�Hk2 = kUHk2,pOP(�
2; n).(B.14)

The tail bounds for kU sgn(H)k2,p and kU sgn(H)�GŪ⇤̄�1
k2,p in Theorem B.1 follow

from (B.12), (B.13) and (B.14).
Finally we use the results above to control kU⇤1/2 sgn(H)�GŪ⇤̄�1/2

k2,p. By Lemma
B.1, k⇤ � ⇤̄k2  kG � Ḡk2 = OP(��̄; n) = oP(�̄; n). Hence n

�1 logP(k⇤ � ⇤̄k2 �

�̄/2)!�1. When kG� Ḡk2 < �̄/2, we have ⇤� (�̄/2)I , and ⇤1/2 is well-defined. It
remains to show that

kU⇤1/2
H̄ �GŪ⇤̄�1/2

k2,p1{kG�Ḡk2<�̄/2}

=OP(
3/2

��̄1/2
kŪk2,p + 

1/2
��̄�1/2

kḠk2,p; p^ n).(B.15)

Define H̄ = sgn(H). When kG� Ḡk2 < �̄/2 happens, we use triangle’s inequality to
derive

kU⇤1/2
H̄ �GŪ⇤̄�1/2

k2,p  kUH̄(H̄>⇤1/2
H̄ � ⇤̄1/2)k2,p + k(UH̄ �GŪ⇤̄�1)⇤̄1/2

k2,p

 kUH̄k2,pkH̄
>⇤1/2

H̄ � ⇤̄1/2
k2 + kUH̄ �GŪ⇤̄�1

k2,pk⇤̄k
1/2
2

.

It is easily seen from k⇤̄k2  �̄ that

kUH̄ �GŪ⇤̄�1
k2,pk⇤̄k

1/2
2

=OP(
3/2

��̄1/2
kŪk2,p + 

1/2
��̄�1/2

kḠk2,p; p^ n).

Hence

kU⇤1/2
H̄ �GŪ⇤̄�1/2

k2,p1{kG�Ḡk2<�̄/2} =OP(
3/2

��̄1/2
kŪk2,p + 

1/2
��̄�1/2

kḠk2,p; p^ n)

+OP(kŪk2,p + ��̄�1
kḠk2,p; p^ n) · kH̄>⇤1/2

H̄ � ⇤̄1/2
k21{kG�Ḡk2<�̄/2}.

(B.16)
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Note that H̄
>⇤1/2

H̄ = (H̄>⇤H̄)1/2. In view of the perturbation bound for matrix
square roots (Schmitt, 1992, Lemma 2.1),

kH̄
>⇤1/2

H̄ � ⇤̄1/2
k2 

kH̄
>⇤H̄ � ⇤̄k2

�min(H̄>⇤1/2H̄) + �min(⇤̄1/2)


k⇤H̄ � H̄⇤̄k2

2�̄1/2

. (k⇤H �H⇤̄k2 + k⇤(H̄ �H)k2 + k(H̄ �H)⇤̄k2)/�̄
1/2

. k⇤H �H⇤̄k2/�̄
1/2 +OP(�

2�̄1/2; n)

as long as kG� Ḡk2 < �̄/2. Here we used kH � H̄k2 =OP(�2; n) according to Lemma
B.1 as well as Lemma 2 in Abbe et al. (2020).

From U
>
G=⇤U

> and ḠŪ = Ū⇤̄ we obtain that

⇤H �H⇤̄=⇤U
>
Ū �U

>
Ū⇤̄=U

>
GŪ �U

>
ḠŪ =U

>(G� Ḡ)Ū

and k⇤H �H⇤̄k2  kG� Ḡk2 =OP(��̄; n). As a result,

kH̄
>⇤1/2

H̄ � ⇤̄1/2
k21{kG�Ḡk2<�̄/2} =OP(��̄

1/2; n),

where we also used � = o(1) in Assumption B.1. Plugging this into (B.16), we get the
desired bound (B.15) and thus complete the proof of Theorem B.1.

B.2. Proof of Lemma B.1. Note that

G=H[(X̄ +Z)(X̄ +Z)>] =H(X̄X̄
>) +H(X̄Z

> +ZX̄
>) +H(ZZ

>)

= X̄X̄
> + (X̄Z

> +ZX̄
>) +H(ZZ

>)� D̄,(B.17)

where D̄ is the diagonal part of X̄X̄
>+X̄Z

>+ZX̄
>, with D̄ii = kx̄ik

2+2hx̄i,zii. From
khx̄i,ziik 2

. k⌃1/2
x̄ik we get {|hx̄i,zii|}

n
i=1

=OP({k⌃1/2
x̄ik

p
n}

n
i=1

; n). By Fact A.6,

max
i2[n]

|hx̄i,zii|=OP
⇣
max
i2[n]

k⌃1/2
x̄ik

p
n; n

⌘

and

kD̄k2 =max
i2[n]

|D̄ii|=max
i2[n]

kx̄ik
2 +OP

✓
max
i2[n]

k⌃1/2
x̄ik

p
n; n

◆

= kX̄k
2

2,1 +OP
⇣
kX̄k2,1(nk⌃kop)

1/2; n
⌘

 kX̄X̄
>
k2,1 +OP

⇣
kX̄X̄

>
k
1/2
2

(nk⌃kop)
1/2; n

⌘

= kḠk2,1 +OP
⇣
(n�̄k⌃kop)

1/2; n
⌘
.(B.18)

Note that kZX̄
>
k2 = supu,v2Sn�1 u

>
ZX̄

>
v. Since {z

>
i X̄

>
v}

n
i=1

are zero-mean, inde-
pendent and

kz
>
i X̄

>
vk 2

. k⌃1/2
X̄

>
vk  kX̄⌃1/2

kop  (kḠk2k⌃kop)
1/2 = (�̄k⌃kop)

1/2
,

we have

ku
>
ZX̄

>
vk 2

=

����
nX

i=1

uiz
>
i X̄

>
v

����
 2

.
✓ nX

i=1

u
2

i kz
>
i X̄

>
vk

2

 2

◆1/2

. (�̄k⌃kop)
1/2

.

A standard covering argument (Vershynin, 2010, Section 5.2.2) yields

kZX̄
>
k2 =OP((n�̄k⌃kop)

1/2; n).
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The same tail bound also holds for kX̄Z
>
k2.

From these estimates, (B.17), (B.18) and Lemma H.1 we obtain that

kG� X̄X̄
>
k2 =OP

⇣
kḠk

2

2,1 + (n�̄k⌃kop)
1/2 +max{

p
nk⌃kHS, nk⌃kop}; n

⌘
.

By Assumptions B.1 and 2.6, we have nk⌃kop  �̄. Hence nk⌃kop  (n�̄k⌃kop)1/2

and kG� X̄X̄
>
k2 =OP(��̄; n).

Finally, Weyl’s inequality (Stewart and Sun, 1990) and Davis-Kahan theorem (Davis and
Kahan, 1970) assert that k⇤� ⇤̄k2  kG� Ḡk2 = OP(��̄; n) and kUU

>
� ŪŪ

>
k2 .

kG� Ḡk2/�̄=OP(�; n).

B.3. Proof of Lemma B.2. Observe that

G=H(XX
>) =H[(X̄ +Z)X>] = X̄X̄

> + [H(X̄X̄
>)� X̄X̄

>] +H(X̄Z
>) +H(ZX

>).

From X̄X̄
>
Ū = Ḡ⇤̄= Ū⇤̄ we get

kGŪ � Ū⇤̄�H(ZX
>)Ūk2,p = kGŪ � X̄X̄

>
Ū �H(ZX

>)Ūk2,p

= k[H(X̄X̄
>)� X̄X̄

> +H(X̄Z
>)]Ūk2,p



 
nX

m=1

(kx̄mk
2
kŪmk2)

p

!1/p

+ kH(X̄Z
>)Ūk2,p.

On the one hand, we have
nX

m=1

(kx̄mk
2
kŪmk2)

p
 max

m2[n]
kx̄mk

2p
nX

m=1

kŪmk
p
2
= kX̄k

2p
2,1kŪk

p
2,p  (��̄kŪk2,p)

p
,

where we used kX̄k
2

2,1  kX̄X̄
>
k2,1  ��̄ in Assumption B.1. On the other hand,

{zj}j 6=m are independent, khx̄m,zjik 2
. k⌃1/2

x̄mk, Ū = (ū1, · · · , ūr) and kūjk2 = 1
for j 2 [r]. Then

k[H(X̄Z
>)]mūjk 2

= k(X̄Z
>)m(I � eme

>
m)ūjk 2

=

����
X

k 6=m

ūjkhx̄m,zji

����
 2

. k⌃1/2
x̄mk, j 2 [r], m 2 [n].

Lemma H.3 forces kH(X̄Z
>)Ūk2,p =OP(

p
pkMk2,p; p), where Mij = k⌃1/2

x̄ik. Hence

kMk2,p =

 nX

i=1

✓ rX

j=1

k⌃1/2
x̄ik

2

◆p/2�1/p
=
p
rkX̄⌃1/2

k2,p,

kH(X̄Z
>)Ūk2,p =OP(

p
rpkX̄⌃1/2

k2,p; p) =OP(
p

r/n�̄kŪk2,p; p),

where the last equality follows from Assumption B.2. By combining the two parts we get

kGŪ � Ū⇤̄�H(ZX
>)Ūk2,p = (� +

p
r/n)OP(�̄kŪk2,p; p),

kGŪ⇤̄�1
�H(ZX

>)Ū⇤̄�1
k2,p  kGŪ � Ū⇤̄�H(ZX

>)Ūk2,pk⇤̄
�1

k2 + kŪk2,p

=OP(kŪk2,p; p).(B.19)

To study H(ZX
>)Ū , we decompose it into H(ZX̄

>)Ū +H(ZZ
>)Ū . Note that

[H(ZX̄
>)Ū ]mj = (ZX̄

>)m(I � eme
>
m)ūj = hzm,X̄

>(I � eme
>
m)ūji,

k[H(ZX̄
>)Ū ]mjk 2

. k⌃1/2
X̄

>(I � eme
>
m)ūjk.
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Lemma H.3 forces kH(ZX̄
>)Ūk2,p = OP(

p
pkMk2,p; p), where Mij = k⌃1/2

X̄
>(I �

eme
>
m)ūjk. From
rX

j=1

k⌃1/2
X̄

>(I � eme
>
m)ūjk

2 =

⌧
(I � eme

>
m)X̄⌃X̄

>(I � eme
>
m),

rX

j=1

ūjū
>
j

�

Tr(X̄⌃X̄
>) = kX̄⌃1/2

k
2

2,2

we get

kMk2,p =

 nX

m=1

✓ rX

j=1

k⌃1/2
X̄

>(I � eme
>
m)ūjk

2

◆p/2�1/p
= n

1/p
kX̄⌃1/2

k2,2  n
1/2

kX̄⌃1/2
k2,p,

kH(ZX̄
>)Ūk2,p =OP(

p
npkX̄⌃1/2

k2,p; p) =OP(�̄kŪk2,p; p),

(B.20)

where we used Assumption B.2 to get the last equality.
Note that kŪk2 = 1 and k[H(ZZ

>)Ū ]mk2 = k
P

j 6=mhzm,zjiŪjk2, 8m 2 [n]. Lemma
H.2 asserts that

kH(ZZ
>)Ūk2,p =

✓ nX

m=1

����
X

j 6=m

hzm,zjiŪj

����
p

2

◆1/p

= n
1/p

kŪk
p
2
OP

�p
rpmax{k⌃kHS,

p
nk⌃kop}; p^ n

�

=OP
⇣
n
1/pp

rpmax{k⌃kHS,
p
nk⌃kop}; p^ n

⌘
=OP(�̄kŪk2,p; p^ n).(B.21)

The last equality is due to Assumption B.2. Then we complete the proof using (B.19), (B.20)
and (B.21).

APPENDIX C: PROOF OF THEOREM 2.1

We will invoke Theorem B.1 to prove Theorem 2.1 in the Hilbert setting (under Assump-
tions 2.4, 2.5 and 2.6). We claim that Assumption B.2 holds, p. n and

�kḠk2,1/�̄⌧

p
r/n.(C.1)

In that case, Theorem B.1 asserts that

kU sgn(H)�GŪ⇤̄�1
k2,p =OP

�
�kŪk2,p + ��̄�1

kḠk2,p; p
�
,

(C.2)

kU sgn(H)k2,p =OP
�
kŪk2,p + ��̄�1

kḠk2,p; p
�
,

(C.3)

kU⇤1/2 sgn(H)�GŪ⇤̄�1/2
k2,p =OP(

3/2
��̄1/2

kŪk2,p + 
1/2

��̄�1/2
kḠk2,p; p^ n).

(C.4)

When 2  p <1, we have n
�1/2

kvk2  n
�1/p

kvkp  kvk1, 8v 2 R
n. This inequality

and (C.1) force that

�kḠk2,p  �n
1/p

kḠk2,1 ⌧ n
1/p�̄

p
r/n= n

1/p�̄n
�1/2

kŪk2,2  �̄kŪk2,p.

Hence ��̄�1
kḠk2,p = o(kŪk2,p). The first, third and fourth equation in Theorem 2.1 di-

rectly follow from (C.2), (C.3), (C.4) and � ⌧ 1/µ. 1 in Assumption 2.4.
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To control kU sgn(H)� [Ū +H(ZX
>)Ū⇤̄�1]k2,p, we invoke Lemma B.2 to get

kGŪ � Ū⇤̄�H(ZX
>)Ūk2,p = (� +

p
r/n)OP(�̄kŪk2,p; p) = oP(�̄kŪk2,p; p).

Then

kU sgn(H)� [Ū +H(ZX
>)Ū⇤̄�1]k2,p

 kU sgn(H)�GŪ⇤̄�1
k2,p + kGŪ⇤̄�1

� [Ū +H(ZX
>)Ū⇤̄�1]k2,p

 kU sgn(H)�GŪ⇤̄�1
k2,p + kGŪ � [Ū⇤̄+H(ZX

>)Ū ]k2,pk⇤̄
�1

k2

= oP(kŪk2,p; p^ n).

Similarly, we obtain from (C.4) and Lemma B.2that

kU⇤1/2 sgn(H)� [Ū⇤̄1/2 +H(ZX
>)Ū⇤̄�1/2]k2,p = oP(kŪk2,pk⇤̄

1/2
k2; p^ n).

So far we have get all the desired results in Theorem 2.1, provided that Assumption B.2,
p. n and (C.1) hold.

CLAIM C.1. p. n under Assumption 2.4.

PROOF. It is easy seen that

p

(i)

. (µ�)�2
(ii)

 �
�2

(iii)

 (µ
p

r/n)�2 =
n

r2µ2

(iv)

 n,

where we used (i) the condition on p; (ii) µ� 1; (iii) Assumption 2.4; (iv) r � 1, � 1 and
µ� 1.

To verify (C.1), we start from

kḠk2,1 = kX̄X̄
>
k2,1  kX̄k2,1kX̄kop =

kX̄k2,1
kX̄kop

· kX̄k
2

op

(i)

 (µ
p

r/n)(�̄) = µ

p
r/n · �̄,(C.5)

where (i) is due to µ � (kX̄k2,1/kX̄kop)
p

n/r and kX̄k
2
op = kḠkop = �̄. Assumption

2.4 forces � � µ
p

r/n and

kḠk2,1/�̄ �.(C.6)

In addition, (C.5) and the condition � ⌧ (µ)�1 in Assumption 2.4 imply (C.1)
It remains to check Assumption B.2, which can be implied by the followings.

CLAIM C.2. Under Assumptions 2.4 and 2.6, we have
p
npkX̄⌃1/2

k2,p 
p
pµ��̄kŪk2,p,(C.7)

n
1/pp

rpmax{k⌃kHS,
p
nk⌃kop}

p
p��̄kŪk2,p.(C.8)

Therefore, if p. (µ�)�2 then p
npkX̄⌃1/2

k2,p . �̄kŪk2,p and n
1/pp

rpmax{k⌃kHS,
p
nk⌃kop}.

�̄kŪk2,p.
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PROOF. To prove (C.7), we first prove an inequality in k · k2,1 and then convert it to
k · k2,p using

n
�1/2

kvk2  n
�1/p

kvkp  kvk1, 8v 2R
n(C.9)

By elementary calculation,

�̄
p
r

nkX̄⌃1/2k2,1

(i)

�
�̄
p
r

nkX̄k2,1k⌃k
1/2
op

=

✓
�̄

nk⌃kop

◆1/2
p

r�̄/n

kX̄k2,1

(ii)

=

✓
�̄

nk⌃kop

◆1/2✓
kX̄kop

kX̄k2,1

r
r

n

◆
(iii)

�

✓
�̄

nk⌃kop

◆1/2 1

µ

(iv)

�
1

µ�
.

where we used (i) kX̄⌃1/2
k2,1  kX̄k2,1k⌃k

1/2
op ; (ii) �̄ = kḠkop = kX̄k

2
op; (iii) µ �

kX̄k2,1

kX̄kop

p
n
r ; (iv) � � (nk⌃kop/�̄)1/2 in Assumption 2.6. We use (C.9) to get

p
npkX̄⌃1/2

k2,p 
p
npn

1/p
kX̄⌃1/2

k2,1 .p
npn

1/p

p
r�̄µ�

n
= �̄n

1/p
p

r/n(
p
pµ�)

= �̄n
1/p

n
�1/2

kŪk2,2(
p
pµ�) �̄n

1/p
n
�1/p

kŪk2,p(
p
pµ�) = �̄kŪk2,p(

p
pµ�). �̄kŪk2,p.

The last inequality is due to p. (µ�)�2.
We finally prove (C.8). By the conversion (C.9),

n
1/pp

rpmax{k⌃kHS,
p
nk⌃kop}= n

1/p
kŪk2,2

p
pmax{k⌃kHS,

p
nk⌃kop}

 n
1/2

kŪk2,p
p
pmax{k⌃kHS,

p
nk⌃kop}= kŪk2,p

p
pmax{

p
nk⌃kHS, nk⌃kop}.

By Assumption 2.6, we have
p
nk⌃kHS  ��̄, nk⌃kop  �

2�̄/ and

max{
p
nk⌃kHS, nk⌃kop}max{��̄,�

2�̄/} ��̄.

Then (C.8) directly follows.

APPENDIX D: PROOFS OF SECTION 3.1

D.1. Proof of Theorem 3.1. We will invoke Theorem 2.1 for Hilbert spaces to study the
spectral embedding U⇤1/2. To begin with, define Y 2 {0,1}n⇥K through Yij = 1{yi=j}.
From x̄i =µyi it is easy to see that Ḡ= Y BY

>. We first analyze the r leading eigenvalues
of Ḡ.

On the one hand, we have kY k
2

F
= n and

kḠk2  kY k
2

2kBk2  nkBk2.(D.1)

On the other hand, under Assumption 3.1 we have rank(Ḡ) rank(B) = r. Denote by �j(·)
the j-th largest singular value of a matrix. There exists Q 2R

K⇥r such that B =QQ
> andp

�j(B) = �j(Q). For any distinct i, j 2 [K],

s̄
2
 kµi �µjk

2 = (ei � ej)
>
B(ei � ej) 2kBk2.

Therefore,

�r(Ḡ) = �r(Y QQ
>
Y

>) = �
2

r (Y Q)� [�K(Y ) · �r(Q)]2 = �K(Y >
Y ) · �r(B)(D.2)

� �K(Y >
Y ) · kBk2/0 �

s̄
2
�K(Y >

Y )

20
.(D.3)
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and

= kḠk2/�r(Ḡ)
nkBk2

�K(Y >Y ) · kBk2/0
= 0n/�K(Y >

Y ).

Note that �K(Y >
Y ) =mink2[K] |{i 2 [n] : yi = k}|. From Assumption 3.1 and the estimate

(D.1), we get rank(Ḡ) = r,

�̄= �r(Ḡ)� �r+1(Ḡ)�
ns̄

2

22
0

and  
2

0.(D.4)

Let Tk = {i 2 [n] : yi = k} for any k 2 [K]. Because x̄i = µk holds for all i 2 Tk,
{Ūi}i2Tk

are all the same. Then

K = kŪk
2

F �

X

i2Tk

kŪik
2

2,

kŪik2 
p

K/|Tk|
p

K/(n/0) =
p

K0/n 0/
p
n, 8i 2 Tk,

kŪk2,p  n
1/p

kŪk2,1  0n
1/p�1/2

, 8p� 1.(D.5)

To apply Theorem 2.1, we first verify Assumption 2.4. By definition,

kX̄k
2

2,1 = max
k2[K]

kµkk
2
 kBk2.

By (D.3),

kX̄k
2

op = kḠk2 � �r(Ḡ)� �K(Y >
Y )kBk2/0 � nkBk2/

2

0.

Therefore,

kX̄k2,1
kX̄kop

r
n

r


p
kBk2p

nkBk2/0

·

r
n

r
 0.(D.6)

In light of (D.4) and (D.6), Assumption 2.4 holds when 
3

0

p
r/n  � ⌧ 1. In addition, we

have 1 µ 0.
Next, we verify Assumption 2.6. From (D.4),

k⌃kop

�̄


22
0
k⌃kop

s̄2n
=

23
0
k⌃kop

s̄2n
and

k⌃kHS

�̄


20k⌃kHS

s̄2n

we see that Assumption 2.6 holds when

� � 23/2
0

max

⇢p
k⌃kop

s̄
,
k⌃kHS
p
ns̄2

�
=

23/2
0

p
SNR

.

To sum up, all the assumptions in Theorem 2.1 hold if

� = 230max

⇢
1

p
SNR

,

r
r

n

�
and 2 p SNR^ n.(D.7)

We adopt the regime in (D.7). By Theorem 2.1,

kU⇤1/2 sgn(H)�GŪ⇤̄�1/2
k2,p = oP(kŪk2,pk⇤̄

1/2
k2; p),(D.8)

kU⇤1/2 sgn(H)� [Ū⇤̄1/2 +H(ZX
>)Ū⇤̄�1/2]k2,p = oP(kŪk2,pk⇤̄

1/2
k2; p).(D.9)

Suppose that the approximate k-means step is conducted on the rows of U⇤1/2 sgn(H)
rather than U⇤1/2. This does not affect the outcomes {ŷi}

n
i=1

but facilitates analysis. We
need the following lemma on the recovery error of approximate k-means clustering, whose
proof is in Appendix D.2.
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LEMMA D.1 (Approximate k-means). Let {xi}
n
i=1

✓R
d and define

L({µj}
K
j=1,{yi}

n
i=1) =

nX

i=1

kxi �µyik
2

2, 8{µj}
K
j=1 ✓R

d
, {yi}

n
i=1 ✓ [K].

Let {µ?
j}

K
j=1

,{µ̂j}
K
j=1

✓ R
d, {y?i }

n
i=1

,{ŷi}
n
i=1

✓ [K], s =minj 6=k kµ
?
j � µ

?
kk2 and nmin =

minj2[K] |{i : y
?
i = j}|. Suppose that the followings hold for some C > 0 and � 2 (0, s/2):

1. (Near-optimality) L({µ̂j}
K
j=1

,{ŷi}
n
i=1

)C ·L({µ?
j}

K
j=1

,{y
?
i }

n
i=1

) and ŷi 2 argminj2[K] kxi�

µ̂jk2 for all i 2 [n];
2. (Low-noise condition) L({µ?

j}
K
j=1

,{y
?
i }

n
i=1

) �
2
nmin/[(1 +

p
C)2K].

Then, there exists a permutation ⌧ : [K]! [K] such that

KX

j=1

kµ
?
j � µ̂⌧(j)k

2

2 
(1 +

p
C)2K

nmin

L({µ?
j}

K
j=1,{y

?
i }

n
i=1),

{i : ŷi 6= ⌧(y?i )}✓ {i : kxi �µ
?
y?
i
k2 � s/2� �},

|{i : ŷi 6= ⌧(y?i )}| |{i : kxi �µ
?
y?
i
k2 � s/2� �}|

L({µ?
j}

K
j=1

,{y
?
i }

n
i=1

)

(s/2� �)2
.

To apply Lemma D.1, take xi = [U⇤1/2 sgn(H)]i and y
?
i = yi for i 2 [n]. Define µ

?
j =

(Ū⇤̄1/2)i for any i 2 {l : yl = j}. The near-optimality condition holds with C = 1 + ".
Moreover, we use Assumption 3.1 to get

s=min
j 6=k

kµ
?
j �µ

?
kk2 = s̄ and nmin = min

j2[K]

|{i : y?i = j}|� n/0.(D.10)

We now verify the low-noise condition with � = s̄/4. By definition,

L({µ?
j}

K
j=1,{y

?
i }

n
i=1) =

nX

i=1

k[U⇤ sgn(H)]i � (Ū⇤̄1/2)ik
2

2 = kU⇤ sgn(H)� Ū⇤̄1/2
k
2

F.

Since

Ū⇤̄1/2 = ḠŪ⇤̄�1/2 =GŪ⇤̄�1/2
� (G� Ḡ)Ū⇤̄�1/2

,

we have
q

L({µ?
j}

K
j=1

,{y?i }
n
i=1

) = kU⇤1/2 sgn(H)� Ū⇤̄1/2
kF

 kU⇤1/2 sgn(H)�GŪ⇤̄�1/2
kF + kG� Ḡk2kŪ⇤̄�1/2

kF

 n
1/2�1/p

kU⇤1/2 sgn(H)�GŪ⇤̄�1/2
k2,p + kG� Ḡk2kŪkFk⇤̄

�1/2
k2

(i)

= n
1/2�1/p

· oP(kŪk2,pk⇤̄
1/2

k2; p) +OP(��̄; n) ·
p

K · �̄�1/2

(ii)

= oP(�̄
1/2; p)

(iii)

= oP(
p
ns̄; p).

Here we used (i) Equation (D.8) and Lemma B.1; (ii) Equation (D.5) and Assumption 3.1;
(iii) Equation (D.4). On the other hand, Equation (D.10) and � = s̄/4 imply that

�
2
nmin/[(1 +

p

C)2K]& ns̄
2
.
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As a result, there exists ⌘n ! 0 such that

P

✓
L({µ?

j}
K
j=1,{y

?
i }

n
i=1) ⌘n�

2
nmin/[(1 +

p

C)2K]

◆
� 1� e

�p
.(D.11)

Consequently, the low-noise condition holds with probability at least 1� e
�p.

Now that the regularity conditions are verified, on the event in Equation (D.11) we use
Lemma D.1 to get

min
⌧2SK

|{i : ŷi 6= ⌧(y?i )}| |{i : k[U⇤1/2 sgn(H)]i � (Ū⇤̄1/2)ik2 � s/2� �}|

 |{i : k[U⇤1/2 sgn(H)]i � (Ū⇤̄1/2)ik2 � s̄/4}|


kU⇤1/2 sgn(H)� Ū⇤̄1/2

k
p
2,p

(s̄/4)p

= n

✓
kU⇤1/2 sgn(H)� Ū⇤̄1/2

k2,p

n1/ps̄/4

◆p

.(D.12)

So far we have not specified the choice of p. The results above hold for any p satisfying
Equation (D.7).

Next, we will find some constant C0 2 (0,1] such that

P

✓
kU⇤1/2 sgn(H)� Ū⇤̄1/2

k2,p/n
1/p


s̄

4e

◆
 1� e

�p(D.13)

holds for p=C0(SNR^ n). If that is true, then Equations (D.11) to (D.13) imply that

EM(ŷ,y) 3e�C0(SNR^n)
.

When SNR� 2C�1

0
logn, for large n we have EM(ŷ,y) 3n�2. Then

P[M(ŷ,y)> 0] = P[M(ŷ,y)� 1/n] EM(ŷ,y) 3/n! 0.

When SNR 2C�1

0
logn, for large n we have EM(ŷ,y) 3e�C0SNR and then

limsup
n!1

SNR�1 logEM(ŷ,y)<�C0.

It remains to find C0 2 (0,1] and prove Equation (D.13) for p= C0(SNR ^ n). By Equa-
tion (D.9), there exists ⇠n ! 0 such that

P

⇣
kU⇤1/2 sgn(H)� [Ū⇤̄1/2 +H(ZX

>)Ū⇤̄�1/2]k2,p � ⇠nkŪk2,pk⇤̄
1/2

k2

⌘
 e

�2p

(D.14)

holds for large n. By Lemma B.2, Claim C.1 and Claim C.2,

kH(ZX
>)Ūk2,p =OP(

p
pµ��̄kŪk2,p; p).

There exists a constant C1 such that

P

✓
kH(ZX

>)Ūk2,p �C1

p
pµ��̄kŪk2,p

◆
 e

�2p

when n is large. We have

P

✓
kH(ZX

>)Ū⇤̄�1/2
k2,p �C1

p
pµ��̄1/2

kŪk2,p

◆
 e

�2p
.(D.15)
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By Equations (D.4), (D.5), (D.14) and (D.15), there exists a constant C2 such that

P

✓
kU⇤1/2 sgn(H)� Ū⇤̄1/2

k2,p �C2max{
p

p�2, ⇠n} · s̄n
1/p

◆
 e

�2p(D.16)

holds for large n. Recall that ⇠n ! 0. Hence, the desired inequality (D.13) holds so long as
C2

p
p�2 

p
2/(4e), which is equivalent to

p
2

(4C2e)2�2
=

1

8C2

2
e2�2

=
1

8C2

2
e26

0

min{SNR, n/K}.

Hence, it suffices to take p=C0(SNR^ n) with

C0 =
1

8C2

2
e26

0
K

.

D.2. Proof of Lemma D.1. Define X = (x1, · · · ,xn)> 2R
n⇥d, M? = (µ?

1
, · · · ,µ

?
K) 2

R
d⇥K , M̂ = (µ̂1, · · · , µ̂K) 2R

d⇥K , Y ? = (ey?
1
, · · · ,ey?

n
)> 2R

n⇥K and Ŷ = (eŷ1
, · · · ,eŷn

)> 2

R
n⇥K . Then

kŶ M̂
>
�Y

?
M

?>
kF  kŶ M̂

>
�XkF + kX �Y

?
M

?>
kF

=
q

L({µ̂j}
K
j=1

,{ŷi}
n
i=1

) +
q

L({µ?
j}

K
j=1

,{y?i }
n
i=1

)

 (1 +
p

C)
q

L({µ?
j}

K
j=1

,{y?i }
n
i=1

)

and

kŶ M̂
>
�Y

?
M

?>
k
2

F  (1 +
p

C)2L({µ?
j}

K
j=1,{y

?
i }

n
i=1)

nmin�
2

K
<

nmins
2

4K
.(D.17)

CLAIM D.1. There exists a permutation ⌧ : [K]! [K] such that
KX

j=1

kµ
?
j � µ̂⌧(j)k

2

2 
K

nmin

kŶ M̂
>
�Y

?
M

?>
k
2

F.

For any j, k 2 [K], define Sjk = |{i 2 [n] : y?i = j, ŷi = k}| and ⌧(j) = argmaxk2[K] Sjk

(break any tie by selecting the smaller index). We have Sj⌧(j) � nmin/K for all j and

kŶ M̂
>
�Y

?
M

?>
k
2

F =
X

j,k2[K]

Sjkkµ
?
j � µ̂kk

2

2.(D.18)

We first prove by contradiction that ⌧ : [K] ! [K] must be a permutation (bijection).
Suppose there exist distinct j and k such that ⌧(j) = ⌧(k) = `. By the triangle’s inequality,

kµ
?
j � µ̂`k2 + kµ̂` �µ

?
kk2 � kµ

?
j �µ

?
kk2 � s,

kµ
?
j � µ̂`k

2

2 + kµ̂` �µ
?
kk

2

2 � s
2
/2.

By Equation (D.18) and the facts that Sj` � nmin/K and Sk` � nmin/K ,

kŶ M̂
>
�Y

?
M

?>
k
2

F � Sj`kµ
?
j � µ̂`k

2

2 + Sk`kµ
?
k � µ̂`k

2

2 �
nmins

2

2K
,
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which contradicts Equation (D.17). Now that ⌧ is a permutation, we derive from Equa-
tion (D.18) that

kŶ M̂
>
�Y

?
M

?>
k
2

F �

KX

j=1

Sj⌧(j)kµ
?
j � µ̂⌧(j)k

2

2 �
nmin

K

KX

j=1

kµ
?
j � µ̂⌧(j)k

2

2.

Now that the claim has been proved, we obtain that
KX

j=1

kµ
?
j � µ̂⌧(j)k

2

2 
K

nmin

kŶ M̂
>
�Y

?
M

?>
k
2

F 
(1 +

p
C)2KL({µ?

j}
K
j=1

,{y
?
i }

n
i=1

)

nmin

 �
2
.

Hence maxj2[K] kµ
?
j � µ̂⌧(j)k2  � and minj 6=k kµ̂j � µ̂kk2 � s� 2�. For any j 6= y

?
i , we

have

kxi � µ̂⌧(j)k2 � kxi � µ̂⌧(y?
i )
k2

� (kxi �µ
?
jk2 � kµ

?
j � µ̂⌧(j)k2)� (kxi �µ

?
y?
i
k2 + kµ

?
y?
i
� µ̂⌧(y?

i )
k2)

� kxi �µ
?
jk2 � kxi �µ

?
y?
i
k2 � 2�

� (kµ?
j �µ

?
y?
i
k2 � kxi �µ

?
y?
i
k2)� kxi �µ

?
y?
i
k2 � 2�

= kµ
?
j �µ

?
y?
i
k2 � 2kxi �µ

?
y?
i
k2 � 2� � s� 2(kxi �µ

?
y?
i
k2 + �).

If kxi�µ
?
y?
i
k2 < s/2��, then kxi�µ̂⌧(j)k2 > kxi�µ̂⌧(y?

i )
k2 for all j 6= y

?
i . The assumption

ŷi 2 argminj2[K] kxi � µ̂jk2, 8i 2 [n] forces

{i : ŷi 6= ⌧(y?i )}✓ {i : kxi � µ̂⌧(j)k2  kxi � µ̂⌧(y?
i )
k2 for some j 6= y

?
i }

✓ {i : kxi �µ
?
y?
i
k2 � s/2� �}.

The desired bound on |{i : ŷi 6= ⌧(y?i )}| then becomes obvious.

APPENDIX E: PROOFS OF SECTION 3.2

E.1. Useful lemmas. We first prove a lemma bridging `p approximation and misclassi-
fication rates.

LEMMA E.1. Suppose that v = vn,w = wn and v̄ = v̄n are random vectors in R
n,

mini2[n] |v̄i|= �n > 0, and p= pn !1. If mins=±1 ksv� v̄�wkp = oP(n1/p
�n; p), then

limsup
n!1

p
�1 log

✓
1

n
E min

s=±1

|{i 2 [n] : s sgn(vi) 6= sgn(v̄i)}|

◆

 limsup
"!0

limsup
n!1

p
�1 log

✓
1

n

nX

i=1

P (�wi sgn(v̄i)� (1� ")|v̄i|)

◆
.

Proof of Lemma E.1. Let Sn = {i 2 [n] : sgn(vi) 6= sgn(v̄i)} and r = v � v̄ � w.
For notational simplicity, we will prove the upper bound for limsupn!1 p

�1 log(E|Sn|/n)
under a stronger assumption krkp = oP(n1/p

�n; p). Otherwise we just redefine v as
(argmins=±1 ksv� v̄�wkp)v and go through the same proof.

As a matter of fact,

Sn ✓ {i 2 [n] : � (vi � v̄i) sgn(v̄i)� |v̄i|}= {i 2 [n] : � (wi + ri) sgn(v̄i)� |v̄i|}.
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For any " 2 (0,1),

{i 2 [n] : � ri sgn(v̄i)< "|v̄i| and �wi sgn(v̄i)< (1� ")|v̄i|}

✓ {i 2 [n] : � (wi + ri) sgn(v̄i)< |v̄i|}.

Hence

Sn ✓ {i 2 [n] : � ri sgn(v̄i)� "|v̄i| or �wi sgn(v̄i)� (1� ")|v̄i|}

✓ {i 2 [n] : |ri|� "|v̄i|}[ {i 2 [n] : �wi sgn(v̄i)� (1� ")|v̄i|}.

Let qn(") = 1

n

Pn
i=1

P (�wi sgn(v̄i)� (1� ")|v̄i|). We have E|Sn| E |{i 2 [n] : |ri|� "|v̄i|}|+
nqn(").

To study {i 2 [n] : |ri| � "|v̄i|}, we define En = {krkp < "
2
n
1/p

�n}. Since krkp =
oP(n1/p

�n; p), there exist C1,N 2 Z+ such that P(Ec
n) C1e

�p/", 8n�N . When En hap-
pens,

|{i 2 [n] : |ri|� "|v̄i|}| |{i 2 [n] : |ri|� "�n}|
krk

p
p

("�n)p


("2n1/p
�n)p

("�n)p
= n"

p
.

Then by log t= log(1 + t� 1) t� 1< t for t� 1, we have log(1/") 1/",

n
�1

E |{i 2 [n] : |ri|� "|v̄i|}| "
p
P(En) + 1 · P(Ec

n)

 e
�p log(1/") +C1e

�p/"
 (C1 _ 1)e�p log(1/")

,

and n
�1

E|Sn| (C1 _ 1)e�p log(1/") + qn("). As a result,

log(E|Sn|/n) log((C1 _ 1)e�p log(1/") + qn(")) log[2max{(C1 _ 1)e�p log(1/")
, qn(")}]

 log 2 +max{log(C1 _ 1)� p log(1/"), log qn(")}.

The assumption p= pn !1 leads to

limsup
n!1

p
�1 log(E|Sn|/n)max{� log(1/"), limsup

n!1
p
�1 log qn(")}, 8" 2 (0,1).

By letting "! 0 we finish the proof.

The following lemma will be used in the analysis of misclassification rates.

LEMMA E.2. Consider the Gaussian mixture model in Definition 3.1 with d � 2. Let
R = kµk2 and p = SNR = R

4
/(R2 + d/n). If n ! 1 and SNR ! 1, then for any

fixed i we have kµ̂
(�i)

� µk2 = OP(
p

(d_ p)/n; p),
���kµ̂(�i)

k2 �

p
R2 + d/(n� 1)

��� =
OP(

p
p/n; p), kxik2 = OP(R _

p
d; p), hµ̂

(�i)
� µ,xii =

p
p/nOP(R _

p
d; p) and

hµ̂
(�i)

,xii=OP(R2; p).

Proof of Lemma E.2. Let wi =
P

j 6=i zjyj and note that (n � 1)µ̂(�i) =
P

j 6=ixjyj =P
j 6=i(µyj + zj)yj = (n� 1)µ+wi. From wi ⇠N(0, (n� 1)Id) we get kwik

2

2
/(n� 1)⇠

�
2

d, and Lemma H.4 leads to kwik
2

2
/(n� 1)� d=OP(p_

p
pd; p). Then

kµ̂
(�i)

�µk
2

2 = (n� 1)�2
kwik

2

2 =
d+OP(p_

p
pd; p)

n� 1
=OP((d_ p)/n; p),

and kµ̂
(�i)

�µk2 =OP(
p

(d_ p)/n; p). To study kµ̂
(�i)

k2, we start from the decomposi-
tion

kµ̂
(�i)

k
2

2 = kµk
2

2 + 2(n� 1)�1
hµ,wii+ (n� 1)�2

kwik
2

2.
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Since hµ,wii ⇠N(0, (n�1)R2), Lemma H.3 yields hµ,wii=OP(R
p
np; p). We use these

and p
pR to derive

kµ̂
(�i)

k
2

2 =R
2 +

2 ·OP(R
p
np; p)

n� 1
+

d+OP(p_
p
pd; p)

n� 1

=R
2 +

d

n� 1
+

max{R
p
np, p,

p
pd}

n
OP(1; p)

=R
2 +

d

n� 1
+

max{R
p
np,

p
pd}

n
OP(1; p)

=R
2 +

d

n� 1
+

r
p

n
OP(R _

p
d/n; p).

Based on this and
p

R2 + d/(n� 1)�
p

R2 + d/n⇣R _

p
d/n,

���kµ̂(�i)
k2 �

p
R2 + d/(n� 1)

���=
��kµ̂(�i)

k
2

2
� [R2 + d/(n� 1)]

��

kµ̂(�i)k2 +
p

R2 + d/(n� 1)



p
p/nOP(R _

p
d/n; p)p

R2 + d/(n� 1)
=OP(

p
p/n; p).

From kzik
2

2
⇠ �

2

d and Lemma H.4 we get kzik22 = d+OP(
p
pd _ p; p) =OP(p _ d; p).

Hence kxik2  kµk2 + kzik2 =R+OP(
p
p_ d; p) =OP(R _

p
d; p) as R�

p
p.

Now we study hµ̂
(�i)

� µ,xii = hµ̂
(�i)

� µ,µiyi + hµ̂
(�i)

� µ,zii. On the one hand,
hµ̂

(�i)
�µ,µi= (n�1)�1

hwi,µi ⇠N(0,R2
/(n�1)) and Lemma H.3 imply that hµ̂(�i)

�

µ,µi=OP(R
p

p/n; p). On the other hand, hµ̂(�i)
�µ,zii/kµ̂

(�i)
�µk2 ⇠N(0,1) leads

to hµ̂
(�i)

�µ,zii/kµ̂
(�i)

�µk2 =OP(
p
p; p). Since kµ̂

(�i)
�µk2 =OP(

p
(d_ p)/n; p),

we have hµ̂
(�i)

�µ,zii=
p

p/nOP(
p
p_ d; p). As a result,

hµ̂
(�i)

�µ,xii=
p

p/nOP(R _

p

d; p).

Note that |hµ,xii| 
��kµk2

2
yi + hµ,zii

��  R
2 + |hµ,zii|. From hµ,zii ⇠ N(0,R2) we

obtain that hµ,zii=OP(R
p
p; p). The fact ppR leads to hµ,xii=OP(R2; p) and

hµ̂
(�i)

,xii= hµ,xii+ hµ̂
(�i)

�µ,xii=OP(R
2 +

p
p/n(R _

p

d); p) =OP(R
2; p),

where we also applied
p

pd/n=R
2
p

d/n/
p

R2 + d/nR
2.

E.2. Proof of Theorem 3.2. We supress the subscripts of �1, �̄1, u1 and ū1. First, sup-
pose that SNR>C logn for some constant C > 0. We have

P[M(ŷ,y)> 0] P

✓
min
c=±1

kcu� ūk2 �
1
p
n

◆

 P

✓
min
c=±1

kcu� ū�H(ZX
>)ū/�̄k1 �

1

2
p
n

◆
+ P

✓
kH(ZX

>)ū/�̄k1 �
1

2
p
n

◆
.

By Corollary 2.1,

min
c=±1

kcu� ū�H(ZX
>)ū/�̄k1 = oP(kūk1; logn).

Therefore, for sufficiently large n we have

P

✓
min
c=±1

kcu� ū�H(ZX
>)ū/�̄k1 �

1

2
p
n

◆


1

n
.
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We are going to show that when C is large,

P

✓
kH(ZX

>)ū/�̄k1 �
1

2
p
n

◆
! 0.(E.1)

If that is true, then P[M(ŷ,y) = 0]! 1 provided that SNR>C logn. Note that

P

✓
kH(ZX

>)ū/�̄k1 �
1

2
p
n

◆
= P

✓
1

nkµk2
2

max
i2[n]

����

⌧
zi,

X

j 6=i

xjūj

������
1

2
p
n

◆



nX

i=1

P

✓����

⌧
zi,

X

j 6=i

xjūj

������
p
nkµk

2

2

2

◆
.(E.2)

Note that ūj = yj/
p
n and xj = yjµ+ zj , we have

X

j 6=i

xjūj =
X

j 6=i

(µ+ yjzj) =

r
n� 1

n
(
p
n� 1µ+wi),

where wi =
1p
n�1

P
j 6=i yjzj ⇠N(0,I). Hence

P

✓����

⌧
zi,

X

j 6=i

xjūj

������
p
nkµk

2

2

2

◆

= P

✓����

⌧
zi,

p
n� 1µ+wi

k
p
n� 1µ+wik2

������
p
nkµk

2

2

2k
p
n� 1µ+wik2

◆
.(E.3)

By the triangle’s inequality,

k
p
n� 1µ+wik2 

p
nkµk2 + kwik2.

Since Lemma H.1 yields kwik
2

2
=OP(d_ n; n). There exist constants c1, c2 > 0 such that

P(kwik2 � c1

p

d_ n)< c2e
�n

.

The assumption SNR�C logn yields kµk2 � 1 and thus

P

⇣
k
p
n� 1µ+wik2 � (c1 + 1)max{

p

d,
p
nkµk2}

⌘
< c2e

�n
.

Hence, there is a constant c0
1

such that

P

⇣
k
p
n� 1µ+wik2 � c

0
1

q
nkµk2

2
+ d

⌘
< c2e

�n
.

By (E.3) and the definition of SNR,

P

✓����

⌧
zi,

X

j 6=i

xjūj

������
p
nkµk

2

2/2

◆

 P

✓����

⌧
zi,

p
n� 1µ+wi

k
p
n� 1µ+wik2

������
p
nkµk

2

2

2c0
1

p
nkµk2

2
+ d

◆
+ P

⇣
k
p
n� 1µ+wik2 � c

0
1

q
nkµk2

2
+ d

⌘

 P

✓����

⌧
zi,

p
n� 1µ+wi

k
p
n� 1µ+wik2

������
p
SNR

2c0
1

◆
+ c2e

�n
.

From the fact
⌧
zi,

p
n� 1µ+wi

k
p
n� 1µ+wik2

�
⇠N(0,I)
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we obtain that

P

✓����

⌧
zi,

X

j 6=i

xjūj

������
p
nkµk

2

2/2

◆
 e

�c3SNR + c2e
�n

.

Here c3 is some constant. Without loss of generality, assume that c3 < 1/2. Therefore, (E.2)
leads to

P

✓
kH(ZX

>)ū/�̄k1 �
1

2
p
n

◆
 n(e�c3SNR + c2e

�n).

The right-hand side tends to zero if SNR > 2c�1

3
logn, proving (E.1). Consequently, when

SNR> 2c�1

3
logn > 4 logn we have P[M(ŷ,y) = 0]! 1.

Next, consider the regime 1⌧ SNR 2c�1

3
logn and take p= SNR. By Theorem 2.1,

min
c=±1

kcu� ū�H(ZX
>)ū/�̄kp = oP(kūkp; p).

Since ū= n
�1/2

y , Lemma E.1 asserts that

limsup
n!1

p
�1 logEM[sgn(u)] = limsup

n!1
p
�1 log

✓
1

n
E min

s=±1

|{i 2 [n] : s sgn(ui) 6= sgn(ūi)}|

◆

 limsup
"!0

limsup
n!1

p
�1 log

✓
1

n

nX

i=1

P

⇣
�[H(ZX

>)ū/�̄]i sgn(ūi)� (1� ")|ūi|
⌘◆

.

From [H(ZX
>)ū]i =

P
j 6=ihzi,xjiūj and �̄= nkµk

2

2
we obtain that

P

⇣
�[H(ZX

>)ū/�̄]i sgn(ūi)� (1� ")|ūi|
⌘
 P

⇣
|[H(ZX

>)ū/�̄]i|� (1� ")/
p
n

⌘

 P

✓����

⌧
zi,

X

j 6=i

xjūj

������ (1� ")
p
nkµk

2

2

◆
, 8" 2 (0,1].

The estimates above yield

limsup
n!1

p
�1 logEM(sgn(u),y)

 limsup
"!0

limsup
n!1

p
�1 logP

✓����

⌧
zi,

X

j 6=i

xjūj

������ (1� ")
p
nkµk

2

2

◆
.(E.4)

Since
P

j 6=ixjūj = (n� 1)µ̂�i
/
p
n, we get

P

✓����

⌧
zi,

X

j 6=i

xjūj

������ (1� ")
p
nkµk

2

2

◆
 P

✓����
hzi, µ̂

�i
i

kµ̂�ik2

�����
(1� ")kµk2

2

kµ̂�ik2

◆
.(E.5)

Let R = kµk2. Lemma E.2 yields
���kµ̂(�i)

k2 �

p
R2 + d/(n� 1)

��� = OP(
p

p/n; p).
Hence there exist constants C1, C2 and N such that

P(kµ̂(�i)
k2 �

p
R2 + d/(n� 1)�C1

p
p/n)C2e

�p
, 8n�N.(E.6)

On the one hand,
p

R2 + d/(n� 1) = [1 + o(1)]
p

R2 + d/n = [1 + o(1)]R2
/
p
p. On the

other hand,

R
2
/
p
p

p
p/n

=

p
nR

2

p
=

p
nR

2

R4/(R2 + d/n)
=

p
n(R2 + d/n)

R2
�
p
n.
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As a result, (E.6) implies that for any constant � > 0, there exists a constant N 0 such that

P(kµ̂(�i)
k2 � (1 + �)R2

/
p
p)C2e

�p
, 8n�N

0
.(E.7)

By (E.5) and (E.7),

P

✓����

⌧
zi,

X

j 6=i

xjūj

������ (1� ")
p
nkµk

2

2

◆

 P

✓����
hzi, µ̂

�i
i

kµ̂�ik2

�����
(1� ")kµk2

2

(1 + �)R2/
p
p

◆
+C2e

�p

= P

✓����
hzi, µ̂

�i
i

kµ̂�ik2

�����
1� "

1 + �

p
p

◆
+C2e

�p
, 8n�N

0
.(E.8)

The independence between zi and µ̂
�i yields hzi, µ̂�i

i/kµ̂
�i
k2 ⇠N(0,1). Then we get

limsup
n!1

p
�1 logEM[sgn(u)]�1/2.(E.9)

from (E.5), (E.8), standard tail bounds for Gaussian random variable and the fact that ", � are
arbitrary.

Finally, when (2 + ") logn < SNR  2c�1

3
logn for some constant " > 0, (E.9) implies

the existence of positive constants "0 and N
00 such that

EM(ŷ,y) = EM(sgn(u),y) n
�1�"0

, 8n�N
00
.

Then we must have P[M(sgn(u),y) = 0]! 1 because

P[M(ŷ,y)> 0] = P[M(ŷ,y)� 1/n] EM(ŷ,y)/n�1
 n

�"0
! 0.

E.3. Proof of Theorem 3.3. It is easily checked that Assumptions 2.4, 2.5 and 2.6 hold
with ⌃= I , = 1, µ= 1 and � ⇣ SNR. Theorem 2.1 then yields the desired result.

APPENDIX F: PROOF OF SECTION 4

Define

I(t, a, b, c) =
a

2
[1� (a/b)t] +

b

2
[1� (b/a)t]� 2c(t+ t

2)

for (t, a, b, c) 2 R ⇥ (0,+1)3. It is easily seen that both a(a/b)t + b(b/a)t and t + t
2 are

convex and achieve their minima at �1/2. Then

I
⇤(a, b, c) = I(�1/2, a, b, c) = sup

t2R
I(t, a, b, c).

F.1. Useful lemmas. We present three useful lemmas. The first one finds an `1 ap-
proximation of the aggregated spectral estimator û. The second one concerns large deviation
probabilities. The third one relates genie-aided estimators to fundamental limits of clustering.

LEMMA F.1. Let ū= y/
p
n and

w = log(a/b)Aū+
2R2

nR2 + d
Gū.

For û defined by (4.3), there exist some "n ! 0 and constant C > 0 such that

P(min
c=±1

kcû�wk1 < "nn
�1/2 logn)> 1�Cn

�2
.
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Proof of Lemma F.1. Define, as in (4.2),

v =
n(↵� �)

2
log

✓
↵

�

◆
u2(A) +

2nR4

nR2 + d
u1(G).

Then

kv�wk1  log(a/b)k[n(↵� �)/2]u2(A)�Aūk1

+
2R2

nR2 + d
k(nR2)u1(G)�Gūk1,(F.1)

kû� vk1 

�����2(A) log

✓
�1(A) + �2(A)

�1(A)� �2(A)

◆
�

n(↵� �)

2
log

✓
↵

�

◆����ku2(A)k1

+

����
2�2

1
(G)

n�1(G) + nd
�

2nR4

nR2 + d

����ku1(G)k1.(F.2)

For simplicity, suppose that hu1(G), ūi � 0 and hu2(A), ūi � 0. By Lemma B.1 and
Theorem 2.1, we have

|�1(G)� nR
2
|= oP(1; n),

ku1(G)�Gū/(nR2)k1 = oP(n
�1/2; logn),

ku1(G)k1 =OP(n
�1/2; logn).

Hence there exists "1n ! 0 and a constant C1 such that

P(|�1(G)/nR2
� 1|< "1n,

ku1(G)�Gū/(nR2)k1 < "1n/
p
n, ku1(G)k1 <C1/

p
n)> 1� n

�2
.(F.3)

By mimicking the proof of Corollary 3.1 in Abbe et al. (2020) and applying Lemma 6 therein,
we get "2n ! 0 and a constant C2 such that

P(max{|�1(A)� n(↵+ �)/2|, |�2(A)� n(↵� �)/2|}< "2n

p
logn,

ku2(A)�Aū/[n(↵� �)/2]k1 < "2n/
p
n, ku2(A)k1 <C2/

p
n)> 1� n

�2
.(F.4)

Inequalities (F.1), (F.2), (F.3) and (F.4) yield some "n ! 0 and constant C > 0 such that

P(kû�wk1 < "nn
�1/2 logn)> 1�Cn

�2
.

LEMMA F.2. Let Assumption 4.1 hold and define

Wni =

 
2R2

nR2 + d

X

j 6=i

hxi,xjiyj + log(a/b)
X

j 6=i

Aijyj

!
yi.

For any fixed i,

lim
n!1

q
�1

n logP(Wni  "qn) =� sup
t2R

{"t+ I(t, a, b, c)}, 8"<
a� b

2
log(a/b) + 2c.

As a result, for any "<
a�b
2

log(a/b) + 2c and � > 0 there exists N > 0 such that

P(Wni  "qn) e
�qn[supt2R{"t+I(t,a,b,c)}��]

, 8n�N
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Proof of Lemma F.2. We will invoke Lemma H.5 to prove Lemma F.2, starting from the
calculation of EetWni . Conditioned on yi,

P
j 6=ihxi,xjiyj and

P
j 6=iAijyj are independent.

Hence

E(etWni |yi) = E


exp

✓
t ·

2R2

nR2 + d

X

j 6=i

hxi,xjiyjyi

◆����yi
�
·E


exp

✓
t log(a/b)

X

j 6=i

Aijyjyi

◆����yi
�
.

We claim that for any fixed t 2R, there exists N > 0 such that when n >N ,

logE


exp

✓
t ·

2R2

nR2 + d

X

j 6=i

hxi,xjiyjyi

◆����yi
�
= logE


exp

✓
t ·

2R2

nR2 + d

X

j 6=i

hxi,xjiyjyi

◆�

= 2c(t+ t
2)[1 + o(1)]qn,

(F.5)

logE


exp

✓
t log(a/b)yi

X

j 6=i

Aijyj

◆����yi
�
= logE


exp

✓
t log(a/b)yi

X

j 6=i

Aijyj

◆�

=
a[(a/b)t � 1] + b[(b/a)t � 1]

2
[1 + o(1)]qn.

(F.6)

If (F.5) and (F.6) hold, then

E(etWni |yi) = E


exp

✓
t ·

2R2

nR2 + d

X

j 6=i

hxi,xjiyjyi

◆�
·E exp

✓
t log(a/b)yi

X

j 6=i

Aijyj

◆

does not depend on yi, and

q
�1

n logEetWni = q
�1

n logE


exp

✓
t ·

2R2

nR2 + d

X

j 6=i

hxi,xjiyjyi

◆�

+ q
�1

n logE


exp

✓
t log(a/b)yi

X

j 6=i

Aijyj

◆�

=

✓
a

2
[(a/b)t � 1] +

b

2
[(b/a)t � 1] + 2c(t+ t

2)

◆
[1 + o(1)]

=�I(t, a, b, c)[1 + o(1)].

Lemma H.5 implies that for "<�
@
@tI(t, a, b, c)|t=0 =

a�b
2

log(a/b) + 2c,

lim
n!1

q
�1

n logP(Wni  "qn) =� sup
t2R

{"t+ I(t, a, b, c)}.

Below we prove (F.5) and (F.6). From xi =µyi+zi we see that given yi, xiyi ⇠N(µ,Id)
is independent of

p
n� 1µ̂(�i)

⇠N(
p
n� 1µ,Id). Lemma H.4 asserts that

logE(ethxi,µ̂(�i)iyi |yi) = logE(e(t/
p
n�1)hxiyi,

p
n�1µ̂(�i)i

|yi)

=
( tp

n�1
)2

2[1� ( tp
n�1

)2]
(kµk22 + (n� 1)kµk22)

+

tp
n�1

1� ( tp
n�1

)2
hµ,

p
n� 1µi �

d

2
log


1�

✓
t

p
n� 1

◆2�
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=
tR

2

1� t2/(n� 1)

✓
1 +

nt

2(n� 1)

◆
�

d

2
log

✓
1�

t
2

n� 1

◆
, 8t 2 (�

p
n� 1,

p
n� 1).

Since the right hand side does not depend on yi, logEethxi,µ̂(�i)iyi is also equal to it. Now we
fix any t 2R and let s= 2tp/R2 = 2t/[1+d/(nR2)]. Since |s|< 2|t|, we have |s|<

p
n� 1

for large n. In that case, we obtain from the equation above that

logE


exp

✓
t ·

2hµ̂(�i)
,xiiyi

1 + d/(nR2)

◆�
= logEeshxi,µ̂(�i)iyi

=
sR

2

1� s2/(n� 1)

✓
1 +

ns

2(n� 1)

◆
�

d

2
log

✓
1�

s
2

n� 1

◆
.

= [1 + o(1)]sR2(1 + s/2) +
d

2
·

s
2

n� 1
[1 + o(1)] =


2tp

✓
1 +

tp

R2

◆
+

d

2n
·
4t2p2

R4

�
[1 + o(1)]

= 2pt


1 +

tp

R2

✓
1 +

d

nR2

◆�
[1 + o(1)] = 2pt(1 + t)[1 + o(1)],

where we used p=R
4
/(R2+d/n). It then follows from the results above and the assumption

p= cqn that

logE


exp

✓
t ·

2hµ̂(�i)
,xiiyi

1 + d/(nR2)

◆�
= cqnp

�1 logE


exp

✓
t ·

2hµ̂(�i)
,xiiyi

1 + d/(nR2)

◆�
= 2c(t+ t

2)[1 + o(1)]qn,

which leads to (F.5).
On the other hand,

E(etAijyiyj |yi) =
1

2
E(etAij |yiyj = 1) +

1

2
E(e�tAij |yiyj =�1)

=
1

2
[uet + (1� u)] +

1

2
[ve�t + (1� v)] = 1+

u(et � 1) + v(e�t
� 1)

2
, 8t 2R.

Conditioned on yi, {Aijyiyj}j 6=i are i.i.d. random variables. Hence

E


exp

✓
t log(a/b)yi

X

j 6=i

Aijyj

◆����yi
�
=

✓
1 +

u[(a/b)t � 1] + v[(b/a)t � 1]

2

◆n�1

.

Again, the right-hand side does not depend on yi. By substituting u= aqn/n and v = bqn/n,

logE


exp

✓
t log(a/b)yi

X

j 6=i

Aijyj

◆�
= (n� 1) log

✓
1 +

u[(a/b)t � 1] + v[(b/a)t � 1]

2

◆

= (n� 1) log

✓
1 +

aqn[(a/b)t � 1] + bqn[(b/a)t � 1]

2n

◆

=
a[(a/b)t � 1] + b[(b/a)t � 1]

2
· [1 + o(1)]qn.

We get (F.6) and thus finish the proof.

LEMMA F.3 (Fundamental limit via genie-aided approach). Suppose that S is a Borel
space and (y,X) is a random element in {±1}n ⇥ S . Let F be a family of Borel mappings
from S to {±1}n. Define

M(u,v) =min

⇢
1

n

nX

i=1

1{ui 6=vi},
1

n

nX

i=1

1{�ui 6=vi}

�
, 8u, v 2 {±1}n,

f(·|X̃, ỹ�i) = P(yi = ·|X = X̃,y�i = ỹ�i), 8i 2 [n], X̃ 2 S, ỹ�i 2 {±1}n�1
.
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We have

inf
ŷ2F

EM(ŷ,y)�
n� 1

3n� 1
·
1

n

nX

i=1

P [f(yi|X,y�i)< f(�yi|X,y�i)] .

Proof of Lemma F.3. For u,v 2 {±1}m with some m 2 Z+, define the sign

s(u,v) = argmin
c=±1

kcu� vk1

with any tie-breaking rule. As a matter of fact, s(u,v) = sgn(hu,vi) if hu,vi 6= 0. When
|hu,vi|> 1, we have s(u�i,v�i) = s(u,v) for all i. Hence for ŷ 2 F (we drop the depen-
dence of ŷ on X),

EM(ŷ,y)� E

 
1

n

nX

i=1

1{s(ŷ,y)ŷi 6=yi}1{|hŷ,yi|>1}

!

= E

 
1

n

nX

i=1

1{s(ŷ�i,y�i)ŷi 6=yi}1{|hŷ,yi|>1}

!

= E

 
1

n

nX

i=1

1{s(ŷ�i,y�i)ŷi 6=yi}

!
�E

 
1

n

nX

i=1

1{s(ŷ�i,y�i)ŷi 6=yi}1{|hŷ,yi|1}

!

�
1

n

nX

i=1

P (s(ŷ�i,y�i)ŷi 6= yi)� P(|hŷ,yi| 1).

Define F" = {ŷ 2F : P(|hŷ,yi| 1) "} for " 2 [0,1]. If F" 6=?, then

inf
ŷ2F"

EM(ŷ,y)�
1

n

nX

i=1

inf
ŷ2F

P (s(ŷ�i,y�i)ŷi 6= yi)� ".

Define G be the family of Borel mappings from S⇥{±1}n�1
! {±1}. For any fixed ŷ 2F ,

the mapping (X,y�i) 7! s(ŷ�i,y�i)ŷi belongs to G. Then

inf
ŷ2F

P (s(ŷ�i,y�i)ŷi 6= yi)� inf
ˆ̀2G

P

⇣
ˆ̀(X,y�i) 6= yi

⌘
� P [f(yi|X,y�i)< f(�yi|X,y�i)] ,

where the last inequality follows from the Neyman-Pearson lemma (Neyman and Pearson,
1933). Let � = 1

n

Pn
i=1

P[f(yi|X,y�i) < f(�yi|X,y�i)]. We have inf ŷ2F"
EM(ŷ,y) �

�� " provided that F" 6=?.
On the other hand, when |hŷ,yi| 1, we have

M(ŷ,y) = (4n)�1 min
c=±1

kcŷ� yk
2

2

= (4n)�1 min
c=±1

{kŷk
2

2 � 2chŷ,yi+ kyk
2

2}�
n� 1

2n
.

Hence if F\F" 6=?,

inf
ŷ2F\F"

EM(ŷ,y)�
n� 1

2n
inf

ŷ2F\F"

P(|hŷ(X),yi| 1)�
n� 1

2n
· "=

"

2

✓
1�

1

n

◆
.

Based on the deduction above, we have the followings for all " 2 [0,1]:

1. If F" 6=? and F\F" 6=?, then inf ŷ2F EM(ŷ,y)�min{�� ", "(1� n
�1)/2};

2. If F" =?, then inf ŷ2F EM(ŷ,y)� "(1� n
�1)/2.

3. If F\F" =?, then inf ŷ2F EM(ŷ,y)� �� ".

As a result, inf ŷ2F EM(ŷ,y)� sup"2[0,1]min{�� ", "(1� n
�1)/2}= n�1

3n�1
�.
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F.2. Proof of Lemma 4.1. The proof directly follows the Lemmas F.4 and F.5, plus the
conditional independence between A and X as well as the Bayes formula. See Appendices
F.3 and F.4 for proofs of lemmas.

LEMMA F.4. Denote by pX(·|˜̀i, ỹ�i) the conditional density function of X given yi =
˜̀
i 2 {±1} and y�i = ỹ�i 2 {±1}n�1. Under Assumption 4.1,

����yi log
✓

pX(X|yi,y�i)

pX(X|� yi,y�i)

◆
�

2R2

nR2 + d

X

j 6=i

hxi,xjiyj

����= oP(qn; qn), 8i.

LEMMA F.5. Denote by pA(·|ỹi, ỹ�i) the conditional probability mass function of A
given yi = ˜̀

i and y�i = ỹ�i. Under Assumption 4.1,
����yi log

✓
pA(A|yi,y�i)

pA(A|� yi,y�i)

◆
� log

✓
a

b

◆X

j 6=i

Aijyj

����= oP(qn; qn), 8i.

F.3. Proof of Lemma F.4. Let p= pn =R
4
/(R2 + d/n). We have pn ⇣ qn. First of all,

from the data generating model, we have

pX(X|y)/ Eµ exp
⇣
�

1

2

nX

j=1

kxj � yjµk
2

⌘
/ Eµ exp

⇣D nX

j=1

xjyj ,µ

E⌘
,

where / hide quantities that do not depend on y. By defining

I(↵) =R
d�1

Z

Sd�1

e
Rh↵,µ̃i

⇢(dµ̃), 8↵ 2R
d
,

and using the uniform distribution of µ on the sphere with radius R, we get

pX(X|yi = s,y�i)

pX(X|yi =�s,y�i)
=

I
�
(n� 1)µ̂(�i) +xis

�

I
�
(n� 1)µ̂(�i) �xis

� .(F.7)

Let P (t, s) =
R ⇡
0
e
t cos✓(sin✓)s�2d✓ for t� 0, s� 2. Then,

I(↵)/

Z ⇡

0

e
Rk↵k2 cos✓(sin✓)d�2d✓ = P (Rk↵k2, d),

where / only hides some factor that does not depend on ↵. Hence by (F.7) and µ̂
(�i) =

1

n�1

P
j 6=i yjxj ,

log

✓
pX(X|yi,y�i)

pX(X|� yi,y�i)

◆

= logP
⇣
Rk(n� 1)µ̂(�i) +xiyik2, d

⌘
� logP

⇣
Rk(n� 1)µ̂(�i)

�xiyik2, d

⌘
.

We will linearize the functional above, and invoke Lemma H.8 to control the approxi-
mation error. Take t0 = (n � 1)R

p
R2 + d/(n� 1), t1 = Rk(n � 1)µ̂(�i) + xiyik2, t2 =

Rk(n� 1)µ̂(�i)
�xiyik2. We first claim that

t0 = nR

p
R2 + d/n[1 + o(1)] = [1 + o(1)]nR3

/
p
p⇣ nR(R _

p
d/n),(F.8)

max{1/t0, d
2
/t

3

0, |t2 � t0|/t0, |t1 � t0|/t0}= oP(1; p).(F.9)
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Equation (F.8) is obvious and it leads to 1/t0 = o(1). From t0 &R
p
nd and the assumption

R� 1_ (d/n)1/4 we get

d
2

t3
0

. d
2

(R
p
nd)3

=

✓
d
4

(R2nd)3

◆1/2

=

✓
d

nR4
·

1

n2R2

◆1/2

= o(1).

By the triangle’s inequality and kxik2 =OP(R _
p
d; p) in Lemma E.2,

���|t1 � t0|�

���Rk(n� 1)µ̂(�i)
k2 � t0

���
���Rkxiyik2 R(R _

p

d)OP(1; p).

By
���kµ̂(�i)

k2 �

p
R2 + d/(n� 1)

���=OP(
p

p/n; p) in Lemma E.2,
��Rk(n� 1)µ̂(�i)

k2 � t0

��=
OP(R

p
np; p). Hence |t1�t0|/R=OP(R_

p
d_

p
np; p) =OP(

p
nR_

p
d; p) as ppR.

Then t0 ⇣ nR(R _

p
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|t1 � t0|/t0 =
|t1 � t0|/R

|t0|/R
=

OP(
p
nR _

p
d; p)

nR _
p
nd

= oP(1; p).

Similarly, |t2 � t0|/t0 = oP(1; p).
Now that (F.9) has been justified, Lemma H.8 and Fact A.5 assert that

����
log pX(X|yi,y�i)� log pX(X|� yi,y�i)

g(t0, d)(t2 � t1)
� 1

����

=

����
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g(t0, d)(t2 � t1)
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����= oP(1; p),(F.10)

where

g(t0, d) =
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[(d� 2)/t0]2 + 4� (d� 2)/t0

2
=

p
(d� 2)2 + 4t2

0
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2t0
.

By (F.8), we have t0 = [1 + o(1)]nR3
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p
p[1 + o(1)]
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·
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Since p=R
4
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✓
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we have
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and g(t0, d) = [1 + o(1)]
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To further simplify (F.10), we first note that
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t
2

1
� t
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t1 + t2
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4R2(n� 1)hµ̂(�i)
,xiiyi

t1 + t2
=

4R2(n� 1)hµ̂(�i)
,xiiyi[1 + oP(1; p)]
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◆
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where we used t0 = [1 + o(1)]nR3
/
p
p in (F.8). Then

g(t0, d)(t1 � t2) =

✓
2p

nR2

X

j 6=i

hxi,xjiyj

◆
yi[1 + oP(1; p)].

By hµ̂
(�i)

,xii=OP(R2; p) in Lemma E.2, g(t0, d)(t1 � t2) =OP(p; p). The proof is com-
pleted by plugging these estimates into (F.10).

F.4. Proof of Lemma F.5. Define Ti = {j 2 [n]\{i} : yiyj = 1} and Si = {j 2

[n]\{i} : Aij = 1} for i 2 [n]. By definition,

pA(A|yi,y�i)/ ↵
|Ti\Si|(1� ↵)|Ti\Si|�|Si\Ti|(1� �)[n]\{i}

c\T c
i \Sc

i ,

pA(A|� yi,y�i)/ ↵
|Si\Ti|(1� ↵)[n]\{i}

c\T c
i \Sc

i �
|Ti\Si|(1� �)|Ti\Si|,

where both /’s hide the same factor that does not involve {Aij}
n
j=1

or yi. Hence

log

✓
pA(A|yi,y�i)

pA(A|� yi,y�i)

◆
= (|Ti \ Si|� |Si\Ti|) log(↵/�)

+ (|Ti\Si|� |[n]\ {i}
c
\ T

c
i \ S

c
i |) log

✓
1� �

1� ↵

◆
.(F.11)

The facts |Ti|� |Si|  |Ti\Si|  |Ti| and n� 1� |Ti|� |Si|  |[n] \ {i}
c
\ T

c
i \ S

c
i | 

n� 1� |Ti| yield

||Ti\Si|� |[n]\ {i}
c
\ T

c
i \ S

c
i || |2|Ti|� (n� 1)|+ |Si|

For any independent random variables {⇠i}
n
i=1

taking values in [�1,1], Hoeffding’s in-
equality (Hoeffding, 1963) asserts P(|

Pn
i ⇠i �

Pn
i E⇠i| � nt)  2e�nt2/2, 8t � 0. Hence

|
Pn

i ⇠i �
Pn

i E⇠i|=OP(
p
nq; q). This elementary fact leads to

|2|Ti|� (n� 1)|=OP(
p
nq; q),

|Si| |ESi|+ |Si �ESi|O(q) +OP(
p
nq; q) =OP(

p
nq; q).

As a result, ||Ti\Si|� |[n]\ {i}
c
\ T

c
i \ S

c
i ||=OP(

p
nq; q). This bound, combined with

0 log

✓
1� �

1� ↵

◆
= log

✓
1 +

↵� �

1� ↵

◆


↵� �

1� ↵
=

(a� b)q/n

1� aq/n
. q

n
,

(F.11) and log(↵/�) = log(a/b), implies that
����log

✓
pA(A|yi,y�i)

pA(A|� yi,y�i)

◆
� (|Ti \ Si|� |Si\Ti|) log(a/b)

����=OP(
p
nq · q/n; q) = oP(q; q).

The proof is completed by

|Ti \ Si|� |Si\Ti|=
X

j2Ti

Aij �
X

j2[n]\{i}c\T c
i

Aij = yi

X

j 6=i

Aijyj .

F.5. Proof of Theorem 4.1. Lemma F.1 asserts the existence of some "n ! 0 and con-
stant C > 0 such that

P(min
c=±1

kcû�wk1 < "nn
�1/2 logn)> 1�Cn

�2
.(F.12)
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Let ĉ= argminc=±1 kcû�wk1 and v = ĉû. Hence

P[M(sgn(û),y) = 0]� P(sgn(v̂) = y)

� P(min
i2[n]

wiyi > "nn
�1/2 logn, kv�wk1 < "nn

�1/2)

� P(min
i2[n]

wiyi > "nn
�1/2 logn)� P(kv�wk1 < "nn

�1/2)

� 1�
nX

i=1

P(wiyi  "nn
�1/2 logn)�Cn

�2

= 1� nP(wiyi  "nn
�1/2 logn)�Cn

�2
.(F.13)

where we used (F.12), union bounds and symmetry.
Take any 0< "<

a�b
2

log(a/b) + 2c. By Lemma F.2, for any � > 0 there exists a large N

such that when n�N , "n < " and

P(wiyi  "nn
�1/2 logn) n

� supt2R{"t+I(t,a,b,c)}+�
.

This and (F.13) lead to

P[M(sgn(û),y) = 0]� 1� n
1�supt2R{"t+I(t,a,b,c)}+�

�Cn
�2

, 8n�N.

When I
⇤(a, b, c) = supt2R I(t, a, b, c)> 1, by choosing small " and � we get P[M(sgn(û),y) =

0]! 1.
The converse result for I⇤(a, b, c) = supt2R I(t, a, b, c)< 1 follows from the large devia-

tion Lemma F.2 and the proof of Theorem 1 in Abbe, Bandeira and Hall (2016).

F.6. Proof of Theorem 4.2. Lemma F.1 asserts the existence of some "n ! 0 and con-
stant C > 0 such that

P(min
c=±1

kcû�wk1 < "nn
�1/2 logn)> 1�Cn

�2
.(F.14)

Let ĉ= argminc=±1 kcû�wk1 and v = ĉû.
By definition, EM(sgn(û),y) 1

n

Pn
i=1

P(viyi < 0). By union bounds and (F.14),

P(viyi < 0) P(viyi < 0, kv�wk1 < "nn
�1/2 logn) + P(kv�wk1 � "nn

�1/2 logn)

 P(wiyi < "nn
�1/2 logn) +Cn

�2
.(F.15)

Take any 0 < " <
a�b
2

log(a/b) + 2c. By Lemma F.2, for any � > 0 there exists a large N

such that when n�N , "n < " and

P(wiyi < "nn
�1/2 logn) n

� supt2R{"t+I(t,a,b,c)}+�
.(F.16)

From (F.15) and (F.16) we obtain that

EM(sgn(û),y) n
� supt2R{"t+I(t,a,b,c)}+� +Cn

�2
, 8n�N.

The proof is completed using I
⇤(a, b, c) = supt2R I(t, a, b, c) 1 and letting ", � go to zero.

F.7. Proof of Theorem 4.3. Define f(·|Ã,X̃, ỹ�i) = P(yi = ·|A= Ã,X = X̃,y�i =
ỹ�i). By Lemma F.3 and symmetries, for any estimator ŷ we have

EM(ŷ,y)�
n� 1

3n� 1
P[f(y1|A,X,y�1)< f(�y1|A,X,y�1)].
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Denote by A the event on the right hand side. Let

B" =

⇢���� log
✓

f(y1|A,X,y�1)

f(�y1|A,X,y�1)

◆
�

✓
log(a/b)(Ay)1 +

2R2

nR2 + d
(Gy)1

◆
y1

����< "qn

�

C" =

⇢✓
log(a/b)(Ay)1 +

2R2

nR2 + d
(Gy)1

◆
y1 �"qn

�

By the triangle’s inequality, C" \B" ✓A. Hence

EM(ŷ,y)& P(A)� P(C" \B")� P(C")� P(Bc
").(F.17)

Since a�b
2

log(a/b) + 2c > 0, Lemma F.2 asserts that

lim
n!1

q
�1

n logP(C") =� sup
t2R

{�"t+ I(t, a, b, c)}.

By Lemma 4.1 and the property of oP(·; ·),

lim
n!1

q
�1

n logP(Bc
") =�1.

These limits and (F.17) lead to

lim inf
n!1

q
�1

n logEM(ŷ,y)�� sup
t2R

{�"t+ I(t, a, b, c)}.

Taking "! 0 finishes the proof.

F.8. Proof of Theorem 4.4. We need the following lemma, whose proof can be found
in Appendix F.9.

LEMMA F.6. Let Assumption 4.1 hold. Define ū= y/
p
n and

w = log(a/b)Aū+
2R2

nR2 + d
Gū.(F.18)

For ũ defined by (4.5), we have

min
c=±1

kcũ�wkqn = oP(n
�1/2+1/qnqn; qn).

Let w be the vector defined in (F.18). We invoke Lemma E.1 to control the misclassifica-
tion error. Set the quantities v, w, v̄ and p therein be our ũ, w � qnn

�1/2
y, qnn�1/2

y and
qn. We have �n = qnn

�1/2. According to Lemma F.6, the assumption in Lemma E.1 holds.
Then

limsup
n!1

q
�1

n logEM(sgn(ũ),y)

= limsup
n!1

q
�1

n log

✓
1

n
E min

c=±1

|{i 2 [n] : c sgn(ũi) 6= yi}|

◆

 limsup
"!0

limsup
n!1

q
�1

n log

✓
1

n

nX

i=1

P

⇣
�(wi � qnn

�1/2
yi)yi � (1� ")qnn

�1/2
⌘◆

 limsup
"!0

limsup
n!1

q
�1

n logP(wiyi  "qnn
�1/2).

By Lemma F.2,

lim
n!1

q
�1

n logP(wiyi  "qnn
�1/2) =� sup

t2R
{"t+ I(t, a, b, c)}, 8"<

a� b

2
log(a/b) + 2c.
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Then, we immediately get

limsup
n!qn

q
�1

n logEM(sgn(ũ),y)� sup
t2R

I(t, a, b, c) =�I
⇤(a, b, c).

If I⇤(a, b, c)> 1 and qn = logn, then

P[M(sgn(ũ),y)> 0] = P[M(sgn(ũ),y)� 1/n]
EM(sgn(ũ),y)

1/n
= n

1�I⇤
(a,b,c)+o(1)

! 0.

F.9. Proof of Lemma F.6. Define an auxiliary quantity

v =
1
p
n
log

✓
↵

�

◆
AŷG +

2nR4

nR2 + d
u1(G).

Then kũ�wkqn  kũ� vkqn + kv�wkqn ,

kv�wkqn  log(a/b)kA(ŷG � y)kqn/
p
n+

2R2

nR2 + d
k(nR2)u1(G)�Gūkqn ,(F.19)

kũ� vkqn 
1
p
n

���� log
✓
1>A1+ ŷ

>
GAŷG

1>A1� ŷ
>
GAŷG

◆
� log

✓
↵

�

◆����kAŷGkqn

+

����
2�2

1
(G)

n�1(G) + nd
�

2nR4

nR2 + d

����ku1(G)kqn .(F.20)

For simplicity, suppose that hu1(G), ūi � 0. By Lemma B.1 and Theorem 2.1, we have

|�1(G)� nR
2
|= oP(1; n),

ku1(G)�Gū/(nR2)kqn = oP(n
�1/2+1/qn ; qn),

ku1(G)kqn =OP(n
�1/2+1/qn ; qn).

Hence,

2R2

nR2 + d
k(nR2)u1(G)�Gūkqn = oP(n

�1/2+1/qnqn; qn),

����
2�2

1
(G)

n�1(G) + nd
�

2nR4

nR2 + d

����ku1(G)kqn = oP(n
�1/2+1/qnqn; qn).

According to (F.19) and (F.20), it remains to show that

log(a/b)kA(ŷG � y)kqn/
p
n= oP(n

�1/2+1/qnqn; qn),

1
p
n

���� log
✓
1>A1+ ŷ

>
GAŷG

1>A1� ŷ
>
GAŷG

◆
� log

✓
↵

�

◆����kAŷGkqn = oP(n
�1/2+1/qnqn; qn).

They are immediately implied by the followings:

kA(ŷG � y)kqn = oP(n
1/qnqn; qn),(F.21)

����1
>
A1/n�

(a+ b)qn
2

����= oP(qn; qn),(F.22)

����ŷ
>
GAŷG/n�

(a� b)qn
2

����= oP(qn; qn),(F.23)

kAŷGkqn =OP(n
1/qnqn; qn).(F.24)
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We will tackle them one by one.
Proof of (F.21). Let S = {i : (ŷG)i 6= yi}= {i : sgn[u1(G)]i 6= sgn(yi)}. Then

|S|

���{i : |[u1(G)� ū]i|� 1/
p
n}

���
ku1(G)� ūk

2

2

(1/
p
n)2

=OP(n/qn; n).

where we used the assumption hu1(G), ūi � 0 and Lemma B.1. Hence, there exists a con-
stant C such that P(|S|�Cn/qn) e

�n for large n. Thanks to Fact A.2, it suffices to show
that

kA(ŷG � y)kqn1{|S|<Cn/qn} = oP(n
1/qnqn; qn)

By Fact A.3, this can be implied by

E
1/qn

⇣
kA(ŷG � y)kqnqn1{|S|<Cn/qn}

⌘
= o(n1/qnqn).

Below we prove a stronger result

E
1/qn

⇣
kA(ŷG � y)kqnqn

���|S|<Cn/qn

⌘
= o(n1/qnqn).(F.25)

From the fact

|Ai(ŷG � y)|=

����
nX

j=1

Aij(ŷG � y)j

���� 2
X

j2S
Aij

we obtain that

E

✓
kA(ŷG � y)kqnqn

����|S|<Cn/qn

◆
 2qn

nX

i=1

E

✓X

j2S
Aij

◆qn����|S|<Cn/qn

�
.(F.26)

Note that A and S are independent. By Corollary 3 in Latała (1997),

E
1/qn

✓X

j2S
Aij

◆qn����y, |S|
�
. qn

log qn

X

j2S
E(Aij |y)

qn

log qn
· |S| ·

(a+ b)qn
n

.

For any constant C > 0,

E
1/qn

✓X

j2S
Aij

◆qn����|S|Cn/qn

�
. qn

log qn
.

From this and (F.26) we get

E
1/qn

✓
kA(ŷG � y)kqnqn

����|S|<Cn/qn

◆
. n

1/qn ·
qn

log qn
= o(n1/qnqn).(F.27)

and then derive (F.25).
Proof of (F.22). Let Ā= E(A|y). On the one hand, we use Hoeffding’s inequality (Hoeffd-
ing, 1963) to get

P

⇣
|1>A1� 1>Ā1|/n� t

���y
⌘
= P

✓����
X

1i,jn

(Aij � Āij)

����� nt

����y
◆
 2e�2t2

, 8t� 0

and thus

1>A1/n� 1>Ā1/n=OP(
p
qn; qn).(F.28)

On the other hand, we obtain from

Ā=
↵+ �

2
11> +

↵� �

2
yy

>
.
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that 1>Ā1/n= a+b
2
qn +

a�b
2
qn(y>1)2/n2. Hoeffding’s inequality yields

P

✓����1
>
Ā1/n�

a+ b

2
qn

����� t

◆
= P

✓
|a� b|

2
·
qn(y>1)2

n2
� t

◆

= P

✓����
nX

i=1

yi

����� n

s
2t

|a� b|qn

◆
 2exp


�

2

n

✓
n

s
2t

|a� b|qn

◆2�
= 2exp

✓
�

4nt

|a� b|qn

◆

and

1>Ā1/n�
a+ b

2
qn =OP(q

2

n/n; qn).(F.29)

The desired bound (F.22) follows from (F.28) and (F.29).
Proof of (F.23). Note that

ŷ
>
GAŷG

n
�

a� b

2
qn =

ŷ
>
GAŷG � y

>
Ay

n
+

y
>
Ay� y

>
Āy

n
+

✓
y
>
Āy

n
�

a� b

2
qn

◆
.

Similar to (F.28) and (F.29), it is easy to show that

(y>
Ay� y

>
Āy)/n= oP(qn; qn) and y

>
Āy/n�

a� b

2
qn = oP(qn; qn).

By direct calculation and (F.21),

(ŷ>
GAŷG � y

>
Ay)/n= n

�1(ŷG + y)>A(ŷG � y) n
�1(kŷGk2 + kyk2)kA(ŷG � y)k2

 n
�1

· 2
p
n · n

1/2�1/qnkA(ŷG � y)kqn = 2n�1/qnoP(n
1/qnqn; qn) = oP(qn; qn).

Then (F.23) becomes obvious.
Proof of (F.24). By Theorem 1 in Latała (1997) and Assumption 4.1, E1/qn(

Pn
j=1

Aij)qn .
qn. Hence

E
1/qnkAyk

qn
qn = E

1/qn

✓ nX

i=1

|Aiy|
qn

◆
 E

1/qn

✓ nX

i=1

����
nX

j=1

Aij

����
qn◆

. n
1/qnqn.

Fact A.3 leads to kAykqn = OP(n1/qnqn; qn). Then, (F.24) follows from the above and
(F.21).

APPENDIX G: PROOFS OF SECTION 5

G.1. Proof of Lemma 5.1. Note that s = 0, r = 1, �̄ = �̄ = nkµk
2

2
and  = 1. As-

sumption B.1 holds if 1/
p
n � ⌧ 1. Assumption 2.5 holds with ⌃= 2Id and in that case,

Assumption 2.6 holds with

� � 2max

⇢
1

kµk2
,

p
d/n

kµk
2

2

�
.

The right hand side goes to zero as d/n!1 and (n/d)1/4kµk2 !1. Hence we can take

� = 2max

⇢
1
p
n
,

1

kµk2
,

p
d/n

kµk
2

2

�

to satisfy all the assumptions above. Then Lemma B.1 yields |hu, ūi| P
! 1.



34

To study û, we first define G̃= E(XX
>) = dIn + de1e

>
1

. Hence its leading eigenvector
and the associated eigengap are ũ= e1 and �̃= d. Observe that G=H(XX

>) and

kXX
>
� G̃k2  kH(XX

>
� G̃)k2 +max

i2[n]

���(XX
>
� G̃)ii

���

 kH(XX
>)� Ḡk2 + kḠ�H(G̃)k2 +max

i2[n]

��kxik
2

2 �Ekxik
2

2

��(G.1)

By Lemma B.1,

kH(XX
>)� Ḡk2 = oP(�̄; n) = oP(nkµk

2

2; n).(G.2)

When i 6= j,

G̃ij = Ehxi,xji= Ehx̄i + zi, x̄j + zji= Ehx̄i, x̄ji= Ḡij .

Hence H(Ḡ) =H(G̃), and

kḠ�H(G̃)k2 =max
i2[n]

|Ḡii|=max
i2[n]

kx̄ik
2

2 = kµk
2

2.(G.3)

For the last term in (5.1), we have

kxik
2

2 �Ekxik
2

2 = kx̄i + zik
2

2 � (kx̄ik
2

2 +Ekzik
2

2) = 2hx̄i,zii+ (kzik
2

2 �Ekzik
2

2).

From khx̄i,ziik 2
. kx̄ik2 = kµk2, Fact 2.1 and Lemma H.3 we obtain that

max
i2[n]

|hx̄i,zii|. k(hx̄1,z1i, · · · , hx̄n,zni)klogn =OP(
p

lognkµk2; logn)(G.4)

For any i� 2, kxik
2

2
⇠ �

2

d. Lemma H.4 forces

P(|kxik
2

2 � d|� 2
p

dt+ 2t) 2e�t
, 8t� 0, i� 2.

By the �2-concentration above and union bounds, max2in |kxik
2

2
�Ekxik

2

2
|=OP(

p
dn_

n; n) =OP(
p
dn; n). Since kx1k

2

2
/2⇠ �

2

d, we get maxi2[n] |kxik
2

2
�Ekxik

2

2
|=OP(

p
dn; n).

Plugging this and (G.2), (G.3), (G.4) into (G.1), we get

kXX
>
� G̃k2 =OP(nkµk

2

2 + kµk
2

2 +
p

lognkµk2 +
p

dn; logn) =OP(nkµk
2

2; logn).

Here we used kµk2 � (d/n)1/4 � 1. The Davis-Kahan Theorem (Davis and Kahan, 1970)
then yields

min
c=±1

ksû� ũk2 . kXX
>
� G̃k2/�̃=OP(nkµk

2

2; logn)/d= oP(1; logn),

since kµk2 ⌧

p
d/n. From ũ= e1 and hũ, ūi= 1/

p
n! 0 we get |hû, ūi| P

! 0.

G.2. Proof of Lemma 5.2. Lemma 5.2 directly follows from Lemma B.1 and thus we
omit its proof.

APPENDIX H: TECHNICAL LEMMAS

H.1. Lemmas for probabilistic analysis.

LEMMA H.1. Under Assumption 2.5, we have

kH(ZZ
>)k2 =OP

�
max{

p
nk⌃kHS, nk⌃kop}; n

�
,

max
i2[n]

kzik
2 =OP (max{Tr(⌃), nk⌃kop}; n) ,

kZZ
>
k2 =OP (max{Tr(⌃), nk⌃kop}; n) .
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Proof of Lemma H.1. By definition,

kH(ZZ
>)k2 = sup

u2Sn�1

|u
>
H(ZZ

>)u|= sup
u2Sn�1

����
X

i 6=j

uiujhzi,zji

����.

Fix u 2 S
n�1, let A= uu

> and S =
P

i 6=j uiujhzi,zji. By Proposition 2.5 in Chen and
Yang (2021), there exists an absolute constant C > 0 such that

P(S � t) exp

✓
�Cmin

⇢
t
2

k⌃k
2

HS

,
t

k⌃kop

�◆
, 8t > 0.

When t= �max{
p
nk⌃kHS, nk⌃kop} for some �� 1, we have min{t2/k⌃k

2

HS
, t/k⌃kop}�

�n and P(S � t) e
�C�n. Similarly, we get P(S �t) e

�C�n and thus

P

✓����
X

i 6=j

uiujhzi,zji

����� �max{
p
nk⌃kHS, nk⌃kop}

◆
 2e�C�n

, 8�� 1.

The bound on kH(ZZ
>)k2 then follows from a standard covering argument (Vershynin,

2010, Section 5.2.2).
Theorem 2.6 in Chen and Yang (2021) with n = 1 and A = 1 implies the existence of

constants C1 and C2 such that for any t� 0,

P(kzik
2
�C1Tr(⌃) + t) exp

✓
�C2min

⇢
t
2

k⌃k
2

HS

,
t

k⌃kop

�◆
.

When t= �max{
p
nk⌃kHS, nk⌃kop} for some �� 1, we have min{t2/k⌃k

2

F
, t/k⌃kop}�

�n. Hence
P(kzik

2
�C1Tr(⌃) + �max{

p
nk⌃kHS, nk⌃kop}) e

�C2�n, 8�� 1.

Union bounds force
max
i2[n]

kzik
2 =OP

�
max{Tr(⌃),

p
nk⌃kHS, nk⌃kop}; n

�
.

We can neglect the term
p
nk⌃kHS above, since

p
nk⌃kF =

q
nk⌃k

2

F


q
(nk⌃kop)Tr(⌃)max{Tr(⌃), nk⌃kop}.

Finally, the bound on kZZ
>
k2 follows from kZZ

>
k2  kH(ZZ

>)k2 + maxi2[n] kzik
2.

LEMMA H.2. Let Assumption 2.5 hold, p � 2 and {V
(m)

}
n
m=1

✓ R
n⇥K be random

matrices such that V (m) is independent of zm. Then,
✓ nX

m=1

����
X

j 6=m

hzm,zjiV
(m)

j

����
p

2

◆1/p

= n
1/p

p
Kp max

m2[n]
kV

(m)
k2OP

�
max{k⌃kHS,

p
nk⌃kop}; p^ n

�
.

Proof of Lemma H.2. By Minkowski’s inequality,
����
X

j 6=m

hzm,zjiV
(m)

j

����
p

2

=

✓ KX

k=1

����
X

j 6=m

hzm,zjiV
(m)

jk

����
2◆p/2



✓ KX

k=1

����
X

j 6=m

hzm,zjiV
(m)

jk

����
p◆2/p

K
1�2/p

�p/2

=K
p/2�1

KX

k=1

����
X

j 6=m

hzm,zjiV
(m)

jk

����
p

=K
p/2�1

KX

k=1

|hzm,w
(m)

k i|
p
,
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where we define w(m)

k =
P

j 6=m V
(m)

jk zj =Z
>(I�eme

>
m)v(m)

k , 8m 2 [n], k 2 [K]. Observe
that

k⌃1/2
w

(m)

k k
2 = (v(m)

k )>(I � eme
>
m)Z⌃Z

>(I � eme
>
m)v(m)

k

 kv
(m)

k k
2

2kZ⌃Z
>
k2  kV

(m)
k
2

2kZ⌃Z
>
k2.

As a result,
����
X

j 6=m

hzm,zjiV
(m)

j

����
p

2

K
p/2�1

✓ KX

k=1

|hzm,w
(m)

k /k⌃1/2
w

(m)

k ki|
p

◆⇣
max
m2[n]

kV
(m)

k2 · kZ⌃Z
>
k
1/2
2

⌘p
.

and
✓ nX

m=1

����
X

j 6=m

hzm,zjiV
(m)

j

����
p

2

◆1/p



q
KkZ⌃Z>k2 max

m2[n]
kV

(m)
k2

·

✓
K

�1

nX

m=1

KX

k=1

|hzm,w
(m)

k /k⌃1/2
w

(m)

k ki|
p

◆1/p

.(H.1)

On the one hand, let z̃i = ⌃1/2
zi, 8i 2 [n] and Z̃ = (z̃1, · · · , z̃n)>. Note that {z̃i}ni=1

satisfy Assumption 2.5 with ⌃ replaced by ⌃2, because

Ee
hu,z̃ii = Ee

h⌃1/2u,zii  e
↵2h⌃⌃1/2u,⌃1/2ui = e

↵2h⌃2u,ui
, 8u 2H, i 2 [n].

It is easily seen from ⌃ 2 T (H) that ⌃2
2 T (H). Then Lemma H.1 asserts that

kZ⌃Z
>
k2 = kZ̃Z̃

>
k2 =OP

�
max{Tr(⌃2), nk⌃2

kop}; n
�

=OP
�
max{k⌃k

2

HS, nk⌃k
2

op}; n
�
.(H.2)

On the other hand, note that zm and w
(m)

k are independent. According to Assumption 2.5
on sub-Gaussianity of zm, we have

E

⇣
hzm,w

(m)

k /k⌃1/2
w

(m)

k ki

���w(m)

k

⌘
= 0,

p
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E
1/p

⇣
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k /k⌃1/2
w

(m)

k ki|
p
���w(m)

k

⌘
C

for some absolute constant C . Then E|hzm,w
(m)

k /k⌃1/2
w

(m)

k ki|
p
 (C

p
p)p. We have

nX

m=1

KX

k=1

E|hzm,w
(m)

k /k⌃1/2
w

(m)

k ki|
p
 nK(C

p
p)p = (n1/p

K
1/p

C
p
p)p.

By Fact A.3,
✓ nX

m=1

KX

k=1

|hzm,w
(m)

k /k⌃1/2
w

(m)

k ki|
p

◆1/p

=OP
⇣
n
1/p

K
1/p

C
p
p; p

⌘
.(H.3)

The final result follows from (H.1), (H.2) and (H.3).

LEMMA H.3. Let X 2 R
n⇥m be a random matrix with sub-Gaussian entries, and

define M 2 R
n⇥m through Mij = kXijk 2

. For any p � q � 1, we have kXkq,p =
OP(

p
pkMkq,p; p).
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Proof of Lemma H.3. By Minkowski’s inequality,

EkXk
p
q,p =

nX

i=1

E

✓ nX

j=1

|Xij |
q

◆p/q


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.

Since p
�1/2

E
1/p

|Xij |
p
 kXijk 2

=Mij , we have

EkXk
p
q,p 

nX
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✓ nX
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(
p
pMij)

q
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p/2

nX
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✓ nX
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M
q
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◆p/q

= (
p
pkMkq,p)

p
.

By Fact A.3, kXkq,p =OP(
p
pkMkq,p; p).

LEMMA H.4. For independent random vectors X ⇠N(µ,Id) and Y ⇠ N(⌫,Id), we
have the followings:

1. If µ= 0, then

P(|kXk
2

2 � d|� 2
p

dt+ 2t) 2e�t
, 8t� 0,

logEe↵kXk2
2+h�,Xi =�

d

2
log(1� 2↵) +

k�k
2

2

2(1� 2↵)
8↵<

1

2
, � 2R

d;

2. For any t 2 (�1,1),

logEethX,Y i =
t
2

2(1� t2)
(kµk22 + k⌫k

2

2) +
t

1� t2
hµ,⌫i �

d

2
log(1� t

2).

Proof of Lemma H.4. When µ = 0, kXk
2

2
⇠ �

2

d. The concentration inequality in the
claim is standard, see Remark 2.11 in Boucheron, Lugosi and Massart (2013). Note that
p(x) = (2⇡)�d/2

e
�kxk2

2/2 is the probability density function of X . With a new variable
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p
1� 2↵x, we have
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2
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Now we come to the second part. Given Y , hX,Y i ⇠ N(hµ,Y i,kY k
2

2
). Hence

E(ethX,Y i
|Y ) = e

hµ,Y it+kY k2
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2/2. Define Z = Y � ⌫ . From hµ,Y i= hµ,⌫i+ hµ,Zi and
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2
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2
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2
we obtain that

logEethX,Y i = logE[E(ethX,Y i
|Y )]

= logE exp
⇥
(hµ,⌫i+ hµ,Zi)t+ (k⌫k22 + 2h⌫,Zi+ kZk
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= hµ,⌫it+
k⌫k

2

2
t
2

2
�

d

2
log(1� t

2) +
t
2
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2
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2(1� t2)
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2
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LEMMA H.5. Let {Sn}
1
n=1

be random variables such that ⇤n(t) = logEetSn exists for
all t 2 [�Rn,Rn], where {Rn}

1
n=1

is a positive sequence tending to infinity. Suppose there
is a convex function ⇤ :R!R and a positive sequence {an}1n=1

tending to infinity such that
limn!1⇤n(t)/an = ⇤(t) for all t 2R. We have

lim
n!1

a
�1

n logP(Sn  can) =� sup
t2R

{ct�⇤(t)}, 8c < ⇤0(0).

Proof of Lemma H.5. This result follows directly from the Gärtner-Ellis theorem (Gärt-
ner, 1977; Ellis, 1984) for large deviation principles.

H.2. Other lemmas.

LEMMA H.6. Let x 2 (0,⇡/2), " 2 (0,1) and � = "
⇡ (

⇡
2
�x). We have max|y|2� |

cos(x+y)
cosx �

1| ". Moreover, if x > 2�, then max|y|�/3 |
sin

2 x
sin

2
(x+y) � 1| 9

16
.

PROOF OF LEMMA H.6. Recall the elementary identity cos(x + y) = cosx cosy �

sinx siny. If |y| 2�, then | siny| |y| 2� = 2"
⇡ (⇡

2
� x) tan(⇡

2
� x) and

����
cos(x+ y)

cosx
� cosy

����
sinx| siny|
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=
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2
� x)


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0 1� cosy 
y
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
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2
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["(1� 2x/⇡)]2

2


"
2

2
.

The result on max|y|2� |
cos(x+y)

cosx � 1| follows from the estimates above and "
2⇡ + "2

2
=

"
2
(1/⇡+ ") ".
The identity sin(x+ y) = sinx cosy + cosx siny imply that if 2� < x tanx and |y|

�/3, then
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sin(x+ y)

sinx
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sinx
=
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1

6
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y
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2
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6
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2


"
2
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

1
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.

Hence for |y|  �/3, we have |
sin(x+y)

sinx � 1|  1

6
+ 1

72
= 13

72
<

1

5
. Direct calculation yields

4

5


sin(x+y)
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6

5
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36

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2 x

sin
2
(x+y) 
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16
and |
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2
(x+y) � 1| 9
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.

LEMMA H.7. For t� 0 and s� 2, define P (t, s) =
R ⇡
0
e
t cosx(sinx)s�2dx and a= (s�

2)/t. There exists a constant c > 0 and a continuous, non-decreasing function w : [0, c] 7!
[0,1) with w(0) = 0 such that when max{1/t, s2/t3} c,

����
@
@t [logP (t, s)]

(
p
a2 + 4� a)/2

� 1

����w(max{1/t, s2/t3}).
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Proof of Lemma H.7. It suffices to show that
@
@t

[logP (t,s)]

(
p
a2+4�a)/2

! 1 as t!1 and t
3
/s

2
!

1.
If s= 2, then a= 0, P (t, s) =

R ⇡
0
e
t cosxdx and @

@tP (t, s) =
R ⇡
0
cosxet cosxdx. A direct ap-

plication of Laplace’s method (Laplace, 1986) yields @
@t [logP (t, s)] = [ @@tP (t, s)]/P (t, s)!

1 as t!1, proving the result. From now on we assume s > 2 and thus a > 0. Under our
general setting, the proof is quite involved and existing results in asymptotic analysis, in-
cluding the generalization of Laplace’s method to two-parameter asymptotics (Fulks, 1951)
cannot be directly applied.

Define f(x,a) = e
cosx sina x for x 2 [0,⇡]. Then P (t, s) =

R ⇡
0
f
t(x,a)dx and @

@tP (t, s) =R ⇡
0
cosxf t(x,a)dx. From log f(x,a) = cosx+ a log sinx we get

@
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@
2

@x2
[log f(x,a)] =� cosx�

a

sin2 x
.

(H.4)

Let x⇤ be the solution to @
@x [log f(x,a)] = 0 on (0,⇡). We have x

⇤
2 (0,⇡/2),

a=
1

cosx⇤
� cosx⇤, cosx⇤ =

p
a2 + 4� a

2
and sinx⇤ =

✓
a(
p
a2 + 4� a)

2

◆1/2

.

(H.5)

Moreover, f(·, a) is strictly increasing in [0, x⇤) and strictly decreasing in (x⇤,⇡]. Hence x
⇤

is its unique maximizer in [0,⇡].
Fix any " 2 (0,1/32) and let � = "

⇡ (
⇡
2
� x

⇤). Define I = [x⇤ � 2�, x⇤ + 2�] \ [0,⇡], J =
[x⇤, x⇤ + �/6] and r(a) = infy2J f(y, a)/ supy2[0,⇡]\I f(y, a). Then J ✓ I ✓ [0,⇡/2) and
|J |= �/6. We have
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,

where the last inequality follows from x
⇤ + 2� < ⇡/2 and cos(x⇤ + �) � cos(⇡/2 � �) =

sin � � 2�/⇡. Consequently,
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@
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Let h(a, t) denote the right hand side. If h(a, t)< 1, the estimate above yields

1� h(a, t)

1 + h(a, t)


[ @@tP (t, s)]/P (t, s)R
I cosxf

t(x,a)dx/
R
I f

t(x,a)dx


1 + h(a, t)
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.

According to Lemma H.6, | cosx/ cosx⇤ � 1| " holds for all x 2 I . Hence

(1� ")
1� h(a, t)

1 + h(a, t)


@
@t [logP (t, s)]

cosx⇤
 (1 + ")

1 + h(a, t)
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.
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Note that our assumptions t!1 and t
3
/s

2
!1 imply that t/(a_ 1)2 !1. Below we

will prove h(a, t)! 0 as t/(a_ 1)2 !1 for any fixed " 2 (0,1/32). If that holds, then we
get the desired result by letting "! 0.

The analysis of h(a, t) hinges on that of r(a) = infy2J f(y, a)/ supy2[0,⇡]\I f(y, a). The
monotonicity of f(·, a) in [0, x⇤) and (x⇤,⇡] yields infy2J f(y, a) = f(x⇤ + �/6, a),

sup
y2[0,⇡]\I

f(y, a) =max{f(x⇤ � 2�, a), f(x⇤ + 2�, a)}

max{f(x⇤ � �/3, a), f(x⇤ + �/3, a)}, if x⇤ > 2�,

sup
y2[0,⇡]\I

f(y, a) = f(x⇤ + 2�, a), if x⇤  2�.

The two cases x
⇤
> 2� and x

⇤
 2� require different treatments. If we define g(x) =

1/ cosx � cosx for x 2 (0,⇡/2), then a = g(x⇤) and � = "
⇡ (

⇡
2
� x

⇤) yield the following
simple fact.

FACT H.1. If x⇤ > 2�, then x
⇤
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"
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⇡"
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2⇡+4" .

We first consider the case where x
⇤
> 2�, which is equivalent to a > g( "

1+2"/⇡ ). Let
I
0 = [x⇤� �/3, x⇤+ �/3]. For any y 2 I

0, there exists ⇠ in the closed interval between x
⇤ and

y such that
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1

2

@
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By construction, @
@x [log f(x,a)]|x=x⇤ = 0. From equation (H.4) we get
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32
+

9

16
=
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where we used Lemma H.6 and " 1/32. Therefore,
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1

2

@2

@x2 [log f(x,a)]|x=x⇤


✓
1 +

19

32

◆✓
�

6

◆2

=
51

32
·
�
2

36
,

supy2[0,⇡]\I0 log f(y, a)� log f(x⇤, a)
1

2

@2

@x2 [log f(x,a)]|x=x⇤
�

✓
1�

19

32

◆✓
�

3

◆2

=
13

32
·
�
2

9
=

52

32
·
�
2

36
.

Since @2

@x2 [log f(x,a)]|x=x⇤ =� cosx⇤ � a/ sin2 x⇤ < 0,

log r(a) = inf
y2J

log f(y, a)� sup
y2[0,⇡]\I

log f(y, a)� inf
y2J

log f(y, a)� sup
y2[0,⇡]\I0

log f(y, a)

�
1

2

@
2

@x2
[log f(x,a)]|x=x⇤

✓
51

32
·
�
2

36
�

52

32
·
�
2

36

◆
=

(cosx⇤ + a/ sin2 x⇤)�2

2⇥ 32⇥ 36

& a�
2
/ sin2 x⇤.

From this and h(a, t) = 3⇡2

�2rt(a) we get

� logh(a, t) =� log(3⇡2) + log �2 + t log r(a)&�1 + log �2 + ta�
2
/ sin2 x⇤.
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From (H.5) we see that lima!1 sinx⇤ = 1, lima!1 a cosx⇤ = 1 and lima!1 a(⇡
2
�x

⇤) = 1.
Since � = "

⇡ (
⇡
2
� x

⇤) > 0, we have lima!1 a� = "
⇡ . There exists C1 > 0 determined by "

such that for any a > g( "
1+2"/⇡ ), we have � �C1/a and a�

2
/ sin2 x⇤ �C1/a. As a result, for

some C2 determined by ",

� logh(a, t)�C2(�1� loga+ t/a)

�C2[�1� log(a_ 1) + t/(a_ 1)], 8a > g

✓
"

1 + 2"/⇡

◆
.(H.6)

We move on to the case where x
⇤
 2�. Recall that for x 2 (x⇤, x⇤ + 2�) ✓ (x⇤,⇡/2),

we have @
@x [log f(x,a)]< 0 and

�
@
2

@x2
[log(x,a)] = cosx+

a

sin2 x
� cosx� cos(x⇤ + 2�)� cos(4�)� cos(1/16),

where we used �  "/2  1/64. By Taylor expansion, there exists ⇠ 2 [x⇤ + �/6, x⇤ + 2�]
such that

log r(a) = inf
y2J

log f(y, a)� sup
y2[0,⇡]\I

log f(y, a) = log f(x⇤ + �/6, a)� log f(x⇤ + 2�, a)

=�

✓
@

@x
[log(x,a)]|x=x⇤+�/6(2�� �/6) +

1

2

@
2

@x2
[log(x,a)]|x=⇠(2�� �/6)2

◆

>
1

2
inf

x2[x⇤,x⇤+2�]

✓
�

@
2

@x2
[log(x,a)]

◆
(2�� �/6)2 & �

2
.

Based on h(a, t) = 3⇡2

�2rt(a) and � �
⇡"

2⇡+4" from Fact H.1, there exists some C3 > 0 determined
by " such that � logh(a, t)�C3(�1 + t)�C3[�1 + t/(a_ 1)] holds when a g( "

1+2"/⇡ ).
This bound, (H.6) and log(a_ 1) a_ 1 imply that

� logh(a, t)&�1� log(a_ 1) +
t

a_ 1
��1� (a_ 1) +

t

a_ 1

=�1 + (a_ 1)

✓
t

(a_ 1)2
� 1

◆
.

As t/(a_ 1)2 !1, we have � logh(a, t)!1 and h(a, t)! 0.

LEMMA H.8. For t � 0 and s � 2, define a = (s � 2)/t and g(t, s) = (
p
a2 + 4 �

a)/2. There exist a constant c 2 (0,1) and a function w : [0, c] ! [0,1) such that when
max{1/t0, d2/t30, |t2 � t0|/t0, |t1 � t0|/t0} c,

����
logP (t2, s)� logP (t1, s)

g(t0, s)(t2 � t1)
� 1

����w(max{1/t0, s
2
/t

3

0, |t2 � t0|/t0, |t1 � t0|/t0}).

Proof of Lemma H.8. Let h(a) = (
p
a2 + 4 � a)/2. Observe that @a

@t = �(s � 2)/t2 =

�a/t and h
0(a) = 1

2
( ap

a2+4
� 1) =�h(a)/

p
a2 + 4. By the chain rule,

@

@t
[log g(t, s)] =

d

da
[logh(a)] ·

@a

@t
=

h
0(a)

h(a)
·
@a

@t
=

a

t
p
a2 + 4

.

Hence 0< @
@t [log g(t, s)] 1/t. For any t2 � t1 > 0 there exists ⇠ 2 [t1, t2] such that

0 log

✓
g(t2, s)

g(t1, s)

◆
= log g(t2, s)� log g(t1, s) =

@

@t
[log g(t, s)]|t=⇠(t2 � t1)

t2 � t1

⇠


t2 � t1

t1
.
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This leads to |g(t2, s)/g(t1, s)� 1| e
|t2�t1|/(t1^t2) � 1 for any t1, t2 > 0.

Let c and w be those defined in the statement of Lemma H.7. Suppose that t0 >

0 and s � 2 satisfies max{1/t0, s2/t30} < c/2. When t � t0/21/3, max{1/t, s2/t3} 

2max{1/t0, s2/t30}< c. Lemma H.7 and the non-decreasing property of w force
����
@
@t [logP (t, s)]

g(t, s)
� 1

����w(max{1/(t0/2
1/3), s2/(t0/2

1/3)3})

w(2max{1/t0, s
2
/t

3

0}), 8t� t0/2
1/3

.

When |t � t0|  t0/5, we have t � 0.8t0 � t0/21/3 and 2|t � t0|  0.4t0  t0/21/3. Then
|t� t0|/(t0 ^ t) 1/2 and

|g(t, s)/g(t0, s)� 1| e
|t�t0|/(t0^t) � 1 e

1/2 |t� t0|

t0 ^ t


p
e|t� t0|

t0/21/3


3|t� t0|

t0
< 1.

Hence when t 2 [4t0/5,6t0/5],

[1�w(2max{1/t0, s
2
/t

3

0})]

✓
1�

3|t� t0|

t0

◆


@
@t [logP (t, s)]

g(t0, s)

 [1 +w(2max{1/t0, s
2
/t

3

0})]

✓
1 +

3|t� t0|

t0

◆
.

We can find a constant c̃ 2 (0,1) and construct a new function w̃ : [0, c̃]! [0,1) such that
for any distinct t1, t2 2 [(1� c̃)t0, (1 + c̃)t0],

����
logP (t2, s)� logP (t1, s)

g(t0, s)(t2 � t1)
� 1

���� w̃(max{1/t0, s
2
/t

3

0, |t2 � t0|/t0, |t1 � t0|/t0}).

The proof is completed by re-defining c and w as c̃ and w̃, respectively.
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