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Abstract

In this paper, we study the contextual dynamic pricing problem where the market value of a
product is linear in its observed features plus some market noise. Products are sold one at a time,
and only a binary response indicating success or failure of a sale is observed. Our model setting is
similar to Javanmard and Nazerzadeh [2019] except that we expand the demand curve to a semi-
parametric model and learn dynamically both parametric and nonparametric components. We pro-
pose a dynamic statistical learning and decision making policy that minimizes regret (maximizes
revenue) by combining semiparametric estimation for a generalized linear model with unknown
link and online decision making. Under mild conditions, for a market noise c.d.f. F'(-) with m-th

order derivative (m > 2), our policy achieves a regret upper bound of (5d(T %), where T is
the time horizon and @y is the order hiding logarithmic terms and the feature dimension d. The
upper bound is further reduced to (5d(\/T ) if F' is super smooth. These upper bounds are close
to Q(+/T), the lower bound where F belongs to a parametric class. We further generalize these

results to the case with dynamic dependent product features under the strong mixing condition.
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1 Introduction

Dynamic pricing is the study of determining and adjusting the selling prices of products over time
based on statistical learning and policy optimization. As an integral part of revenue management, it
has wide applications to various industries. Research on dynamic pricing has spanned across the fields
of statistics, machine learning, economics, and operations research [den Boer, 2015, Wei and Zhang,
2018, Misic and Perakis, 2020]. In general, a good pricing strategy often involves good statistical
learning of the demand function as well as revenue optimization over time.

Recent works particularly focus on feature-based (or contextual) pricing models, where the market
value of a product as well as the pricing strategy depend on some observable features of the product
[Javanmard and Nazerzadeh, 2019, Ban and Keskin, 2020]. Given the product features (covariates)
available through the massive real-time data in online platforms today, feature-based pricing models
take product heterogeneity into account, which enable customized pricing for products.

In this work, we consider the following dynamic pricing problem: We assume that a seller sells
one product at each time ¢ = 1, - -- , 7. Each product is attached with a known feature vector x; € R%.
In addition, the product’s market value v; is linear in the features plus some i.i.d. market noise z; with

~

Here X; = (x/,1)" and 6, is some unknown parameter. The customer makes an independent pur-
chase decision for each product depending on whether the seller’s posted price p; is higher than the
market value vy, after which the revenue is collected. In this case, the demand curve P(v; > p;)
actually depends on both the parameter 8, as well as the distribution of z;, which admits a semi-
parametric form. They need to be learned or estimated dynamically from the observed binary data
that indicates whether a sale is successful. Under this setting, we propose a policy which utilizes
semi-parametric estimation techniques to achieve a low regret. In particular, under mild regularity
conditions, if the c.d.f. F(-) of z, has m!" derivative, the regret over a time horizon 7" is upper bounded
by O((Td)% log T'(1 + log T'/d)), where d is the number of features. This result is further general-

ized to a setting where the product features x; are not independent, as long as {x;},>; is a stationary
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series that satisfies certain S-mixing conditions. Moreover, when F is infinitely differentiable, the
total regret can be upper bounded by O((T'd)z (log T)2*2x (log(d + 1) + log T/d)). This rate is the
same as the parametric lower bound up to some logarithmic factors, i.e. where the distribution of z; is

generated from a parametric class.

1.1 Related Literatures

Our work contributes to the recent line of dynamic pricing literature as well as the growing literature
on decision making with covariate information and contributes to kernel regression. Our work is also
closely related to the non-parametric statistics literature. We’ll briefly review the related works in the
below.

Dynamic pricing. In the classical pricing models, one aims at maximizing the revenue over time
by posting price sequentially while learning the underlying demand curve or market evaluation of a
product. The demand curve is typically fixed over time, and falls into a known function class. Related
literature includes Kleinberg and Leighton [2003], Rusmevichientong et al. [2006], Besbes and Zeevi
[2009], Broder and Rusmevichientong [2012], Keskin and Zeevi [2014], den Boer and Zwart [2014],
Wang et al. [2014], den Boer and Zwart [2015], Babaioff et al. [2015], Cesa-Bianchi et al. [2019],
Chen et al. [2019]. As an example, Cesa-Bianchi et al. [2019] study the dynamic pricing problem
where the buyer’s valuation of a product is supported on a finite X unknown points, and the success of
a sale is determined by comparing the valuation to the proposed price. Using a generalization of UCB
algorithm, the authors achieve the regret with order O(K logT"). For a comprehensive survey on this
topic, see den Boer [2015].

Recently, many papers have been focusing on contextual dynamic pricing, where product hetero-
geneity is taken into account when modeling the demand curve or market evaluation. A common and
natural choice is to model the market value of the product at time ¢ as a linear function of its features x;
plus some market noise z, i.e. v; = "%, + z; where 0 is some unknown parameter [Qiang and Bayati,
2016, Javanmard, 2017, Miao et al., 2019, Javanmard and Nazerzadeh, 2019, Ban and Keskin, 2020,
Wang et al., 2020a, Chen et al., 2021, Tang et al., 2020, Golrezaei et al., 2020]. Under this setting,

for ‘truthful’ buyers whose decision is based on comparing v; and offered price p;, the demand curve
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can be expressed as a generalized linear model given feature covariates x;, where the link function is
closely related to the distribution of the market noise z; (see (3) for a detailed reasoning). Qiang and
Bayati [2016] assume a linear model between the demand curve and the product features. They prove
that the greedy iterative least squares (GILS) algorithm achieves a regret upper bound of Oy(logT),
where O, is the order that hides logarithmic terms and the dimensionality of feature d, and provide a
matching lower bound under their setting. Miao et al. [2019] and Ban and Keskin [2020] consider a
generalized linear model with known link, while Javanmard and Nazerzadeh [2019] and Wang et al.
[2020a] study the same problem with high dimensional sparse parameters. The algorithms are usually
a combination of statistical estimation procedures and online learning techniques. Depending on the
setting, the optimal regret ranges from Oy(log T') to O4(+/T). Other related works include Chen et al.
[2021], Tang et al. [2020] where the authors explore certain differentially private policies under simi-
lar model setting; Golrezaei et al. [2020] where the authors consider the second price auction problem
with multiple customers, each of which has his/her own product evaluation; and Javanmard [2017]
where the parameter 6 in the generalized linear model changes through time.

In practice, however, the distribution of the market noise z; is usually unknown to the seller. Thus,
it might be desirable to only assume that the noise density falls into some general class. As will be
discussed in §2, this leads to modeling the demand curve as a generalized linear model with unknown
link, and will be our main focus in this paper. Compared to the previous setting, this setting is more
challenging, and the related literature is sparse. Javanmard and Nazerzadeh [2019] propose a pre-
liminary algorithm that achieves a regret upper bound of O4(T'). Golrezaei et al. [2019] consider a
second price auction with reserve where there are more than one customers, each of whom has his/her
individual parameters in their demand curve model, and the customer bids are available as additional
information. The authors propose the NPAC-T/NPAC-S policy that achieves a regret @d(ﬁ ). Gol-
rezaei et al. [2020] also explore the second price auction and derive a regret upper bound of 5d(T 2/3)
compared to a ‘robust benchmark’ where the price maximizes the revenue of the worst link function in
the class. Shah et al. [2019] explore an alternative setting where the market value v, = exp(BTxt +2)
and z; has unknown distribution. By utilizing this specific structure, the authors propose the DEEP-C

algorithm based on multi-arm bandit that has a regret upper bound of (5d(\/T ). The authors also pro-



pose some variants of the algorithm and study them via simulations. Recently, Luo et al. [2021] study
a similar problem to ours, assuming a linear market valuation with unknown noise distribution. They
provide a DIP policy that achieves regret Oy (T%? + ||§ — 0|,7T), where Hé — 0|, is the estimation
accuracy of the parameter 6.

There are some literature studying other dynamic pricing algorithms [Amin et al., 2014, Cohen
et al., 2016, Mao et al., 2018, Leme and Schneider, 2018, Nambiar et al., 2019, Anton and Alexey,
2020, Alexey, 2020, Ban and Keskin, 2020, Li and Zheng, 2020, Javanmard et al., 2020, Chen and
Gallego, 2020, Liu et al., 2021]. For example, Mao et al. [2018] study a non-parametric dynamic
pricing pricing where the market value is modeled as a general non-parametric function f(x;), where
x, are the features. A binary feedback is similarly observed based on the comparison between f(x;)
and the proposed price. The authors apply a variation of midpoint algorithm and achieve a regret upper
bound of O(T%(@+1)) with d being the dimension of x;.

Semi-parametric and non-parametric statistical estimation. Our work is also closely related
to estimation of the single index model, or the generalized linear model with an unknown link. Such
model has been studied in the statistics and econometrics literature for decades, and has wide ap-
plications in fields like econometrics and finance [Powell et al., 1989, Ichimura, 1993, Hardle et al.,
1993, Klein and Spady, 1993, Weisberg and Welsh, 1994, Mallick and Gelfand, 1994, Horowitz and
Hirdle, 1996, Carroll et al., 1997, Xia and Li, 1999, Delecroix et al., 2003, Fan and Li, 2004]. For
a comprehensive summary of these works, please refer to McCulloch [2000], Gyorfi et al. [2002],
Fan and Yao [2003], Ruppert et al. [2003], Tsybakov [2008], Horowitz [2012]. Various methods have
been proposed to estimate the parametric part that achieves root-n consistency under certain conditions
[Powell et al., 1989, Ichimura, 1993, Klein and Spady, 1993]. Carroll et al. [1997] study the general-
ized partial linear single index models, where the authors leverage local linear kernel regression with
quasi-likelihood method to estimate both the parametric and non-parametric parts of the model. Xia
and Li [1999] investigate in the single index coefficient model with strong-mixing features. Estimators
with uniform convergence rate to the ground truth based on kernel regression are proposed.

Given a root-n consistent estimation of the coefficients, standard univariate non-parametric regres-

sion techniques can be used to estimate the non-parametric part of the single index model that achieves



{4 consistency, which is necessary in deriving regret upper bounds. One common estimator is the
Nadaraya-Watson estimator [Nadaraya, 1964, Watson, 1964]. Silverman [1978] and Mack and Silver-
man [1982] establish uniform convergence results for kernel density estimator and Nadaraya-Watson
estimator for regression functions. In addition, Stone [1980, 1982] derive uniform convergence results
for the more general local polynomial regression estimators. Masry [1996] prove similar results when
the covariates satisfy strong-mixing conditions.

In this paper, we’ll provide non-asymptotic error bounds for both coefficient estimation as well as
the plug-in Nadaraya-Watson estimator in a uniform sense. These non-asymptotic bounds are useful

for constructing regret bounds within a finite horizon.

1.2 Our Contributions

Our contributions are the following: First, compared to related works, our policy achieves a low regret
with few assumptions on the market noise distribution and little additional information. Given F' €
C™ where F is the c.d.f. of z, the regret over a time horizon 7 is upper bounded by (’3((Td)%);
If F'is ‘super smooth’, the bound is further reduced to @(m), which is nearly the same regret
order by assuming a parametric distribution for z; as in Javanmard and Nazerzadeh [2019] where the
s-sparsity on (3, is imposed. Table 1 illustrates the settings of our work as well as several related
literatures. Golrezaei et al. [2020] choose a more ‘conservative’ regret by comparing to a benchmark
policy which minimizes revenue with the worst demand function over the whole ambiguity function
class. In contrast, our notation of regret is more standard and ’accurate’ in that our benchmark policy
knows the exact demand function given any product features. Shah et al. [2019] consider a log-linear
relation between the market value and the covariates instead of a linear relation and derive a regret
upper bound of @(ﬁd“/ %). Their algorithm based on multi-arm bandit has sub-optimal dependence
on the dimension d in terms of both regret and complexity, and is quite difficult to implement under
general conditions. Interestingly, the authors conjecture that under the linear settings, there is no
policy that achieves an (7)d(\/T) regret. Our work partly answers their guess by providing a policy
with a @(m) regret when the demand function is sufficiently smooth. Compared to the DIP policy

in Luo et al. [2021] and its regret Oq(T%3 + Hé — 0|,T), we are more clear on how 6 are estimated
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Feature-based |Non-parametric noise Regret

Kleinberg and Leighton [2003] v OWT)
Javanmard and Nazerzadeh [2019] v O(sv/T)
v ~
Shah et al. [2019] v O(NTd"™*)
(log-linear model)
O(dT?3)
Golrezaei et al. [2020] v v
(changed benchmark)
Luo et al. [2021] v v Ou(T?3 + |0 — 60|, T)
\/ ~ 2m+1
Our work v Oo(Td)sm)

(linear model)

Table 1: Comparison with related works.

within the pricing algorithm, and we provide explicit rate on both the estimation error and the regret.
Moreover, compared to several fully non-parametric dynamic pricing literatures, such as Mao et al.
[2018] and Chen and Gallego [2020], our algorithm scales more nicely with dimension d, and can
easily be generalized to a high-dimensional setting. Our algorithm is also easy to implement compared
to some bandit-based algorithms that need dividing the feature space into bins.

Second, we generalize our results to the regime where the product features {x;};>; are weakly
dependent instead of independent, which is more likely in practice. For example, for many products
(such as softwares, electric products, etc.), the features of the products evolve over time and definitely
inherit some past information. In other situations, the products for sale might have some common time-
dependent factors shared by all products in the same industry (such as weather condition, population
composition, etc.). This setting with weakly-dependent features can also be found in literatures such

as Chen et al. [2022], where the authors study an offline pricing problem with parametric models and



dependent covariates.

Last but not least, we establish non-asymptotic results on the ¢, error bound of the nonparametric
kernel density and regression estimation, which are potentially useful in other related study as well.
As mentioned in the related literatures, most results on non-parametric kernel regression estimation
are established under the asymptotic settings. Meanwhile, we believe that non-asymptotic results
are necessary to achieve a finite-sample regret upper bound in the pricing problem. Please refer to

Appendix C.2 for related lemmas.

1.3 Notation

Throughout this work, we use [n] to denote {1,2,--- ,n}. For any vector x € R” and ¢ > 0, we use
x|, to represent the vector £, norm, i.e. |x|, = (31, |z:|9)¥4. In addition, we let V, L(-), VZL(")
be the gradient vector and Hessian matrix of loss function L(-) with respect to x. For any given matrix
X € R4*% we use | - | to denote the spectral norm of X and we write X > 0 or X < 0if X or —X
is semidefinite. For any event A, we let [ 4 be a indicator random variable which is equal to 1 if A is
true and 0 otherwise. In addition, we use C™ with m € N to denote the function class which contains
all functions with m-th order continuous derivatives. For two positive sequences {a, }n>1, {bn}n>1,
we write a, = O(b,) or a, < b, if there exists a positive constant C' such that a,, < C - b,, and we
write a,, = o(b,) if a,,/b, — 0. In addition, we write a,, = Q(b,) or a,, = b, if a,,/b, = ¢ with some
constant ¢ > 0. We use a,, = O(b,) if a,, = O(b,,) and a,, = Q(b,). We use notations Oy(-), (")
and O,4(+) to denote similar meanings as above while treating the variable d as fixed. Moreover, we let

~

O(-),Q(-), ©(-) represent the same meaning with O(-), Q(-) and O(-) except for ignoring log factors.

1.4 Roadmap

The rest of this paper is organized as follows. We describe the problem in §2 and propose a solution
in §3 where some heuristic arguments are offered for bounding the regret. In §4, we provide our
theoretical results on the upper bounds of the regret and in §B, we discuss a lower bound result. Our

algorithm is illustrated in §5 by intensive simulation experiments.



2 Problem Setting

We consider the pricing problem where a seller has a single product for sale at each time period
t=1,2,---,T. Here T is the total number of periods (i.e. length of horizon) and may be unknown to
the seller. The market value of the product at time ¢ is v; and is unknown. We assume that the range of
vy is contained in a closed interval in (0, B). In particular, we assume that v; € [6,, B — ¢, ] for some
constant 6, > 0. At each period #, the seller posts a price p;. If p; < v, a sale occurs, and the seller
collects a revenue of p;; otherwise, no sale occurs and no revenue is obtained. Let y; be the response

variable that indicates whether a sale has occurred at period ¢. Then

+1 if (e Pt
Y = ey
0 if Ve < D¢
The goal of the seller is to design a pricing policy that maximizes the collected revenue.
In this paper, we further model the market value v, as a linear function of the product’s observable
feature covariate x; € R, In particular, define X, = (x/;,1)", where we assume {x;};>1 are i.i.d.

samples from an unknown distribution Py supported on a bounded subset X < R?. Assume that
— 0%
V¢ = 00 Xt + 2ty (2)

where 8y = (B4, )" € R¥"! is an unknown parameter, and {z;};>; is an i.i.d. sequence of idiosyn-
cratic noise drawn from an unknown distribution with zero mean and bounded support (—d,,d,). The
cumulative distribution function of z; is denoted by F'(-). The above model implies that

+1  with probability 1 — F (p, — 0%;) ,

Y = (3)
0  with probability F (p; — 6 %;) .

Remark 1. In fact, each x; here can contain both product information and the buyer information, as

long as this information is revealed to the seller.



Remark 2. The reason that we assume z; has bounded support [—4,, d, ] is to ensure the market valua-
tion v, > 0, which is more reasonable in practice (Otherwise v, has positive probability to be negative,
since z; 1s independent with the covariates x;). The truncated Gaussian distribution falls in such cat-
egory. If the market allows v;, p; to be negative, then we can replace the boundness of z; by any

sub-Gaussian distributions.

In a non-dynamic setting, the model (3) is closely related to the single index model, or generalized
linear (logistic regression) model with unknown link function [Ichimura, 1993, Fan et al., 1995, Carroll
et al., 1997]. In their works, it’s usually assumed that p, = 0 and {(X;)};>1 are independent observa-
tions, and the goal is to estimate 8, and F'. Meanwhile, we work on the dynamic setting where we
need to optimize some revenue function by iteratively deciding p, given previous observations based
on dynamically learned 6, and F'. These two problems are closely related but also decisively different.

We now state our objective in more details. Given observed features x;, the expected revenue at

time ¢ with a posted price p is
revi(p, 0o, F) :=Ep-1(v; = p) = p(1 — F(p — 63 %;)). 4
The optimal posted price p; for a product with attribute x; is given by

p; = argmaxp(l — F(p — 6, %,)), (5)

p=0

which depends on unknown parameters and needs to be learned dynamically from the data. As in
common practice, we evaluate the performance of any policy 7 that governs the rule of posted prices
{p:}1=1 by investigating the regret compared to the ‘oracle pricing policy’ that uses the knowledge
of both 8, and F'(-) and offers p; according to (5) for any given ¢. In other words, we consider the

problem of maximizing revenue as minimizing the following maximum regret

T
Regret, (T) = max E [Z (pf L(vy = pf) — pe(m) L(vy = pt(ﬂ)))] : (6)
IP’XEOQ(X) t=1

where the expectation is taken with respect to the the idiosyncratic noise z; and x;, and p;(7) denotes
the price offered at time ¢ by following policy 7. Here Q(X’) represents the set of probability distribu-
tions supported on a bounded set X'. Our goal is to choose a good strategy 7 such that the above total

regret is small.
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Apparently, learning 6, and F'(-) over time gives the seller much more information to estimate the
market value of a new product given it’s feature covariates. On the other hand, the seller also wants to
always give optimized price so as to maximize the expected revenue by (5). Therefore, it’s necessary to
have a good policy that strikes a balance between exploration (collecting data information for learning
parameters) and exploitation (offering optimal pricing based on learned parameters).

Before proposing our algorithm, we first impose some regularity condition on F' so that the opti-

mization problem (5) is *well-behaved’.

Assumption 1. There exists a positive constant c,, such that ¢'(u) = c, for all u € (—=9,,6,), where

., 1=F(u)
o(u) :=u O

Assumption 1 ensures that ¢(-) is strictly increasing, which implies a unique solution to (5). In

fact, the first order condition of (5) yields
where g(u) = u + ¢~ (—u).

Remark 3. We only put some necessary assumptions on F' in order to guarantee the existence of
the unique optimal price p; in (5), given observed X; and unknown but fixed 6,. Comparing to the
Assumption 2.1 in Javanmard and Nazerzadeh [2019], our Assumption 1 is weaker, since assumption

that 1 — F'(u) is log-concave is a special case of our assumption with ¢, > 1.

3 Algorithm and Basic Regret Analysis

We first propose Algorithm 1 in §3.1 which describes our policy for minimizing the regret given in (6),

and then provide the main idea for the regret analysis achieved by our Algorithm 1 in §3.2.

3.1 A Proposed Algorithm

In the following algorithm, we divide the time horizon into ‘episodes’ with increasing lengths. The

first part of each episode is a short exploration phase where the offered prices are i.i.d. to collect the
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data and model parameters (i.e. 5, ﬁ) are then updated based on the collect data. The second part is
an exploitation phase, where the optimal p; is offered according to the current estimate of parameters

and the new X;. The details are stated in Algorithm 1.

Algorithm 1: Feature-based dynamic pricing with unknown noise distribution

1: Input: Upper bound of market value ({v;};>1): B > 0, minimum episode length: ¢y, degree of
smoothness: m.

2. Initialization: p; = 0, 8, = 0.

3: for eachepisode k = 1,2,...,do

2m+1

4:  Set length of the k-th episode /), = 281¢y; Length of the exploration phase a;, = [({d)im—1].

5s:  Exploration Phase (¢t € I}, := {{;, -+ , () + ar, — 1}):

6: Offer price p; ~ Unif(0, B).
7. Updating Estimates (at the end of the exploration phase with data {(X;, y;)}:c1,):
8: Update estimate of 6, by ék = ék({(it, Yt) ber, )
A~ 1
0). = argmin L;(0) := — Z (By, — 0'%,)? (7)
0 |Ik| tely
9: Update estimates of F', F’ by Fy(u, 0Ak) = Fy(u; ék, {(Xe, Y1, Pt) hrer, )
F,gl)(u, ék) = F,gl)(u, 0y, {(Xt, Y1, pt) }ter, )- The detailed formulas are given by (14) and (16).
10: Update estimate of ¢ by &y, (u) = u — 11;5’“(%) and estimate of g by gx(u) = u + (5,;1(—11).

11:  Exploitation Phase (¢ € I} := {{} + aj, -+, lg11 — 1}):

12: Offer p; as
py = min{max{gi (X 6;),0}, B}. (8)

13: end for

Despite semiparametric model (3) with unknown link, by offering p, ~ Unif(0, B), By, follows
the linear model with regression ?(tT 0, and this leads to the least-squares estimate (7). To see this, it

follows that

- - - - 0%, + = -
]E[Byt | Xt] = BEZtE[yt ’ Xt Zt] = BEZtE[]l(pt < ogxt + Zt) ‘Xt, Zt] = BE% = XtTOO-
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On the other hand, a uniform distribution for p; is actually critical for the above property. Suppose that

p¢ is drawn from a c.d.f. F,(-) and there is a transform f; of v that satisfies
Efi(y:) = EX, 6o = Ev,
for all Py, then according to (3), we have

Ev, = EE[f1(y:) | Xe, 2] = BE[f1(L(pe < X600 + 2)) | Xy, 2]
=EF,(X"0y + ) f1(1) + E(1 — F,(X"0y + 2)) f1(0)
= J1(0) + (f1(1) = f1(0))EF}(vy).

Since the above equation holds for all Px € Q(X), it can only be the case that F), is linear within the

region [0, B], which implies that p; should follow a uniform distribution.

Remark 4. In Algorithm 1, the interval [0, B] can be replaced with any interval that covers the range
of the market value v;. In practice, we can shrink the sampling interval at each exploration phase

according to the feedback information observed in the past.

Remark 5. If z; follows distributions with unbounded support and sub-Gaussian tails, in Algorithm 1,
we only need to replace B by By, = C'y/log |Ix| such that v, falls in (— By, By) with high probability.
We then offer p, ~ Unif(— By, By). Conditional on v, € (— By, By,), Bi(2y; — 1) serves as an unbiased

estimator for SEtT 6. Thus, all the following theoretical results work.

3.2 Main Idea for Regret Analysis

The main idea behind our regret analysis is a balance between exploration and exploitation. This idea
is shown in the following heuristic arguments. For simplicity, we assume for now that there is only
one episode, and that the total length of time (horizon) ¢ is known and d is bounded.

First, denote ¢; as the length of the exploration phase. During this phase, the regret R, at each time
is bounded by a constant due to bounded distribution F'(-) that entails bounded p; in (5). Therefore,
the total regret in this phase is

Ry = O(4). (€))

13



For the second phase, the expected regret can be controlled by the estimation error of both 6 and g

(which is a functional of /' as mentioned in (8)). In fact, let the regret at each time point ¢ be

Ry = pjﬂ(thPf) — Pell(v,=py)-

Then the conditional expectation of regret at time ¢ given previous information and X; is

E[R; | ﬁt,l] = E[pf H(vtzpi‘) — Pel(wizpo) | ﬁt,l]
= pi(1 = F(pf =%/ 60)) — pi(1 — F(pr — X[ 6)))

= rth(pfa007F) _rth(ptvean) (10)

Here H; = o(X1,X2, -+ ,X¢41; 21, ,%). On the other hand, under mild conditions, the above
difference in revenue can further be upper bounded by an order of (p; — p;)? using Taylor expansion.

Therefore, we have

E[Rt’gtfl] < (pr —pf)Z = (ﬁ(ﬁit) - 9(95;%))2
<2(3(07%) — 9(07%,))* +2(9(07%,) — 9(8;%,))? (11)

= Jl + Jz.

In fact, J5 is upper bounded by HGA — 0,3 (given the Lipschitz property of g according to Assumption
1 and suitable conditions over Px). By solving (7), we prove that the squared ¢, error is of order
O(¢;h), which is the order of J,. The term J; is upper bounded by || — g||, and is further bounded
by max{|F — F||%, |F" — F'|%}. Note that by (1), F(-) is the non-parametric function of 1 — Y; given
w; = p; — X/ B, in which p; is the observed price given in the exploration phase. Since 6y is estimated
at a faster rate, we can assume that w; is observable given a proper estimator of 6,. Therefore, the error
rate is dominated by estimating F”(-). Assuming F' has an m-th continuous derivative, we construct g
using the kernel estimator with a m-th order kernel, and prove that max{|F — F||., |[F" — F'|} <
O(El_(m_l)/ (2m+1)) in which a logarithmic order is ignored for simplicity of presentation. Therefore,

the total regret during the exploitation phase can be upper bounded by
Ry < (- gl—Q(m—l)/(2m+1)' (12)

14



Combining (9) and (12), we know that by choosing ¢; of the order of ¢(2"+1/(4m=1) "\e balance
the regret of both exploration and exploitation phase, and the total regret during the episode is given
by

Ry + Ry = O(¢Pm+)/tm=1)y

For a second order kernel, the above regret is of order O(¢°/7). For a relatively large m, the regret

is close to O(£'/2), which is actually proven to be the lower bound for a wider class of problems.

4 Regret Results on Proposed Policy

In this section, we divide our results into three parts. In §4.1, we consider the setting with independent
covariates and finite differentiable noise distributions. In §4.2, we further extend our results in §4.1 to
the setting with correlated features. Finally we extend the aforementioned results to the regime with

infinitely differentiable noise distributions i.e. m = oo in §4.3.

4.1 Result under Independence Settings

The main result of this section is Theorem 1. To obtain this results, we first state some technical con-
ditions and technical lemmas, which demonstrate the accuracy of statistical learning in each episode.
These lemmas provide insights how statistical accuracy influences on the regret of our policy and have
interests of their own rights.

Assume that |6y|| < Re for some constant Rg > 0. We also define Ry := sup,.y |x]2. Before

stating our main results, we first make the following assumptions on X;.

Assumption 2. There exist positive constants cp,;, and cn.y, such that the covariance matrix 3 given

by ¥ = E[X;X/] satisfies cpmin]l < B < Cmaxl, where X, = (x,1)7

As we observe from Ji,Js given in (11), bounding the regret in the exploitation phase needs to
estimate both parameter 6, and function g(-). In the following, we first present an upper bound of
estimating 6 at the end of the exploration phase within each episode in the following Lemma 1. Recall

|I%| is the length of the k-th exploration phase.
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Lemma 1. Under Assumption 2, there exist positive constants cy and ¢, depending only on absolute
constants given in assumptions such that for any episode k, as long as |I;;| = co(d+1), with probability

at least 1 — 2e=1 %l /16— 9 /| T, |,

161 — 652 < (13)

8 max{Ry, 1}(RyRe + B)\/(d + 1) log | 14|
| L '

Cmin

Let Oy := B(0o, Ry), where R is the right hand side of (13). We conclude from Lemma 1 that

with high probability, Ry, is of order at most /d log | Ix|/|Ix|, and we can achieve similar upper bounds
for J, for any episode k.

Next, we proceed to construct the estimator g, in each episode and bound its distance to g. Notice

that g(u) = u + ¢~ *(—u), and ¢(u) = u — 1;,%;‘) Thus, a natural way to construct gj is from an
estimate of F' and F’, as mentioned in our algorithm. Moreover, the uniform error bounds of our
estimators ﬁ’k and I:’k(l) guarantee a uniform error bound of g.

We use the kernel regression method and 6, obtained above to construct F}, and }?’k(l). Recall
that by (3), we have E(y|w:(0y)) = 1 — F (w(6y)) where w;(0) := p; — X[ 6. Recall p; is the
observed price offered in the k-th exploration phase. Thus, given ék, F(-) can be estimated by using

the Nadaraya-Watson kernel regression estimator and F’(-) can be estimated by the derivative of the

estimator. Specifically, we define

~ hk(u, 0)

Fk<u,0) =1- ?k(u,G) =1- fk<u,0)7 (14)
and F.(u) = F(u, §k) where
1 wy(0) —u 1 wy(0) —u
hi(u, @) = K(——)Y, 0) = K(———— 15

for a chosen m-th order kernel K and a suitable bandwidth b;. Now, we estimate the derivative F”(-)

by taking the derivative of the estimator. That is, ﬁ,f:l) (u) = ]3,51) (u, ék) where

W (u, 0) fi(u, ) — hi(u, 0) £ (u, 0)

FV(u,0) = =) (u, 8) = — 0] , (16)
AV (. 0) = —— K'(—22 Yy, Dy, 9) = K (——~—). 17
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Recall we mention in §2 that (—4d,, d,) is the support of noise z;. In addition, we also mentions that
T denotes the length of time horizon which is unknown. In the following, we will state other necessary

assumptions to derive the regret upper bound:
Assumption 3. The density of w,(0) (denoted as fg) satisfies the following:

o (Smoothness) There exists an integer m > 2 and a constant ly such that for all € Oy =
{010 — 6> < CgT_4<24Tnt11>d%\/logT +2logd}, fo(u) € C™), and f(gm) is ly-Lipschitz
onl :=[-9,,0,].

e (Boundedness) There exists a constant f > 0 such that Vu € R and 6 € Oy, max{|fo(u)|, |f5(u)|} <

f. In addition, there exists a universal constant ¢ > 0 such that fo(u) = cforallu e I, 0 € Oy,

Remark 6. We provide some examples for Assumption 3. For any covariate x € RY, as long as there
exists an entry of it that follows a continuous distribution in C, m > 1, such as Beta-distribution
or truncated Gaussian distribution, we can ensure the density of w(60) = p; — X, 0 satisfies both the

smoothness and boundedness conditions in Assumption 3.
Assumption 4. rg(u) := Ely, | w,(0) = u] satisfies the following:

e (Smoothness) hg(u) = fo(u)re(u) € C™; hfgm) is lg-Lipschitz on I for all @ € ©,. Here m and

l¢ are defined in Assumption 3.

o (Lipschitz) There exists a constant l,. such that rg, = 1 — F' is l,.-Lipschitz, and for any € > 0,

SUD|g—60 2 <e,uel rp(u) — Téo(u)| < e
Assumption 5. The kernel K satisfies the following:

o (Order-mkernel){ K (s)ds = 1, { s/ K (s)ds = 0forj € {1,--- ,m—1}, and that  |s" K (s)|ds <

+00. Here m is the same as in Assumption 3.

e (Lipschitz) Both K (s) and K'(s) are lx-Lipschitz continuous with bounded support.
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The Assumptions 3-5 are quite standard assumptions in non-parametric statistics; see Fan and Gij-
bels [1996], Tsybakov [2008] for more details. Given these assumptions, we will prove that with high
probability, the estimators ﬁk(u, 0) and ﬁél)(u, 0) are sufficiently close to F'(u) and F’(u) respec-
tively given any 0 € O, for every sufficiently large k. Specifically, we obtain the desired error bound

for Fy(u) = Fy(u, 8;) and F (w) = FV(u, 0).

Remark 7. Assumptions 3 and 4 can be relaxed in terms of the smoothness requirements: For all
m = 3, we only need fo(u), hg(u) € C™D, and that ™" (u), h§" " (u) are (-Lipschitz for some
constant . For m = 2, we only need fo(u), hg(u) € C), and that the second order derivatives
of fo(u), hg(u) exist and are bounded. One is able to see assuming functions in C™ is a sufficient
condition for the aforementioned conditions to hold, for the simplicity of our notations here, we keep

the original assumptions.

Remark 8. If we only assume F(+) is ¢-Lipschitz continuous (i.e. it may not be differentiable), we

also provide an alternative algorithm in §H which achieves a regret upper bound (5(T 3/4).

Remark 9. One is also able to estimate F'(u), F’(u) with the local polynomial estimator (see e.g.
Fan and Gijbels [1996]). In this case, the assumptions can be weaken further. Specifically, the local
polynomial estimators for /' and F” enjoy all the theoretical guarantees given only the second part of
Assumptions 3 and 5 instead of both Assumptions 3 and 5. For example, Lipschitz continuous density
functions on [—0,, ¢, ] satisfy Assumption 4.2. The proof is very similar. For simplicity, we only focus

on studying kernel regression in this paper.

Lemma 2. Under Assumptions 3, 4 and 5, there exist constants B, ., Bg’m i and C, i (depending only
the absolute constants within the assumptions) such that as long as

4m—1 _2m—1

T > B, k(logT +2logd) m d =,

we have for any k = |(log(\/T + o) —log £y)/log 2| +2 and § € [4 eXp(—B;’K\IkPEn%/log 11k), 31,
with probability at least 1 — 20,

~ _m__ 1
sup | Fy(u, 0) — F(u)| < Co x| Ix| 7 /log [ Ix|(Vd + 4 [log 5): (18)

uel 00y
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Here I = [—0,,0,] and we choose the bandwidth by, = ]Ik|_2mlﬁ.

Lemma 3. Under the same conditions as Lemma 2, with probability at least 1 — 46, we have
AN ~ m— 1
sup | (u,0) — F'(w)] < Coc Tie| %1 1/log [1ic|(Vd + 4 [log 5). (19)
uel 00y

We next develop a uniform upper bound for term J; given in (11) for the k-th episode in Lemma 4

below.

Lemma 4. Reinstating the notations and conditions in Lemma 2, with probability at least 1 — 60, we

have

~ = _m—1 1
sup  [gi(u) — g(u)| < Coxc|Ix| 2m+1x/logllz<l(\/3+x/log5)-

u€ldz,B—6z]

Remark 10. In Algorithm 1 we define gx(u) = u + %gl(—u) with u € [0,, B — §,]. Thus, computing
gr(u) involves obtaining the inverse of ggk which is not necessarily monotonic. Nevertheless, it’s not
difficult to define or compute ngS,gl. In fact, we’ll show in the proof of Lemma 4 that qubk is very ‘close’
to ¢ in some main interval of interest, which contains [¢~!(5, — B), ¢~ !(—4.)] and depends only on
F'. (Recall in Assumption 1 that ¢’ is bounded below from 0, so ¢ is strictly increasing). Thus, for any

u € [0,, B — 0], the above fact will guarantee the existence of gz@,;l (—u) as some = within the interval

such that (Ek(a:) = —u.

Combining the above lemmas, which give us upper bounds for terms J, J, in every episode, we

have the following Theorem 1, which provides an upper bound for the regret.

Theorem 1. Under Assumptions 1, 3, 4 and 5, there exist constants B, y, B;z x and C3 1 (depending

only on the absolute constants within the assumptions) such that for all T satisfying

4m—1 _2m+41 2m+1

T = max{B, k(logT + 2logd) m=1 dm=1  4d =1 },

the regret of Algorithm I over time T" is no more than C; j; (Td)m% logT(1 + logT/d).

Remark 11. We note that Golrezaei et al. [2020] shares a similar framework with ours, although

with a different regret measure. Specifically, we use a more traditional notion of regret by setting the
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benchmark p; from (5) with true 6y and F'(-). In Golrezaei et al. [2020], the authors instead set the

benchmark p} so as to maximize the worst function in their function class F, i.e.

pi = argmaxmin p(1 — F(p — 0]%;)).

>0 FeF
Their optimal regret is of order Oy(T?3), while ours is O,(T'w-1), which is closer to Og(T"2) when
m is sufficiently large. Intuitively, a benchmark being the price maximizing the worst function is too
conservative when their ambiguity function class is very large and the market noises are only sampled
from a fixed distribution function in that function class, which is true in our semi-parametric setting.
On the other hand, Golrezaei et al. [2019] also work on similar but simpler settings, where they
assume having unknown demanding curves but observable valuations instead of censored responses.
By contrast, we work on a more common setting where the actual market values of products are

unknown.

Remark 12. Both Algorithm 1 and Theorem 1 depend on the smoothness class of the function F'(-). A
popular choice in nonparametric curve estimation literature is m = 2, as other choices do not improve
much for practical sample sizes. Nevertheless, we provide two ways to choose m that addresses a

referee’s query.

o Estimate m using cross-validation. Specifically, we pick some relatively small m during the
first episode. At each episode k£ > 2, before entering the exploration phase, we update the
estimate of m using cross-validation [Hall and Racine, 2015] with the data gathered from the
previous exploration phase. Then, we proceed with the main algorithm with this updated esti-
mate until the next episode. For more details of the cross-validation procedure and the combined

algorithm, see Section I.

e Pick a constant pessimistic estimation of m. In fact, we can directly fix a relatively small m
(e.g. m = 2or m = 4). In many cases, the performance of the algorithm (O((7'd)*") and

O((Td)*/*)) will not be significantly different from where m is known (at least Q((T'd)"/2)).

The above two ways can be applied to all settings in this paper as long as [ is only required to be

smooth to a finite degree.
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4.2 Results under the setting with strong-mixing features

As mentioned in the introduction, we believe that in many situations, the dependence of features over
time is inevitable. Thus, in this section, we generalize our results to the case where x; can be depen-
dent. For this purpose, we first impose the strong-mixing condition which measure the dependence

between covariates over time.

Definition 1. /3-mixing] For a sequence of random vectors x; € R¥! on a probability space (Q, X, P),

define [3-mixing coefficient

ﬂk - Slu%))ﬂ( (Xt7 < l),O’(Xt,t = l + k))
>
in which

B(A,B) = -sup{ZZupAmB - P(A;)P(B;)}.

el jed

the maximum being taken over all finite partitions (A;)icr and (B;)icy of 2 with elements in A and B.

The following assumption ensures that {x;},~1 are not too strongly dependent. Combining with
other assumptions, we ensure that the empirical covariance matrix = Z -1 XZXT concentrate around

the population version, which is necessary in deriving the regret in every episode.

Assumption 6. The sequence x;,t = 0 are strictly stationary time series and follow [3-mixing condi-

tion, in a sense we assume that [3;, < e=* holds with some constant c.

In order to derive the final regret upper bound under the stong-mixing setting, we also need an

additional technical assumption stated below:

Assumption 7. Let rg(u;, u;) := Ely;y; | w;(0) = wj, w;(0) = w;], j > 1 =0, re(u;) := Ely; | w;(0) =
u;], 7 = 0 be the joint regression function and marginal regression function. In addition, we also set
fo(ui,uj), 5 > i =0, fo(u;),i = 0 as the joint density of w;(0) and w;(0) and marginal density

of w;(0) respectively. Then we define gy o(u;, u;) 1= 7o(u;, u;) fo(ui, uj) — ro(w;) fo(ui)re(u;) fo(u;)
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and g2.0(u;, uj) = fo(u;, u;)— fo(w;) fo(u;). We assume gy o(u;, u;) and go,9(u;, u;) follow l-Lipschitz

continuous condition, in a sense that

G0 (i 13) = Ggo(ul, )| < /(s — w)? + (u; — )2, q € {1,2}
holds for all (u;,u;), with i, j € [n] and 0 € ©,.

When the covariates x;, x; are independent, we have g, ¢(u;, u;) = 0,q € {1,2}, for all (u;, u;).
Under such a mild assumption, we obtain a uniform upper bound of |g, ¢ (u;, u;)|, which is dominated
by the S-mixing constant ﬁjli ?;, for all 6 € ©g and (u;, u;) (see Appendix F.7). Thus, this assumption
essentially guarantees that the joint regression and density functions of the features still stay close to
the products of their marginal ones even if they are correlated.

Following similar analysis with §4.1, we reach the following theorem which gives a regret upper

bound at similar rate with Theorem 1 under the strong-mixing feature setting.

Theorem 2. Let Assumptions 1, 3, 4, 5, 6 and 7 hold. Then there exist constants By, . and C},, 1

(depending only on the absolute constants within the assumptions) such that for all T satisfying

T > max{B* . (logT + 2logd) =1 [(d + 1)log(d + 1)] =1 /d? d-1 }

mx, K

the regret of Algorithm I over time T' is no more than Cy, x(Td) o log" T

4.3 Result on infinitely differentiable market noise distribution

In §4.1 and §4.2, we analyze the regret upper bounds when the noise distribution /" has an m-th order

~ 2m+1
continuous derivative, with any finite m > 2. The regret of our algorithm is of order O((7d) it ),

which gets closer to @(m) as the degree of smoothness m goes to infinity. In fact, this is mainly
due to inaccurate estimation of /" and F” resulting from the bias of the kernel estimator. In this section,
we deal with super smooth noise distributions [Fan, 1991], where F' is infinitely differentiable. Under
mild conditions, we’re able to control the bias within O(1/|1;|2) for each episode k by using extremely
smooth kernels. As a reminder, here || is the length of the k-th exploration phase. This leads to a

6d(\/T ) regret bound in our algorithm. In particular, we assume the following:
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Assumption 8. Define ¢g, &, qbél) and fél) as the Fourier transform of the function fq, he, fy and hy
respectively:
0

de(s) = JOO fo(x)e™dx, &o(s) :f he(x)e™*du,

—00

¢él)(8) = f_oo fé(:v)eiswd:c’ fél)(s) = foo h;(x)eisxdx7

—00

and hg(x) = fo(x)rg(x). There exist positive constant D4 and d, and o > 0 such that

max{|@a(s)], 6o (5)], |65 ()], 165" ()]} < Dge %l
forall s € R.

Remark 13. -This assumption is quite standard, and ensures that fg(u), Fg(u) € C*. The class of
functions are still infinite dimensional nonparametric functions. The class of supersmooth functions
has been used in non-parametric density literature. In particular, it has been used in Fan [1991] for

characterizing the difficulty of non-parametric deconvolution.

Under the Assumption of 8, for each episode k, we can successfully control the bias within
O(1/+/|Ix|) via an infinite order kernel [McMurry and Politis, 2004, Berg and Politis, 2009]. In
order to construct an infinite order kernel K, we simply let K be the Fourier inverse transform of some

‘well-behaved’ function. In particular, let
1 (* ,
K(z) = —J k(s)e "ds, (20)
be the Fourier inversion of x satisfying

1, 5] < ¢
r(s) =

(EDE otherwise.

Here g, is any continuous, square-integrable function that is bounded in absolute value by 1 and
satisfies g (|cx|) = 1. This defines an infinity order kernel function [Fan and Gijbels, 1996].
By plugging the infinite order kernel K into our algorithm, we’re able to obtain the following

lemma:
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Lemma 5. Under Assumption 8, there exists a positive constant Ciys depending only on o, Dy and
dy such that for all kernel K satisfying (20), for each episode k, by choosing the bandwidth b, =
c(dg/log | Ix|) Y in (15) and (17), we have

sup  [ELfe(,0)] — fo(w)] < <2 sup [Elhu(u, 0)] — ho(u)] < 2

uel,0e0y ]k 7 uel 0Oy ]k 7
vary

/ C’in / Cin
sup [E[fV(u,0)] — fo(w) < =2 sup B[R (u, 0)] — hy(u)] < —

uel,0e0y \/|I}€|7 uel 00y, \/|Ik|'

Following similar proof procedures of Theorems 1 and 2, Lemma 5 leads to the following theorem,

which gives a regret upper bound of 5d(\/f), achieving the same convergence rate with the parametric

case up to logarithmic terms [Javanmard and Nazerzadeh, 2019].

Theorem 3. Let Assumptions 1, 3, 4, 5, 6, 7 and 8 hold. Then there exist constants B; and C;

(depending only on the absolute constants within the assumptions) such that by choosing |I;;| = [/1;.d]
instead in Algorithm 1, for all T satisfying

T = Bfd*(log T + 2log d)"*™%/*log*(d + 1),

inf

the regret of the algorithm over time T is no more than C.(Td)z (log T)2* 2 [log(d + 1) + log T'/d].

inf
Remark 14. Theorem 3 partly overturns the conjecture in Shah et al. [2019] that there is no policy
can achieve an @d(\/T ) regret under the setting where the market value is linear in the features as in
(2). We provide a regime with super smooth market noise in which (5d(\/T) regret upper bound is

attainable by our policy.

Remark 15. In §B, we provide discussions on minimax lower bound, adversarial agents, inference for

the demand, practical implementation, and extensions to the high dimensional setting.

5 Simulations

5.1 Justification of theoretical results

In this section, we illustrate the performance of our policy through large-scale simulations under var-

ious settings. Recall our model (2), where x; € R? and 2, follows distributions with bounded support
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and smooth c.d.f. Throughout this section, we let the dimension d = 3 and the coefficients oy = 3,
Bo = m - 1341. For each value of smoothness degree m € {2,4,6}, we fix a density function
from C~ for all z (thus the c.d.f. F belongs to C™). Specifically, we set the p.d.f. of z as
fm (@) o (1/4 — 22)™2 - Tjjz1<1/2) for m € {2, 4,6}. Moreover, for each m, the covariates x; € R® are

generated from a p.d.f. in C in the following ways:

e i.i.d. x; with independent entries: Each coordinate of x; is generated from density f,,(x) o
_ e2\ym4+1 |
(2/3 = 2™ Ly Jajay:

e i.i.d. x; with dependent entries: x; is generated from the density function f,,(x) o (1 —
x $71x)™*+! Here X is a positive definite matrix with (7, j)-th entry being equal to 0.2/"77!, 1 <

i,j <3.

e Strong mixing x; with dependent entries: We generate x; from the VAR (vector autoregres-
sion) model, where x; = Ax; | +Bx, 5 +&;. Here A, B € R¥>3 with A, ; = 0.4+ B, ; =
0.11=9+1 5 5 € {1,2,3}. In addition, {&;},>; are i.i.d. with density f,,(£€) o (1 — £ 271g)m+!

where the 3 is the same as the one given in (ii).

When implementing our algorithm, we divide the time horizon into consecutive episodes by setting
the length of the k-th episode as f;, = 2F"'¢, with k € N* and ¢, = 200. We further separate

2m+1)/(4m—1

every episode into an exploration phase with length |I;;| = min{(d/;)¢ ), 4;} depending on
the values of m and d. The exploitation phase contains the rest of the time in that episode. In the
exploration phase, we sample p; from Unif(0, B = 6), since B = 6 is a valid upper bound of v;. In the
exploitation phase, we set the kernels as follows: For any given m € {2, 4,6} prefixed at the beginning
of the algorithm, we choose the kernel function with m-th order. Here we choose the second, fourth,
sixth-order kernel functions as Ky (u) = 35/12(1 — u?)? - Iy <1y, Ka(u) = 27/16(1 — 11/3u?) - Ko (u)
and Kg(u) = 297/128(1—26/3u?+13u?)- Ky (u) respectively. In episode k, we set the bandwidth by, as
3+ | 1| ~onl in (14) and (16) according to the settings in the theoretical analysis. In reality, one can also

tune the bandwidth by using cross validation at the end of every exploration phase. Moreover, when

calculating p, = §(X] ;) = X/ 6 + ¢, (—X] 0),), we find ¢ ' (—%] ;) as follows: First, we look for
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(a) (b) ()
Figure 1: Regret log-log plot in the setting with i.i.d. covariates with independent entries. The
three subplots show the case m € [2,4,6] respectively. The x-axis is log(7") — log(1500) for
T e [1500, 2000, 3100, 4000, 5000, 6300], while the y-axis is ©8g(T) := log(reg(T)) — 2loglog T —
(log(reg(1500)) — 2loglog 1500). The solid blue, green and red lines represent the mean reg(7") of the
Algorithm 1 with unknown ¢(-) and 6y, unknown g(-) but known 6y, and known ¢(-) but unknown 6,
respectively over 30 independent runs. The light color areas around those solid lines depict the stan-
dard error of our estimation of log(reg(7")) — 2 log log T'. The dashed black lines in (a) — (c) represents

the benchmark whose slopes are equal to 221 with m € {2, 4, 6}.

x € [—1,1] such that ggk(x) = —x/ 6, (The interval [—1, 1] contains the true support of ¢(x) [-0.5,
0.5], since in reality, we might only know a range of the true support). Then, we do a transformation
of variable z to (y) = —2 - exp(y)/(1 + exp(y)) + 1 and solve y as the root of ¢y, (z(y)) + %] 6), = 0
by using Newton’s method starting at y = 0. Finally, we set x = —2 - exp(y)/(1 + exp(y)) + 1 as
gg,;l (—x; ék) and offer p; according to the algorithm.

For any given m € {2,4, 6}, under the three covariate settings discussed above, we input m into
the algorithm, select the corresponding kernel and repeat Algorithm 1 for 30 times until 7" = 6300.
For each T' € [1500, 2000, 3100, 4000, 5000, 6300], we record the cumulative regret reg(7"). For the
first two covariate settings, recall from Theorem 1 that the regret reg(7) < T = log? T. Thus, we
plot reg(T') against log(T") — log(1500) in Figure 1, 7, 8, where reg(7") := log(reg(T)) — 2loglog T —
(log(reg(1500)) — 2log log 1500);

From Figures 1, 7, 8, we conclude that under all settings, the rates of the empirical regrets’ in-
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crements produced by Algorithm 1 (as shown by the solid blue lines) do not exceed their theoretical
counterparts given in Theorems 1 and 2 (as shown by the dashed black lines). In many cases, the
growth rates of the empirical regrets are very close to those of the theoretical lines. This demonstrates
the tightness of our theoretical results. Moreover, as all the solid lines have similar growth rates, we
show that Algorithm 1 is robust to the estimation of 8, and g(-). This is further proved in Appendix G,
where we directly plot reg(7") for all the settings discussed here. See Appendix G for more plots and

discussions.

5.2 Comparison with other methods

In this subsection, we provide numerical studies which illustrate differences between our methods
and two highly related prior arts (‘RMLP-2’ and ‘Bandit’) using both synthetic and real data. Here,
‘RMLP-2’ is the policy proposed in Javanmard and Nazerzadeh [2019] that solves the same problem
as ours except that the noise distribution falls in a parametric function class. In addition, we denote the
policy proposed in Kleinberg and Leighton [2003] as *Bandit’, which leverages a variant of UCB algo-
rithm under non-parametric noise distribution that achieves O (/7)) regret without modeling covariate
information.

We first use synthetic data to illustrate the efficiency of our method over ‘RMLP-2’ and ‘Bandit’.
For each smoothness degree m = {2, 4,6}, we generate our data following the same way given in §5.1,
except that we only generate the distribution of x; according to the first option discussed in §5.1. We
illustrate the performance of our method against those two prior arts in the following figures. Here we
follow Algorithm 4 which uses a data-driven way to determine m before every episode. For RMLP-2,
since there is no way the algorithm knows the true noise distribution, we instead assume the noise falls
into a Gaussian distribution when executing the algorithm.

We see from the simulation results that the regret we achieved is much smaller than those two
benchmarks. As for the comparison with RMLP-2, our method is robust to the mis-specification of the
parametric function class since our algorithm can adapt to all functions in the non-parametric class.
For the comparison with *Bandit’, we see that only using the non-parametric bandit algorithm without

considering the contextual information (heterogeneity of product) will lose much efficiency in gaining
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Figure 2: Regret Comparison between our methods and two benchmarks (RMLP-2 and Bandit). From
the left to the right, the true underlying degree of smoothness is m = {2,4, 6} respectively. The x-
axis denotes the time stamp 7' ranges from 1 ~ 12000, and the y-axis denotes the regret at the time
T defined in (6). We repeat the experiment 30 times and record the averaged regrets (solid lines)
and standard errors (light areas) of every policy. The blue line denotes the regret of our policy (in
Algorithm 1) with knowing degree of smoothness m and the orange line represents the regret of our
policy (given in Algorithm 4) without knowing degree of smoothness m. The green and red lines are

the regrets of implementing 'RMLP-2’ and ’Bandit’ policy respectvely.

revenue.

5.2.1 Real Application

Next, we leverage a simulation based on the real data to further illustrate the merits of our Algorithm
over '/RMLP-2’ and ’Bandit’.

We use the real-life auto loan dataset provided by the Center for Pricing and Revenue Management
at Columbia University. This dataset is used by several related works [Phillips et al., 2015, Ban and
Keskin, 2020, Luo et al., 2021, Wang et al., 2020a] and many others. The dataset contains 208, 085
auto loan applications received from July 2002 to November 2004. Some features such as the amount
of loan, the borrower’s information is contained in that dataset. We adopt the feature selection in

the same way with Ban and Keskin [2020], Luo et al. [2021], Wang et al. [2020a] and consider the
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Figure 3: Comparison between our policy and ‘RMLP-2’ and ‘Bandit’ based on real data application.

following four features: the loan amount approved, FICO score, prime rate and competitor’s rate. As
for the price variable, we also computed it in the same way with the aforementioned literature, where
p: = Monthly Payment - >1°7"(1 + Rate) ™" — Loan Amount. The rate is set as 0.12%, which is an
approximate average of the monthly London interbank rate for the studied time period. Moreover, this
dataset also records purchasing decision of the borrowers given the price set by the lender. For more
details on this dataset, please refer to Phillips et al. [2015], Ban and Keskin [2020].

Note that one is not able to obtain online responses to any algorithms, thus, we follow the calibra-
tion idea proposed in Ban and Keskin [2020], Luo et al. [2021], Wang et al. [2020b] to first estimate the
binary choice model and leverage it as the ground truth to conduct online numerical experiments. To
be more specific, we first scale all variables into the scale of [0, 1] (since the prediction results of sin-
gle index model won’t be affected by scale of the covariates). We randomly sample 5000 data points,
estimate 0, and [’ using semi-parametric estimation tools from these data. We next treat them as the
underlying true parameters for our binary choice model stated in (3). Given these key components, the
remaining experiments remain almost the same as discussed in §5.1 and §5.2, except that here we set
6y, distribution F'(-) as the estimated one given above and sample x; from those four features above.
We set By = 4, ¢y = 200 and conduct Algorithm 4 (in this algorithm, we use cross-validation to select
m at the beginning of every episode, details are given in Algorithm 5).

We next compare Algorithm 4 with ‘RMLP-2" and ‘Bandit’ policies. The details are given in

Figure 3. To summarize, our policy outperforms the RMLP-2 [Javanmard and Nazerzadeh, 2019] and
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non-parametric bandit policy [Kleinberg and Leighton, 2003] in terms of both the regret performance

and the ability to adapt to different noise distributions.

6 Conclusion

In this paper, we study the contextual dynamic pricing problem where the market value is linear in
features, and the market noise has unknown distribution. We propose a policy that combines semi-
parametric statistical estimation and online decision making. Our policy achieves near optimal regret,
and is close to the regret lower bound where the market noise distribution belongs to a parametric
class. We further generalize these results to the case when the product features satisfy the strong
mixing condition. The practical performance of the algorithm is proved by extensive simulations.
There are several directions worth exploring in the future. First, we conjecture that the estimation
accuracy of the market noise distribution F' is crucial in the regret. Thus, within the function class
F e C™), we conjecture that a tighter regret lower bound Qd(Tinm%) can be achieved instead of
Qd(ﬁ), namely, our procedure is optimal. Second, in this work, we consider a linear model for the
market value. In case a more complex model is appropriate, it’s possible to extend our methodology
to where the market value is nonlinear in product features, e.g. v; = QS(GOT x;) + z or other structured
statistical machine learning model such as the additive model v, = fi(241) +- - -+ fa(24a) + 2;. Finally,
it’s worth studying similar pricing problems with adversarial or strategic buyers, which is potentially

more suitable in some specific applications.
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Figure 7: Regret log-log plot in the setting with i.i.d. covariates with dependent entries. The remaining
caption is the same as Figure 1.
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Figure 8: Regret log-log plot in the setting with strong mixing covariates. The remaining caption is
the same as Figure 1.

B Discussion

1. [Minimax Lower Bound] Our work shares a similar setting with Broder and Rusmevichien-
tong [2012], in which they study a general choice model with parametric structure and binary



response, but without any covariates. A lower bound of order Q(+/T) is established by con-
structing an ‘uninformative price’ in their work. To be more precise, an uninformative price is
a price that all demand curves (probability of successful sales) as offered price indexed by un-
known parameters intersect. Namely, the demands at this uninformative price are the same for
all unknown parameters. In addition, such price is also the optimal price with some parameters.
In this case, the price is uninformative because it doesn’t reveal any information on the true pa-
rameter. Intuitively, if one tries to learn model parameters, the only way is to offer prices that
are sufficiently far from the uninformative price (optimal price) which leads to a larger regret.

Borrowing the idea from Broder and Rusmevichientong [2012] and Javanmard and Nazerzadeh
[2019], we deduce that there exists an ‘uninformative price’ in the following class of models:
Consider a class of distributions F which satisfies Assumption 1:

F:={F,:0>0,F, = F(z/o)}.

Here, [ is the c.d.f. of a known distribution with mean zero. Moreover, we assume the support
of F! is contained in [—a,a] (For instance, the class of distributions with density f,(x ) =

1/(36%) (0 — 2)*(0 + 2)*  Tajeop k = 1or fo(x) = Cpexp (
etc.)
Let 5 = 1/0 and multiply 5 on both sides of (2), which leads to

757) Ljaizoy With 0 <

B(x,) = Blx + do + 3.

Here, v, = th,ﬁo = BBy, g = Pag and z; = [z;. The distribution of Z; is F;, which
is denoted as F' here for convenience. Next, in our sub-parameter class, we first let 3, = 0
and fix a number ¢ with F’(£) # 0. Then we choose a collection of {(c, ap)} which satisfies
B =1/c = (£ + &p). Following the same arguments as in Javanmard and Nazerzadeh [2019],
one can prove that p = 1 is indeed an uninformative price. Since in the sub-parametric class
given above, all demand curves intersect at a point 1 — F'({) when p = 1, and for a special

(o,000) = (1/(€ — ¢(€)), —(€) /(&€ — ¢(€)), p = 1 is the optimal price. Thus the Q(+/T) lower
bound applies.

Remark 1. When we only consider explore-then-commit algorithms and offer price as p; =

&5,; (— XI@) + X, 9 with gbk( ) =u— = Fk((I;) the optimality of p, reduces to the optimality of
estimating F'(-), f(-) and 6. According to Stone [1980, 1982], Tsybakov [2008], the statistical
rates of our estimators on F F® and  are minimax optimal in every episode. Thus, our posted
price is optimal constrained on this type of policies. However, if we consider a general policy
class, there is currently no lower bound for feature-based pricing given unknown noise distri-
bution with finite smoothness degree besides the general v/T" lower bound mentioned above. It

remains an open problem whether our upper bound is tight for finite m.



2.

[The adversarial setting] We note that in some real applications with potentially adversarial
contexts, the covariance of the feature vectors might be singular or ill-conditioned (e.g. due
to repeated buyers recorded in x;). However, our algorithm can be adjusted to cope with such
situations. The key observation here is that this assumption is only required in our exploration
phase: For any &, we allow arbitrary x; in the k-th exploitation phase, since we have already
obtained accurate estimators 6, and g (+) for 6y and g(-). Therefore, whenever there is a sign of
a repeated buyer, we can modify our algorithm slightly by using the g;_;(+) in the last episode to
offer a price, and then move this buyer to the corresponding exploitation phase. If the number of
similar buyers in the k-th episode is ¢}, with any » < 1 and we assume the remaining buyers are
sampled i.i.d. from a distribution, we are still able to proceed by only arranging some contexts
with similar buyers into the exploitation phase directly. This matches with some real situation
in online shopping where personal preference features will be recorded by the seller in order to
make recommendation in the future.

[Online inference of the demand] Recently, Wang et al. [2020] use a de-biased approach to
quantify the uncertainty of the demand function in a parametric class which offers new insight
to the field of statistical decision making.

In our work, we combine the non-parametric statistical estimation and online decision making
to derive a policy that maximize the seller’s revenue. We next also briefly discuss our intuition
on depicting the uncertainty of the demand curve in a non-parametric class. Recall the demand
curve given in (4). For given p, x, and estimators F}, 8y, in the k-th exploitation phase, deriving
asymptotic behavior of the demand curve reduces to deriving the asymptotic behavior of our
estimator on F,(-). This is due to the statistical rate of F}(-) dominates that of 6,. According
to asymptotic behavior of the kernel regression [Fan and Gijbels, 1996, Carroll et al., 1997, Fan
et al., 1998], we have the following pointwise confidence interval for F' :

VIlbs(Fu(w) = Fu) = W Bw) — N (0. [ K3 (@)dao* )/ (w).

where f(-) is the density of p; — x, 0y with p; ~ Unif(0, B) and we recall that | [, is the length
of our k-th exploration phase. In addition, x,, = §K(z)2™dx, B(u) = F™(u)f(u)/m! +
FO=D () fD (u)/(m—1)4- - -+ FO () f= () /(m—1)!, and 6%(u) = Var(y, | p,—x, 0y =
u). Thus, for any given p, x, and an ék, we are able to derive the pointwise asymptotic behavior
of our demand curve as follows:

N L[ (pF (p — xTék) —pF(p—x"6y) — ph"kB(p — x"6y))
. N(O,p2 JK?(s)dSJQ(p X700/ f(p xTeo)).
The data-driven confidence interval for our demand curve given in (4) can be established via

bootstrap and the undersmoothing technique (to remove the bias), see e.g. Hall [1992], Horowitz
[2001] for more details. Similarly, uniform statistical inference results can also be established

3



by using similar non-parametric tools, see e.g. Eubank and Speckman [1993], Neumann and
Polzehl [1998], Hall and Horowitz [2013] for more details. We will leave the detailed proof for
future work.

4. In some situations, it might be difficult for retailers to adopt a uniform pricing strategy even
during a short period of time. An alternative strategy might be the following: As in Algorithm
1, we divide the time horizon into episodes according to the doubling strategy. However, now
we no longer divide an episode into explore-then-exploitation phases. Instead, at the beginning
of each episode k& > 1, we leverage all the data {p;, x;, y;} collected from the prev1ous episode
to estimate 6, and F. Then, we compute g, from the estimates Fk and , and perform
exploitation directly throughout this episode. This procedure can help us to get rid of uniform
exploration in practice. We leave the theoretical guarantees for this refined algorithm as our
future work.

B.1 Extension: High-dimensional Feature-based Dynamic Pricing

Algorithm 1 can be naturally extended to the high-dimensional setting, where 8, € R?, d can be large
compared to T, while |0 o < s for a relatively small sparsity s. This happens in applications when a
large amount of covariate information is available, and the actual market value only depends on some
essential factors. One way of extension is the following: at each episode, we can replace estimation of
Hk in (7) with the two steps below.

Step 1. Let

6, = argmin L, (0) + \p(6), (1)
0

where

for some penalty function p(-). As in Zhao and Yu [2006], Fan and Li [2001], Zhang [2010], by
choosing different p(-) such as in the ¢;, SCAD or MCP penalty, under suitable conditions such as
irrepresentable condition, variable selection consistency is achieved with high probability.

Step 2. Let S, = supp(Bk) we then refit the least squares (7) on Sj:

0, = argmin L(0). (2)
supp(68)< S,

Then the conclusions of Lemma 2 hold with high probability.
After Step 2, we continue the remaining steps of Algorithm 1 in the episode. In fact, if we can
learn the support of 6y, we essentially translate the problem into a low dimensional one, and we can

4m+

prove that Algorithm 1 achieves a regret upper bound of O((T's)2-1) if F' € C™ (or O((T's)/?) if F
is super smooth).




C Proof under the time-independent feature setting

C.1 Proof of Lemma 1

First, recall that Ry := sup,.y |x/|2, we deduce that x; is also subgaussian with norm upper bounded
by ¢, = Ry. This fact is useful in later proofs as well. Now according to (7), for the k-th episode, our
loss function L () is defined as
1 ~
Li(8) = — > (By — 0'%,)”. 3)

‘Ik| tely

For notational convenience, denote n = |I;|. Then the gradient and Hessian of L, (€) is given by

1

VoLi(0) = ~ >, 2(0"% — By)%y, (4)
tEIk
1O oon
ViLL(0) = - D2/ (5)
tely

Let ), be the global minimizer of L;(6). We do a Taylor expansion of Lk(ék) at 6y:
Li(Be) — Li(8y) — (VL (65), 6 — 60 + %@ 00, V2Lu(6) (B — 6,)). ©)
Here 6 is a point lying between ék and 6. As BAk is the global minimizer of loss (3), we have
(VLi(60), 6 — 05 + %@ 00, V2Lu(6)(By — 60)) < 0
which implies

~ 1 PN ~ ~
<0k — 00, ﬁ xtxtT(Hk — 90)> < <VLk(90>, 00 - 0k> < \/gHVLk(e())HOO . Heo - HkHQ (7)

tely

In order to achieve /5-convergence rate of 8, we separate our following analysis into two steps.
Step I: In this step, we lower bound the minimum eigenvalue of

1
Y=y %X/ ®)

tely

using concentration inequalities.

Since 3, is an average of n i.i.d. random matrices with mean 3 = E[X;X, | and that {X;} are sub-
Gaussian random vectors, according to Remark 5.40 in Vershynin [2012], there exist ¢; and C' > ¢y
such that with probability at least 1 — 2e=1%’,

d+1 t

13, — 2| < max{6, %}, where § := C " + 7

(€))



Here ¢, C are both constants that are only related to sub-Gaussian norm of X;. Now we plug in t =
Cminy/n/4 and ¢g = 1602 /2, then as long as n > ¢o(d + 1), with probability at least 1 — 2e = ¢min™/16,

(Cmin/2) - 1T < . (10)

Step II: In this step, we provide an upper bound of | Vg Ly (o) | 0.
First, we prove E[VL;(60y)] = 0. By definition we have

1 ~ ~
V@Lk(90> = ﬁ 2 2(98—)(75 — Byt)xt

tely

We take the conditional expectation of VgL (6y) and obtain

~ 1 ~ i~
E[ngk(eo) |Xt] = — Z ZE[(HJXt — B?/t) |Xt]Xt~

tely

By our definition on y,

E[Ggit — By, \ it] = Og;ft - E[Bﬂ{ptsvt} |>~<t]
= Ogit - E[E[Bﬂ{ptSUt} | Ut] | it]
=0,%; — B-E[v,/B|%] =0,

where the third equality follows from p, ~ Uniform(0, B). After finally taking expectation with
respective to X; we deduce that E[VgL;(6y)] = 0.

Next, we get an upper bound of |[VeLy(0)| .. By (4), we have every entry of VgL (6y) is mean
zero. In addition, according to our Assumption 2, we have x; are 1.i.d. sub-Gaussian random vectors
with sub-Gaussian norm 1,. Thus, we have max;e(q) |X¢,i[ v, < ¥5. On the other hand, X/ 0y — By is
bounded by the constant Ry Rg + B. Therefore,

2

.y - - —u
IP’(|2(00 X; — By)Xei| = u) < ]P’(2(RXR@ + B)|Xs4| = u) < 2exp <81Z)£(RXR9 - B)2>

fori € [2: (d + 1)], which implies that 2(6] X; — By;)X;;,i € [2 : (d + 1)] are sub-Gaussian random
variables with variance proxy 2¢, ( Ry Re -+ B). Moreover, We can also obtain | 2(0] X;— By;) X 1|y, <
2(RxRe + B) by Hoeffding’s inequality.

We now take the union bound of all entries of Vg Ly (6y):

—¢2
P(|VoLi(80)]w = t) < 2(d + 1) exp <8max{¢2 TREaT B)g) (11)
— 9 —nt? log(d + 1 12
- e <8max{¢g,1}(RXR@+B)2 + log(d + )>‘ (12)



As we assume n > d + 1, by taking t = 4max{¢,, 1}(RxRe + B)+/logn/n in (12), then with
probability 1 — 2/n, we have

1
Vo Li(80)] e < 4max{t,, 1}(RxRe + B/ Oi n (13)

Finally, combining (7), (10) and (13), we obtain that with probability at least 1 — 2e~“ ChinTk|/16
2/ |1,

6. 6,, < 8 max{¢,, 1}(RxRe + B)\/(d + 1) log |1

1]

Cmin

C.2 Proof of Lemma 2

For the following analysis, we fix any episode index k£ satisfying the conditions of Lemma 2. It’s easy
to verify that for any & > (log(v/T —log £y))/log 2, ©; < ©,. Therefore, all the assumptions hold for
0 € Oy. Our goal is to prove (18) holds with high probability on the k-th episode.

Now we have the i.i.d. samples {w:(0) := p; — X0, y:}ier, from some distribution Py,
According to the previous notations, the marginal distribution P, ) has density fg(u). Moreover,
ro(u) := E[y; | w,(0) = u]. We’re interested in bounding the quantity sup,; geo, |7k(u, ) — r4,(u)],
which leads to the desired conclusion of the lemma.

For notational simplicity, let n = || be the length of the exploration phase. Recall that 7 (u, 8) =
hi(u, 0)/ fr(u, @), where

D ‘n_kZK Y fkuez—ZK —=—).

tely telk

Here, b, > 0 is the bandwidth (to be chosen), and K (-) is some kernel function.

Note that r¢(u) = }};’g“; we can write the difference between 7 and r as

hk(u,O) _ hg(u) . hk<u,0) — hg(u) W) - 1 _ 1
B0 dow)  hwe) e T R

The following lemmas are used as tools to control the right hand side of the above equation. The proof
of the lemmas can be found in §F.1 and F.2.

Tk(u, @) —re(u) = . (14)

Lemma 1. Under Assumptions 3 — 5, for any b, < 1,

Sup [Ehi(u, 0) — he(u)| < Ci,lﬁqb?, (15)
uel, k
sup  [Efi(u,0) — fo(u)| < C) o, (16)
uel 00y, ’
(1) S|smK(s)\ds
Here, O, = Iy ==



Lemma 2. Under Assumptions 3 -5, Vb, < 1, § € [4e /3 1), as long as nb, > max{132d(log i +
1), 3logn}, either of the following inequalities holds with probability at least 1 — §:

1
sup |hg(u,0) — Ehg(u, 0)] < Cff)(q/ Sji: (\/&+ v/ log 1/5) , 17)

uel,0e0y
logn
sup | fio(u,0) — Efu(u,0)] < CPhp |~ (\/§-+ log1/6>. (18)
uel,0e0y, nbk

Here C%). = I (8@ max{2f { K2ds, 2f § K"ds, 2K, 1}+

80(6vlog 24 veo) | /17y R2 max{J,, max{l s} (B+RxRe) }) (Numerical constants are not optimized,).

o Cmin

Now according to (14), we have

" B o (u, 6) — ho(u)]
serap, [P ) =r(wl < Sup TE ) — 1o(w 8) — fo(a)]

ho(w)  |fu(u,0) = fo(w)
" erobe, fo(u)  fa(u) — | fu(w, 0) — fo(u)]]
SUP et oce, 11, 0) — ho(u)]
¢ — SUDer geo, | Fr(1:0) — folu)]
+ sup re(u)- SUPuel,eeek‘fk(U,g)_fe(U”
ue1 620 ¢ — SUDoer geoy, | 5(1:0) — fo(u)]
SUP,er oco, [T, 0) — ho(u)]  supuergce, | fi(1,0) — folu)]

C — SUDyeg 0c0, ’fk(u’ 9) - f9(u)‘ C — SUPyer 00 ‘fk(ua 0) - fe(U)‘
(20)

(19)

as long as we ensure that sup s gce, | fr(u,0) — fo(u)| <

8
Let b, = n~Zn+1. By letting B,k = max{élC’x K /¢ (200)4, (2C,)*}, we can verify that for any
qualifying episode k, nb, = max{Cyd(log - T 1),3logn}. Combining (15) and (17), we have that

Vo e [4 exp(—n%/?)), 1), with probability at least 1 — 4,

sup |hy(u,0) — he(u)| < sup |hy(u,8) — Ehy(u,0)| + sup [Ehy(u, ) — he(u)|

uel, 00y, uel,0e0y, uel,0e0y

< Cn w4 o), 12%” (\/& + +/log 1/5)
k
< O~ 5#55logn (Vi + /105 170)




Here, C’f}){ = i,l}{ + Cg(ff){ Similarly, with probability at least 1 — 0,

sup | fr(u,0) — fo(u)| < n 2m+1\/10gn<\f—i—\/log1 )

uel,0e0y,

m (3)
It’s easily seen that as long as n2m+1 /y/logn > 2CZ’K (v/d + 4/log 1/6), The right hand side of the
above inequality is upper bounded by ¢/2, which guarantees that

sup | fu(u, 0) = fo(u)| <

uel 00y

[\DI(‘:

8
(Remark: From the conditions in the lemma, by letting B, x = max{4CS’[)( /3, (2¢0), (2C)*} and
By, i = min{( 5 o )%, 1/3}, we have

o®) 403 1
st g > 2T, g > 2O fog
C

which lead to n+1 //logn > Cuik (vd + +/log 1/6).)

Plugging the above results 1nto inequality (20) gives

40(3) N
sup |7k(u, @) — re(u)| < S’Kn_mﬂ v/logn (\/3 + +/log 1/5) ) 21
uel,0e0©y,

Next, we proceed to upper bound the quantity sup,.; gee, |76(u) — 74,(u)|. We know that for any
0 e @k,

ro(u) = E[Y; |p, —%X/0 = u] = E[E[Y; | %, pi] [ 1 — X/ 0 = u] = E[rg,(p — X/ 00) | p1 — X/ 0 = u].
Moreover from the Lipchitz property of rg,,

- - 10 max{v,,1}(B + Ry R d+ 1)logn
sup |r90(pt—XTBO)—'rgO(pt—XTON<ZTRXR;€=ZTRX- (¥, 1} xfe) /( ) log )

XEX,0€0 Cmin n
Therefore,
~ ~ ~ dlogn
sup_[ro(u) — 7o, (u)| < E| sup ro,(p — X 80) — ro,(p — X 0)| e — X0 = u] < CLoy |2,
uel 00y, XEX,0€0,, n
(22)

where CY) % =ULRx- 10 max{ts, 1}(B+RXR@)

Flnally, after combing our results in (21) (22), we claim our conclusion for Lemma 2.

9



C.3 Proof of Lemma 3

Following the same settings as in the proof of Lemma 2, we now aim at bounding the quantity

~(1
SUDyer geo, [7v (1, 0) — 7, (u)],

10y, gy = 1 (s 0) (1, 6) = Pu(u, 0) 13" (u,0)

f7(u,0)
1 we (@) — u
hk(u,0)=n—bk;f((%)iﬁ, fk:ue :_kZI]K
uely te
Dy 0) = —L § jr(wel®) —u LS o)

Similar to the proof of Lemma 2, we will bound sup,¢; gce, |?,(€1) (u,0)—rg(u)| and SUp,c; geo, |79(w)—
79, (u)| separately. First, notice that

oy — Mol fo(w) — Fofu)ho(u)
’ 73w) |

we can bound sup,.s gco, |7’“\,(€1) (u,0) — rg(u)| from the following four terms: sup,.r gco, |f(u,0) —

1 1
fo(u)], SUDyer gce, |11, 0) = ho(uw)] 1" (4, 0) = ()] and sup,c; geo, [y (u, 0) -
hig(u)|. In fact, we can upper bound the first two terms from Lemma 1| and 2. The lemmas below help
us bound the last two terms. The proof can be found in §F.3 and F.4.

Lemma 3. Given Assumptions 3-5, for any b, < 1,

sup  [EAY (u, 0) — hig(u)| < COLb1, (23)
uel ,0€0y, ’
sup  [Ef (u,0) — fo(u)] < COxbp1. (24)
uel ,0e0y
Here, 05552( = ot 2), § 1K (s)s™1|ds.

Lemma 4. Given assumptions 3, 4 and 5, Vb, € [%, 1], 6 € [dembk/3, %), either of the following
inequalities holds with probability at least 1 — 6:

1
sup  |h(u,0) — Er (u, 0)] < Cf}(\/> ﬁf (\/& ++/log 1/5) : (25)
uel ,0e0;, ' nby

1
sup |£((u,0) —Ef" (. 0)] < O |2 (VA +/log1/3). 26)
uel 90y, nOy

10



Here Cf;( =l (8\/@max{2fSK2ds, 2f § K"ds, 2K, 1+

80(6vlog 2++/2) ‘biQW«/l + RZ max{§,, maxilvs}(BtRxllo) }) (Numerical constants are not optimized).

Cmin

Now let b, = n~za1, Combining (23) and (25), we obtain that V& € [4 exp(—n 21 /3), 1), with
probability at least 1 — ¢,

0) —Eh"(u,0)] + sup [EL (u,8) — hiy(w)|

uel 0Oy

sup |hy” (u,0) — hy(u)| < sup |hf) (u,
uel 00y uel ,0ey,

< L5 + Cl [t (Vi-+ g 15)
<C’ KN 2m+1\/10gn(\F+\/log1 >

Here, C’S}( = CSIL + C’fl){ Similarly, with probability at least 1 — 4,

7 (0,8) ~ fafw)] < Clljn™ 3 /logn (Vi +v/10g 1/5)

sup
uel 00y

m 3)
Recall that when n2m+1 /y/logn > QC%K(\/E + 4/log 1/6), we have

sup |hi(u, 0) — he(u)] <

uel 00y

Y

o
N o

sup [ fi(u, 8) = fo(u)| <

uel 00y
Moreover, we have

sup - max{|he(u)|,[fo(u)], |fo(u)l} <

uel 00y

f.o sup hp(u)l = sup |fg(u)re(u)+fo(u)rg(u)| < ly+1.f.

uel 00y, uel 0Oy
Therefore, from the definition of r,(cl) (u, @) and 7p(u), we have

sup [ (6,u) — r(u)]

uel,0e0y,
, , 1 1
<[ o) — o) ) [ - fe(u)Q]
bosup | (0, 0) fi(, 8) — B, 0) £ (u, 8)] — [y () fo () — hg(us) ()]
uel,0e©y, fk(u 0)
3 1. <u fr(u,0)% — fo(u)?
S et DI e | Feu 6P T w?

+ sw ﬁuh;”(u, 0) — hiy(w)) fi(u, 8) + hip(u)(fr(u, 0) — fo(w))

11



— (F (u,0) = fo(u)hi(u, 8) — fo(u)(hu(u, 8) — he(u))|
- . 3 fo(uw)| fi(u, 0) — fo(u)]
<[l f+ (L +1)f?] 'u;};gek : Folu, 0)2fo(u)?
+ sup ;[ sup | fi(u, 0)] - [ny) (u, 0) — hg(u)| +  sup  |hp(u)]| - | fu(u, 8) — fo(u)]
uel 0Oy, fk(u 0) uel 00y, uel 00y,
+ sup [h(w,0)] - |V (w,0) = fo(w)| + sup | fo(w)] - [he(u, 0) = ho(u)]]
uel,0e0y uel,0e0y
<C§}{n_%«/logn <\/E + 4 /log %) ) 27)
when nz 1 /y/logn > f+ log 1/9). Here
10 4 . . 8f 4
o = (; + 0—2)[lf(f + 1)+ (L + 1)) + (C—f + E)Cﬂ(

Next, we bound the term sup,c; gco, |7g(1) — g, (). In fact, according to our assumptions,

sup |rp(u) — 1, (u)] < CU') , (28)
uel,0e0y, n

where Cg(f;( = [ Ry - Smax{¥s.l}(B+RxRe) Finally, after combing our results in (27)-(28), we claim

Cmin

our conclusion for Lemma 3.

C.4 Proof of Lemma 4

We’ll need the following auxiliary result in order to prove the lemma. The proof of Lemma 5 can be
found in section F.5.

Lemma 5. Given conditions of Lemma 4, for any X, € X and 0 € O, 07X, € [6., B — 0]

Now we proceed to the proof. First, we seek an uniform upper bound for |$k(u) — ¢(u)| from

lemma 2 and 3. Recall that ¢(u) = u — 1 F “) and ¢y (u) = u — 1};?(“?. It’s easy to see that the
k u

desired uniform bound can be achieved on an 1nterval where I is bounded below from 0. For this

reason, we choose some positive constant ¢ and some interval [[z, g | (we’ll specify how to choose

them later) such that

inf  F'(u) > cp. (29)

u€(lpr,rpr]

s - m=l 20,
From Lemma 3 we know that if in addition |/} |2m+1 > T’IK«/log |I.|(v/d + /log 1/6), then
SUDyeflr ] |F '(u) — F'(u)] < <L~ with probability at least 1 — 4. In fact, the above condition is

12



ensured by

Cpr

4C k\° mot om
T > ( K) (log T + 2logd)%d2mj11

Combining (29), Lemma 2 and Lemma 3, we deduce that with probability at least 1 — 60,

- 1— Bo(w)(F'(u) — FV(u
[
u€(lpr,rpr] uE[lpr,rp] k (U)F/<u>
I3 F
b [P FW)
VE[lpr, T ] F(u)
20 , 1
< 2k +20””7K0F |1,|~ 251 /g I <\/&+\/@> (30)
CF’

v (—u) =97 (—u)

Next, we proceed to bound sup,,c(s. —s.) |9k () — g(u)| from sup,(s. p_s.]

for some properly defined gg,zl. To be more specific, we will also let

[6. — B, —6.] < ¢([lpr, ri]) 0 du([Lpv, v ]). 31)

The way we ensure the above is the following: First, according to the assumptions, we know

¢'(u) = ¢y > 0, and that lim, s p(u) = 0., lim_ 0, é(u) = —o0 with 1Y) = inf{u : F'(u) >
F

0} > —0,. We can deduce that

mp = inf F'(u) > 0.
ue[¢p~1(6:—B),p~1(—0z)]

Therefore, there exists some d > 0 such that

inf F'(u) > :
wue[p=1(6,—B) =0 s, =1 (=6, )+6 1] 2

Now let [y = ¢~ (0. — B) — 0pr, 7w = ¢~ (—=0.) + pr, cr = . From the assumptions on ¢, we
have
¢(lp/) <0,— B-— C¢(SF1, Qﬁ(T’F/) > =0, + C¢5F/.

Combining (30), we obtain that as long as

26x +Cm Cr/ —moL !
K - JKCF ‘[k’ 2m+1 10g’[/€‘ (\/g‘i’\/%) < C¢5F/7

CF/

we can ensure (31). The above condition can be obtained from the fact that

4C, ;¢ + 20, cpr ame
CFIC¢5F/

13



Define R R
o (u) := inf{v € [lp,rp] : Pr(v) = ul. (32)
&7 (u) — ¢~ 1(u)|. In fact, for any u, let v; = ¢~ (u),

We proceed to upper bound sup,(s. —p,—s.]
Vg = q?,;l(u). Then

o1 = val < 1/ - [6(0n) = 9(v2)] = /e |6k (v2) — (v2))]
<1/eg sup  |op(v) — ¢(v)]

vE[lF/,TF/
26x + C, ' _m-=1 1
< ’Kc = KOF | 1| 2m+11\/10g|fk| (\/g—i—q/log 3>
P

with probability at least 1 — 6. R
Finally, since g(u) = u + ¢~*(—u) and gy (u) = u+ ¢, ' (—u), we conclude Lemma 4 by choosing

_ aC, AC, ¢ +2C, wer \° [C3 ot
Bz,K = Imax {B:c,K’( K )87 ( L i KOF ) ) |:_0(]. + ng>:| o ’

Cpv C%‘/ C¢5F’ 612]

_ , 2, co0
By = min{ B) o, ()%, (—5— )24
4C, k40, k +2C, kcpr

and

= 20, k + Oy kCpr
Cor = .

2
C¢CF/

C.5 Proof of Theorem 1

In order to bound the total regret, we first try to bound the regret at each episode k. First, for all
k < |(log(v/T + £y) — log £5) log 2| + 1, we bound the total regret during episode k by B¢y It can be
easily verified that

Z Regret, < 2BVT.

k<|(log(v/T+£0)—log €o) log 2| +1

We now turn to the case where k > |(log(v/T + £) —log £5) log 2] + 1. Recall that the conditional
expectation of regret at time ¢ given previous information and X; is

E[R; | 7'_ft—1] = E[Pfﬂ(vep;“) — Ptl(wizp) |7'_ft] = pe(pr) — pe(pe),

where H; = o(x1,Xg,+ ,X¢41; 21, , 2t), and we denote p;(p) := p(1 — F(p — 6]%;)). Using
Taylor expansion and the first order condition induced by the optimality of py, we have

pi(pe) = pe(pr) + %p;/(ft)(pt — )%,

14



where &; is some value lying between p; and p;. Note that for any p € [0, B], [p}(p)| = |2F'(p —

00%;) — pF"(p — 0] X;)| < 2, + BI.. Thus we deduce that
E[Ry | Hi1] = pi(p}) — pe(pr) < (2L + BL) (pr — p})?,
which further implies that the expected regret at time ¢ is bounded by
BR, < 5(21, + BL)E(p, ~ p})’
On the other hand,

(pe — P})? < (Gu(X] Br) — 9(X] 60))?

< 2(Gs(X] 6x) — 9(X/6:)) + 2(g9(X[ 61) — 9(X/ 60))’

= J1 + JQ.
We first analyze J5. In fact, define the event
& = {[0r — 60|l < Ry},

then according to Lemma 1, P(E,) < 1 — 2“1l xl/16 _ 2/| [, | On &, we have

2~TA_~T02 12§_02 12 2

Jy < —(X, 0, — X, 00)" < — [0, — 6" < — Ry Ry

C¢2 C¢2 C¢2

Therefore,

2
EJy < —R%R? + 2B2(2¢~munl 616 4 9/ 1]y,
C¢2
As for J1, on the event &, we deduce from Lemma 4 that for any

_ 2m—2 1
d € [4exp(—By k|1 2m+1 /log |1k ], 5]

, with probability at least 1 — 64,

2 2
R _  2(m—1) 1
J1 <2 sup  (gr(u) — g(u))] < 20§7K|IK\ o log | I | (\/E + 4 /log 5) )
u€(d,,B—0d.]

By choosing § = 1/|I|, we have

_ m— 1
EJ, < 2C2 ||~ #71 log |I| (va + 4 /log 5) +2B%. 66

12B2
<AC? g lIk|™ St log|IK\(d+log|IK\)

15
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Combining (33), (34) and (35), we obtain an upper bound for the expected regret at any time ¢
during episode k:

ER; < 0;1}(|1K| et 10g|IK|<d+log|IK|)

where i; = 2(2l, + BL,) - [C%R%((lomax{wzyl}(RXR®+B))2 + 20B? + 4C”;]. We choose |I;| =
<b )
.

[(lyd) T

The total regret during the k-th episode is

Regret, = Z ER; + Z ER,

tely, tEI;C
< B(ly d)<2m+1)/<4m—1> + B+ Iy - O (1pd)=Cm=2/Em=D 16 T(d + log T)

< (2B + C’ K)l‘”” 1al4m i logT(1 + logT/d).

Finally, the total regret defined in (6) can be bounded by

K

Regret (7' Z Regret, < 2BVT + (2B + C )d4m 1 logT(1 + logT/d) Z l,?m“)/(‘lm*l)
k=1 k=1
25(()2m+1)/(4m_1)(23 + 03(5112() 2m+1 logT
< [QB + Sy ](Td) Im-1 logT(l + ¥ ) (36)

(2m+1)/(4m—1) ~(1)
Here K = [log, T'|. The proof is then finished by letting C} ;- = 2B + % 2(2m+1>/<4ﬁitfz’}()

D Proof under the strong-mixing feature setting

In this section, we mainly present the proof of Theorem 2. The proof will be decomposed to the
following lemmas, and their proof is also attached.
Before stating the lemmas, we introduce the c-mixing condition.

Definition 1. [«a-mixing] For a sequence of random variables x; defined on a probability space
(Q, X, P), define

ap =supa(o(zy,t <1),0(x,t =1+ E))
10

in which
a(A,B) = sup {[P(A~ B)—P(AP(B)|)

AeA,BeB

16



From the definition of strong S-mixing, we see that it can infer strong a-mixing conditions. So in
this case, our sequence x; also follows strong a-mixing conditions, with ay, < e,

Lemma 6. [Parametric estimation under dependence] Under Assumption 2 and 6, there exist positive
constants ¢, and ¢y (only depend on constants given in Assumptions) such that when |I;,| = max{c;(d+
1), colog? || log log |I,|}, for any episode k within the horizon, with probability 1 —4/|I,|?, we obtain

16— 6o < — \/ (d+1)(6W2log |I4| + 6W, log® 1| log log |Iy])

min Cw‘jk’ ’

where W, = 2Ry(RxRe + B).

The proof of Lemma 6 can be found in §F.6. Next, we present the following results on estimation
error of F'(-) and F”():

Lemma 7. Suppose that Assumptions 3, 4, 5, 6 and 7 hold. Then there exist constants B, i, B;m x> Crma i
only depending on Ry := supy.y ||x||2 and constants within assumptions, such that as long as

12m—3
m

T > B (logT + 2logd) s [(d+ 1)log(d + 1)] " /d,
we have for any k = | (log(v/T+£y)—log y)/log 2|+2, and § € [8 exp(—|]k|%/(37’m7[{ log? | Ix])), 1/2]
with probability at least 1 — 20,
~ m 8
sup |Fi(u,0) — F(u)| < Chp i |[Ix|” 7+ log | 1] (\/(d + 1) log(d + 1) log |I)| + /2 log 5)

uel,0e0y,
(37)

Here I = [—0,,0,]| and we choose the bandwidth by, = |]k|_ﬁ+1.
The proof of Lemma 7 can be found in §F.7.

Lemma 8. Suppose that Assumptions 3, 4, 5, 6 and 7 hold. Then there exist constants Bmx, K, Bjm’ K C_’mx, K
that depending only on Ry := sup,.y |X|2 and the constants within the assmptions such that as long
as

— 12m—3 4m—1
m

T = B x(logT + 2logd) [(d+ 1) log(d + 1)] = /d?,
for any k > |(log(VT + to) — log )/ 10g 2] + 2 and 5 € [{8 exp(—| 14|77 /(B 4 log? [1u])), 1/2]
we have with probability at least 1 — 46,
~ _ mo1 8
sup [ F{(,0) ~ F'(u)] < Co e 555 log 1 (/[0 1) log(d + 1) og [ 1] +4/210g 3.
uel,0e0y
(38)

Here I = [—0,,0,] and we choose the bandwidth by, = |]k|7ﬁ.

The proof of this lemma can be found in §F.8.
By combining these two lemmas and following our conclusions from Lemma 4, we are able to
achieve the regret bound at the same order with Theorem 1 in Theorem 2.
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E Proof under the super smooth noise distribution setting

Proof of Theorem 3 can be followed directly from the proof of Theorem 2 by substituting the Lemma
5 with Lemma 6. Below we’ll only present the proof of Lemma 5.

Proof. We only bound sup,. 1 gce, [E[fi (1 6)]  fo(u)| and sup, s g-o, [ELF" (1, 8)] - f(u). since
the analysis for fy(u, @) and hy(u, @) are the same. In fact, under the settings of Lemma 5, for any

uel,0 e Oy,

E[fx(u, 0)] = fo(u)

S—Uu

)fo(s)ds — fo(w)

_F ]:1<Lil(<s;€u)fe(8)d8> - F Ofe(U))

- (o (r(52)) 1)

= F(do(u)[r(=bxu) —1]).

Here F is the Fourier transform operator defined by

1 )
5 ng(m)e_“‘xdw,

g— Fogu) =5

and we’ve utilized the fact that K = F ok, ¢g(u) = F ! o fo. Since |r(z)| < 1 for all z € R and that

k(x) = 1for |z| < ¢,

sup
uel 00y

[E[fi(u,0)] = fo(u)| < sup | F(dg(u)[r(—bru) —1])]

uel 00y

1
< sup o— | [dg(s)] - [w(—brs) — 1|ds
Be®k 7T

1
<am—j 60(s)ds
|s|>cr /bk

96@0 7T

< 2 D¢e_dd’(s+c”/b’“)ads
T Js>0

™ Js>0

Here, the last inequality is due to the fact that for 7,y € R, (z + y)® > min{2° ! 1}(z® + y*) >
1(z® 4 y*). Thus, by choosing by, = ¢, (ds/log |I;])"/*, we obtain that

where Cins = 2Dy /7 - §__ exp(—dys®/2)ds.

LS (u, )] = fo(u)| < Cing/v/n,
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The analysis for sup,c; gco, |E[f,£1)(u, 0)] — fg(u)| is similar as above. In fact, forany u € 1,0 €
O,

=) fols)ds — fo(w)

B 0] ~ o) =~ | 5K (*
)fe( )ds — fp(u)

- J]R blk ( b

(o () =)
- (ol () )
= F(og’ (w)[r(—beu) — 1]).

Following the same arguments as above, we deduce that

sup B[ £ (u,0)] — f4(w)] < Cint/Vn,

uel 0Oy
[
F Proof of technical lemmas
F.1 Proof of Lemma 1
We only prove (15), since (16) can be proved in the same way.
Recall that hy,(u, 0) = - 33| K (“42=")y,, and E[y|w(0) = u] = re(u) = 724 We have
Bhi(u.0) = LB (O Yy, - Lppe 21, 0, 0))

k k k k

Thus,
1 w@) —u
Ehi(u, 0) — he(u) = bkK(T)Te(w(e))fo(w(e))dw(e) — he(u)
= JK(s)hg(u + brs)ds — hg(u). (39)

Using Taylor’s expansion, Vs € R, there exists some (s, u) lying between the points « and u + bys
such that

ES (m=1) (s, u
h (U + ka = hg Z i ka hg (m (_5<1)7| )) (bks)mfl




Plugging this into (39) gives

r m—2 4 (i) u ' (m—1) 5. U
Eh(u, 0) — he(u) = | K(s) | ho(u) + ' h"i!( )(bks)w g C (_5(1;‘ ))(bks) ds — he(u)
r (m-1) 5. U
= ] K(s)he m (—§<1)' ))(bks)m lds
- (m=1)(,, R0 (e (s, u)) — BV (u
= | K(S)—}Efn— 5)3 (brs)™ 'ds + JK (6((;71)_)1)!% ()] (brs)™ tds
- (=1 (¢ (5 ) — K=V (o,
:J K(S) [ho (§<<77n>_)1)'h0 ( )] (bks)mflds.
Thus we have that
m=1(¢(s,u (m=1) (4
B0 (w.0) — halu)| < [ IK( L ((m)_)l)!h" )]t
< J\K(sﬂ%\bks]’”lds
< C1b7,

where C = ;- [s™ K (s)|ds/(m—1)!. Moreover, since the inequality holds for any u €  and 6 € Oy,
we finish the proof.

F.2 Proof of Lemma 2

We only prove (17), since (18) can be proved in the same way.
For any u € I, 0 € ©y, denote Z(u,0) := hy(u,0) — Bhy(u,0) = £ >, [K(“P=4)y, —

EK (“42=4)y,]. Then

sup |hg(u, @) — Ehg(u,0)| = sup |Z(u,0)\=max{ sup Z(u,8), sup (—Z(u,@))}.

uel 00y uel 00y uel,0e0Oy, uel 00y,

We can then bound sup,.; gco, |Pi(u, @) — Ehi(u, 8)| by upper bounding both sup,.c; geo, Z(u, 6)
and sup s gee, (—Z(u, 8)). We now give upper bound for sup,.s geo, Z(u, @) with high probability
(Bounding sup,. gco, (—Z(u, €)) is essentially the same).

We use the chaining method to obtain the desired bound. First, we construct a sequence of c-nets
with decreasing scale. Denote the left and right endpoints of the interval [ as L; and R; respectively.

For any 7 € N, construct set S c las

i) = {LI“‘W(RI_LI) j€{1a2a"'a(2i—1)[\/ﬁ]}}-
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(%)

For any u € I, i € N*, let m;’(u) = argmin ©

sest?) |s — u|. Moreover, let m; '(u) = u. Then we

can easily verify that |S\”| < 2i(y/n + 1), and Vu € I, |m;(u) — w1 (u)] < 213‘15%. At the same

time, denote Sg) as a R/ 2'-net with respective to l-distance of O, where 1), denotes the radius of

Oy. Similar to 7r¥), define Wéi) (u) = argmin_ u — s|. By Corollary 4.2.13 in Vershynin [2018],

1SP] < (21 + 1)

Combining the above two nets, we have S® := $ x §{) is a 277, /462 /n + R2-net of U}, :=
I x © with cardinality |S®| < 2¢(y/n + 1) - (277! + 1)%. In fact, for any u := (u,0) € I x O, with
i > 1, denote 7;(w) = (r\” (u), 7" (8)), then |m;(w) — u|y < 2714/202/n + R2.

Now, since Z(u, ) is continuous a.s., we have for any M € N*

ESS‘)

Z(u) = Z(ru(w) = ) [Z(mia(u)) = Z(mi(w))],

s

7

and thus .
sup Z(u) < sup Z(my(uw)) + Z sup [Z(mip1(w)) — Z(mi(u))] (40)
ueUy, ueUy, =M ueUy,

almost surely. Our goal is to choose a suitable M such that both terms on the right hand side of (40)
can be controlled in a reasonable manner
For this reason, Let M = [ 5 log 5, | +10. We first upper bound sup,.;;, Z(my(u)). Note that

:_ZAt

tEIk,

where A;(u) = K(%}j_“)}ﬁ — EK(%}S_“)K. We have EA;(u) = 0 and |A;(u)] < K almost
surely. Moreover,

Var(A;(u)) <E [K(—
< J K(%}C_“f Folw,(0))dw,(8) = by J K (5)2fo(u + bys)ds < Cuby,

where Cy = max{f - { K(s)%ds, f - { K(s)"?ds}. Thus according to Bernstein’s Inequality, for any
e >0,

2,2 2
b
" kS C- nbke2

(’Z( Z At nbke) < 26_W < 2e” P T+ ,

tEIk

where C5 = 1/max{2Cy, 2K, 1}. A union bound then gives
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P(sup |Z(mas(w)] > €) < SO0 P(|Z(w)| > o

nbk62

<2M(Vn+1)- (2M 4 1) 267

C
< exp (4dM log2 + logn — 75nbk min{e, 62}> :

When § > 4e~"/3 and nb;, > max{Cyd(log i + 1), 3logn} for some absolute constant C}, > 0, by
choosing

e = ek) = C%ﬁ\/éldM log 2 + logn + log %, we can verify that the last term above is upper

bounded by %, and thus we have
)
P sup |Z(mp(uw))| = e(k) | < -. 41)
uelUyg 4

Now we proceed to bound the latter term on the right hand side of (40). For any u; := (u, 0), uy :=
(s,03) € I x Oy, we have

Z(w) — Z(uz) = Z(u,0,) — Z(s,05) = Lb 35001500,
where k
B, 01.5,0) = i (KO g0 =)y gy, (e rB By,
Then EB;(u, 61, s, 6) = 0, and
|Z () — Z(us)| = | By(u, 0, 5,0,)] < 2 yt(K(wt(Og—:—“) _ K(U&(Hb;k)—s»’

_ 2/ (maseey [x[3 + 1)

S by S P
Using Hoeffding’s Inequality, for any € > 0,
262 biez
P(] Z Bi(uy, ug)| =€) < 2¢ Uk RERADMTnlui—uw2l} — Qe 2En(RR+Dlu1—usl3
tely,
Therefore,
_ nbie2
P(|Z(’U,1) . Z(’LLQ)’ > 6) _ IP(| 2 Bt(Ul,U2)| > nbkE) < 2e ZI%((RfY-%—l)Hiq—uzll% .

tely,
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Recall that Vu, |m;(u) — mi1(w)]s < 2774/462/n + RZ. We use union bound to obtain

P(sup |Z(mip1(u)) = Z(mi(u))| = €)
’uEUk
22i—2n2bi62

2%(\/5 + 1) . (2i+1 + 1)d .9e k(R A1)@6Z4nR})

1K/ (R%+1)(462+nR3 )e;
2i—1 b2

Lete = . The above inequality reduces to

IP( sup | Z(mis1(w)) — Z(mi(u))| = I/ (R% + 1) (402 + ”R%)Q)

1,72
ueUy, 2= Inby

m
vk

<2y +1)- (27 + 1)% - 2e” (42)

Now we choose ¢; = \/2 log & + logn + (2i + 4)(d + 2)log 2 and define W* := \/(R3, + 1)(462 + nR?).
Notice that

2L 6 L & V2dIog2 + /(4 + 8)log2 + logn + 2log 3
< .

Z_ZJ\:/[ nb? 21 nb? Z_ZA:/[ 2i—1
< \/2d1 4d + 8)log 2 +1 2log o
ST 0g 2 Z 5T (4d + 8)log 2 + logn + 0g 5

W | M+1 1 8
< I:uﬁ V2dlog 275 +2M2\/(4d+8)10g2+logn+210g5]

Ik W* 1 M+2 8
< \[;nibk ' n1/2b3/2 9M—2 [\/210g5+10gn+4 dlog2]

<lKW* 10 P14 64/log 2
b, |V n ga /%

Here we use the fact that when B, x > (200)4, combining the assumptions in the lemma, we have
n = cod. Combining this fact and a union bound on (42), we get

LW | 28 6+/Iog 2
P Z(u) - Z >EC ([ ZlogS + 1+
félzi’ (u) — Z(mp(u))| NG [ —log <+ NG

E LW e
<P | sup |Z(u) — Z(7a(w))] = —
sup [2(w) = Zmu(w))] > 3 % 2M>

<P () sup |Z(mn(w) ~ Z(m(w)] > ) ﬂ—)

2 i—1
i=M €Uk i=M nby 2
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lKW* €; )

o0
< 2P (g 12w - 2G| > 5
S . 2 G 1 59
2! -2 +1)4 277 < ) — - —— < < - 4
< 2 AW D) @) 2TE < ) g g < g < (43)

Finally, combining (40), (41) and (43), we obtain that

3> P sup |Z(r(w)] > e(h)) + P(S&i 2(0) -~ Zloata)] > B[R 10g 514 WPD

>P(SB£Z(U)>€(k)+Z%[ 1 108 5 GX/ED

44/11/C; 1 4
=>P A > —— 4 /d(1+1 + 1 + log =+
(3251 W) == ( %8 bk> ogn +1og 3

[ 1+ R%
16v3 (1 + 61/1og 2 Ix+/1 + R A {(5,2, max{1, ¢, }(B + RXR@)}( dlogn + dlogn log
Co \/Tbk Cmin n
1
> IP’( sup Z(u) = Cle\/@ (\/3 + 1/log 1/(5) )
uelUy, nbk

Here we let C, = 8v/22/C5 + M\/Wmax{dz, max{l, wxc}(B+RxRe)}
For the same reason, we have that

P<sup< Z(u)) = Clm/logn(\FJr«/lOgl )) g

’LLGUk

Combining the above two inequalities, we finish the proof.

F.3 Proof of Lemma 3

We only prove (23), since (24) can be proved in a similar way. Recall h,(gl) (u,0) = % Duer, K I (wt(e) “ )Yt
k
we have

£hD(6,u) = b_QEKx%)yu _ b—QEm%)r(wtw)).
Then
Eh'" (u, @) — hly(u) = bj K’(%)he(wt(g»dwt(e) — hg(u)
- f K (s) il (u + bis)ds — Ry (u), (44)
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where (44) follows from integration by parts. By Taylor’s expansion, we have

hy' Y (&(s,u))

hy(u + bys) = hy(u m; b s) 7+ 1] (bs)™2
Similar to our proof procedure of Lemma 1, under Assumption 5, we get
EAY (u, ) — JK h(m ! (5(5 “>_> ol hg" " w) (bes)™2ds.
Thus
1 1.0) — o < [ (28D HTT 0 g,
< |K<s>|—(i’;'?“§’)!|bks|m‘2ds
< O™ (45)

in which CSIL = (mlfz)! § | K (s)s™!|ds. Because (45) holds for any ¢ € I and 6 € Oy, we have

sup  [EAY (u, 0) — hig(u)| < COLb 1,
uel 00y, ’

which claims inequality 23 of Lemma 3. On the other hand, (24) follows directly from our proof
procedure above, so we omit the details.

F.4 Proof of Lemma 4

For any u € I, 0 € O, write

-1 1 w(0) —u w(0) — u
20 (u,8) = h{" (u,0) = EA (u,0) = — - — Y [ k(P21 —mR/(PEE
(U, ) k (U, ) k (u7 ) bk; nbk = [ ( bk )yt ( bk )yt:l

Under Assumption 4 and Assumption 5, by following a similar proof procedure with Lemma 2,
for 0 € [4e~"/3 1), with probability at least 1 — 4,

sty S G| < g[S (Vi s 1),

sup
uel 00y

where C%) = Iy (8\/@ max{2f { K2ds, 2f { K"ds, 2K, 1}+
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80(6vlog 2+/2) Vlofoﬂmx /1+ R% max{0,, 2axtle}(Btlyle) }) . Thus, with probability at least 1 — 0,

Cmin

1
sup  |h\" (u,0) —EA (u, )] < Cg(fl)ﬂ / ogn <\f + 4/log 1/ >

uel 00y

which claims the inequality (25) in Lemma 4. Moreover, (26) also follows directly from our procedure
given above. Thus, we claim our our conclusion of Lemma 4.

F.5 Proof of Lemma 5

First, we argue that for any X;,
0,%; €[, +0,,B—6.—6,] (46)

In fact, we have v; = 0] X; + 2;, where 2; € [0, 0, ] and that 8] X, is independent from z;. Therefore,
in order to satisfy the condition v; € [6,, B — §,], it ought to be true that 8] X; € [0, + J,, B — 6. — J,].
On the other hand,

sup 07X, —0)%| < sup |6 — B - sup |x||
X(EX,0€0 €] XieX
CgT_4(4m—1>dm«/logT +2logd- Rx
-

<
<0y 47)

The last inequality is due to the condition on 7. The lemma is proved by combining (46) and (47).

F.6 Proof of Lemma 6

The proof of Lemma 6 is similar with our proof of Lemma 1, the major difference between them is
that here we assume our covaraites X;, ¢ > 0 follow 5-mixing condition instead of of i.i.d. assumption.
After following similar proof procedures of (3)-(7), we obtain the same inequality with (7) and we also
divide the following proofs into two steps.

Step I: In this step, we prove under [-mixing conditions given in Assumption 6, with high-
probability, there exists a constant ¢ > 0 such that )\min(ﬁ Die I X;X;) = c. In order to prove
this, we first use the following matrix Bernstein inequality under S-mixing conditions to prove the
concentration between ¥y, := 75 Ikl Der, XiX{ and ¥ = E[X;X/]. Similar to §C.1, here for notational

convenience, we also denote n = |I;| for any k& > 1 respectively.

Lemma 9 (Matrix Bernstein Inequality under Mixing). We assume X;,t > 0 satisfy Assumption 6, and
we also assume there exists a positive constant M, such that ||X;2 < M,. Then for any x and integer
n = 2 we have

Cyn’a?
p( S| = ne) <2Ad+1 - u 48
H é X%, —n¥| > na (d+1)exp ( v®n + M} + naM? logn> (48)
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where C'is a universal constant and

1 ~~ 2
2 T
v’ = sup Ao B[ DR = )]
Ke{l,...n} Cara’(K) [zEK( )]
and v? is at the order of M.

Proof. (48) is a direct consequence of Theorem 1 in Banna et al. [2016], so here we just need to prove
the order of v2.

A B[ D &&= )]} = A D Cov(xx] ,iﬁg)}

eK i,5e K
- max{ Z Var(X;X; ) + 2 Z Cov(X;X; X]XT)}
ieK 7j>1,1,je K

Then we get

v? < max /\maX{Var(xl ) +2 Z Cov(XX, , XJXJT)}
e K
! 7>i,1,jeK

We know |X;|s < M,, so we have

)\max{Var(iiiiT)} < H]E[}N{pwcjilij]\\ < M4

xT

In addition, we obtain
HCOV(iﬁ(T X NT)H = HE[E%T%J%T] E[iziT]E[iﬁT]H (49)

By Lemma 1.1 (Berbee’s Lemma) given in Bosq, we are able to construct a X} such that the distribution
of i;“ is the same with X; but is independent with X;. At the same time, we also have P()NC; # X;) = B
according to Berbee’s Lemma. We then proceed to bound (49).

X 3 ’”T w T
H o < %% - %% )|
< B[R (X% — X7 (% # X165 < M!S,

Then we obtain that there exists a constant C,, > 1 + )| i Bj—i s.t.
2 < C,M2,

holds, since the term 1 + ). i Bj—i is finite by our Assumption 6 on 3;, j = 0. Then we conclude our
proof of Lemma 9 [l
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By using conclusions from this Lemma 9, according to Assumption 2 we have Ay, (X) = i and

Xel2 < M, = \/W, so when

n = max{(12C,(R% + 1)*logn + 6(R% + 1) log>n)/(C, min{c?, /4,1}),d + 1},

Amin(zk) > cmin/2- (50)
holds with probability 1 — 2/n?.
Step II: The next step is to prove the upper bound of | VgL (6y)||s. By definition we know
1 ~ ~
VoLi(6o) = — > 2(6) % — By,
n tely

Since the expression of VgL (6y) involves both X; and y;, ¢ € [n], next we show the sequence
(X¢, yt), t = 0 satisfy a-mixing condition with oy, < exp(—ck) under Assumption 6.

Lemma 10 (strong c-mixing of both X and y). Here we denote A = o ((Xy, yi)i<1) and B = o (X, Yt ) 1<k )-
In addition, we also denote A, = o (X4, ;) and B, = 0(X¢, ;>141,). Then under Assumption 6, we have
foranyl,k = 0,

sup sup |P(A,B)—-P(A) P(B)| < ax
120 AcA,BeB

where the definition of oy, is given in Definition .

Proof.
sup sup |P(4,B)—P(A)-P(B)| =sup sup [E[l4p]—E[I4]E[I5]|
=0 AeA,BeB =0 AeA,BeB
=sup sup |E[E[lap| Ay B.]] — E[E[Ls | A)E[E[Ls | B.]]|
1>0 AeA,BeB

After conditioning on X;,X;, we observe that y;,y; are independent with each other, then we get
E[lsp| Az, B.] = E[la | A;] - E[Ig | B.]. Thus, we have for any k£ > 0,

sup sup ]IE[]IA,B] — E[]IA]E[]IB]] =sup sup ‘E[E[HA | A.] - E[lg | B.]] — E[E[14 | A ]|E[E[L | Bm]]]
>0 AeA,BeB =0 AeA,BeB

< agf[Lafloo - [Tplloo = ot

The last inequality follows directly from Corollary 1.1 in Bosq, since E[l4|.4,] lies in A, and
E[lg | B,] lies in B,. O

By using the same proof given in §C.1, we have E[VgL;(6y)] = 0. In addition, we obtain an upper
bound of every entry of VgL (6,) in a way that there exists a upper bound W, = 2Ry (RyRe + B)
of [2(64 X; — By;)X; |, for every i € [d]. Then using the following vector Bernstein inequality under
a-mixing conditions, we obtain an upper bound for |[Vg L (6o)||s-
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Lemma 11. (Vector Bernstein under a-Mixing Conditions, Theorem I in Merlevéde et al. [2009]) Let
Xj,J = 0 be a sequence of centered real-valued random variables. Suppose there exists a positive W,
such that sup, | X/ < W, then whenn > 4 and x > 0, we obtain

1
P (f;
n

where C,, is a universal constant.

2 2) <o (- s )
x) <exp| —
P nW2 + W, nzlognloglogn

By leveraging conclusions from Lemma 11, we have

C,n’z? )

P([VeLi(00) ] = o) < 2(d + 1 (— .
(IVoLx(80) [ = ) (d+1)exp nW2 + W,nzlognloglogn

Thus, when n > max{(6W?2logn + 6, log? nloglogn)/Cy,d + 1} we obtain, with probability
1 —2/n?, we have

Vo Li(60)l < \/(6VVI2 logn + 6, log® nloglogn)/(Cyn). (51)

Then combining our results given in (7), (50) and (51), with probability 1 — 4/|I;|? we obtain

B — By < 2 \/(d+ 1)(6W2log |I] + 6W, log? |Ii| log log | Iu|)

Cuw| Ig]

min

forany £ > 1

F.7 Proof of Lemma 7

Proof. Similar with our proof given in §C.2, we suppose {w;(0) := p; — X/ 0, Yt }te[n] are observations
from the stationary distribution P,g),. We assume that the marginal distribution P, has density
fo(u) and let ro(u) = E[y, | w: (@) = u] be the regression function to be estimated by estimator
~ hk (U, 9)
re(u, ) = ———=,
K0 = e)

where

hi( ——ZK 2 fku0=—ZK —=—).

tEIk tEIk

| is denoted as n for simplicity and K (-)
is some kernel function. For the true signal 6y, we denote the true regression function as rg,(u) =
Ely: | w:(6y) = u]. The following proof procedures are similar with that given in §C.2, where their
major differences are related to control the biases of |E[hy(u, 0)] — he(u)| and |E[ fx(u, 0)] — fo(u)]
given in Lemma 12 and the variances of A (u, @) and fi(u, ) given in Lemma 13 under strong-mixing
settings respectively.
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Lemma 12. Under Assumptions 3-5 and 6, with any choice of b, < 1, we obtain

sup  |Ehy(u, ) — ho(u)| < CL) (1"
uel 00y
sup [Efi(u.8) ~ fo(w)] < Cpo) ibi!
uel,0e0y,
where Cyy ik = lf%
Proof. The proof of Lemma 12 is the same with the proof of Lemma 1. So we omit the details. U

Lemma 13. Under Assumption 3-5 and 6, there exists a constant C}, only depending on constants
given in assumptions, such thatfor I = [=6.,6.], if by € [1/n, 1], nb, = 402 log® n[(d + 1) log(d +
1)] and 6 € [8exp(—nby/(8C2log*n)),1/2], the following inequalities hold simultaneously with
probability 1 — §:

|
sup |hi(u, @) — E[h(u, 0)]| < M (\/(d + 1) log(d + 1)logn + 4/ 21og §) (52)
uel,0e0y, \ nbk )

B Ci;logn \/7?)
s i0.6) ~ BLA(w,6)] < B (T T Tog(d+ Dlogn +y/2log ) (5

Proof. We only prove (52), since (53) can be proved in the same way. For any uwe land 0 € O, we
denote Z(u, 0) := hy(u,0) — Ehy(u, 0) = nbk Dver K (5 0) )y, ]EK(““ —)y¢]. Then we have
that

sup |hi(u,0) — Ehg(u,0)] = sup |Z(u,9)|:max{ sup Z(u,@), sup (—Z(u,@))}.

uel,0€0y, uel 00y, uel,0€0y, uel,0e0y,

Similar with our proof procedure of Lemma 2, we then bound sup,; gco, |hi(u,0) — Ehy(u, 0)]
by upper bounding both sup,c; geo, Z(u,0) and sup,c; geo, (—Z(u, 8)). We next also use chaining
method to achieve desired bound. We also construct a sequence of e-nets with decreasing scale.

As a reminder, here we also denote the left and right endpoints of the interval [ as L; and R;

respectively. For any ¢ € N, construct set S}i) c Jas

Sf {L +W(R[ L[):jE{l,Q,"' ,(21—1)[\/51}}

Forany u € I, i e NT, let m;(u) = argmin

sesth 15— u|. Moreover, let m(u) = u. Then we can easily

verify that | $}”| < 2/(y/n + 1), and that Yu € I, |m(u) — 7 (u)] < 525,
As for the e-net of O, we let S§ be a R,,/(2'y/n)-net with respective to lp-distance of O, where
R, = 2/cminA/6W,/C,, (constants are specified in the Lemma 6). By Proposition 4.2.12 in Vershynin

[2018], we have | SS| < (27+1C(d, n) + 1), where C(d, n) = \/(d + 1)(W,logn + log® nloglogn).
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Then we have for any u := (u,0) € I X O with ¢ > 1, there exist 7rl(u) € S( and 7@(0) €

S5 such that ||m( ) = (mi(u), m(0)) — uls < «/452+R2/ 2i/n). So SO = S x gl is a
\/40%2 + R2 /(2'y/n)-net of Uy, := I x @k with size |S®| < 2’(\f + 1)- (2i+1C’(d, n) + 1) and

C(d,n) = \/(d + )(Wx log n + log® nloglogn).
Because Z(u, @) is continuous almost surely, we have that for any M € N*

Z(u) = Z(my(w) = ) [Z(mipa () = Z(mi(w))],

s

)

and thus .
sup Z(u) < sup Z(mp(u)) + Z sup [Z(mi1(u)) — Z(m;(0))] (54)
uelUy uelUy =M uelUy

almost surely. If we can choose a M properly then the two terms at the right hand side of (54) can be
both well controlled. For this reason, we let M = [logQ log 5-|- We then first bound sup,,c, Z (7 (u))
by using a union bound. By our definition on Z(u), we can write

1
Z(0) = — 3 Ay(w).
N0k tely
in which A;(u) = K (%) —EK (wt( J=")y,. Similar with our case in proving Lemma 2, we

have that E[A;(u)] = 0 and |A;(u)| < K almost surely. We next prove the bound of variance of A;(u)
and the covariance between A;(u) and A;(u) with j > 4. Following similar procedures with Lemma
2, we first conclude that

Var(A;(u)) < Ciby,
where C) = Cy = max{f - { K(s)%ds, f - { K(s)?ds} is defined in the same way with our proof of
Lemma 2. We next control the covariance of A;(u) and A;(u) with j > i.
wi(0) —u w;(0) —u
A=) e (O = By 0).wi 0]

~ B[ROty R =y

Cov(A,;(u), A;(u)) = E[K(

— E| K(

For simplicity, for any 0 € O, we define r(u;, u;) := Ely;y; | w;(0) = u;, w;(0) = ;] and r(u;) =
Ely; | w;(@) = u;]. Then after some simple calculation, we further obtain

Cov(a;u). Aiw)) = [ [ KL= (0 1 0) 0, 0)) £ 0i(0), w,(0)) s (O)cs 6)
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= [ [ e R 0y 0010, (0) s (0)cs 0)

= szJK(Sl)K(SQ)[T(bk81 + u, bpsy + u) f(brs1 + u, bpsa + u)
— r(brsy + u)r(bpss + u) f(brsy + u) f(brsa + u)|dsidss
We next prove that h(u;, u;) 1= r(u;, u;) f(u;, u;) stays close to h(u;)h(u;) = r(w;) f(w)r(u;) f(u;)
for all (u;, u;) in the following Lemma 14.

Lemma 14. Under Assumptions given in Lemma 13. We let g*(u;, u;) := h(u;,uj) — h(u;)h(u;), if
we further assume g*(u;,w;) is Lipschitz continuous w.r.t. (u;,u;) with Lipschitz constant l, then we
have

sup |g* (us, uy)| < (1/4 + v21) 813

j
Uj U
Proof. For any x we define
B(z,e);={a": |2’ — x| <€}, e>0,2eR

First, we prove |[E[y:y;liw, 0)eB(x.0),w;0)eB,e}) — ElYilw, @)@} ElYiliw, 0)cBw.oy]] < Bj—i We
have

E[Yi91{wi(0)eB .00 @Bwor] — ElVilin @0y EYi L, @)e0,01]]
= ‘E[H{wi(g)eB(Le),vj(G)EB(y,e)}E[yiyj | Xi, Xj, i, Ds]]
— [T, 0)e B0y ElY: | Xi, i) B[ L, 0)e By Elys | X5, pi]]]
= [E[E[yiliw,0)eB@.o1 | Xis PilElYLw; 0)e .oy | X0 pi]]
— E[E[yil{w,0)cB@.0) | Xis DEE[Y; 11w, 0)eBw.0) | X5 21|
As p;,i € |Ix|, k = 0 are independent, so the o-algebra generated by the joint distribution of X;, p; still
follows strong- 3 and -« conditions given in our Assumption 6. Moreover, we have E[y;1;.,9)cB(z,¢)} | Xi, Pi]

lies in o (X;, p;) and E[y; 1, 0)eB(y.0)) | X, p4] lies in o(X;, p;) with j > i. So we are able to obtain the
upper bound:

B[y T 0)e B, 0)eBw0} ) — ElYilw: 0)e B} |E[Yi i, 0)eBw.oy] | < Bii (55)

by using Corollary 1.1 in Bosq.
Next, we get an upper bound of sup,, , ) [¢*(ui, u;)|. From (55) and our definition on g*, we
obtain

iji = ‘ f g*(uz,uj)dulduj =1
B(z,6) x B(y,e)
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Then by the mean value property we have Z = 4¢2|g*(2/, /)| for some (2',y') € B(z,¢€) x B(y,e).
Moreover, as we assume g is Lipschitz, then we get

9% (z,y)| < |g* (@, )| + V2e
Hence, we finally achieve
9% (2, y)] < Bj-i/(4¢%) + V2e.

for any fixed (x,y). As this inequality holds for all ¢ > 0, we choose € = ﬁ - and we conclude the
proof of our Lemma 14. [

j=i Cov(4;(w), Ai(u))| <

CLb, holds according to our assumptions on f3; ;, j > 4, where we set C% = (1/4 + /2) Zj>0 6;/3.
Next we introduce the following Bernstein inequality under strong-mixing conditions, in order to
achieve an upper bound of Z(u).

Lemma 15. [Theorem 2 in Merlevéde et al. [2009]] Under conditions of Lemma 13, for all n = 2, we

By our conclusion from Lemma 14, we are able to find a constant C{ such that | )

have
Cpb2n’a?
P(|Z b Ay bpt) < 2 (— 0k )
(1Z(w)] = nbyx) gf; > nbx) < 2exp S K 4 b loa’n
Here
v* = sup(Var(A +22|COV ), Aj(w))]),
>0 j>i

Cy is a pure constant and K is defined as the upper bound of | A;(u)| with any j € [n].

By our conclusions from Lemma 14 and Lemma 15, we conclude there exists a constant C§ =
(C} + 2CY) such that v* < C§b,,, so we obtain

Cybin?a?

Cinby, + K2 + nbyz log® n>
Cynbyx?

(Cf + K2 +log®n)(1 + x)>

P(|Z(u)| = z) < Qexp<—

<2exp<—

The last inequality follows from our assumption that by > 1/n = 1/|I;| for any k > 1 in given Lemma
13. Further, we set C, = C,/(2C% + 2K? + 2). Then we take the union bound over Uy, which gives

P(sup | Z(my(u))] = ) < |SU0]-P(|Z(u)| > 2)

uEUk

Cénbk

<2. QM(\/H +1)- (2M+1\/g + 1)d ) 6*10g72nmin{x,352}
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!
< 26(d+1)M10g 2+log(+/n+1)+dlog(2C(n,d)+2)— ijggb: min{z,z?} .

Since we define M = [@ log i] then we choose

logn

z(n,d) = N

[(d + 1)410gbl +2(d + 1)log2 + log(+v/n + 1) + dlog(2C(n,d) + 2) + log ]/Cé,
k
(56)

where C(n,d) = \/(d + 1)(W, logn + log® nloglog n). We then have

P(sup |Z(my(w))| = z(n, d)) <

uEUk

moq

when & > 8exp(—nby/(C%log®n)) and nby, = 2log® n[(d + 1)4log i +2(d + 1)log 2 + log(+/n +
1) +dlog(2C(n,d) + 2)]/C% (because under such conditions, we have x(n, d) < 1). Now, we proceed
to bound the later term at the right hand side of (54). Similar with our cases stated in the proof of
Lemma 2, for any u; := (u, 01),us := (s,0;) € I x O, we have that

Z(ul)—Z(UQ)=Z<U,01)—Z(8,02 :—kZBtU 91,8 02)
tely
where
wy(01) — u wy(0y) — s w(01) —t w(0y) — s
By(u,01,5,0,) =y, (2Ot g8 5y g (B 2y g l8) =5
by by, by, by
We have EB;(u, 04, s,02) = 0, and that
w;(01) — u w(0s) — s
2600 = 2] = 1Bl Bs,5.60)] < 2 (R (O < (O
21 1 4+ maxeey [x/2 + 1 Cc*
< K\/ b eX ” H2 . ||111 _ ll2||2 = b_Hul . quz.

The last inequality follows from the Lipschitz property of K (-) and for simplicity we use C* to denote
the constant 2lx+/maxyey [x[2 +2 = 2lx+/R3% + 2. Then according to the Bernstein inequality
given in Lemma 11, we have

zn] Cun2b2a’
P(] »  Bi(ur,uz)| = nbyx) < 2exp ( — >
=1 kchu L L Y pch s —usle 12

k

Recall that Vu € U,,, we have |m;(u) — 71 (u)2 < —V;é_%f/};f”. We then use the union bound to get
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P(Sug) | Z(Ti1(0)) = Z(mi(0))| = x)
uely
CL2t1n3/2p1 22
T 4521 R2,

< 2272 (/i + 122720 (n, d) + 1) 2e TV TRV

. . (402+R2,)/(21714/n)+b? 1 /462+ R2, logZ n
in which C} = C,,/ max{C*? C*}. We let x = v ST - ¢;. Then we have
k

IP’( su[}) | Z(mip1(0)) — Z(mi(u))] = \/(452 + R2)/(20-1/n) + b24/402 + R, log? n/ (20~ 1/2p3/1p2) . ei)

(57)
_ Che;
1+\/(462+R2n>/<2i—1\/ﬁ>+bi«/46§+R?n log?n
< 22i+2(\/ﬁ + 1)2(21’—%20(”’ d) + 1)2d . %% 2(1‘—1)/2”3/41,% i (58)
We observe that if we could choose ¢; such that
o/ (492 + R2)/(21y/m) + B2 /452 + 2, log? n 1
- g < 1,
20=1/2p3/4p2
holds, then the right hand side of (58) satisfies
q . c! 512
(58) < 222+2(\/ﬁ+ 1)2(21-&-20(”’(1) + 1)2d .92~ 82 ) (59)

Now we choose €; = +/[(4d + 6)(i + 1) log2 + 4log(y/n + 1) + 4dlog(2C (n, d) + 2) + 21og(8/4)]/C%.
Then we have

\J (402 + R2) /(21 /) + B2 /402 + B2, log? n

206-1/2p3/4p2

/152 + R2
= [ A0 + R, + (46% + R%)W* logn] S €

S 2(i=1)/23/4p, | 2(i=1)/2p, n1/4

€

Here we only consider i > M =[5 log -], and we have 2/* - b, = 1. In addition, we also get

max;(i + 1)/2072/2 < 3. Hence, we have

2 2
1 [m + (462 + R?n)l/“logn] 6 <1,

2G=1)/2p3/4p,, | 2G=1)2p, /4
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if § > 8exp(—C4n*?/(16(46% + R?)log’n)) and n > {8(40% + R?)log®n - [(12d + 18)log2 +
4log(y/n + 1) + 4dlog(2C(n,d) + 2)]/C%}*3. Then after plugging our setting of ¢; into (59), we
obtain

P( sup | 2(min(w) = Z(mi(w))] = 4/ (462 + R2,)/(21v/n) + 2/407 + 2, log? n/(20-1/2n3/132) )

uely,
1 0

< = .
21+1 4

And we notice

i \J (482 + B2) /(271 /) + b2 /A0% + B2, log

2(1'—1)/2”3/41)%

o 2 2 462 + R2)log”n
GAVIETR R R g

2i-Inb? 6T 211213/},

<€
=M

~

=M

For term I, we have

i W : \/[(4d +6)(i + 1) log2 + 4log(v/n + 1) + 4dlog(2C(n,d) + 2) + 21log(8/6)]/C}
\/(4(52 + R2)/CY [\/m i i+ 1 \/410g(\/ﬁ + 1) 4+ 4dlog(2C(n,d) + 2) + 210g(8/6)]

nb? = Qi— oM—2

N

162 + R2)/CY 2M
o VA z;bQ m)/ 82M_2[ (4d +6)log2 + \/410g—+1+ V/4d1og(2C (n, d) + 2) + ~/2log( 8/6)]
k
(402 + R7,)/Cs 8M 1
< v 8 SREET [ (4d + 6)log 2 + 4/4log(y/n + 1)

n

+4/4dlog(2C(n,d) + 2) + \/2log(8/5)]
[«/ (4d + 6)log 2 + 4/4log(v/n + 1) + 4/4d1og(2C (n, d) + 2) + +/21log( 8/5)]

in which C is a pure constant such that Cf = 4/(402 + R2,)/Cj-max;(8i/272) = 164/(462 + R2,)/C},
and C'(n,d) < \/(d + 1)(W,logn + log® n). Then we obtain

VAdlog(2C(n,d) + 2) < \/ 4dlog (4\/ (d +1)(W, logn + log® n))

< \/4dlog (4\@\/(d + 1) max{1, W,} log® n>
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< A/4dlog(4V/2) + +/2d1og(max{W,, 1}(d + 1)) + \/6dlogn.  (60)

Next, we are able to find a pure constant C}, = 6+/6 such that 1/(4d + 6) log 2 + /4 log(y/n + 1) +

\/4d1og(2C (n,d) + 2) < 6v/64/(d + 1) log(max{W,, 1}(d + 1))logn as long as n > 3 according
to (60). Thus, we finally achieve

/

I< % <\/(d + 1) log(max{W,, 1}(d + 1)) logn + 1/2 10g(8/5)),

where C, = C1, - C{. For term II, we obtain

© \/(4(53 + R2)) log? n/C§

I = 2(i—1)/2p3/4p,

[\/(4d + 6)(i + 1) log 2

1=

+ 1 /4log(v/n + 1) + \/4dlog(2C (n, d) + 2) + /21og(8/6)]
_ /(462 + R2)/Cilogn

B/CRlogn T o3 3 At ]
< i |V/(@d+6)log2 2 i

\/4 log(y/n + 1) + 4dlog(2C (n, d) + 2) + 210g(8/5)]
o(M—2)/2

\/<453 + R2)/Cllogn8/2M 1
< n3/4 oM/4 9M/Ap, [ (4d + 6)log 2 + 410g(\/ﬁ +1)

+ \/4d1og(2C(n, d) + 2) + /2 10g(8/5)].

We are also able to find a pure constant Cf, such that Cj, = /(462 + R2))/Cf max;(8+/2i/2/4) =
244/(462 + R2)/C4 and C'5 = (4, - C},. Then we obtain

II < % <\/(d 1 1) log(max{W,, 1}(d + 1)) logn + /2 log 8/5).

After combining our inequalities of I and II, we obtain a union bound:

P(EB(F |Z(u) — Z(mp ()| = x2(n,d) : % <\/(d + 1) log(max{W,, 1}(d + 1)) logn
210g(8/5)>>
= 6
N E

in which we choose C7, = 2 max{C],, Ci;}. Then we get

P(sup Z(u) = z(n,d) + za(n, d))

ue Uk

moﬂ
+

YR
|

o | >
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where the expression of z(n, d) is given in (56). As a reminder, we have

1
z(n,d) = e n

B \/nbk

We obtain there exist a universal constant C}; = 8/4/C% such that

1 8
[(d + 1)tlog o= +2(d + 1)log 2 + log(v/n + 1) + dlog(2C(n, d) + 2) + log 5]/04.
k

< /W <\/(d + 1) log(max{W,, 1}(d + 1)) logn + 4 /2log ;)

Then we finally achieve

Clglogn 8\\ O
IP’(SBIE Z(u) = T (\/(d—i—l)log(maX{Wx,l}(d#— 1))10gn+«/210g5 =5

where we let C}s = 2max{C!,, C!:} and /., = Oy log(max{W,, e}). Thus, nb;, > 40 log® n[(d +
1)log(d + 1)] and § > Sexp(—nby/(8C2log” n)) becomes a sufficient condition to make z(n, d) +
x9(n, d) be smaller than 1. Following similar procedure, we are able to prove the same inequality for
fn» so we conclude our proof of Lemma 13. L]

The remaining part of Lemma 7 only involves getting a uniform upper bound for |rg(u) — 74, (u)|
and thus |7 (u, @) —rg,(u)| for any 8 € Oy and u € I. Similar with the corresponding proof of Lemma
2, we have

sup |re(u) —rg,(u)| < IRy -
uel 00y, Cmin

2 \/(d + 1)(6W2logn + 6W, log® nloglogn)
Cypn

Finally, by setting b, = n~/™*1) and combining our results obtained in Lemma 12 and Lemma 13,

we conclude our results for Lemma 7. In addition, our way of deriving constants B, x, B, x and
Cinz i 1s similar with that in Lemma 7, so we omit the details here. O

F.8 Proof of Lemma 8 and Theorem 2

The proof of Lemma 8 and Theorem 2 are straight forward by combining the proof of Lemma 3 and
Lemma 7, so we omit the details here.

G Additional Plots

In this section, we directly plot reg(7") for all the settings discussed in the main paper. From Figure
9 - Figure 11, we see that the blue solid lines depicted in every figure are close to the other two lines
that depict regrets with either known 6, or g(-) in Algorithm 1. This fact reflects the robustness of our
estimators on @, and g(-) in every episode.
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Figure 9: From left to right, we plot empirical regret reg(7") against 7™ +D/(4m=1) |0 T' with m e
[2,4,6] in the setting with i.i.d. covariates with independent entries. Solid blue, green, red lines,
represent the mean regret collected by implementing the Algorithm 1 for 30 times with unknown g(-),
6, unknown ¢(-) but known 6, and known g(-) but unknown 6, in the exploitation phase respectively.
Light color areas around those solid lines depict the standard error of our estimation of reg(7").
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Figure 10: From left to right, we plot empirical regret reg(7") against 7™ +1/(4m=1) 1o T' with m €

[2,4,6] in the setting with i.i.d. covariates but dependent entries. The rest caption is the same as in
Figure 9.
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Figure 11: From left to right, we plot empirical regret reg(7T) against TCm+1/(4m=1) ool T with
m € [2,4, 6] in the setting with strong-mixing covariates. The rest caption is the same as in Figure 9.

H Regret bounds when F'(-) is Lipschitz

All our main results require bounded second derivatives of F'. This allows the pricing strategy p; =
ngS,zl (—x; é) +x/ 6 to achieve low regret if the revenue function has bounded second derivative. When
F(+) is only Lipschitz continuous, the above method is no longer applicable. Fortunately, we can
directly define the offered price based on the substitution of 6 and F into (5) We summarize these in
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the following Algorithm 3.

Algorithm 3: Feature based dynamic pricing with unknown noise distribution when F'(-) is
(-Lipschitz
1: Input: Upper bound of market value ({v;};~1): B > 0, minimum episode length: ¢,, degree of
smoothness: m = 0.
2: Initialization: p; = 0, 68, = 0.
3: for each episode k = 1,2,...,do
4:  Set length of the k-th episode £, = 2"~1/,; Length of the exploration phase a;, = [(¢xd)1].

5:  Exploration Phase (¢ € I}, := {{), - , ) + ar, — 1}):
6: Offer price p, ~ Unif(0, B).
7. Updating Estimates (at the end of the exploration phase with data {(X;, y:)}:c1,):
8: Update estimate of 6, by ), = ék({(it, Yt) ber, )

~ 1

0 = argmin L;(0) == — Z(Byt —0'x,)? (61)

6 |Ik| tely,
9: Update estimates of F', by Fj(u, ék) = Fi(u; 6, {(Xt, yt, pt) }ter, ) given by (14).
10.  Exploitation Phase (t € I := {{; + ag, -+ , {41 — 1}):
11: Offer p; as
py = argmax,_q{p(1 — Filp — 2] 6,))} (62)

12: end for

Theorem 1. Let Assumptions 1, 3, 4 and 5 hold. Then there exist constants C' (depending only on
the absolute constants within the assumptions) such that for all T satisfying T > Cd, the regret of
Algorithm 3 over time T is no more than C;7K(Td)% log T'(1 + log T'/d).

Proof. We write

E[Rtlﬂtfl] = p;tk(l - F(p;,k - 1’:90)) _Pt<1 - F(pt - thHO)) (63)
= revy(p;, 0o, F') — revy(py, 0o, F). (64)

The last inequality follows from our definition of (4). When ¢ € I} (the k-th exploitation phase) we
can then further expand (64) into

(64) = rev,(pf, 0o, F) — revy(p*, 6y, F) (65)
+ revi(pf, Oy, F) — revy(p?, Oy, F) (66)
+ rev,(p;, ék, }A?’k) — revy(py, ék, fAWk) (67)
+ revy(py, OAk, ﬁk) — revy(py, ék, F) (68)
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+ revy(py, §k, F) —revy(ps, 0y, F). (69)
For (67), by our definition on p; in (8) , we have
(67) = revy(p}, Ox, Fi.) — reve(pr, Or, Fi,) < 0 (70)

For terms (65) and (69), we can control both of them by difference between ék and 6, in a sense that

~ 1
(65),(69) < [(z1, 0, — 6p)| < \/_ch (71)

holds with high probability by our Lemma 4.1, since we assume F' is Lipschitz continuous. Recall
ay = |Ix|, which is the length of the k-th exploration phase
For the rest two parts (66) and (68), as we are able to control F'(z) to F'(z) uniformly with rate

alzl/ K using data in the exploration phase. we can then bound E[R;] by

- 1
E[R,] = E[E[R,|H:1]] € 4 (72)
ay,
Then for the regret in k-th episode we can bound it as
Regret, = Z(revf —revy) + Z (revy — revy) (73)
tely, te B \I
< Bay, + ak/a,lc/3 = ai/A‘ + ak/ai/4 = O(a2/4) (74)
let K = |log, T'| + 1, we have our total regret can be bounded by
K
Regret (1') = Z 23h=D/ — O(T3/%). (75)
k=1
[

I A Data Driven Way to Determine m

As mentioned in Remark 12, we are able to adopt the cross-validation method [Hall and Racine, 2015]
to determine the order of smoothness m using data from the previous exploration phase. In the below,
we briefly introduce how the order of smoothness can be determined in local polynomial regression in
the context of nonparametric regression.

Given training data {x;, y;}I, and we assume they are generated following model

Y =g"(X) +e
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with E[e | X] = 0. Define

CV(h,m) =

S|

Z(Yi — 9-4(X3))?,

where g_;(-) is fitted using all samples except the i-th pair (x;,y;). Here we use bandwidth i and
m-th order local polynomial to fit the regression function. According to Theorem 3.2 given in Hall
and Racine [2015], optimizing CV (h, m) is equivalent to optimizing over (h, m) with respective to the
averaged summed squared errors defined in (76) up to some small order terms.

. i@(x,») = g% ()", (76)
n

i=1

Thus, this method is a valid way to determine the order of smoothness. We summarize the combined
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procedure in Algorithm 4.

Algorithm 4: Feature based dynamic pricing with unknown m

1: Input: Upper bound of market value ({v;};>1): B > 0, minimum episode length: /.
2: Imitialization: p; = 0, 6, = 0.
3: for each episode k = 1,2,...,do

4 Itk = 2,use {x; 0y _1,ps,Yi}ier,_, and Algorithm 4 to determine m. If k = 1, set m = 2.

5. Set length of the k-th episode ¢}, = 2¥~1/y; Length of the exploration phase a;, = [({xd) il 1.

6:  Exploration Phase (¢ € I}, := {{), -+, {; + ar, — 1}):

7 Offer price p; ~ Unif(0, B).

8:  Updating Estimates (at the end of the exploration phase with data {(X;, y;) }:cs,):

9 Update estimate of 6, by ék = ék({(it, Yt) ber, )

~ 1
0) = argmin Ly(0) := — Z(Byt -0'%,)% (77)
o |]k’ tely,

10: If m > 1, update estimates of I, I’ by Fj.(u, BAk) = Fi(u; ék, {(Xe, vt Pt) }eer, ?zk),
F,gl)(u, 0;) = F,El)(u, O, {(Xt, Yt, pt) }ter,,» i) The detailed formulas are given by (14) and
(16). )

11: Update estimate of ¢ by ¢ (u) = u — % and estimite of g by gr(u) = u + ¢, (—u).

If m = 0, update estimates of F', by F,(u, 0y) = Fi(u; Ok, {(X¢, Yr, pt) }ter,, ), The detailed

formulas are given by (14).

12:  Exploitation Phase (t € I} := {(; + aj, -+ , lg11 — 1}):

13: If m > 1, offer p, as

pr = min{max{g(X; 6;),0}, B}. (78)
If m = 0, offer p; as
Py = argmaxpzo{p(l — ﬁk(p —x/0,))}.
14: end for

Algorithm 5: Selection of m.

1: Input: Data {x; 0, 1, s, Yt ber,_,
2: For (m, h) € M x H, compute:

k-1l
~ 7 1 A(m
(m,h) = argmin L(m, h) = E (Y; — (_z ’h)(Xl))2
(m,h) |Ik71‘ 1

3: Output: m
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