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Abstract

Inverse probability of treatment weighting (IPTW) is a popular method for estimating the
average treatment effect (ATE). However, empirical studies show that the IPTW estimators
can be sensitive to the misspecification of the propensity score model. To address this problem,
researchers have proposed to estimate propensity score by directly optimizing the balance of pre-
treatment covariates. While these methods appear to empirically perform well, little is known
about how the choice of balancing conditions affects their theoretical properties. To fill this gap,
we first characterize the asymptotic bias and efficiency of the IPTW estimator based on the
Covariate Balancing Propensity Score (CBPS) methodology under local model misspecification.
Based on this analysis, we show how to optimally choose the covariate balancing functions
and propose an optimal CBPS-based IPTW estimator. This estimator is doubly robust; it is
consistent for the ATE if either the propensity score model or the outcome model is correct.

In addition, the proposed estimator is locally semiparametric efficient when both models are
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correctly specified. To further relax the parametric assumptions, we extend our method by
using a sieve estimation approach. We show that the resulting estimator is globally efficient
under a set of much weaker assumptions and has a smaller asymptotic bias than the existing
estimators. Finally, we evaluate the finite sample performance of the proposed estimators via
simulation and empirical studies. An open-source software package is available for implementing

the proposed methods.

Key words: Average treatment effect, causal inference, double robustness, model misspecifi-

cation, semiparametric efficiency, sieve estimation

1 Introduction

Suppose that we have a random sample of n units from a population of interest. For each unit ¢,
we observe (13, Y;, X;), where X; € R? is a d-dimensional vector of pre-treatment covariates, 7T} is a
binary treatment variable, and Y; is an outcome variable. In particular, T; takes 1 if unit i receives
the treatment and is equal to 0 if unit ¢ belongs to the control group. The observed outcome can
be written as ¥; = Y;(1)T; + Y;(0)(1 — T3), where Y;(1) and Y;(0) are the potential outcomes under
the treatment and control conditions, respectively. This notation implicitly requires the stable unit
treatment value assumption (Rubin, 1990). In addition, throughout this paper, we assume the

strong ignorability of the treatment assignment (Rosenbaum and Rubin, 1983),
{v;(1),v;(0)} L Ti [ X; and 0 < P(T;=1]X;) < L (1.1)

Next, we assume that the conditional mean functions of potential outcomes exist and denote

them by,
E(Y;(0) | X;) = K(X;) and E(Y:(1)|X;) = K(X;)+ L(X,), (1.2)

for some functions K (-) and L(-), which represent the conditional mean of the potential outcome
under the control condition and the conditional average treatment effect, respectively. Under this

setting, we are interested in estimating the average treatment effect (ATE),

u o= E(Yi(1) - Yi(0)) = E(L(X,). (1.3)



The propensity score is defined as the conditional probability of treatment assignment (Rosen-

baum and Rubin, 1983),
m(X;) = P(T;=1]|X;). (1.4)

In practice, since X; can be high dimensional, the propensity score is usually parameterized by a
model 73(X;) where B is a g-dimensional vector of parameters. A popular choice is the logistic
regression model, i.e., mg(X;) = exp(X,' 8)/{1 + exp(X,' B)}. Once the parameter 3 is estimated
(e.g., by the maximum likelihood estimator ,@), the Horvitz-Thompson estimator (Horvitz and
Thompson, 1952), which is based on the inverse probability of treatment weighting (IPTW), can
be used to obtain an estimate of the ATE,

- _ 1l Y, (-T)Y
M = nZ;(ﬂE(Xz) I—Wﬁ(Xi)>' (1.5)

However, it has been shown that the IPTW estimator with the known propensity score does
not attain the semiparametric efficiency bound (Hahn, 1998). A variety of efficient ATE estimators
have been proposed (see e.g., Robins et al., 1994; Bang and Robins, 2005; Tan, 2006; Qin and
Zhang, 2007; Robins et al., 2007; Cao et al., 2009; Tan, 2010; van der Laan, 2010; Rotnitzky et al.,
2012; Han and Wang, 2013; Vermeulen and Vansteelandt, 2015, among many others). Despite
the popularity of these methods, researchers have found that in practice the estimators can be
sensitive to the misspecification of the propensity score model and the outcome model (e.g., Kang
and Schafer, 2007). To overcome this problem, several researchers have recently considered the
estimation of the propensity score by optimizing covariate balance rather than maximizing the
accuracy of predicting treatment assignment (e.g., Hainmueller, 2012; Graham et al., 2012; Imai
and Ratkovic, 2014; Chan et al., 2016; Zubizarreta, 2015; Zhao and Percival, 2017; Zhao, 2019).
In this paper, we focus on the Covariate Balancing Propensity Score (CBPS) methodology (Imai
and Ratkovic, 2014). In spite of its simplicity, several scholars independently found that the CBPS
performs well in practice (e.g., Wyss et al., 2014; Frolich et al., 2015). The method can also be
extended for the analysis of longitudinal data (Imai and Ratkovic, 2015), general treatment regimes
(Fong et al., 2018a) and high-dimensional propensity score (Ning et al., 2018). In this paper, we
conduct a theoretical investigation of the CBPS. Given the similarity between the CBPS and some
other methods, our theoretical analysis may also provide new insights for understanding other

covariate balancing methods.



The CBPS method estimates the parameters of the propensity score model, 3, by solving the
following m-dimensional estimating equation,
T; 1-T; >
_ £(X;),
mo(X)  1-me(xy) [
(1.6)

n
93T, X) = %Zgﬁ(Ti,Xi) = 0 where gg(7;, X;) = (
i=1

for some covariate balancing function f(-) : R — R™ when the number of equations m is equal to
the number of parameters ¢. Imai and Ratkovic (2014) point out that the common practice of fitting
a logistic model is equivalent to balancing the score function with f(X;) = ﬁ}i(XZ) = 0ng(X;)/08.
They find that choosing f(X;) = X;, which balances the first moment between the treatment and
control groups, significantly reduces the bias of the estimated ATE. Some researchers also include
higher moments and/or interactions, e.g., f(X;) = (X; X?), in their applications. This guarantees
that the treatment and control groups have an identical sample mean of f(X;) after weighting by
the estimated propensity score.

When m > ¢, then 3 can be estimated by optimizing the covariate balance by the generalized
method of moments (GMM) method (Hansen, 1982):

B = srgmin 38(T,X)" W gg(T, X), (1.7)

where O is the parameter space for 3 in R? and W is an (m xm) positive definite weighting matrix,
which we assume in this paper does not depend on 8. Alternatively, the empirical likelihood method
can be used (Owen, 2001). Once the estimate of 3 is obtained, we can estimate the ATE using the
IPTW estimator in equation (1.5).

The main idea of the CBPS and other related methods is to directly optimize the balance of
covariates between the treatment and control groups so that even when the propensity score model
is misspecified we still obtain a reasonable balance of the covariates between the treatment and
control groups. However, one open question remains in this literature: How shall we choose the
covariate balancing function f(X;)? In particular, if the propensity score model is misspecified,
this problem becomes even more important.

This paper makes two main contributions. First, we conduct a thorough theoretical study of the
CBPS-based IPTW estimator with an arbitrary covariate balancing function f(-). We characterize
the asymptotic bias and efficiency of this estimator under locally misspecified propensity score

models. Based on these findings, we show how to optimally choose the covariate balancing function



f(X;) for the CBPS methodology (Section 2).

However, the optimal choice of f(X;) requires some initial estimators for the unknown propensity
score model and the outcome models. This limits the application of the CBPS method with the
optimal f(X;) in practice. Our second contribution is to overcome this problem by developing
an optimal CBPS method that does not require an initial estimator. We show that the IPTW
estimator based on the optimal CBPS (oCBPS) method retains the double robustness property.
The proposed estimator is semiparametrically efficient when both the propensity score and outcome
models are correctly specified. More importantly, we show that the rate of convergence of the
proposed oCBPS estimator is faster than the augmented inverse probability weighted (AIPW)
estimator (Robins et al., 1994) under locally misspecified models. (Section 3).

To relax the parametric assumptions on the propensity score model and the outcome model,
we further extend the proposed oCBPS method to the nonparametric settings, by using a sieve
estimation approach (Newey, 1997; Chen, 2007). In Section 4, we establish the semiparametric
efficiency result for the IPTW estimator under the nonparametric setting. Compared to the existing
nonparametric propensity score methods (e.g., Hirano et al., 2003; Chan et al., 2016), our theoretical
results require weaker smoothness assumptions. For instance, the theories in Hirano et al. (2003),
Imbens et al. (2007) and Chan et al. (2016) require s/d > 7, s/d > 9 and s/d > 13, respectively,
where s is the smoothness parameter of the corresponding function class and d = dim(X;). In
comparison, we only require s/d > 3/4, which is significantly weaker than the existing conditions.
To prove this result, we exploit the matrix Bernstein’s concentration inequalities (Tropp, 2015)
and a Bernstein-type concentration inequality for U-statistics (Arcones, 1995). Moreover, we show
that our estimator has smaller asymptotic bias than the usual nonparametric method (e.g., Hirano
et al., 2003). Therefore, the asymptotic normality result is expected to be more accurate in practice
(Section 4). The proof of the theoretical results are deferred to the supplementary material.

An open-source R software package CBPS is available for implementing the proposed estimators
(Fong et al., 2018b). In Section 5, we conduct simulation studies to evaluate the performance of
the proposed methodology and show that the oCBPS methodology indeed performs better than
the standard CBPS methodology in a variety of settings. Finally, we conduct an empirical study
using a canonical application in labor economics. We show that the oCBPS method is able to yield

estimates closer to the experimental benchmark when compared to the standard CBPS method.



2 CBPS under Locally Misspecified Propensity Score Models

Our theoretical investigation starts by examining the consequences of model misspecification for the
CBPS-based IPTW estimator. While researchers can avoid gross model misspecification through
careful model fitting, in practice it is often difficult to nail down the exact specification. The
prominent simulation study of Kang and Schafer (2007), for example, is designed to illustrate this
phenomenon. We therefore consider the consequences of local misspecification of propensity score
model in the general framework of Copas and Eguchi (2005). In particular, we assume that the
true propensity score m(Xj;) is related to the working model mg(X;) through the exponential tilt

for some 3%,
m(X;) = 7p(Xi)exp(§ u(Xi; 8Y)), (2.1)

where u(X;;3*) is a function determining the direction of misspecification and { € R represents
the magnitude of misspecification. We assume & = o(1) as n — oo so that the true propensity
score 7(X;) is in a local neighborhood of the working model mg+(X;). Intuitively, since 7(X;) ~
7g+(X;) holds, we can interpret 8* as the approximate true value of 3. The main advantage of
this exponential tilt approach is that 7(X) is always nonnegative, while it does not guarantee
7m(X) < 1. However, with £ = o(1) and Assumption B.1 (i.e., |u(X;8*)] < C almost surely for
some constant C' > 0), we can show that 7(X) < 1 holds with probability tending to 1. Finally,
we note that under suitable regularity conditions model (2.1) can be approximated by n(X) =
mg+ (X)) + Eu(X; 8%) + Op(&%), for some w(X;/B*). This provides an asymptotically equivalent
specification of the locally missepecified model. To keep our presentation focused, in this section
we assume model (2.1) holds.

In the following, we will establish the asymptotic normality of the CBPS-based IPTW estimator
in (1.5) under this local model misspecification framework.

To derive the asymptotic bias and variance, let us define some necessary quantities,

_ u( X BO{K(X;) + L(X;)(1 — mp+(X5)) }
5 - {z] ) |

* « Txx7* 7\ —1 77+ T yR7* U(X“ﬂ*)f(xl)
+H(H; W H{) " H; WIE( s S )} (2.2)



where K(X;) and L(X;) are defined in (1.2), W* is the limiting value of W in (1.7), and

v o (E(X) + (1 -7 (X)) L(X;) Ompe(Xi)
H, = E< 5 (X)) (1 — 75 (X)) o )
. £(X;) Omg(Xi)\ "
Hy = E(ﬂﬁ*(Xi)(l—ﬂ'B*(Xi))< B ))

Furthermore, denote pg-(T;,Y;, X;) = wﬁ?(};i(-) — 1(_17;3?();?_),

H =(1,H}") and == Bu By , (2.3)
Yup g
where
= Var(ug-(T;.Y;, X;)) = Yi(1)® Yi(0)2 o v a2
S = Verlp (1,95, X0) = B 2y + 1ot — (BOG(D) ~ BOTO))?).

s = (Hf "W*H}) ' H} "W* Var(gg-(T;, X;))W*Hf (Hf "W*Hf) ™,

Sup = —(Hy "W H{) " H{ "W* Cov(pp(T;, Y, Xa), gp- (T3, X)),

in which gg-(Tj, X;) is defined in (1.6). Under the model in equation (1.2), we have

f(X)f(X)" >

T (Xi) (1 — mp<(X3)) )

{K(X5) + (1 — mp« (X5)) L(X5) H(X3)
T (X;)(1 — 7 (X5))

Var(ga (2 %) = &

Cov(yuge (Th, Yi, Xi), g+ (Th, X.)) = E [

The following theorem establishes the asymptotic normality of the CBPS-based IPTW estimator

under the local misspecification of the propensity score model.

Theorem 2.1 (Asymptotic Distribution under Local Misspecification of the Propensity Score Model).
If the propensity score model is locally misspecified as in (2.1) with € = n~'/2 and Assumption
B.1 in Appendix B holds, the estimator ﬁfj in (1.5), where B is obtained by GMM (1.7), has the

following asymptotic distribution
Viliz—p) -5 N(B, H'TSH"), (2.4)

where B is the asymptotic bias given in equation (2.2) and the asymptotic variance H*T S H* is

obtained from (2.3).



The theorem shows that the first order asymptotic bias of /’Zﬁ is given by B under local model
misspecification. In particular, this bias term implicitly depends on the covariate balancing function
f(-). Thus, we consider how to choose f(-) such that the first order bias |B| is minimized. While
at the first glance the expression of B appears to be mathematically intractable, the next corollary

shows that any f(X) satisfying (2.5) can eliminate the first order bias, B = 0.

Corollary 2.1. Suppose that the covariate balancing function f(X) satisfies the following condi-

tion: there exits some a € R™ such that
an(Xi) = 7= (X3)E(Y;(0) | X;) + (1 — 7« (X5))E(Yi(1) | X5). (2.5)

In addition, assume that the dimension of f(X;) is equal to the number of parameters, i.e., m = q.
Then, under the conditions in Theorem 2.1, the asymptotic bias of the IPTW estimator /75 is 0,
ie, B=0.

Intuitively, the above result can be viewed as a “local” version of robustness of IPTW with
respect to the misspecification of the propensity score model. The form of f(X;) in (2.5) implies that
when balancing covariates, for any given unit we should give a greater weight to the determinants
of the mean potential outcome that is less likely to be realized. For example, if a unit is less likely
to be treated, then it is more important to balance the covariates that influence the mean potential
outcome under the treatment condition. In the following, we focus on the asymptotic variance of
fig in Theorem 2.1. Interestingly, we can show that the same choice of f (X;) in (2.5) minimizes

the asymptotic variance.

Corollary 2.2. Under the same conditions in Corollary 2.1, the asymptotic variance of ﬁ,@ is
minimized by any covariate balancing function f(X;) which satisfies (2.5). In this case, the CBPS-
based IPTW estimator ﬂﬁ attains the semiparametric asymptotic variance bound in Theorem 1 of
Hahn (1998), i.e.,

Var(Yi(1) | Xi) | Var(Yi(0) | Xi)

Vopt =E
Pt m(X;) 1—m(X;)

+{L(X:) — u}?| . (2.6)

Based on Theorem 2.1, we can define the asymptotic mean squared error (AMSE) of ﬁ,@ as
AMSE = B? + H*TXH*. Corollaries 2.1 and 2.2 together imply that ﬁa with f(X) satisfying
(2.5) attains the minimum AMSE over all possible covariate balancing estimators. Thus, we refer to

(2.5) as the optimality condition for the covariate balancing function. We note that there may exist



many choices of f(X) which satisfy (2.5). For instance, we can choose f1(X) = 7g-(X;)E(Y;(0) |
X;) + (1 — m-(X;))E(Yi(1) | X;) and fa,..., iy in an arbitrary way, as long as the estimating
equation gg(T', X) = 0 is not degenerate. In this case, to implement f;(X), we need to further
estimate 3* by some initial estimator, e.g., the maximum likelihood estimator, and estimate the
conditional mean E(Y;(0) | X;) and E(Y;(1) | X;) by some parametric/nonparametric models.
While Corollaries 2.1 and 2.2 hold with this choice of f(X), the empirical performance of the
resulting estimator ﬁ,@ is often unstable due to the estimation error of the initial estimators. To
overcome this problem, we will next construct the optimal CBPS estimator that does not require

any initial estimator.

3 The Optimal CBPS Methodology

Recall that the optimal covariate balancing function f(X) is given by (2.5). Plugging f(X) into
the estimating function gg(7;, X;) in (1.6), we obtain that

T; 1-1T,
aTgﬁ* (T, X;) = <7T,@* (X3) 1 T (Xz)> [TF,B* (X)) K(X5) + (1 — 7= (X)) (K(X;) + L(X;))
T; 1-1T; . o |
) <7Tﬁ*(Xi) 1= Wﬁ*(&)) X+ <7T,3*(XZ-) 1) L(X3). (3.1)

In other words, the optimality condition (2.5) holds if and only if some linear combination of
estimating function gg(T;, X;) satisfies (3.1). Motivated by this observation, we construct the

following set of estimating functions,

_ gl,@(TaX)
g,@(T7X) = 3 s (32)
gQﬁ(T’ X)
where g18(T, X) =n~' Y1 | g18(T;, Xi) and gog(T, X) =n~1 30 | g25(T;, X;) with
T, 1-T; T;
918(T;, X;) = ( - > h1(X),9:8(T5, X;) = < - 1> h2(X;),(3.3)
B m8(Xi)  1—ma(X;) s 75(Xi)

for some pre-specified functions hi(-) : R — R™ and ho(-) : R — R™ with m; + my =
m. It is easy to see that if the functions K(-) and L(-) lie in the linear space spanned by the
functions h(-) and ho(-) respectively, then there exists a vector a € R™ such that (3.1) holds for
(918(T3, X5), g28(T;, X)), further implying that the optimality condition (2.5) is met.

As discussed in Section 2, the choice of the optimal covariate balancing function is not unique.

Unlike the one mentioned after Corollary 2.2, the estimating function in (3.2) does not require any



initial estimators for 3 or the conditional mean models, and is more convenient for implementation.
Given the estimating functions in (3.2), we can estimate 3 by the GMM estimator 3 in (1.7). We
call this method as the optimal CBPS method (oCBPS). Similarly, the ATE is estimated by the
IPTW estimator ﬂﬁ in (1.5). The implementation of the proposed oCBPS method (e.g., the choice
of hi(-) and hy(-)) will be discussed in later sections.

It is worthwhile to note that gg(7T', X) has the following interpretation. The first set of functions
g18(T, X) is the same as the existing covariate balancing moment function in (1.6), which balances
the covariates h;(X;) between the treatment and control groups. However, unlike the original CBPS
method, we introduce another set of functions gog(T', X)) which matches the weighted covariates
h2(X;) in the treatment group to the unweighted covariates ho(X;) in the control group, because
g28(T, X)) = 0 can be rewritten as

> W’lﬂxi) = ) ha(X)).
T=1 P T,=0

As seen in the derivation of (3.1), the auxiliary estimating function gog(T', X)) is required in order
to satisfy the optimality condition.
3.1 Theoretical Properties

We now derive the theoretical properties of the IPTW estimator (1.5) based on the proposed
oCBPS method. In particular, we will show that the proposed estimator is doubly robust and
locally efficient. The following set of assumptions are imposed for the establishment of double

robustness.
Assumption 3.1. The following regularity conditions are assumed.
1. There exists a positive definite matrix W* such that W -2 W,

2. For any hy(-) and ha(-) in (3.3), the minimizer 8° = argmingcq E(gs (T, X)) "W*E(gs(T, X))

is unique.
3. (3° € int(©), where © is a compact set.

4. mg(X) is continuous in 3.

10



5. There exists a constant 0 < ¢y < 1/2 such that with probability tending to one, ¢y < 18(X) <

1 — ¢p, for any B € int(©).
6. E|Y(1)]? < oo and E|Y(0)]? < oc.

7. For any hi(-) and ha(-) in (3.3) and W* in part 1, G* := E(9g(8°)/08) exists where g(3) =
(g18(T,X)",g25(T, X)") " and there is a g-dimensional function C'(X) and a small constant
7 > 0 such that supgeg, (go) [0mg(X)/0Bk| < Cr(X) for 1 <k < g, and E(|h1;(X)[Ck(X)) <
oo for 1 < j<mq, 1<k <gqand E(|hy;(X)|Cr(X)) < oo forl<j<mg, 1<k <g, where
B, (8°) is a ball in R? with radius r and center 3°.

Conditions 1-4 of Assumption 3.1 are the standard conditions for consistency of the GMM
estimator (Newey and McFadden, 1994). Note that we allow the propensity score model to be
misspecified, so that we use the notation 3° in Condition 2 to distinguish it from 3* used in the
previous section. Condition 5 is the positivity assumption commonly used in the causal inference
literature (Robins et al., 1994, 1995). Conditions 6 and 7 are technical conditions that enable us
to apply the dominated convergence theorem. Note that, supgep, (goy [075(X)/98k| < Cx(X) in
Condition 7 is a local condition in the sense that it only requires the existence of an envelop function
Cr(X) around a small neighborhood of 3°.

We now establish the double robustness of the proposed estimator under Assumption 3.1.

Theorem 3.1 (Double Robustness). Under Assumption 3.1, the proposed oCBPS-based IPTW
estimator ZZE is doubly robust. That is, ﬁg N w if at least one of the following two conditions

holds:
1. The propensity score model is correctly specified, i.e., P(T; =1 | X;) = mg0(X;);

2. The functions h;(-) and ho(-) in (3.3) and W* in Assumption 3.1 satisfy the following
condition. There exist some vectors aj,as € RY such that K(X;) = af Mjh;(X;) and
L(X;) = O’,;—Mghg(Xi), where M; € R7*™1 and My € R9%™2 are the partitions of G*T W* =
(M7, Ms).

Next, we establish the asymptotic normality of the proposed estimator if either the propensity
score model (Condition 1 in Theorem 3.1) or the outcome model is correctly specified (Condition

2 in Theorem 3.1) . For this result, we require an additional set of regularity conditions.

11



Assumption 3.2. The following regularity conditions are assumed.
1. For any hy(-) and ho(+) in (3.3) and W* in Assumption 3.1, G*TW*G* and Q = E(gge (T}, X;)gge (Ti, Xi) ")

are nonsingular.

2. The function Cx(X) defined in Condition 7 of Assumption 3.1 satisfies E(|Y (0)|Ck (X)) < o0
and E(]Y(1)|Cr(X)) < oo for 1 <k <gq.

Condition 1 of Assumption 3.2 ensures the non-singularity of the asymptotic variance matrix

and Condition 2 is a mild technical condition required for the dominated convergence theorem.
Theorem 3.2 (Asymptotic Normality). Suppose that Assumptions 3.1 and 3.2 hold.

1. If Condition 1 of Theorem 3.1 holds, then the proposed oCBPS-based IPTW estimator ﬂﬁ

has the following asymptotic distribution:

Vn(fig — p) 4N <0, I_{*TEP_I*> : (3.4)
where H* = (1, HT)T, 53 = (G*TW'G*)~ G W QW G*(G"TW*G") ™! and
mgo (X;)(1 — mgo (X)) o3 ’
, XTI 2 2
> = f ] with Eu=E<Y’(1) + ) )—/ﬂ. (3.5)
Eﬂﬁ Eﬁ T (Xl) 1- T3 (XZ)

In addition, 3,3 is given by

(K(Xi) + (1= 7)) L(X)

(A~ mo)m?

E,uﬁ — _(G*TW*G*)—IG*TW*{E hI(XJ))

7

E(K(XZ> +(1- T(’?)L(Xl)h;(Xl)> }T.

(0]
U

2. If Condition 2 of Theorem 3.1 holds, then the proposed oCBPS-based IPTW estimator ﬂﬁ

has the following asymptotic distribution:
Valiig —p) -5 N (o, ﬁ*Ti:ﬁ*> : (3.6)

where H* = (1, H*T)T,

o (AKX + LX) | (1 - m(X)K(X)| dmge(X)
= | S e e

s [ S i) s g (TEXEQ) (L -m(X)VEO))
s, om )T 2 (G T )



In addition, 2#@ is given by
iuﬁ _ —(G*TW*G*)_IG*TW*S,
where § = (8,85 )" and
g E H (X)) (K(X;) + L(X;) — mge (X))
L= 2
To (X5)

(1 7 (X)) (K(XD) + (1 — 70X |5 o
* (1~ npo(X,)? } ’”(X’)] ’

_ (X)) [(K(Xi) + L(X;)) (1 — mge (X)) — mgo (X))
5 =B H g0 (X;)?
(1 —7m(X;))K(X;) + (1 — mgo (X)) ,
! I — e (X,) jrax)]

3. If both Conditions 1 and 2 of Theorem 3.1 hold and W* = Q! then the proposed oCBPS-

based IPTW estimator ZZE has the following asymptotic distribution:
~ d
Vi — 1) 5 N(O,V),

where

M/«
V=3, - (@ Moy M)GH (G TG e | ' (3.7)

and ¥, is defined in (3.5).

The asymptotic variance V' in (3.7) contains two terms. The first term X, represents the variance
of each summand in the estimator defined in equation (1.5) with B replaced by B8°. The second term
can be interpreted as the effect of estimating B via covariate balance conditions. Since this second
term is nonnegative, the proposed estimator is more efficient than the standard IPTW estimator
with the true propensity score model, i.e., V' < 3. In particular, Henmi and Eguchi (2004) offered
a theoretical analysis of such efficiency gain due to the estimation of nuisance parameters under a
general estimating equation framework.

Since the choice of hi(-) and ha(-) can be arbitrary, it might be tempting to incorporate more
covariate balancing conditions into hi(-) and ho(-). However, the following corollary shows that
under Conditions 1 and 2 of Theorem 3.1 one cannot improve the efficiency of the proposed estimator
by increasing the number of functions hi(-) and hsa(+) or equivalently, the dimensionality of covariate

balance conditions, i.e., g1g(T, X) and gog(T', X).
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Corollary 3.1. Define hy(X) = (h{ (X),a{ (X))" and ha(X) = (hy (X),aq (X)) ", where a;(-)
and ay(-) are some additional covariate balancing functions. Similarly, let g;(X) and g2(X) denote
the corresponding estimating equations defined by h1(X) and ho(X). The resulting oCBPS-based
IPTW estimator is denoted by fig where ,[/3\ is in (1.7) and its asymptotic variance is denoted by V.
Under Conditions 1 and 2 of Theorem 3.1, we have V' < V, where V is defined in (3.7).

The above corollary shows a potential trade-off between robustness and efficiency when choos-
ing hi(-) and ha(-). Recall that Condition 2 of Theorem 3.1 implies K (X;) = af M1h;(X;) and
L(X;) = ag Mahy(X;). Therefore, we can make the proposed estimator more robust by incorpo-
rating more basis functions into hi(-) and hgo(-), such that this condition is more likely to hold.
However, Corollary 3.1 shows that doing so may inflate the variance of the proposed estimator.

In the following, we focus on the efficiency of the estimator. Using the notations in this section,

we can rewrite the semiparametric asymptotic variance bound V¢ in (2.6) as
Vpt = S — (o My, g M3)Q2 : (3.8)

Comparing this expression with (3.7), we see that the proposed estimator is semiparametrically
efficient if G* is a square matrix (i.e., m = ¢) and invertible. This important result is summarized

as the following corollary.

Corollary 3.2. Assume m = g and G* is invertible. Under Assumption 3.1, the proposed estimator

fig in (1.5) is doubly robust in the sense that ZZE 2 11 if either of the following conditions holds:
1. The propensity score model is correctly specified. That is P(T; =1 | X;) = 7go(Xj).
2. There exist some vectors oy, ce € RY such that K (X;) = af h1(X;) and L(X;) = aq ho(X;).

In addition, under Assumption 3.2, if both conditions hold, then the proposed estimator has the
asymptotic variance given in (3.8). Thus, our estimator is a locally semiparametric efficient esti-

mator in the sense of Robins et al. (1994).

The corollary shows that the proposed oCBPS method has two advantages over the original
CBPS method (Imai and Ratkovic, 2014) with balancing first and second moments of X; and/or

the score function of the propensity score model. First, the proposed estimator ﬁa is robust to
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model misspecification, whereas the original CBPS estimator does not have that property. Second,
the proposed oCBPS estimator can be more efficient than the original CBPS estimator.

Corollary 3.2 also implies that the asymptotic variance of ﬁa is identical to the semiparametric
variance bound Vgp¢, even if we incorporate additional covariate balancing functions into hi(-)
and hs(-). Namely, under the conditions in Corollary 3.2, we have V =V = Vopt in the context
of Corollary 3.1. Thus, in this setting, we can improve the robustness of the estimator without
sacrificing the efficiency by increasing the number of functions hi () and ha(-). Meanwhile, this also
makes the propensity score model more flexible, since we need to increase the number of parameters
B3 to match m = ¢ as required in Corollary 3.2. This observation further motivates us to consider

a sieve estimation approach to improve the oCBPS method, as shown in Section 4.

Remark 3.1 (Implementation of the oCBPS method). Based on Corollary 3.2, h;(-) serves as
the basis functions for the baseline conditional mean function K (-), while hy(-) represents the basis
functions for the conditional average treatment effect function L(-). Thus, in practice, researchers
can choose a set of basis functions for the baseline conditional mean function and the conditional
average treatment effect function when determining the specification for hi(-) and ho(-). Once
these functions are selected, they can over-parameterize the propensity score model by including
some higher order terms or interactions such that m = ¢ holds. The resulting oCBPS-based IPTW

estimator may reduce bias under model misspecification and attain high efficiency.

Remark 3.2. We also extend the oCBPS method to the estimation of the average treatment
effect for the treated (ATT). Given the space limitation, we defer the details to the supplementary

material.

3.2 Comparison with Related Estimators

Next, we compare the proposed estimator with some related estimators from the literature. We

begin with the following standard AIPW estimator of Robins et al. (1994),

~AIPW __ 1 ¢ 1;Y; _ (1_TZ))/Z (T — 7 ) K(Xiva)"i_L(Xi?'Y) K(X’i7a)
Z{mxn I rp(x) ﬁm)( X)) 1—m<Xi>)}’

B,y n

i=1
where K (X, ) and L(X;,~) are the conditional mean models indexed by finite dimensional pa-

rameters a and ~. Assume the linear outcome models: K(X;, a) = a’hi(X;) and L(X;,v) =
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~Thy(X;). It is interesting to note that our IPTW estimator ﬁﬁ in Corollary 3.2 can be rewritten

as the ATPW estimator ﬁglj };V (for any « and =), since we have,

INm o (K@) + LX) | KX | _
nz;(T 5(Xz>>< (%) +17r5<Xi>> 0,

by the definition of the covariate balancing estimating equations in (3.2).

It is well known that the AIPW estimator is consistent provided that either the propensity
score model or the outcome model is correctly specified. Since both the AIPW estimator and
our estimator are doubly robust and locally efficient, in the following we conduct a theoretical
investigation of these two estimators under the scenario that both propensity score and outcome
models are misspecified. Indeed, this scenario corresponds to the simulation settings used in the
influential study of Kang and Schafer (2007).

To make the comparison mathematically tractable, we focus on the case that both of these two
models are locally misspecified. Similar to Section 2, we assume that the true treatment assignment
satisfies, m(X;) = g« (X;) exp(§ u(X;; 8%)) in (2.1), while the true regression functions K (X;) and
L(X;) in (1.2) satisfy

where a* and v* can be viewed as the approximate true values of e and =y, the functions 1 (X;)
and 79(X;) determine the direction of misspecification, and § € R represents the magnitude of
misspecification.

Assume further that the models are locally misspecified, i.e., £,§ = o(1). Under regularity

conditions similar to Section 2, we can show that the proposed estimator satisfies,

0= 22 g 900 KK = LX) = 0 4000 = K(X) 4 546

Op(€25 + on~ Y2 4 en~V/2), (3.10)

whereas the AIPW estimator satisfies,

AL == 2 [ DY) KO0 — LX) = s 040 = KO} + 206 =
+ 0, (E6 + on~ Y2 4 en~1/2), (3.11)
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where ,5,& and 4 are the corresponding maximum likelihood and least square estimators. The
derivation of (3.10) and (3.11) is shown in Appendix I.

The leading terms in the asymptotic expansions of ﬁa — p and pATPW _ 4 are identical and

ﬂ7a7§
are known as the efficient influence function for p. However, the remainder terms in (3.10) and
(3.11) may have different order. Consider the following two scenarios. First, if €6 > n~/2, then
we have ﬁa — 1= 0p(€25 +n~1/?) and ﬁglgf‘?f — = Op(&0). Thus, the proposed estimator ﬁ,@
converges in probability to the ATE at a faster rate than ﬁglf W Second, if £§ = o(n~1/2), the two

[l

estimators have the same limiting distribution, i.e., v/n(ii—pu) AN (0, Vopt), where [z can be either
ﬁﬁ or ﬁgg Z\/V However, the rates of convergence of the Gaussian approximation determined by the
remainder terms in (3.10) and (3.11) are different. For instance, assume that & = § = n~(1/4+9) for
some small positive ¢ < 1/4. We observe that the remainder term in (3.10) is of order O, (n~(3/4+9)
and is smaller in magnitude than the corresponding term in (3.11), which is of order O, (n~(1/2+29).
As a result, the proposed estimator converges in distribution to N (0, Vopt) at a faster rate than the
ATPW estimator. The above analysis justifies the theoretical advantage of the proposed oCBPS
estimator over the standard AIPW estimator.

Furthermore, the proposed estimator is related to the class of bias-reduced doubly robust es-
timators (Vermeulen and Vansteelandt, 2015), see also Robins et al. (2007). To see this, we

~ATPW

consider the derivative of 130 with respect to the nuisance parameters a,<. In particu-

lar, under the linear outcome models, it is easily shown that Oﬁéf ,I;V /0o = gi18(T, X) and

8ﬁg7[£gv/8’y = g28(T, X), where gig(T, X) and gog(T, X ) are our covariate balancing func-

tions in (3.2). This provides an alternative justification for the proposed method: the oCBPS
estimator 3, which satisfies gog(T, X) = 0 and g18(T', X) = 0, removes the local effect of the
estimated nuisance parameters, i.e., 8;7215 f;V /0o = 0 and 8;72{5 };V /0~ = 0. This property would

not hold if we replace fj\ by the maximum likelihood estimator or other convenient estimators

of B. Vermeulen and Vansteelandt (2015) defined the class of bias-reduced doubly robust esti-

mator as ﬁglgj 2/, where (3, a,~) are the estimators corresponding to the estimating equations
~AIP ~AIP ~AIP g :
8/157&’};[//804 = 0,8/157&’};[//8'7 = 0,8/157&’,‘\7/8,6 = 0. The first two sets of estimating equations

are identical to the covariate balancing estimating equations in (3.2), whereas the last set of esti-

mating equations 8;7315 ,‘;V /0B = 0 (leading to the estimators &,4) is unnecessary in our setting

~

because ]Iﬁ = ATPW does not rely on how o and 4 are estimated. As expected, all the theoretical

B,y
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properties of the bias-reduced doubly robust estimator in Section 3 of Vermeulen and Vansteelandt
(2015) hold for our estimator.

Recently, a variety of empirical likelihood based estimators are proposed to match the moment
of covariates in treatment and control groups (e.g., Tan, 2006, 2010; Hainmueller, 2012; Graham
et al., 2012; Han and Wang, 2013; Chan et al., 2016; Zubizarreta, 2015; Zhao and Percival, 2017).
Usually, these methods aim to estimate E(Y;(1)) and E(Y;(0)) (or E(Y;(1) | 7; = 0) and E(Y;(0) |
T; = 1)) separately and combine then to estimate the ATE. Our approach directly estimates the
propensity score and ATE by jointly solving the potentially over-identified estimating functions
(3.2). In addition, our asymptotic results and the discussion rely on the GMM theory for over-
identified estimating functions which is different from these methods. Another recent paper by
Zhao (2019) studied the robustness of a general class of loss function based covariate balancing
methods. When the goal is to estimate the ATE, his score function reduces to our first set of
estimating functions g15(T", X) in (3.2). In this case, his estimator is robust to the misspecification
of the propensity score model under the constant treatment effect model, i.e., L(X) = 7* for some
constant 7*. In comparison, our methodology and theoretical results cover a broader case that

allows for heterogeneous treatment effects.

4 Nonparametric oCBPS Methodology

In this section, we extend our theoretical results of the oCBPS methodology to nonparametric
estimation. As seen in Corollary 3.2, the proposed estimator is efficient if both the propensity score
P(T; = 1| X;) and the conditional mean functions K (-) and L(-) are correctly specified. To avoid
model misspecification, we can choose a large number of basis functions hi(-) and hs(-), such that
the conditional mean functions K (-) and L(-) satisfy the condition 2 in Corollary 3.2.

However, the parametric assumption for the propensity score model P(T; =1 | X;) = mgo(X;)
imposed in Corollary 3.2 may be too restrictive. Once the propensity score model is misspecified,
the proposed oCBPS-based IPTW estimator ﬁa is inefficient and could even become inconsistent.
To relax the strong parametric assumptions imposed in the previous sections, we propose a flexible
nonparametric approach for modeling the propensity score and the conditional mean functions.
The main advantage of this nonparametric approach is that, the resulting oCBPS-based IPTW

estimator is semiparametrically efficient under a much broader class of propensity score models
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and the conditional mean models than those of Corollary 3.2.

Specifically, we assume P(T; = 1 | X;) = J(¥*(X;)), where J(-) is a known monotonic link
function (e.g., J(-) = exp(-)/(1+exp(+))), and ¥*(+) is an unknown smooth function. One practical
way to estimate ¢*(-) is to approximate it by the linear combination of x basis functions, where x
is allowed to grow with n. This approach is known as the sieve estimation (Andrews, 1991; Newey,
1997). In detail, let B(x) = {bi(x),...,b.(x)} denote a collection of x basis functions, whose
mathematical requirement is given in Assumption E.1. Intuitively, we would like to approximate
Y*(x) by BT B(x), for some coefficient 3* € R*.

To estimate B*, similar to the parametric case, we define gg(T', X) = > | g3(Ti, X;)/n, where
98(Ti, Xi) = (9/5(Ti, Xi),905(T;, X)) " with,

T 1-T;
0@ %) = (i e poe ) O
gQﬁ(T:ini) = <J(,3T.£Z(‘XZ)) — 1) hQ(XZ)

Recall that hq(X) € R™ and ha(X) € R™2 are interpreted as the basis functions for K (X) and
L(X). Let m; +ms =m and h(X) = (h1(X) T, ho(X)")T. Here, we assume m = &, so that the
number of equations in gg(T', X)) is identical to the dimension of the parameter 3. Then define
B = arg mingeo ||ga(T, X)||3, where © is the parameter space for B and |[v||2 represents the Lo

norm of the vector v. The resulting IPTW estimator is,

1 (-
- Z( ,6TB i) 1—J<BTB<XZ->>>‘

To establish the large sample properties of ﬁa, we require a few regularity conditions. Due to the

space constraint, we defer the regularity conditions to the supplementary material. The following

theorem establishes the asymptotic normality and semiparametric efficiency of the estimator ﬁﬁ'
Theorem 4.1 (Efficiency under nonparametric models). Assume that Assumption E.1 in the sup-
plementary material holds, and there exist rp, 7, > 1/2, 8* and a* (a’{T, s T € R¥, such that

the propensity score model satisfies

sup [¢*(2) — BT B(z)| = O(x™™), (4.1)

reX

and the outcome models K () and L(-) satisfy

sup |[K(2) — ai hi(2)| = O(x™™), sup |L(z) — a3 ha(z)| = O(x™™). (4.2)
reX xeX
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1
Assume £ = o(n'/3) and n2+ ) = o(k). Then
~ d
n'2(fig — 1) == N(0, Vope),
where Vyp¢ is the asymptotic variance bound in (2.6). Thus, ﬁﬁ is semiparametrically efficient.

This theorem can be viewed as a nonparametric version of Corollary 3.2. It shows that one can
construct a globally efficient estimator of the treatment effect without imposing strong parametric
assumptions on the propensity score model and the outcome model. Since the estimator is asymp-
totically equivalent to the sample average of the efficient influence function, it is also adaptive in
the sense of Bickel et al. (1998).

In the following, we comment on the technical assumptions of Theorem 4.1. We assume ¢*(x)
and K (x) (also L(x)) can be uniformly approximated by the basis functions B(x) and hi(x) (also
ho(x)) in (4.1) and (4.2), respectively. It is well known that the uniform rate of convergence is
related to the smoothness of the functions ¢*(x) and K(x) (also L(x)) and the dimension of X.
For instance, if the function class M for ¢*(x) and H for K(x) (also L(x)) correspond to the
Holder class with smoothness parameter s on the domain X = [0,1]%, under the assumption that
my < me < K, (4.1) and (4.2) hold for the spline basis and wavelet basis with r, = r, = s/d;
see Newey (1997); Chen (2007) for details. In the same setting, Hirano et al. (2003) considered a
nonparametric IPTW estimator, which is globally efficient under the condition s/d > 7. Imbens
et al. (2007) established the asymptotic equivalence between a regression based estimator and
Hirano et al. (2003)’s estimator under s/d > 9. Recently, Chan et al. (2016) proposed a sieve
based calibration estimator under the condition s/d > 13. Compared to these existing results, our
theorem needs a much weaker condition, i.e., s/d > 3/4. We refer to the supplementary material

for further technical discussion of our nonparametric estimator.
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5 Simulation and Empirical Studies

5.1 Simulation Studies

In this section, we conduct a set of simulation studies to examine the performance of the proposed

methodology. We consider the following linear model for the potential outcomes,

Yi(1) = 200+ 27.4X;1 4 13.7Xis + 13.7X43 + 13.7Xis + &5,

Y;(0) = 200+ 13.7X;0 + 13.7X;3 + 13.7X;4 + &;.

where £; ~ N(0, 1), independent of X;, and consider the following true propensity score model

o exp(—ﬁla:il + 0.5z;0 — 0.25x;3 — 0.11’i4)
1+ exp(—,Blmﬂ + 0.5%,‘2 — 0.25.%‘3 — O.1$i4)7

where (; varies from 0 to 1. When implementing the proposed methodology, we set hi(x;) =
(1, 242, i3, 244) and ho(x;) = 41 so that the number of equations is equal to the number of param-
eters to be estimated. Covariate X;; is generated independently from N(3,2) and X;2, X;3 and X4
are generated from N (0,1). Each set of results is based on 500 Monte Carlo simulations.

We examine the performance of the IPTW estimator when the propensity score model is fitted
using maximum likelihood (GLM), the standard CBPS with balancing the first moment (CBPS),
and the proposed optimal CBPS (oCBPS) as well as the case where the true propensity score (True),
i.e., B = B*, is used for the IPTW estimator. In addition, we include the IPTW estimator when
the propensity score model is estimated by logistic series (Hirano et al., 2003). Since a fully non-
parametric logistic series approach is impractical to implement due to the curse of dimensionality,
instead we consider a generalized additive model (GAM) and apply the logistic series approach
to each of the covariate separately. Finally, we also include the targeted maximum likelihood
estimator, a doubly robust estimator (DR, Benkeser et al. (2017)), using the R package drtmle.

In the first set of simulations, we use the correctly specified propensity score and outcome
models. Table 5.1 shows the standard deviation, bias, root mean square error (RMSE), and the
coverage probability of the constructed 95% confidence intervals of these estimators when the
sample size is n = 300 and n = 1000. The confidence intervals are constructed using estimates of
the asymptotic variances of the estimators. The exact formulas can be found in the supplementary
material. We find that CBPS and oCBPS substantially outperform True, GLM, and GAM in terms

of efficiency, and in most cases outperform DR as well. In addition, oCBPS is more efficient than
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Table 5.1: The bias, standard deviation, root mean squared error (RMSE), and the coverage
probability of the constructed 95% C.I. of the IPTW estimator with known propensity score (True),
the IPTW estimator when the propensity score is fitted using the maximum likelihood (GLM), the
IPTW estimator when the propensity score is fitted using the generalized additive model (GAM),
the targeted maximum likelihood estimator (DR), the standard CBPS estimator balancing the first
moment (CBPS), and the proposed optimal CBPS estimator (oCBPS) under the scenario that both
the outcome model and the propensity score model are correctly specified. We vary the value of 51

in the data generating model (5.1).

n = 300 n = 1000
B 0 0.33 0.67 1 0 0.33 0.67 1

True —0.43 —0.01 1.15 -5.19 0.00 0.09 —2.43 9.99

GLM -0.18 —0.86 0.15 —4.32 —0.04 0.02 0.32 11.15

) GAM —0.74 —4.60 —15.55 —35.38 —0.19 —1.16 —2.85 —6.86

bias DR 0.08 —1.04 —-3.41 —8.32 0.18 —0.56 —2.14 —4.50

CBPS —0.05 —0.09 0.54 —0.27 0.04 0.04 0.20 0.45

oCBPS —0.04 0.03 0.07 0.06 0.04 0.06 0.16 0.08

True 29.52 39.46 72.56 138.33 15.73 22.36 38.18 88.33

GLM 4.45 12.31 63.35 144.25 2.21 5.49 22.93 114.45

Std GAM 4.31 14.91 43.08 100.16 2.06 5.22 21.27 51.96

Dev DR 2.39 2.57 4.25 8.06 1.20 1.29 1.76 3.32

CBPS 2.39 2.35 2.66 15.94 1.24 1.26 1.27 1.45

oCBPS 2.26 2.16 2.27 2.39 1.20 1.20 1.18 1.22

True 29.52 39.46 72.57 138.43 15.73 22.36 38.26 88.89

GLM 4.46 12.34 63.35 144.32 2.21 5.49 22.93 114.99

RMSE GAM 4.37 15.60 45.81 106.23 2.07 5.35 21.46 52.41

DR 2.39 2.77 5.45 11.58 1.21 1.41 2.77 5.59

CBPS 2.39 2.35 2.72 15.94 1.24 1.26 1.29 1.52

oCBPS 2.26 2.16 2.27 2.39 1.20 1.20 1.19 1.23
True 0.936 0.938 0.922 0.948 0.962 0.942 0.926 0.948
Coverage GLM 0.946 0.946 0.946 0.946 0.944 0.954 0.954 0.958
Probability GAM 0.704 0.310 0.090 0.028 0.754 0.382 0.108 0.048
(of the DR 0.928 0.876 0.576 0.278 0.960 0.906 0.562 0.268
95% C.1.) CBPS 0.944 0.944 0.944 0.944 0.960 0.958 0.958 0.968
oCBPS 0.950 0.964 0.962 0.982 0.956 0.954 0.962 0.966
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CBPS in all the cases as well. The efficiency improvement is consistent with Corollary 3.2. The
coverage probabilities of True, GLM, CBPS and oCBPS are close to the nominal level. However,
GAM yields much lower coverage probability, partly because the estimates of the propensity score
from logistic series are unstable. The pattern becomes more evident as 1 increases, corresponding
to the setting that the propensity score can be close to 0 or 1. Similarly, the coverage probability

of DR also deteriorates as 31 increases.

Table 5.2: Correct Outcome Model with a Misspecified Propensity Score Model.

n = 300 n = 1000
1 0 0.33 0.67 1 0 0.33 0.67 1

True 0.00 2.13 0.08 4.79 —1.28 —0.36 1.83 3.62

GLM 0.41 —6.67 —18.84 —-32.15 0.19 —6.33 —-19.21 —32.96

) GAM 15.61 3.11 —7.16 —20.76 4.07 0.28 —4.98 —14.11

bias DR -0.29 —0.68 —1.89 —3.60 -0.21 —0.39 —-1.23 —2.75

CBPS 0.84 —0.05 —2.06 —2.44 0.06 —0.79 —2.74 —3.28

oCBPS —0.20 —0.02 -0.13 0.07 —0.04 0.03 0.01 —0.05

True 45.43 36.03 39.77 77.26 26.32 19.36 39.15 88.45

GLM 11.23 12.66 15.73 26.82 2.17 5.32 8.61 10.92

Std GAM 19.91 9.40 8.81 16.18 4.29 2.87 4.14 8.52

Dev DR 3.35 2.57 2.52 3.16 1.42 1.27 1.28 1.57

CBPS 3.21 2.74 3.18 3.61 1.25 1.41 1.74 2.04

oCBPS 2.26 2.30 2.28 2.34 1.24 1.26 1.24 1.29

True 45.43 36.10 39.77 77.40 26.36 19.36 39.20 88.52

GLM 11.24 14.31 24.55 41.86 2.18 8.27 21.05 34.72

RMSE GAM 25.30 9.90 11.35 26.32 5.91 2.89 6.47 16.48

DR 3.37 2.65 3.15 4.79 1.44 1.33 1.78 3.16

CBPS 3.32 2.74 3.79 4.36 1.26 1.62 3.24 3.86

oCBPS 2.27 2.30 2.29 2.34 1.24 1.26 1.24 1.29
True 0.952 0.936 0.964 0.972 0.946 0.950 0.960 0.988
Coverage GLM 0.964 0.898 0.740 0.834 0.948 0.714 0.300 0.346
Probability GAM 0.236 0.434 0.286 0.066 0.356 0.648 0.178 0.042
(of the DR 0.882 0.904 0.822 0.596 0.908 0.938 0.788 0.392
95% C.1.) CBPS 0.956 0.978 0.924 0.914 0.944 0.928 0.742 0.654
oCBPS 0.946 0.944 0.952 0.944 0.950 0.950 0.954 0.954
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We further evaluate our method by considering different cases of misspecification for the outcome
and propensity score models. We begin with the case where the outcome model is linear like
before but the propensity score is misspecified. While we use the model given in equation (5.1)
when estimating the propensity score, the actual treatment is generated according to the following
different model,

exp(—piz}; + 0.5x% — 0.25z7; — 0.1xF,)
1+ exp(—pix}, + 0.5z% — 0.25z% — 0.1zF,)’

P(T,=1|X =x;) =

with z}; = exp(zi1/3), )y = xio/{1 +exp(zi1)} + 10, z75 = xj1253/25+ 0.6, and x4 = 41 + 244 + 20
where 31 again varies from 0 to 1. In other words, the model misspecification is introduced using
nonlinear transformations. Table 5.2 shows the results for this case. As expected from the double
robustness property shown in Theorem 3.1, we find that the bias for the oCBPS becomes significantly
smaller than all the other estimators. The oCBPS also dominates the other estimators in terms of
efficiency and maintains the desired coverage probability.

We also consider the case when the propensity score is locally misspecified with the equation

1/2 a5 in Theorem 2.1

(2.1). In the case, we use (5.1) as the working model 7g(Xj;), set £ = n~
and choose the function u(X;;3) = XZ»Q1 as the direction of misspecification. We compute the true
propensity score from the model (2.1) and use it to generate the treatment variables. We note that
sometimes the true propensity score may exceed 1. In this case we simply replace its value with
0.95. The results are given in Table 5.3. oCBPS dominates all the other estimators in terms of
bias, standard deviation and root mean square error, but CBPS and DR are also noticeably better
than True, GLM, and GAM.

We next examine the cases where the outcome model is misspecified. We do this by generating

potential outcomes from the following quadratic model

E(Y;(1) | X; = x;) = 200+ 27.4x2 + 13.72% 4 13.72% + 13.727,,

E(Y;(0) | X; = x;) = 200+ 13.72% + 13.72% 4 13.722,,
whereas the propensity score model is the same as the one in (5.1) with 81 varying from 0 to 0.4.
Table 5.4 shows the results when the outcome model is misspecified but the propensity score model

is correct. We find that the magnitude of bias is similar across all estimators with the exception

of GAM and DR, which seem to have a significantly larger bias. The DR dominates in terms of
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Table 5.3: Correctly Specified Outcome with a Locally Misspecified Propensity Score Model.

n = 300 n = 1000
B1 0 0.33 0.67 1 0 0.33 0.67 1

True —1.96 0.69 0.80 4.87 0.04 0.87 —0.42 3.07

GLM —16.73 8.43 5.85 19.96 8.55 0.84 4.65 21.07

] GAM —8.19 7.68 —4.35 —10.79 4.62 —-0.25 —0.63 2.95

Bias DR 0.43 0.34 —0.83 —3.67 0.38 0.08 —1.39 —3.50

CBPS —0.76 -2.15 0.56 1.34 —1.92 —0.34 0.22 0.37

oCBPS —0.41 0.05 0.10 0.06 —0.05 0.02 —0.01 —0.02

True 41.03 33.16 41.86 82.09 20.65 18.39 28.44 59.63

GLM 67.79 9.55 23.67 72.99 9.43 3.23 13.86 81.20

Std GAM 46.08 8.92 21.56 52.34 11.06 291 11.78 52.31

Dev DR 3.10 2.51 2.87 5.74 1.37 1.29 1.59 2.60

CBPS 3.26 2.56 2.44 2.77 1.58 1.28 1.33 1.43

oCBPS 2.47 2.24 2.25 2.26 1.29 1.22 1.26 1.29

True 41.07 33.17 41.87 82.24 20.65 18.41 28.44 59.70

GLM 69.82 12.74 24.39 75.67 12.73 3.34 14.62 83.89

RMSE GAM 46.80 11.77 21.99 53.44 11.98 2.92 11.80 52.39

DR 3.13 2.53 2.99 6.81 1.42 1.29 2.11 4.36

CBPS 3.35 3.34 2.51 3.07 2.49 1.32 1.34 1.48

oCBPS 2.50 2.24 2.26 2.27 1.29 1.22 1.26 1.29
True 0.962 0.948 0.962 0.938 0.934 0.946 0.954 0.942
Coverage GLM 0.804 0.788 0.888 0.916 0.652 0.936 0.918 0.910
Probability ~ GAM 0.132 0.294 0.238 0.076 0.154 0.612 0.144 0.052
(of the DR 0.856 0.922 0.866 0.556 0.916 0.936 0.736 0.332
95% C.1.) CBPS 0.912 0.914 0.926 0.958 0.752 0.954 0.954 0.952
oCBPS 0.916 0.946 0.936 0.954 0.950 0.948 0.958 0.954
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Table 5.4: Misspecified Outcome Model with Correct Propensity Score Model.

n = 300 n = 1000
B1 0 0.13 0.27 0.4 0 0.13 0.27 0.4

True —4.37 —0.03 —4.24 1.51 0.80 —1.00 2.31 2.67

GLM 0.38 —0.64 —2.67 —1.33 0.11 —0.44 0.05 0.75

] GAM -2.03 —5.49 —10.43 —13.66 —0.65 —-1.72 —1.95 —3.04
bias DR —2.77 —5.06 —9.92 —14.36 —2.98 —4.98 —7.43 —10.11
CBPS 0.07 —0.69 —2.59 —-3.94 0.05 —0.55 -0.71 —-1.63

oCBPS —0.56 —-0.97 —3.05 —4.37 —0.03 —0.68 —0.84 —1.70

True 49.87 58.75 74.32 100.35 27.61 33.62 44.75 53.58

GLM 18.12 24.87 34.83 56.17 9.68 12.37 18.45 31.16

Std GAM 17.59 23.19 34.72 49.87 9.07 11.36 16.85 26.50
Dev DR 14.02 14.65 15.58 16.65 7.95 8.26 8.21 8.40
CBPS 15.51 17.60 18.83 20.66 8.74 9.47 10.64 12.05

oCBPS 14.74 16.15 17.13 18.55 8.44 9.03 9.68 10.87

True 50.06 58.75 74.45 100.36 27.62 33.64 44.81 53.60

GLM 18.13 24.88 34.93 56.18 9.68 12.37 18.45 31.17

GAM 17.71 23.83 36.25 51.71 9.09 11.49 16.96 26.67

RMSE

DR 14.29 15.50 18.47 21.99 8.49 9.65 11.07 13.15

CBPS 15.51 17.62 19.01 21.03 8.74 9.49 10.66 12.16

oCBPS 14.75 16.18 17.40 19.06 8.44 9.06 9.72 11.00
True 0.948 0.954 0.946 0.920 0.938 0.950 0.910 0.922
Coverage GLM 0.896 0.852 0.870 0.868 0.908 0.862 0.816 0.802
Probability ~ GAM 0.912 0.832 0.676 0.476 0.932 0.846 0.690 0.516
(of the DR 0.930 0.910 0.838 0.716 0.924 0.874 0.794 0.688
95% C.1.) CBPS 0.920 0.870 0.790 0.676 0.914 0.862 0.776 0.668
oCBPS 0.950 0.930 0.908 0.904 0.954 0.920 0.902 0.862
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standard deviation, but oCBPS closely follows. In terms of the root mean square error, oCBPS is

on par with DR.

Table 5.5: Misspecified Outcome with Misspecified Propensity Score Models.

n = 300 n = 1000
B1 0 0.13 0.27 0.4 0 0.13 0.27 0.4

True 0.54 —-1.74 1.71 —3.56 —2.66 —2.52 —2.06 —0.36

GLM 2.94 —1.70 —8.47 —20.25 —0.18 —2.07 —8.89 —18.79

] GAM 20.74 12.05 3.42 —8.06 4.95 2.35 -1.03 —5.01

Bias DR 9.16 6.66 4.52 0.46 6.55 4.91 2.80 0.36

CBPS 9.57 4.10 0.37 —7.62 0.46 —0.81 —4.94 —11.18

oCBPS 2.51 —0.24 —1.62 —4.82 0.04 —0.61 —2.29 —4.54

True 59.12 55.64 54.16 58.35 34.79 31.31 28.41 31.62

GLM 25.00 19.44 22.49 26.01 9.67 9.79 11.17 12.44

Std GAM 30.85 23.01 19.46 21.72 10.23 9.53 9.19 9.25

Dev DR 15.18 15.14 13.71 13.60 7.86 7.85 7.69 7.70

CBPS 26.74 18.65 19.74 18.92 9.16 9.11 9.36 9.63

oCBPS 16.28 15.38 15.08 14.42 8.93 8.60 8.32 8.27

True 59.12 55.66 54.19 58.45 34.89 31.42 28.48 31.62

GLM 25.18 19.51 24.03 32.96 9.67 10.00 14.28 22.53

RMSE GAM 37.17 25.97 19.76 23.17 11.37 9.81 9.25 10.52

DR 17.73 16.54 14.43 13.60 10.24 9.26 8.19 7.71

CBPS 28.40 19.10 19.75 20.40 9.17 9.15 10.59 14.76

oCBPS 16.47 15.38 15.17 15.20 8.93 8.62 8.63 9.43
True 0.952 0.940 0.936 0.952 0.936 0.940 0.952 0.916
Coverage GLM 0.854 0.902 0.866 0.788 0.890 0.878 0.772 0.540
Probability ~ GAM 0.714 0.810 0.860 0.832 0.868 0.902 0.916 0.834
(of the DR 0.878 0.920 0.934 0.946 0.876 0.906 0.936 0.946
95% C.1.) CBPS 0.866 0.892 0.890 0.866 0.894 0.888 0.852 0.670
oCBPS 0.940 0.964 0.926 0.934 0.944 0.942 0.926 0.894

Finally, when both the outcome and propensity score models are misspecified, we observe that
DR and oCBPS dominate all other estimators with respect to all three criteria. In particular, oCBPS
performs much better than CBPS in all scenarios. The results are organized in Table 5.5.

In summary, the proposed oCBPS method outperforms the CBPS method with respect to root
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mean square error (RMSE) under all five scenarios we examined. In addition, the oCBPS method

often yields better or at least comparable results relative to all the other estimators.

5.2 An Empirical Application

We next apply the oCBPS methodology to a well-known study where the experimental benchmark
estimate is available. Specifically, LaLonde (1986) conducted a study, in which after the random-
ized evaluation study was implemented, the experimental control group is replaced with a set of
untreated individuals taken from the Panel Study of Income Dynamics. This created an artificial
observational study with 297 treated observations and 2,490 control observations. Ever since the
original study, this data set has been used for evaluating whether a new statistical methodology
can recover the experimental benchmark estimate (see e.g., Dehejia and Wahba, 1999; Smith and
Todd, 2005). In the original CBPS article, Imai and Ratkovic (2014) use this data set to show that
the propensity score matching estimator based on the CBPS method outperforms the matching
estimator based on the standard logistic regression. In the following, we evaluate whether the
proposed oCBPS method can further improve the CBPS methodology.

We begin by replicating the original results of Imai and Ratkovic (2014) and then compare those
results with those of the proposed oCBPS methodology. To do this, we focus on the estimation of
the average treatment effect for the treated (ATT). The response of interest is earnings in 1978 and
the treatment variable is whether or not the individual participates the job training program. The
original randomized experiment yields the ATT estimate $886, which is used as a benchmark for
the later comparison. Imai and Ratkovic (2014) consider the propensity score estimation based on
the standard logistic regression (GLM), the just-identified CBPS with moment balance condition
only (CBPS1) and the over-identified CBPS with score equation and moment balance condition
(CBPS2). Based on each set of these estimated propensity scores, we estimate the ATT using the
1-to-1 nearest neighbor matching with replacement. The estimates of standard errors are based
on the results in Abadie and Imbens (2006). We then add the estimated propensity score based
on the proposed oCBPS methodology. Since the quantity of interest is the ATT, we use a slightly
modified oCBPS estimator described in Appendix H.

We follow the propensity score model specifications examined in Imai and Ratkovic (2014).

The covariates we adjust include age, education, race (white, black or Hispanic), marriage status,
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Table 5.6: The bias and standard errors (shown in parentheses) of estimates of the average treatment

effect for the treated in the LaLonde’s Study. We use the benchmark $886 as the true value.

GLM CBPS1 CBPS2 oCBPS

Linear -1190.92  -462.7  -702.33  -306.01
(1437.02) (1295.19) (1240.79) (1662.02)
Quadratic -1808.16  -646.54  207.13  -370.03

(1382.38) (1284.13) (1567.33) (1773.03)
Smith & Todd -1620.49  -1154.07  -462.24  -383.12
(1424.57) (1711.66) (1404.15) (1748.87)

high school degree, earnings in 1974 and earnings in 1975 as pretreatment variables. We consider
three different specification of balance conditions: the first moment of covariates (Linear), the
first and second moment of covariates (Quadratic), and the Quadratic specification with some
interactions selected by Smith and Todd (2005) (Smith & Todd). We compare the performance of
each methodology across these three specifications.

The results are shown in Table 5.6. We find that although the standard error is relatively large
as in any evaluation study based on the LaLonde data, the proposed oCBPS method yields much
smaller bias than GLM and CBPS1 under all three specifications. The oCBPS also improves the
CBPS2 under the linear and Smith & Todd’s specifications of covariates. We note that the standard
error of the oCBPS method appears to be larger than the competing methods. This may be due
to the fact that the uncertainty of the estimated propensity score is ignored when we calculate the
standard error of the matching estimators (i.e., GLM, CBPS1 and CBPS2). In summary, consistent
with the theoretical results, the proposed oCBPS method yields more accurate estimates of ATT
than the original CBPS estimator or the standard logistic regression. Finally, it is important to note
that these results are only suggestive since we do not know whether the assumptions of propensity

score methods hold in this study.
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6 Conclusion

This paper presents a theoretical investigation of the covariate balancing propensity score method-
ology that others have found work well in practice (e.g., Wyss et al., 2014; Frolich et al., 2015). We
derive the optimal choice of the covariate balancing function so that the resulting IPTW estimator
is first order unbiased under local misspecification of the propensity score model. Furthermore, it
turns out that the CBPS-based IPTW estimator with the same covariate balancing function attains
the semiparametric efficiency bound.

Given these theoretical insights, we propose an optimal CBPS methodology by carefully choos-
ing the covariate balancing estimating functions. We prove that the proposed oCBPS-based IPTW
estimator is doubly robust and locally efficient. More importantly, we show that the rate of con-
vergence of the proposed estimator is faster than the standard AIPW estimator under locally
misspecified models. To relax the parametric assumptions and improve the double robustness
property, we further extend the oCBPS method to the nonparametric setting. We show that the
proposed estimator can achieve the semiparametric efficiency bound without imposing parametric
assumptions on the propensity score and outcome models. The theoretical results require weaker
technical conditions than existing methods and the estimator has smaller asymptotic bias. Our
simulation and empirical studies confirm the theoretical results, demonstrating the advantages of
the proposed oCBPS methodology.

In this work, we mainly focus on the theoretical development of the IPTW estimator with
the propensity score estimated by the optimal CBPS approach. It is a very interesting research
problem to establish the theoretical results for the matching estimators combined with the optimal
CBPS approach or some variants. While the asymptotic theory (i.e., consistency and asymptotic
normality) for the estimated propensity score via the optimal CBPS approach can be derived from
the current results (by the Delta method), the full development is beyond the scope of this work.

We leave it for a future study.

Supplementary Material

The supplementary material contains the Appendix of this paper which collects the proofs and

further technical details.
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Supplementary Material

A Locally Semiparametric Efficient Estimator

For clarification, we reproduce the following definition of locally semiparametric efficient estimator

given in Robins et al. (1994),

Definition A.1. Given a semiparametric model, say A, and an additional restriction R on the
joint distribution of the data not imposed by the model, we say that an estimator & is locally
semiparametric efficient in model A at R if & is a semiparametric estimator in model A whose

asymptotic variance attains the semiparametric variance bound for model A when R is true.

In our setting, the semiparametric model A corresponds to the joint distribution of the observed
data (73, Y;, X;) subject to the strong ignorability of the treatment assignment {Y;(1),Y;(0)} L T; |
X;; see Hahn (1998). The semiparametric variance bound for model A is V. The restriction
R is the intersection of Ry and Ry (denoted by R; N Ry), where R; is the model that satisfies
the first condition in Theorem 3.1 (i.e., the propensity score is correctly specified) and Ry is the
model that satisfies the second condition in Theorem 3.1 (i..e, K (X;) = af M1h;(X;) and L(X;) =
oy Moho(X;)). In Corollary 3.2, we show that the asymptotic variance of our estimator of ATE ﬂa
is Vopt when R1N Ry is true. From the above definition of locally semiparametric efficient estimator,

we can claim that /75 is locally semiparametric efficient at Ry N Rs.

B Preliminaries

To simplify the notation, we use m} = mg+«(X;) and 77 = 7go(X;). For any vector C € R, we
denote |C| = (|C1], ...,|Ck|) " and write C < B for Cj, < By, for any 1 < k < K.

Assumption B.1. (Regularity Conditions for CBPS in Section 2)
1. There exists a positive definite matrix W* such that W 2 W,
2. The minimizer 3° = argming E(gg(T, X)) "W*E(gs(T, X)) is unique.
3. (3° € int(©), where © is a compact set.
4. mg(X) is continuous in 3.
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5. There exists a constant 0 < ¢y < 1/2 such that with probability tending to one, ¢y < 18(X) <

1 — ¢p, for any B € int(O).
6. E|fj(X)| <oofor1<j<mandE|Y(1)]?< oo, E|Y(0)? < .

7. G* :=E(0g(B°)/0B) exists and there is a g-dimensional function C(X) and a small constant
7 > 0 such that supgep, (go) [0mp(X) /0B8] < C(X) and E(|f;(X)|C(X)) < oo for 1 < j <m,
where B,.(3°) is a ball in R? with radius r and center 3°. In addition, E(|Y|C(X)) < oo.

8. G*TW*G* and E(gg. (T}, Xi)gg-(Ti, X;) ") are nonsingular.

9. In the locally misspecified model (2.1), assume |u(X; 8*)| < C almost surely for some constant

C > 0.

Lemma B.1 (Lemma 2.4 in Newey and McFadden (1994)). Assume that the data Z; are i.i.d., ©
is compact, a(Z,0) is continuous for § € O, and there is D(Z) with |a(Z,0)| < D(Z) for all 6 € ©
and E(D(Z)) < oo, then E(a(Z,0)) is continuous and supgeg [n =" 21, a(Zi, 0) —E(a(Z,0))] - 0.

Lemma B.2. Under Assumption B.1 (or Assumptions 3.1), we have B 2, ge.

Proof of Lemma B.2. The proof of B SN 3° follows from Theorem 2.6 in Newey and McFadden
(1994). Note that their conditions (i)—(iii) follow directly from Assumption 3.1 (1)—(4). We only

need to verify their condition (iv), i.e., E(supgeg |9g;(Ti, Xi)|) < oo where

1; 1 -1
931 (T2 X0) = (5 = =g ) X0

By Assumption B.1 (5), we have |gg; (T3, X;)| < 2[f;(X;)|/co and thus E(supgeg |9g;(Ti, Xi)|) < 0o

by Assumption B.1 (6). In addition, for the proof of Theorem 3.1, we similarly verify the following
conditions to prove this lemma for the oCBPS estimator, i.e., E(supgeg |918;(Ti, Xi)|) < oo and
E(supgee 19285 (T3, Xi)|) < oo, where

T 17
m(Xi) 1-75(X;)

T
m3(Xi)

9185 (T3, X;) = ( >h1j(Xz‘)7 and  gog;(Ti, X;) = ( - 1>h2j(Xi)-

We have |g18;(Ti, X;)| < 2|h1;(X;)|/co and thus E(supgeg 1918;(Ti; Xi)|) < oo. Similarly, we can

prove E(supgeg |928;(Ti, Xi)|) < oo. This completes the proof. O
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Lemma B.3. Under Assumption B.1 (or Assumptions 3.1 and 3.2), we have
n*(8 - B°) = —(Hf "W H) " 'n 2 Hf TW*ggo (T, X) + 0p(1), (B.1)
n'2(B - B°) <= N(0, (Hf 'W"Hf) "' Hi 'W'QW"Hf (H; 'W"H;)™"), (B.2)
where 2 = Var(gg-(T;, X;)). If the propensity score model is correctly specified with P(T; = 1 |
X;) = m0(X;) and W* = Q1 holds, then n'/2(3 — 8°) -4 N(0, (H;TQ~1H})™1).

Proof. The proof of (B.1) and (B.2) follows from Theorem 3.4 in Newey and McFadden (1994).
Note that their conditions (i), (ii), (iii) and (v) are directly implied by our Assumption B.1
(3), (4), (2) and Assumption B.1 (1), respectively. In addition, their condition (iv), that is,
E(supgen |098°(Ti, Xi)/0B;j]) < oo for some small neighborhood N around 3°, is also implied

by our Assumption B.1. To see this, by Assumption B.1 some simple calculations show that

99s(T;, Xi) | _ (TIE(Xi)| | (1 - T)|f(X,)] oms(X;) | s

for N € B.(8°). Hence, E(supgeps [0980 (T3, Xi)/0Bj]) < oo, by Assumption B.1 (7). Thus,
condition (iv) in Theorem 3.4 in Newey and McFadden (1994) holds. In order to apply this lemma
to the proofs in Section 3, we need to further verify this condition for gg(-) = (gfﬁ(-),ggﬁ(-))T,

where

T; 1-1;
m8(Xi) 11— 7a(X5)

T;
m3(Xi)

918(T;, X;) = ( )hl(Xi)v and gog(T;, X;) = ( - 1)h2(Xi)-

To this end, by Assumption 3.1 some simple calculations show that when

0 T, X; T:|h1(X; 1—-T;)|h1(X; 0 X;
Sup‘ 915( ) S( | 15 ) +( )|2 1( )|> ’ m3(Xi)
BeN 9B; &) € BeN 9B;

for N € B,.(8°). Hence, E(supgep [0g150 (T3, X;)/0p;]) < oo, by Assumption 3.1 (7). Following the

< Cj(X)|ha(X3)]/ <3,

similar arguments, we can prove that E(supge |0g2g0(Ti, X;)/08;]) < oo holds. This completes
the proof of (B.2). As shown in Lemma B.2, if P(T; = 1 | X;) = m3.(X;) holds, the asymptotic
normality of n'/2(8 — 3°) follows from (B.2). The proof is complete. O

C Proof of Results in Section 2

C.1 Proof of Theorem 2.1

Proof. First, we derive the bias of B By the arguments in the proof of Lemma B.3, we can show

that 3 = 3° + 0,(n~%/2), where B° satisfies 3° = argming E(gg(T, X)) W*E(gg(T, X)). Let
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uf = u(X;; 8%). By the propensity score model and the fact that |u(X;; 8%)| is a bounded random

variable and E|f;(X;)| < oo, we can show that

v u)f(X; — = Emful)f (X
E(gﬁt)):E{ z(1+§rqz) (X) . (1 7 15;91) (X)}‘i‘O(fZ)

In addition, following the similar calculation, we have E(gg+) = O(§). Therefore,

lim E(gg: (T, X)) W*E(gs-(T, X)) = 0.

n—oo

Clearly, this quadratic form E(gg(T, X)) W*E(gg(T, X)) must be nonnegative for any 3. By the

uniqueness of 3°, we have 8° — 8* = o(1). Therefore, we can expand 7{ around 7, which yields

E(gp) = E{e( T )E(X0) + Hi (8~ 3)} + 0 + 18~ 8]3).

*
1—m;

This implies that the bias of 3¢ is

u*

B = B" = —¢(H{ W H) T Hf WE{ (= )f(X0) } + 0(£). (c1)

Our next step is to derive the bias of ﬁg. Similar to the proof of Theorem 3.2, we have

- 1 T/ A _
Mﬁ_uzﬁle—f_HyT(ﬁ_Bo)—'_op(n 1/2)7
i=1

where
_TY() (1= T)Yi(0)

0]
;

D:; —
1 1 _ﬂ-é) :ua

and

n'2(8 - %) = —(Hf "W"H{)'n'*Hi "W*ggo(T, X) + 0,(1).

In addition, following the similar steps, we can show that E(D;) = Bn~'/2 + o(n~/2). Thus,
1 & ~
fg—n=—> ADi—E(D)} + H; (B~ 6°) + Bn™'2 4 o(n™'/?).
=1

Then the asymptotic normality of \/ﬁ(ﬂﬁ — ) follows from the above asymptotic expansion and

the central limit theorem. This completes the proof. O
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C.2 Proof of Corollary 2.1

Proof. When Hy is invertible, it is easy to show the bias term can be written as

B {E {“<Xi;ﬁ*)(K()?)_; ﬁ(*l(;c Sﬁ*(xi))L(Xn)} T HIHE (u(lX_ éi)(iiii))]’

when the propensity score model is locally misspecified. If we choose the balancing function f(X)

such that o' f(X) = K(X;) + (1 — 7})L(X;) for some a € R, we have

. i -7 i) om ) (9m
H, = -E (K(X )7:;((11_ W:))L(X ) ’ o8 ) - _aTE<wjf§)f 372‘) < 19)¢] >T>’

Hy = —E(W)Z_E<m(%g>T>

So the bias becomes

- o) s () o

This proves that ﬁé is first order unbiased. O

C.3 Proof of Corollary 2.2

Proof. Recall that even if the propensity score mode is known or pre-specified, the minimum asymp-
totic variance over the class of regular estimators is given by Vi,¢. In the following, we will verify
that with the optimal choice of f(X) our estimator has asymptotic variance Vipy.

The asymptotic variance bound V¢ can be written as, Vope = X, — a ' Qa, where

) AT
Q =E(gpo(T;, Xi)gp- (T, X;) ) = E (fm)

3 3

We can write the asymptotic variance of our estimator as

V=3,+2H;"%,5+ H; SgH;,
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where

Hy =k ( B
.8 = —(Hf) ! Cov(ug(T1, i, Xi), gp-(T1, X3)),

e (B0 (10 (0m1yT)

(K(X)+ (1 - 70)L(X,) Ort
E( () 8ﬁ)’

1 7

S = (Hy)~' Var(gg- (T, X)) (H ')~
. AT
Var(g (7, X)) =B (1 700 )

If K(X;)+(1—n})L(X;) lies in the linear space spanned by f(Xj;), that is, K(X;)+(1—7n})L(X;) =

o 'f(X;), we have

* an(Xl) 87‘-:{ T =T
Hy__E(Tr;‘(l—W;)aﬁ>_(a Hy) .
So
T T
T Tapeppe—ip (@ F(X)E(XG)\ o (E(XG)E(XG)
5150 = o mi(ai) e (S ) = —aTe (SEH )
and

. . (0.0 10.0N «Ty— . £(X)E(X,)"
HyTZBHy = aTHf (Hf) IE (7‘(‘*(1—77*) (HfT) l(aTHf)T = aT]E *— .
It is seen that H;Tzuﬁ = —HJTZ[;H;. Then we have

V=3,-a Qa,

which corresponds to the minimum asymptotic variance Vopy. ]

D Proof of Results in Section 3

D.1 Proof of Theorem 3.1

Proof of Theorem 3.1. We first consider the case (1). That is the propensity score model is correctly
specified. By Lemma B.2, we have ,@ SN 3°. Let

Y  (1-1)Y
ma(X)  1-mg(X)

’f’ﬁ(T,KX) =
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It is seen that |rg(T,Y,X)| < 2|Y|/co and by Assumption 3.1 (6), E|Y| < co. Then Lemma B.1
yields supgeg [n ' o1, r3(15, Vi, Xi) — E(rg(T3, Y, X3))| = 0p(1). In addition, by B 25 B° and

the dominated convergence theorem, we obtain that

_ E(Ty - a-ny

tg = ) > +0p(1)7

1—m?
where 7¥ = 7go(X;). Since Y; = Y;(1)T; 4+ Y;(0)(1 —T;) and Y;(1), Y;(0) are independent of T; given

X;, we can further simplify the above expression,

o = o - ) s —5(E ST
_ p(BEIXEGW | X)) (0 -BEXDEGWIXDY o)

In addition, if the propensity score model is correctly specified, it further implies
pg = EEYi(1) [ Xi) - E(Y;(0) | Xi)) + 0p(1) = E(Yi(1) = Yi(0)) + 0p(1) = 1 + 0p(1).

This completes the proof of consistence of i when the propensity score model is correctly specified.

In the following, we consider the case (2). Thatis K () € span{Mh;(-)} and L(-) € span{Maha(-)}.
By Lemma B.2, we have 8 —2+ 8°. The first order condition for 8° yields 0Q(B°)/9B = 0, where
QB) = E(gg)W*E(gg). By Assumption 3.1 (7) and the dominated convergence theorem, we can
interchange the differential with integral, and thus G*TW*E(Q@D) = 0. Under the assumption that
P(T; = 1| X;) = n(X;) # n¢, we have

W(XZ) _ 1 —W(Xi)

o
T

E(g1g0) = E{( )hl(Xi)}7

1-— Trio
E(g2°) = E{ (ﬂ(;fi) - 1>h2(Xi)}'

7

Rewrite G*TW* = (M, My), where M; € R?*™ and M; € R7*™2, Then, 3° satisfies

E{(”(Xi) _1= 7T(Xi))lvllm(xi) n (”(X” - 1)M2h2(XZ-)} — 0. (D.1)

0 0 o
5 1—m 5

Following the similar arguments to that in case (1), we can prove that

i = (- ) ra)
_ p(ETIXECO) | X) (B XDEGM X))

K3 K3
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By E(7; | X;) = m(X;) and the outcome model, it further implies

ZZE—M _ E{W(Xz)(K()iz)—i-L(Xl)) (1_7r§)fzr)f((Xl)} o)
_ E{(w(;fz) 1;1T(7ri§i))K(Xz)} {W(Xl?;()}—u+op(1)
= B{(F5 - o (T - 1)} + o)

where in the last step we use p = E(L(X;)). By equation (D.1), we obtain fi = p+ 0p(1), provided
K(X;) = af M1h1(X;) and L(X;) = aj Maho(X;), where a; and s are g-dimensional vectors

of constants. This completes the whole proof.

D.2 Proof of Theorem 3.2

Proof of Theorem 3.2. We first consider the case (1). That is the propensity score model is correctly

specified. By the mean value theorem, we have i = i + IA{(B)T(B\ — 3°), where
I~ (TY: (1-T)Yi\ & = 1~ (LY | (1-T)Yi\0F
- - 9 H = - ( ~ ~ ) )
n;(wf 1 -7 ) (8) n; 72 +(1—7ri)2 oB

where 7{ = g0 (X;), T = 7r5(

tion 3.2 (2), we can show that the summand in PAI(B) has a bounded envelop function. By Lemma

X;) and E is an intermediate value between /@ and 3°. By Assump-

B.1, we have supgcg, (ge) |ﬁ(ﬁ) - E(ﬁ(,@))] = 0p(1). Since B is consistent, by the dominated

convergence theorem we can obtain H(3) = H* + op(1), where

o — _E{(Eiﬁ_i_(l— )Y)(?Tr}:_E{<YZ-(1)+ ())877}

% (1-n9)?2/ 0B st 1—-n¢/ 0B
_ K(Xi) + L(Xi)(A = 77) On7
B _E{ (1 — ) B }

Finally, we invoke the central limit theorem and equation (B.1) to obtain that
n2(5 - p) —% N (0, T SH?),
where H* = (1L H*") T, 25 = (G*TW*G*)"I1G* TW*QW*G*(G*TW*G*)~! and
by

-
H Euﬂ

X Xp

> —
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Denote b;(T;, X;,Y;(1),Y;(0)) = T;Y;(1) /n¢ — (1 — T3)Y;(0) /(1 — w?) — p. Here, some simple calcu-

lations yield,

S, = BT, X, Vi), vi0))) — E(C) 4 X0y e

{ire 1—mn?
In addition, the off diagonal matrix can be written as 3,3 = (Eruﬁ, Z;—uﬂ)T, where
z,uﬁ — —(G*TW*G*)ilG*TW*T,

where T = (E[g;—ﬁo(]jt?XZ)bl(E?X“E(1)7E(0))]7E[QJBO(E7Xl)bl(ThX“Y;(l)?}/l(o))])—r with

T, 1-1T; T;
m(Xi) 1-75(X;) ma(X5)

915(T: X:) = ( (X0, and gop (T3 Xo) = (— — 1) ha(X0).

After some algebra, we can show that

o {E<K(Xi) +(1- Wf)L(Xi)th(Xi))E(K(Xi) +(1- Wf)L(Xi)h;(Xi)> }T.

(1 = 77)m? ™

This completes the proof of equation (3.4). Next, we consider the case (2). Recall that P(7; =1 |

X;) = n(X;) # mgo(X;). Following the similar arguments, we can show that
1 ¢ ~
Ag—m=_ D Di+HT(B—B°) +o0,(n"/?),
i=1

where

and

H' = -Ef (ﬂXﬁ(K %3 +L(X) | (1~ Z;({fﬁ;g(xi)) %2 |

By equation (B.1) in Lemma B.3, we have that
n'2(ig — p) -5 N(0, T EHY),
where H* = (1, H*1)T, £5 = (G*TW*G*)"'G*TW*QW*G*(G*TW*G*) ! and
ST
o [ = S
Xus X

Denote ¢;(T;, X;,Yi(1),Y;(0)) = T;Y;(1) /7 — (1 — T;)Y;(0) /(1 — 7?) — p. As shown in the proof of
Theorem 3.1, E[b;(T;, X;,Y:(1),Y;(0))] = 0. Thus,

Y2 _ T2

_ p(TRW | A= r V0N

TrZ‘-’2 (1—m)?
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Similarly, the off diagonal matrix can be written as iu@ = (i;ruﬁ, EQTMB)T, where

Euﬂ — —(G*TW*G*)_IG*TW*S,

where § = (E[girﬁo(TlvX’L)CI(TMXl7}/;(1)ﬂE(O))LE[g;ﬁO(E:XZ)CZ(T’HXHY’L(ILYVZ(O))])T with

T; 1-1T;
m(Xi) 1—mp(Xi)

T
m3(Xi)

gm(Ti,Xi):( )hl(Xi), and ggg(Ti,Xi):( —1)h2(XZ-). (D.2)

After some tedious algebra, we can show that S = (8], 84 )7, where

5, — B (TR L) —xt) , (0= w0 (1= a1,
5y = e (FOOUCXD + LN =) =] | (L= mKKEED + (= mmy o)

This completes the proof of equation (3.6).
Finally, we start to prove part 3. By (3.4), the asymptotic variance of i denoted by V', can be
written as

V=X,+2H"3,5+H ' SH". (D.3)

Note that by Lemma B.3, we have X3 = (G*TQ~1G*)~!. Under this correctly specified propensity

score model, some algebra yields

hih| hih]
E(eimy) B
E(hgfzf) E(hgh;(l—wf)> ’

o
i s

Q = Elgge(Ti, X:) g0 (T3, X;)] =

where gg(T;, X;) = (ngB(E,Xi),ngﬁ(E,Xi))T and g18(T;, X;) and go8(T;, X;) are defined in
(D.2). In addition, G* = (G}",G35™) T, where

i L), - tEG) o
Since the functions K () and L(-) lie in the linear space spanned by the functions M;h;(-) and
Mosho(-) respectively, where M; € RI*™ and M; € R9*™2 are the partitions of G*TW* =
(M;,Mj3). We have K(X;) = alTMlhl(Xi) and L(X;) = O’,;—Mghg(Xi), where av; and oy are

g-dimensional vectors of constants. Thus

T K(XZ)—FL(XZ)(l—?T,?) 67’(’?
H™ = *E{ mo(1 — m?) B }
- —IE{ af Mk (X;) + o Maho(X;)(1 — 7)) 877?}
- 77(1 - 77) B
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Comparing to the expression of G* in (D.4), we can rewrite H* as

M/ oy

T

H* = G*T

Following the similar derivations, it is seen that

af Mihi (Xi)+af Maoha(X,) (1=
R ol Mifu( )ﬂg(f,,r;% 2 X)) b (X))
E{a;erhl(Xi)+a;roM2h2(Xi)(1_7rf)hQ(Xi)}

U

Euﬂ — 7(G*TQ_1G*)_1G*TQ_1

which is equivalent to

M/ o
Euﬂ _ —(G*Tﬂ_lG*)_lG*T 11
M;az
Hence,
T T T Tyt aey 1T [ Mion T
H'X,53=—(a; M, Mp)G*(G" Q' G")"'G” =-H" 3XgH".
MTQQ
2
Together with (D.3), we have
M/ a
V=5, — (0] My, 0 Mp)G*(G*TQ'G) G T [ 717
M;—ag
This completes of the proof.
O
D.3 Proof of Corollary 3.1
Proof of Corollary 3.1. By Theorem 3.2, it suffices to show that
_ I M/ a M/ «
(@M1, & Ma)G*CG T | 17 | <(efMy,adMu)G*CG T [ LT |, (D)
M;dg M;—ag

where C = (G*"Q7'G*)~! and a&; and M; among others are the corresponding quantities with
hi(X) and hy(X). Assume that hi(X) € R™T% and hy(X) € R™*%2,  Since K(X;) =
aIMlhl(Xz) and L(XZ) = a;—MghQ(XZ), we find that (dIMl,d;—Mg) = (aIMl,O,a;Mg,O),

which is a vector in R™® with a = a1 + as. Because some components of (d]—Ml, d;l\_/lg) are 0,
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by the matrix algebra, (D.5) holds if C — C is positive semidefinite. Without loss of generality, we

rearrange orders and write the (m + a) X ¢ matrix G* and the (m + a) x (m + a) matrix Q* as

_ G* _ Q Q
G*=< ), and QZ(Ql Q:>

For simplicity, we use the following notation: two matrices satisfy O; > O if O; — O is positive

semidefinite. To show C > C, we have the following derivation

¢Tae - (@TAT)( L )*1< G’ )

Q 9 A
> (G*T,AT)( 90—1 2)( C: ) —aTo e

This completes the proof of (D.5), and therefore the corollary holds.

D.4 Proof of Corollary 3.2

Proof of Corollary 3.2. The proof of the double robustness property mainly follows from Theorem
3.1. In this case, we only need to verify that span{hi(-)} = span{Mhi(-)} and span{ha(-)} =
span{Myhs(-)}, where M; € R9*™t and M; € R?*™2 are the partitions of G*T W* = (M, M>).
Apparently, we have span{Mh;(-)} C span{hi(-)}, since the former can always be written as a
linear combination of hj(-). To show span{h;(-)} C span{Mh1(-)}, note that the m; xm; principal
submatrix My; of M; is invertible. Thus, span{h(-)} = span{Mji1hi(-)} C span{Mjh;(-)}. This
is because the my dimensional functions Mjjhq(-) are identical to the first m; coordinates of
M; hq(-). This completes the proof of double robustness property. The efficiency property follows
from Theorem 3.2. We do not replicate the details. ]

E Regularity Conditions in Section 4
Assumption E.1. The following regularity conditions are assumed.
1. The minimizer 3° = argmingcg |E(gg(T, X))||3 is unique.
2. 3° € int(O), where © is a compact set.
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3. There exist constants 0 < ¢y < 1/2, ¢4 > 0 and ¢a > 0 such that ¢ < J(v) < 1 — ¢
and 0 < ¢; < 8J(v)/0v < co, for any v = B B(x) with B € int(0). There exists a small
neighborhood of v* = 3*T B(x), say B such that for any v € B it holds that |0%J(v)/0v?| < ¢3

for some constant c3 > 0.
4. E|Y(1)]? < oo and E|Y(0)]? < oc.

5. Let G* := E[B(X;)h(X;) T Ai(¢* (X)), where A;(4( X)) = diag(&i (¢ (X)) Ly, ¢i(9( X)) 1m,)

is a k X k diagonal matrix with

N, AT yoIwK)
X)) T O—T@XENR) o
T, 9J($(X))
PX)) ob

Here, 1,,, is a vector of 1’s with length m;. Assume that there exists a constant C; > 0, such

GWX) =~ (53

¢i(V(X5)) = —

that Apmin(G*T G*) > C1, where Ayin(-) denotes the minimum eigenvalue of a matrix.

6. For some constant C, it holds ||E[h(X;)h(X;) ]|z < C and |E[B(X;)B(X;)"]||2 < C, where
|A||2 denotes the spectral norm of the matrix A. In addition, sup,ey ||h(z)|]2 < Ck/2, and

Supycy || B(z)|2 < Crl/2.

7. Let m*(-) € Mand K(-), L(-) € H, where M and H are two sets of smooth functions. Assume
that log N[ (e, M, L2(P)) < C(1/e)'/F and log N[ (e, H, L2(P)) < C(1/€e)'/*2, where C is a
positive constant and k1, k2 > 1/2. Here, N (¢, M, La(P)) denotes the minimum number of
e-brackets needed to cover M; see Definition 2.1.6 of van der Vaart and Wellner (1996).

Note that the first five conditions are similar to Assumptions 3.1 and 3.2. In particular, Condi-
tion 5 is the natural extension of Condition 1 of Assumption 3.2, when the dimension of the matrix
G* grows with the sample size n. Condition 6 is a mild technical condition on the basis functions
h(x) and B(x), which is implied by Assumption 2 of Newey (1997). In particular, this condition
is satisfied by many bases such as the regression spline, trigonometric polynomial, wavelet bases;
see Newey (1997); Horowitz et al. (2004); Chen (2007); Belloni et al. (2015). Finally, Condition 7
is a technical condition on the complexity of the function classes M and H. Specifically, it requires
that the bracketing number N (e, -, L2(P)) of M and H cannot increase too fast as € approaches to

0. This condition holds for many commonly used function classes. For instance, if M corresponds
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to the Holder class with smoothness parameter s defined on a bounded convex subset of R¢, then
log Njj(e, M, La(P)) < C(1/€)%* by Corollary 2.6.2 of van der Vaart and Wellner (1996). Hence,
this condition simply requires s/d > 1/2. Given Assumption E.1, the following theorem establishes

the asymptotic normality and semiparametric efficiency of the estimator ﬁﬁ-

F Proof of Results in Section 4

For notational simplicity, we denote 7*(x) = J(m*(x)), J*(x) = J(3* B(z)), and J(z) =
J(BTB(z)). Define Q,(3) = 1gs(T, X)||3 and Q(B) = | Egg(T;, X;)||3. In the following proof, we
use C,C’" and C” to denote generic positive constants, whose values may change from line to line.

In this section, denote K = x and (X)) = m(X).

Lemma F.1 (Bernstein’s inequality for U-statistics (Arcones, 1995)). Giveni.i.d. random variables
Z1, ... Zy, taking values in a measurable space (S, B) and a symmetric and measurable kernel func-
tion h: S™ — R, we define the U-statistics with kernel h as U = (:1)_1 Yoivenciy, M Ziys oo Ziy,).
Suppose that Eh(Zi,, ..., Zi,,) = 0, B{E[W(Zi, ..., Zi,)) | Zi,]}° = 0% and ||h]|s < b. There exists

a constant K (m) > 0 depending on m such that
P(|U| > t) < 4exp{ — nt?/[2m?o? + K(m)bt]}, vVt > 0.

Lemma F.2. Under the conditions in Theorem 4.1, it holds that

sup ‘Qn(ﬁ) - Q(B)‘ = 0p<\/K21nm)'

Proof of Lemma F.2. Let £(8) = (&1(8), -, &(8))T and ¢(8) = (61(8), .., 6n(B)) T, where

T; 1-1; T;

S0 =By 1-Je BX)) P gETexy)
Then we have
Qn(B) =172 > [6(B)&(B)h1(X:) Thi(X;) + ¢i(8)¢; (B)ha(Xi) Tha(X )]
i=1 j=1
=n% Y [G(B)6(B)h (X)) Thi (X)) + 6i(B) ¢ (B)ha(Xi) Tha(X)] + An(B),
1<i#j<n

where An(8) = n= 230 [&(8)*|h1(X9)|13 + ¢i(8)?[|ha(X5)[13]. Since there exists a constant
<1

co > 0 such that ¢g < |J(BT B(z))| —¢p for any B € © and T; € {0,1}, it implies that
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Supgee Maxi<i<n |&i(B)| < C and supgeg maxi<i<n [¢i(8)| < C for some constant C' > 0. Then
we can show that
¢ >
E( sup [4,(8)]) < CE(IR(X)3) = O(K /).
Bcoe n
By the Markov inequality, we have supgeg |4n(B)| = Op(K/n) = o,(1). Following the similar
arguments, it can be easily shown that supgeg |Q(8)|/n = O(K/n). Thus, it holds that

2
Beco geo In(n—1)

> ()| + 0plK/m), (F.1)

1<i<j<n

where u;;(8) = w135 (8) + u2i;(B) is a kernel function of a U-statistic with
ui;(8) = &(B)&;(B)h1(Xi) "hi(X;) — E&(8)E;(B)hi(Xi) " ha (X)),
u2i;(8) = 6i(8)9;(B)ha(Xi) "ha(X;) — E¢i(8)d;(8)h2(X;) " ha(X))-

Since © is a compact set in R by the covering number theory, there exists a constant C' such that
M = (C/r)¥ balls with the radius  can cover ©. Namely, © C Ut<m<m©Om, where 0, = {3 €

RE . ||B — Bmll2 < 7} for some By, ..., Bar. Thus, for any given € > 0,

P(Sup (n2—1) Z Ulij(lg)‘>€> <m§[:1p< sup (nQ—l) Z uuj(ﬁ)’>€)

peo!n 1<i<j<n BEO, I 1<i<j<n
M
<Y [y X moten] > )
—+ P(ﬁselg)m 7”L(7”L2—1) Z ‘um(ﬂ) — um(,@m)‘ > 6/2)] . (FQ)

1<i<j<n

By the Cauchy-Schwarz inequality, |h1(X;) h1(X;)| < [|hi(Xi)|2]|h1(X;)|]2 < CK, and thus
|u14(Bm)| < CK. In addition, for any 3,

E{&(8)h1(X:) "E[&;(B)h1(X;)] — E[&(8);(B)h1(X;) Thi(X;)]}
< E{&(8)h1(X) "E[E;(B)h1 (X))} < [EE(B)h1(Xi)hi(Xi) T ||z - | EE (B)ha(X,)|3 < CK,

for some constant C' > 0. Here, in the last step we use that fact that

IEE; (B)h1(X;)II3 < Ell&; (B)h1(X))5 < C - E[lh1(X;)II5 < CK,
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and ||E€2(B)h1(X;)h1(X;) |2 is bounded because |Ehi(X;)hi(X;) |2 is bounded by assumption.
Thus, we can apply the Bernstein’s inequality in Lemma F.1 to the U-statistic with kernel function

15 (Bm),

]P’(‘n(jl) 1%;@ w1ij(B)| > €/2) < 2exp (~ One[K + K, (F.3)
for some constant C' > 0. Since |0.J(v)/dv| is upper bounded by a constant for any v = 8" B(z), it
is easily seen that for any 8 € O, [&(8) =& (Bm)| < Cl(B—Bm) ' B(X;)| < CrK'Y/2, where the last
step follows from the Cauchy-Schwarz inequalty. This further implies |£;(8)&;(8) —&i(8m)&i (Bm)| <

CrK'? for some constant C' > 0 by performing a standard perturbation analysis. Thus,
[u1i5(8) — w5 (Bm)| < CrK Ry (X) Thi (X;)] < CrK?/?,
and note that with » = K~2, then CrK'/?E|h1(X;) hi(X;)| < ¢/4 for n large enough. Thus

Z ‘“Uj(ﬁ) - ulij(ﬂm)‘ > e/2>

1<i<j<n

> m(X) Th(X))] > €/2)

1<i<j<n

> [1h(X0) T ha(X;)] Bl (X0) Tha(X;)]] > ¢/4)

1<i<j<n

IP( sup ———~
BEO, n(n — 1)

1/2
< P(QCTK

n(n—1)

2CrK1/?

SP(n(n— 1)

< 2exp(—CnKeé?), (F.4)

where the last step follows from the Hoeffding inequality for U-statistic. Thus, combining (F.2),
(F.3) and (F.4), we have for some constants C7,Cy,C3 > 0, as n goes to infinity,
2
P( sup|———~ uh](ﬁ)‘ > 6)
geoln(n —1) 1<;<n

< exp(C1 K log K — Cone*/[K + Ke]) 4 exp(C1 K log K — C3ne’K) — 0,

where we take e = C'y/K?log K /n for some constant C' sufficiently large. This implies

glelgn(nQ—l) Z ulij(,B))—OpO/K”ng).

1<i<j<n

Following the same arguments, we can show that with the same choice of ¢,

sl 2 )] =0 ()

1<i<j<n

Plugging these results into (F.1), we complete the proof. O
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Lemma F.3 (Bernstein’s inequality for random matrices (Tropp, 2015)). Let {Zj} be a sequence
of independent random matrices with dimensions d; x do. Assume that EZ; = 0 and ||Zg|l2 < R,

almost sure. Define
2 _ T T
7= max{| Y E@z])|, | ez, )
k=1 k=1
Then, for all £ > 0,
- t2/2
IP’(H ZH >t)<d d (—7>

Lemma F.4. Let H = (h(X}),...,h(X,))" and B = (B(X}), ..., B(X,))" be two n x K matrices.

Under the conditions in Theorem 4.1, then

IH"H/n — E[h(X;)h(X;)"]||l2 = Op(v/K log K/n) (F.5)
and
IB'B/n — E[B(X;)B(X;)"]|l2 = Op(v/Klog K/n). (F.6)

Proof of Lemma F.4. We prove this result by applying Lemma F.3. In particular, to prove (F.5),
we take Z; = n ! [h(X;)h(X;)" — E(h(X;)h(X;)")]. It is easily seen that

1Zill2 < 0~ er(R(X)R(X0) ") + [[E(R(X:)h(X;) )||2] < (CK + C)/n,
where C' is some positive constant. Moreover,

| Yo E@zD)|| <o (IER(X)R(X) TR(X)R(X) T [l + [ E(R(X)R(X) DI3)
=1
<n Y CK - ||[E(h(X;)h(X:) ") |2 + C?) < n YHC K + C?).

Note that /K log K/n = o(1). Now, if we take t = C'\/K log K/n in Lemma F.3 for some constant
C sufficiently large, then we have P(|| >"p_; Zg|l2 > t) < 2K exp(—C"log K) for some C’ > 1. Then,

the right hand side converges to 0, as K — oo. This completes the proof of (F.5). The proof of

(F.6) follows from the same arguments and is omitted for simplicity. O

Lemma F.5. Under the conditions in Theorem 4.1, the following results hold.

1Let U=1%" U, U= (U;],U;})", with

U = (-~ 1= ) m(X0), Un = (= —1)ha(Xy)

Then ||U||z = O, (K2 /n'/?).
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2 Let B(r) = {8 € RE : ||B — B*|]2 <}, and 7 = O(K'/?/n'/2 4 K~"). Then

) :Op(K1/2r+ /Kl(;LgK>'

3 Let J; = J(BT B(X)), Ji = 8J(v)/0v|,—g7 B(x,) and

(B0 XD EOGO) X015

dgs(T, X)

o8 -G

sup
BeB(r)

(s 1 -
Then
1 —1;)Yi(0)7 T 1/2 -
iB(X:)+ G ar|| =0, (KY?r+ K7 ).
SeBir nZ;[ (1—Ji)2 JiB(X:) + G Tl Op( rt )

Proof of Lemma F.5. We start from the proof of the first result. Note that E(U;) = 0. Then

E|U|2 = E(U, U;)/n and then there exists some constant C' > 0,

E||U|2 = E[n’l i (WZ - ; L ) hio(X:)2I(k < my) + (Z - 1)2hk(Xi)21(kz > my)

*
1 T i ;

K
< CY E{hi(X:)*}/n = O(K/n).

k=1
By the Markov inequality, this implies |U|s = O,(K'/?/n'/?), which completes the proof of the

first result. In the following, we prove the second result. Denote

T; 1-1T; .
&0n(X)) =~ (a2 + T Tmaey) )
¢i(m(Xi)) = —mj(m(Xi)),

and A;(m(X;)) = diag(&(m(X;))1m,, ¢i(m(X;))1m,) is a K x K diagonal matrix, where 1,,, is a

vector of 1 with length m;. Then, note that

9gs(T.X) . _ 1y .
iT -G = > B(X)h(X;)"Ai(B"B(X;)) - E[B(X))h(X;) " Ai(m* (X)),
i=1
which can be decomposed into the two terms Ig + I, where

n

ZB ) [A(BT B(X:)) — Ai(m* (X)), I1=) 7,

i=1

Z; - n—l{B(X»h(Xi)TAi(m*(Xi)) ~ E[B(X)h(X,)" Ay(m* (X)) }.
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We first consider the term II. It can be easily verified that ||A;(m*(X;))|l2 < C for some constant
C > 0. In addition, ||B(X;)h(X;) |2 < |1B(X))|l2 - |R(X:)|l2 < CK. Thus, ||Zi|lz < CK/n.

Following the similar argument in the proof of Lemma F.4,
n
| S E@z])|| < 0 IEB(X)R(X) T Aulm (X)) A(m* (X)) h(X) B(X) |
+n 7 [EB(Xi)h(X;) T Ai(m* (X)) 13-
We now consider the last two terms separately. Note that

IEB(Xi)h(X,) A(m*(X))[3 = sup  |[Eu' B(X)h(X;) Ay(m*(X;)v[”

[alla=1,[[v[2=1

< sup |[Eu'B(X;)B(X;) ul- sup [Ev'Ai(m*(X;)h(X)h(X:)" Ai(m*(X;))v]

[all2=1 [vll2=1

< |E(B(X:)B(X;)")l2 - CIE(R(X:)h(X;) ")l < C', (F.7)
where C, C’ are some positive constants. Following the similar arguments to (F.7),

IEB(X:)h(X) " Ai(m* (X)) Ay (m* (X)) h(X:)B(X;) |2

<CK - sup |Eu' B(X;)B(X;) u|<CK - ||EB(X;)B(X;) | <C'K

[[ulla=1
for some constants C, C’ > 0. This implies || >1 | E(Z;Z;)||2 < CK/n. Thus, Lemma F.3 implies

|II]l2 = Op(y/KlogK/n). Next, we consider the term Ig. Following the similar arguments to
(F.7), we can show that

sup |[Igl2 = sup sup ‘*ZUTB X)) [A(B"B(X;)) — Ai(m*(X;))]v
BeB(r) BeB(r) |lull2= 1HVH2 1
|2 moomonr | |2 S hocmen]

- sup max [|A;(BTB(X))) — Ai(m* (X))
BeB(r )1<z<n

< C sup sup |(B"— @) B()|+ Csup [m"(z) - 5" B(x)|
BEB(r) TEX zCX

S C/(KI/QT‘—FK_TZ’) S C//K1/2T,

for some C,C’,C" > 0, where the second inequality follows from Lemma F.4 and the Lipschitz

property of &;(+) and ¢;(), and the third inequality is due to the Cauchy-Schwarz inequality and
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approximation assumption of the sieve estimator. This completes the proof of the second result.

For the third result, let

LY() | (Q-T)Y(O)
w5 = () + @ Tonxp ) X

Thus, the following decomposition holds,
1 n
~> m(BTB(X:)B(X:) + G =Tig + Tp + T,
i=1

where

n

Tis = = > (BT B(X0) — il (B(X.)) BX)
i=1
7= 3 [l (BX0) B(X) — Eni(m* (B(X.)) B(X,)|

n -
=1

T3 = En;(m*(B(X,)))B(X;) + G*Ta*.

Similar to the proof for supgep(,) [|/all2 previously, we can easily show that supgep( [|T18l2 =
Op(Kl/zr). Again, the key step is to use the results from Lemma F.4. For the second term
Ty, we can use the similar arguments in the proof of the first result to show that E|T3||3 <
CK -En;(m*(B(X;))?/n = O(K/n). The Markov inequality implies || T5||2 = O,(K'/?/n!/?). For
the third term T3, after some algebra, we can show that
ITsll> < O sup |K () — o ha()| + sup [L() — a3 ha()]) = Op(K ).
zEX zeX

Combining the Ly error bound for Tig, T> and 753, we obtain the last result. This completes the
whole proof. O

Lemma F.6. Under the conditions in Theorem 4.1, it holds that

18 = B"ll2 = 0p(1).

Proof of Lemma F.6. Recall that 3° is the minimizer of Q(8). We now decompose Q(3) — Q(3°)

as

Q(B) — Q(B%) = [Q(B) — Qu(B)] + [Qn(B) — @n(B°)] + [Qn(B°) — Q(B7)]. (F.8)

I 17 IE

In the following, we study the terms I, II and III one by one. For the term I, Lemma F.2 implies
1Q(B) — Qu(B)] < supgee |@n(B) — Q(B)| = 0p(1). This shows that |I| = 0,(1) and the same
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argument yields |/1]| = op(1). For the term II, by the definition of B, it is easy to see that IT < 0.
Thus, combining with (F.8), we have for any constant n > 0 to be chosen later, Q(B) —Q(B°) <n
with probability tending to one. For any € > 0, define E. = ©N{||8—3°||2 > ¢}. By the uniqueness
of @°, for any B € E, we have Q(8) > Q(8°). Since E. is a compact set, we have infgep, Q(8) >
Q(B°). This implies that for any € > 0, there exists ’ > 0 such that Q(8) > Q(8°) + n/ for
any B € E.. If B € E,, then QB°) +n > Q(B) > Q(B°) + n' with probability tending to one.
Apparently, this does not holds if we take n < 7. Thus, we have proved that 5 ¢ E, that is
18 — 3°||2 < € for any € > 0. Thus, we have |3 — 8|2 = op(1).

Next, we shall show that ||3° — 8*|l2 = 0p(1). It is easily seen that these together lead to the

desired consistency result
18 =B7l2 < 187 = B%[l2 + I8 — B°[l2 = 0p(1).

To show ||3° — B*||2 = 0,(1), we use the similar strategy. That is we want to show that for any
constant 7 > 0, Q(8*) — Q(B°) < n. In the following, we prove that Q(3*) = O(K'~2"). Note
that

Q(B <CQ —2r Z]E‘h’ (Kl 2rb)

where the first inequality follows from the Cauchy—Schwarz inequality and the last step uses the as-
sumption that supgey |[h(z)|]2 = O(K'/?). In addition, it holds that Q(3°) < Q(8*) = O(K'~2™).
As K — oo, it yields Q(8*) — Q(B°) < n, for any constant n > 0. The same arguments yield

|B° — B*||2 = 0p(1). This completes the proof of the consistency result. O

Lemma F.7. Under the conditions in Theorem 4.1, there exists a global minimizer ,5 (if Qn(B)

has multiple minimizers), such that
I8 = B"[l2 = Op(K'/2/n!/? + K=™). (F.9)

Proof of Lemma F.7. We first prove that there exists a local minimizer A of Qn(B* + A), such
that A € C, where C = {A € RE : ||Al]z < 7}, and r = C(KY/2/n/2 4 K—") for some constant C

large enough. To this end, it suffices to show that

IP’{ Auggc Qn(B" +A) — Qn(B") > 0} — 1, asn — oo, (F.10)
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where dC = {A € R¥ : |Allz = r}. Applying the mean value theorem to each component of
gﬁ*JrA(T?X)v
gﬁ*—‘,—A(T) X) = gﬁ* (T7 X) + éAa

=~ 095(T,X . . . . . =
where G = % and for notational simplicity we assume there exists a common 3 = v3* +

(1- v),é for some 0 < v <1 lies between B* and B* + A (Rigorously speaking, we need different
B for different component of gg«ya (T, X)). Thus, for any A € 9C,
B*+

Qn(B" + A) — Qu(B") = 2g5- (T, X)GA + AT(G'G)A
> —2||ga- (T, X)|2 - |Gz - |All2 + | A3 - Aoin(G T G)

> —C(KY2 /2 4 K~™) o+ C - 12, (F.11)

for some constant C' > 0. In the last step, we first use the results that ||gg« (T, X)||2 = Op(K /2 /n'/?+
K~"), which is derived by combining Lemma F.5 with the arguments similar to (F.14) in the proof
of Lemma F.8. In addition, |G|z < ||G—G*|2+|/G*||2 < C, since ||G*||2 is bounded by a constant
and ||G — G*||; = op(1) by Lemma F.5. By the Weyl inequality and Lemma F.5,

Amin(GTG) > Anin(G*TGH) — |GTG — GG

>C |G~ Glz- |G|z = |G = G"[l2- |G*[l = C/2,

for n sufficiently large. By (F.11), if » = C(K'/2/n'/2 4 K~") for some constant C' large enough,
the right hand side is positive for n large enough. This establishes (F.10). Next, we show that
B =03*+ Ais a global minimizer of @, (3). This is true because the first order condition implies
<8§5(T, X)

B

provided GQE(T,X )/0B is invertible. Following the similar arguments by applying the Weyl in-

)95(T.X) =0, = g5(T,X) =0,

equality, 8QE(T , X')/0B is invertible with probability tending to one. Since gE(T, X)) =0, it implies
Qn(ﬁ) = 0. Noting that @,,(83) > 0 for any 3, we obtain that B is indeed a global minimizer of
Qn(B). o

Lemma F.8. Under the conditions in Theorem 4.1, B satisfies the following asymptotic expansion

B-B"=-G'U+A,, (F.12)
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where U = %Z?:l U;,, U, = (Ui—lr, UZE)T, with

T, 1-T; T;
Ui = <7T* — *> hi(X;), Up= <* — 1) ho(X5),

i 1 —m;

ot =0, () + R (U + 70)

Proof of Lemma F.8. Similar to the proof of Lemma F.7, we apply the mean value theorem to each

7

and

component of gE(T, X),

995(T, X)
op

where for notational simplicity we assume there exists a common 3 = v3* + (1 — v)ﬁ for some

3o (T, X) + ( )(B-p") =0,

0 < v <1 lies between B* and ,é After rearrangement, we derive

a * x—1 = *— 8@*(T,X) -1
BB =G ge(T.X) + [@ - (FH0) g (T, X)
= -G U+ A +Ap+ A, (F.13)
where
_ 0gz(T, X)\-17 _
Aw =G0 - g (T, X)), Aw=[a - (RN
and

0gz(T, X )\ - _

We first consider A, in (F.13). Let € = (&, ...,&,) ", where

A, = [G*—l _ <

1 1 1 1
=T - ) - (-1 (= - ), for1<i<m,
gz 7 77-;* Ji* ( 7,) 1771_; 1*JZ~* or STsSMmy
and
1 1 )
&:TZ(E_f)’ formi+1<i<K.

(2 (2

Let H = (h(X1),...,h(X,))" be a n x K matrix. Then, for some constants C,C’ > 0,

|AuE = n 26 THG G HT¢ < n 2]} [HG'G*'H |,

< Cn7Hgll3 - HH/nl2 < C'n €13, (F.14)

where the third step follows from the fact that ||G*~!||y is bounded and the last step follows from
Lemma F.4 and the maximum eigenvalue of E[h(X;)h(X;)"] is bounded. Since |0.J(v)/dv| is upper
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bounded by a constant for any v < sup,cy |m*(z)|, then there exist some constants C,C’ > 0, suc

that for any m; +1 <i < K,
& < Clrf = Jf| < C'sup Im*(x —B*TB:(: < C'K™,
! ! ex
xr

Similarly, |&] < 2C"K~™ for any 1 < i < m;. Thus, it yields n=![|£|2 = O,(K~?™). Combining
with (F.14), we conclude that [[A,1|2 = Op(K~™).

Next, we consider A,5. Since ||[G*7!||3 is bounded, we have

| Anaflz < G2 H<8gﬁ§£m)_l\\2 e - WH

~ Klog K K
<O(IB =Bk + /=255 ) /=

where the last step follows from Lemma F.5.

T2

Finally, we consider A,3. By the same arguments in the control of terms A,,; and A2, we can

prove that

25 oo -

~ Klog K
<O(118 = B*|oEV2 + /228 g,
n

Combining the rates of || Anil2, [|An2|2 and [[Ans||2 with (F.13), by Lemma F.5, we obtain

Al < |G = (

18 = B2 < |G gp-(T, X)ll2 + | Antllz + [ Anz]l2 + [ Ans]2

< c(ff/f b ) (18 - g ar s 4 R (ff/f +1),

for some constants C,C’" > 0. Therefore, (F.12) holds with A, = A,1 + A2 + Ays, where

a0, (o ) 5 (4 )

This completes the proof. ]
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Proof of Theorem 4.1. We now consider the following decomposition of ﬁg — U,

1o~ [LYi(1) - K(Xi) — L(Xy)) (1= T)(Yi(0) - K (X))
>l J; - 1-J, |

g 1=
=1

1~ /T;
a5

1-1T, 1 /T, 1 &
: _J:_)K<Xi>+ n; (Z- —1)L<Xi>+n;L<Xi> yr

1 [(L(Yi(1) - K(Xy) — L(X3)  (1-T)(Yi(0) — K(X;))
:nz[ J; - 1 - J; )
i=1 7 7
Il /T, 1-T; 1<~ /T;
+n;(ji—1_z)AK(Xi)+n;(L—1)AL ZL

where J; = J(BTB(X,)), Ax(X;) = K(X;) — o Thi(X;) and AL(X;) = L(X;) — o Tha(X).
Here, the second equality holds by the definition of B. Thus, we have

1 n
[z — :72 S; Ri+R
fig — 1 n 2 + Ro+ Ri1+ R2+ Rs

where

_ IGO0 - K(X) . 5
Rl_n; A

i—1
RzZii(% 1_J>AK( i) RSZ:ZZZn;<§Zl>AL(Xi)~

In the following, we will show that R; = op(n_l/ 2) for 0 < j < 3. Thus, the asymptotic normality of
nl/ 2(n 5 ) follows from the previous decomposition. In addition, S; agrees with the efficient score
function for estimating p (Hahn, 1998). Thus, the proposed estimator ﬁ[j is also semiparametrically
efficient.
Now, we first focus on Ry. Consider the following empirical process G,(fo) = n'/?(P, —

P)fo(T,Y (1), X), where P, stands for the empirical measure and P stands for the expectation, and

H(TY (1), X) = [7*(X) = J(m(X))].
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By Lemma F.7, we can easily show that

sup|J(B" B()) — 7*(x)| S sup |8" B(z) — 8*T B(w)|
reX zreX

+ sup [m*(z) — BT B(w)| = Op(K/n'? + K'/>77) = 0,(1).
reX

For notational simplicity, we denote || f|loc = supgecy |f(x)]. Define the set of functions F = {fo :
|lm — m*||ee < 6}, where 6 = C(K/n'/? + K'/27™) for some constant C' > 0. By the strong
ignorability of the treatment assignment, we have that Pfy(7,Y (1), X) = 0. By the Markov
inequality and the maximal inequality in Corollary 19.35 of Van der Vaart (2000),

n'/2Ry < sup Gy(fo) S E sup Gu(fo) < J1 ([ Fol
foE]'— foE]:

P,27~F7L2(P))7

where J[ ](HF()‘
bounded away from 0, we have |fo(T,Y (1), X)| S 0|Y (1) — K(X) — L(X)]| := Fy. Then || Fy||p2 <
S{E|Y (1)*}*/2 < 6. Next, we consider N[ (e, F, Lo(P)). Define Fo = {fo : [m — m*||c < C} for

P2, F,La(P)) is the bracketing integral, and Fy is the envelop function. Since J is

some constant C' > 0. Thus, it is easily seen that log N (¢, F, La(P)) S log Ny (e, Fod, L2(P)) =
log N[ (€/6, Fo, L2(P)) < log Np(e/6, M, La(P)) S (6/€)Y/*1 where we use the fact that J is
bounded away from 0 and J is Lipschitz. The last step follows from the assumption on the brack-

eting number of M. Then

1 1)
J[](HF()HRQ,]:,LQ(P)) S/ \/IOgN[](G,F7L2(P))dES/ (5/6)1/(2]“)(16,
0 0

which goes to 0, as 6 — 0, because 2k; > 1 by assumption and thus the integral converges. Thus,
this shows that n'/2Ry = 0,(1). By the similar argument, we can show that n'/2R; = 0,(1).
Next, we consider Ry. Define the following empirical process G, (f2) = n'/?(P, — P) fo(T, X),

where
T —J(m(X))
J(m(X))(1 - J(m(X)))

By the assumption on the approximation property of the basis functions, we have ||Ag||cc S K.

f?(T7X) =

Ax(X).

In addition,

178" B(X)) = 7*(X)|lp2 < I7(B"B(X)) = J(8" B(X))lp2 + 178" B(X)) - 7*(X)|| 2

SIBTB(X) - BT B(X)|p2 + sup m*(x) — B* B(=)|

= O, (K2 /n'/? 4 K—),
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where the last step follows from Lemma F.7.
P2 <01, ||Alleo < 82}, where §; = C(K /2 /n'/? 4
K~"™) and d; = CK~" for some constant C' > 0. Thus,

Define the set of functions F = {fa : ||m —m*|

n'?Ry < sup Gy (f2) +n'/? sup Pfy.
fo€F foEF

We first consider the second term n!/2 supr,er Pfo. Let G1 = {m € M : [m —m*||p2 < 61} and

Go = {A € H—ai"hy : ||A]l < d2}. By the definition of the propensity score and Cauchy

inequality,
“(X) — J(m(X))
nl/? sup Pf2:n1/2 sup E ualt A(X
e meo R g, “Tm XN — Jmx)) K
<n'/? sup ||7* — J(m)||p2 sup [|Apa

megy A€Ga

5 n1/25152 S nl/Z(Kl/Q/nl/Q +K*Tb)K*7”h _ 0(1)’

where the last step follows from 7, > 1/2 and the scaling assumption n'/2 < K7™+7n in this
theorem. Next, we need to control the maximum of the empirical process supy,cr Gn(f2). Fol-
lowing the similar argument to that for Ry, we only need to upper bound the bracketing integral

J (1P|

p2,F,La(P)). Since J is bounded away from 0 and 1, we can set the envelop func-

< 52. Define .FO == {f2 :

~

tion to be Fy := U6y for some constant C' > 0 and thus [[Fy| p2
|m —m*||p2 < C,||A|lp2 < 1} for some constant C' > 0, Gig = {m € M +m* : ||m|p2 < C} and

G ={A €H—ai"hy:|A]p2 <1}. Similarly, we have
logN[ ](E,]:, LQ(P)) 5 logN[ ](6/52,f0,L2(P))

< log Ny (€/02,Gro, L2(P)) + log Ny 1(e/d2, Goo, L2(P))

< log Ny (€/02, M, La(P)) + log Ny |(€/02, H, La(P))

S (82/e)M + (8 /€)' /%2,
where the second step follows from the boundness assumption on J and its Lipschitz property, the
third step is due to Gig — m* C M and Gy + a’{Thl C ‘H and the last step is by the bracketing
number condition in our assumption. Since 2k; > 1 and 2ky > 1, it is easily seen that the bracketing
integral Jp (|| F2l|p2, F, L2(P)) = o(1). This shows that sups,c » Gn(f2) = 0,p(1). Thus, we conclude

that n'/2Ry = 0,(1). By the similar argument, we can show that n'/2R3 = 0,(1). This completes

the whole proof. O
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G Discussion on the Results in Section 4

Under the conditions in Theorem 4.1, it is well known that the convergence rate for estimating
K(x) (and also L(x), ¥*(x)) in the La(P) norm (i.e, f(f((m) — K(x))?P(dz)) is Op(k~ 2™ + K /n);
see Newey (1997). Thus, the optimal choice of s that minimizes the rate is £ =< n/n+1_ Assume
that r, = r. With & < n/@n+D the conditions x = o(n!'/3) and T = o(k) always hold
as long as 7, > 1. Recall that from the previous discussion r;, = s/d, where s is the smoothness
parameter and d is the dimension of X. Thus under very mild conditions s > d, we do not need to

under-smooth the estimator.

Remark G.1. By the proof of Theorem 4.1, we find that when x = o(n'/®»*1) and s =
o(n'/(?rn+1)) hold, the asymptotic bias of the estimator ﬁg is of order O,(K~("+7)) which is
the product of the approximation errors for ¢*(x) and K(x) (also L(x)). Thus, to make the bias
of the estimator ﬁg asymptotically ignorable, we can require either 7, or 7, sufficiently large (not
necessarily both). This phenomenon can be viewed as the double robustness property in the non-
parametric context, which holds for the kernel based doubly robust estimator (Rothe and Firpo,
2013) and the targeted maximum likelihood estimator (Benkeser et al., 2017). In addition, our es-
timator has smaller asymptotic bias than the usual nonparametric method. For simplicity, assume
ry = rp = r. The asymptotic bias of the IPTW estimator in Hirano et al. (2003) is generally of

order O,(k~"), whereas our estimator has a smaller bias of order O, (x~2").

H Estimation of ATT
We consider the estimation of the average treatment effect for the treated (ATT)
= B(Yi(1) — Yi(0)|T; = 1),
Let 77 = E(Y;(1) | T; = 1) and 7§ = E(Y;(0) | 7; = 1). By the law of total probability,
= B(TY;(1) | T, = 1) = (LY (1)) /B(T; = 1),

Thus, a simple estimator of 7| is
~ _ 2im LY

DY



To estimate 7, we notice that

7o = E[E(Y;(0) [ Ti =1, X5) [ Ti = 1] = E[E(Y;(0) | X;) [ T3 = 1]
_ B[LE(Y(0) | Xi)] _ E(x(8"T X)E(Y;(0) | X))
P(T;=1) P(T; = 1)
L (8" X,)(1 — T,)Yi(0)
- P(T= I)E{ 1—m(B"1Xi) } '

Similar to the bias and variance calculation for the ATE, we can estimate 3 by the solving the

following estimating equations

e 1-T)r(BTX
" 1;(ﬂ_(1—ﬂ)(ﬂ(fX) )>f(X>_O'

Then, we set T; = W(BTXZ') and estimate 7y by

i (A =Tyr

where 7; = 7; /(1 — 7;). The final estimator of the ATT is 7 = 73 — 7p. Similar to the proof of the

main results on ATE, we can show that when both models are correct, n'/2(7 — 7*) —4 N (0, W),

where
*2

1—nF

2

Here, ¢ =Y (0) - K(X),e; =Y(1) - K(X) - L(X) and p=P(Y =1)

W = pE |TE(S | X) + 1B | X) + 7 (LX) - 7).

I Derivation of (3.10) and (3.11)

In this appendix, we only provide a sketch of the proof of (3.10) and (3.11), because the detail is very
similar to the proof of Theorem 2.1. Recall that as in Section 2, 3° which satisfies E(gg. (T, X)) = 0
is the limiting value of 3 as in Lemma B.2. In addition, denote Ko(X;) = a*Thi(X;)+5A1h1 (X))
and L°(X;) = v*Thy(X;) + § Ashy(X;), where the vectors A; and Ay are to be determined. We

have the following decomposition

n

= 20 [ A0 OO0 — BP0} = s (0(0) = KO0+ 1(0)
2 {5ty 7 0 70 ~ )
i T O R = D
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We first consider I5. The mean value theorem implies

7, Ony(X))

L= —% ; "2(X;) 0P {Yi(1) - K°(X:) — L(X:)} (B — B°),

where 5 is an intermediate value between 3 and 8°. Under Assumptions similar to B.1, the
dominated convergence theorem implies

1 n Tz aWE(Xz) o o B
o mx g - KX — LX)} = 0,(6)

T4
i=1"j

Similar to Lemma B.3, we can show that B —B° = Op(n_l/Q). The Slutsky theorem yields I, =
0,(6n~/2). The same argument implies that I3 = O,(dn~"/2). Finally, we focus on I;. Note that

n

- % ; [W(J;i(i) {Vi(1) - K(X;) - L(X;)} — 1:g’('i){yi(o) ~ K(Xi)}+ LX)~ ] = i; B
where
i = {wﬁo(x,-) T (X)) PO() — KO(X0) — LX)
- {1 —17;30?&) 1 i;(j;(i) }{Yi(o) - KX}
T; o(x . N '
~ gy U (X + LX) = K(XG) = LX)}
ey (X0 = K (X)) + 1°(X) - L(X,),

The central limit theorem implies n1/2(% S Ay —EA;)/sd(A;) — N(0,1). In order to derive
the order of 2 -7 | A;, it suffices to compute the E(A;) and sd(A;). As in the derivation of (C.1),

after some algebra, we similarly obtain

B° — B* =ET "M+ 0(€?),

where
M — (it (X3)
E(utha(X)
1 Omg+(Xi) 1 Omg=(X4)
and T = [E( gy op 1 (X)) By — g he (X))
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Denote ?1(Xz) =17 (Xl) — A1hg (Xl) and ?Q(XZ) = Tz(Xi) — Aghg(Xi). Note that

W(XZ) ~ ] ’IA; ) . 1 —7T(XZ')
7T60 (Xz) 5(r1(XZ) * 2(X’L)) 1-— 7T/30<X0

1 Omp(X5), ., . N )
T« (Xi) 0P (B = B%)}o(r(Xi) + r2(X5))

—=1 wﬂ*(Xi)fui T 5 (X:) OB

_ 1 ur 1 Omg+ (X3) 1y o

_&SE[{l (X0 U= XX 08 Y ()|
1 87‘(’3* (Xz)

me(X;) 0B

E(A;) = IE{ or1(Xi) — 5?2(Xz')}

E{{l +eur —

(8° = B)}0T1(Xi) — 072( X)) | + O(€29)

+ EOE | {u; - T 'M}7(X0)| + 0(€%).

Assume that at least one entry of E[{l,ﬂ; XU~ (17%*()(1‘))”6*()(') 8wﬁgéxi)T*1M}h1(X,-)} is

nonzero. Then, there exists A; such that

1 * 1 871'/3* (XZ) 1 ‘
AlE[{l (X)) (L= mpe (Xa)) e (X)) OB T M}hl(X’)}
N E[{l —ma(Xa) (1= me (X)) e (Xs) OB T M) 1(XZ)}’

which implies

1 ut — 1 O« (Xs) 1 . N
[{1 —mp(Xi) ' (1 — 7 (X)) e+ (X5) o8 T M} I(Xz)} 0.

Similarly, by choosing a proper Ao, we have

E[{u;‘—ﬂﬁ*(Xi) ik T IM}7(X;)| = 0.

As a result, we obtain E(A;) = O(£26). Finally, after some tedious calculation, we can show that
sd(A;) = O(¢£+6). This implies 2 3™ | A; = 0,(625 +&n~1/2 + 6n~1/2). This completes the proof

n

of (3.10). The proof of (3.11) follows from the similar argument and we omit the details.

J Asymptotic Variance Formulas Used for Simulations

In this appendix, we present the asymptotic variance formulas used for constructing the 95%
confidence intervals for calculating the coverage probabilities in the simulations in Section 5.1. In
particular, for a generic estimator [, the 95% confidence interval is (i —1.96 %7, i+ 1.96%7), where

52 is the estimate of the asymptotic variance of v/n(ji — ).
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For the True estimator, the asymptotic variance formula is similar to the one given in Section 2

and is as follows:

Y;(1)2 Y;(0)?
Spo = Var (g, (Ti, Vi, X3)) = E(ﬂﬁj&a + ety — (E(Yi(1) —E<n<o>>>2)-
For the GLM estimator, the asymptotic variance formula is as follows:
YoM = Xy, — H) I7'H,

where Y, is defined like before, I is the Fisher Information Matrix, and

Ho

(KX + (1=, (X4)) L(Xs)  Omp, (Xii)
B = E( o (Xi) (1 — 7, (X:i)) 9B ) '

Since the second term is positive definite, ¥gryr < X, and thus the variance decreases.
The GAM estimator achieves the semiparametric efficiency bound (Hirano et al., 2003) and so
we can use Vopt given in (2.6) as the asymptotic variance formula. The CBPS estimator has the

following asymptotic variance formula:

Sceps = Y, + H,(H{ Q 'Hg) 'H,

— 2H, (H{ Q@ 'Hy) ™ H{ Q7' Cov(ug, (T}, Vi, Xi), g8, (T3, X))

where X, and H,, are defined like before, and we have:

_ £(X;) Oms (X)) |
Hy = E(ﬂ-ﬁo(Xi)(l—ﬂ'BO(Xi))< B ) >

Q = Var(gﬁo (Tl7 X%))

T; 1-T;
900 (T, X) ( - ) F(X)
po T8 (XZ) 1- TBo (Xl)
TY; (1-T,)Y;

MﬁO(I—ZL’E?X’L) =

oo (Xi) 1 —mpy(Xi)

The asymptotic variance for the DR estimator is automatically computed in the R package
drtmle and the confidence interval was constructed accordingly.

Finally, we note that when we estimate the asymptotic variances, we simply replace the quan-
tities 75, and K (X) and L(X) with their estimates and replace the expectation with the sample

average. To save space, we do not repeat the formulas of the estimated variances.
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