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Abstract

In this paper, we study the contextual dynamic pricing problem where the market value of a
product is linear in its observed features plus some market noise. Products are sold one at a time,
and only a binary response indicating success or failure of a sale is observed. Our model setting is
similar to Javanmard and Nazerzadeh [2019] except that we expand the demand curve to a semi-
parametric model and learn dynamically both parametric and nonparametric components. We pro-
pose a dynamic statistical learning and decision making policy that minimizes regret (maximizes
revenue) by combining semiparametric estimation for a generalized linear model with unknown
link and online decision making. Under mild conditions, for a market noise c.d.f. F p¨q with m-th
order derivative (m • 2), our policy achieves a regret upper bound of rOdpT 2m`1

4m´1 q, where T is
the time horizon and rOd is the order hiding logarithmic terms and the feature dimension d. The
upper bound is further reduced to rOdp

?
T q if F is super smooth. These upper bounds are close

to ⌦p
?
T q, the lower bound where F belongs to a parametric class. We further generalize these

results to the case with dynamic dependent product features under the strong mixing condition.
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1 Introduction

Dynamic pricing is the study of determining and adjusting the selling prices of products over time

based on statistical learning and policy optimization. As an integral part of revenue management, it

has wide applications to various industries. Research on dynamic pricing has spanned across the fields

of statistics, machine learning, economics, and operations research [den Boer, 2015, Wei and Zhang,

2018, Misic and Perakis, 2020]. In general, a good pricing strategy often involves good statistical

learning of the demand function as well as revenue optimization over time.

Recent works particularly focus on feature-based (or contextual) pricing models, where the market

value of a product as well as the pricing strategy depend on some observable features of the product

[Javanmard and Nazerzadeh, 2019, Ban and Keskin, 2020]. Given the product features (covariates)

available through the massive real-time data in online platforms today, feature-based pricing models

take product heterogeneity into account, which enable customized pricing for products.

In this work, we consider the following dynamic pricing problem: We assume that a seller sells

one product at each time t “ 1, ¨ ¨ ¨ , T . Each product is attached with a known feature vector xt P Rd.

In addition, the product’s market value vt is linear in the features plus some i.i.d. market noise zt with

an unknown cumulative distribution F p¨q:

vt “ ✓J
0 rxt ` zt, zt „ F.

Here rxt “ pxJ
t , 1qJ and ✓0 is some unknown parameter. The customer makes an independent pur-

chase decision for each product depending on whether the seller’s posted price pt is higher than the

market value vt, after which the revenue is collected. In this case, the demand curve P pvt • ptq
actually depends on both the parameter ✓0 as well as the distribution of zt, which admits a semi-

parametric form. They need to be learned or estimated dynamically from the observed binary data

that indicates whether a sale is successful. Under this setting, we propose a policy which utilizes

semi-parametric estimation techniques to achieve a low regret. In particular, under mild regularity

conditions, if the c.d.f. F p¨q of zt has mth derivative, the regret over a time horizon T is upper bounded

by OppTdq 2m`1
4m´1 log T p1 ` log T {dqq, where d is the number of features. This result is further general-

ized to a setting where the product features xt are not independent, as long as txtut•1 is a stationary
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series that satisfies certain �-mixing conditions. Moreover, when F is infinitely differentiable, the

total regret can be upper bounded by rOppTdq 1
2 plog T q 3

2` 3
2↵ plogpd ` 1q ` log T {dqq. This rate is the

same as the parametric lower bound up to some logarithmic factors, i.e. where the distribution of zt is

generated from a parametric class.

1.1 Related Literatures

Our work contributes to the recent line of dynamic pricing literature as well as the growing literature

on decision making with covariate information and contributes to kernel regression. Our work is also

closely related to the non-parametric statistics literature. We’ll briefly review the related works in the

below.

Dynamic pricing. In the classical pricing models, one aims at maximizing the revenue over time

by posting price sequentially while learning the underlying demand curve or market evaluation of a

product. The demand curve is typically fixed over time, and falls into a known function class. Related

literature includes Kleinberg and Leighton [2003], Rusmevichientong et al. [2006], Besbes and Zeevi

[2009], Broder and Rusmevichientong [2012], Keskin and Zeevi [2014], den Boer and Zwart [2014],

Wang et al. [2014], den Boer and Zwart [2015], Babaioff et al. [2015], Cesa-Bianchi et al. [2019],

Chen et al. [2019]. As an example, Cesa-Bianchi et al. [2019] study the dynamic pricing problem

where the buyer’s valuation of a product is supported on a finite K unknown points, and the success of

a sale is determined by comparing the valuation to the proposed price. Using a generalization of UCB

algorithm, the authors achieve the regret with order OpK log T q. For a comprehensive survey on this

topic, see den Boer [2015].

Recently, many papers have been focusing on contextual dynamic pricing, where product hetero-

geneity is taken into account when modeling the demand curve or market evaluation. A common and

natural choice is to model the market value of the product at time t as a linear function of its features xt

plus some market noise zt, i.e. vt “ ✓Jxt`zt where ✓ is some unknown parameter [Qiang and Bayati,

2016, Javanmard, 2017, Miao et al., 2019, Javanmard and Nazerzadeh, 2019, Ban and Keskin, 2020,

Wang et al., 2020a, Chen et al., 2021, Tang et al., 2020, Golrezaei et al., 2020]. Under this setting,

for ‘truthful’ buyers whose decision is based on comparing vt and offered price pt, the demand curve
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can be expressed as a generalized linear model given feature covariates xt, where the link function is

closely related to the distribution of the market noise zt (see (3) for a detailed reasoning). Qiang and

Bayati [2016] assume a linear model between the demand curve and the product features. They prove

that the greedy iterative least squares (GILS) algorithm achieves a regret upper bound of Odplog T q,

where rOd is the order that hides logarithmic terms and the dimensionality of feature d, and provide a

matching lower bound under their setting. Miao et al. [2019] and Ban and Keskin [2020] consider a

generalized linear model with known link, while Javanmard and Nazerzadeh [2019] and Wang et al.

[2020a] study the same problem with high dimensional sparse parameters. The algorithms are usually

a combination of statistical estimation procedures and online learning techniques. Depending on the

setting, the optimal regret ranges from Odplog T q to rOdp
?
T q. Other related works include Chen et al.

[2021], Tang et al. [2020] where the authors explore certain differentially private policies under simi-

lar model setting; Golrezaei et al. [2020] where the authors consider the second price auction problem

with multiple customers, each of which has his/her own product evaluation; and Javanmard [2017]

where the parameter ✓ in the generalized linear model changes through time.

In practice, however, the distribution of the market noise zt is usually unknown to the seller. Thus,

it might be desirable to only assume that the noise density falls into some general class. As will be

discussed in §2, this leads to modeling the demand curve as a generalized linear model with unknown

link, and will be our main focus in this paper. Compared to the previous setting, this setting is more

challenging, and the related literature is sparse. Javanmard and Nazerzadeh [2019] propose a pre-

liminary algorithm that achieves a regret upper bound of OdpT q. Golrezaei et al. [2019] consider a

second price auction with reserve where there are more than one customers, each of whom has his/her

individual parameters in their demand curve model, and the customer bids are available as additional

information. The authors propose the NPAC-T/NPAC-S policy that achieves a regret rOdp
?
T q. Gol-

rezaei et al. [2020] also explore the second price auction and derive a regret upper bound of rOdpT 2{3q
compared to a ‘robust benchmark’ where the price maximizes the revenue of the worst link function in

the class. Shah et al. [2019] explore an alternative setting where the market value vt “ expp✓Jxt ` ztq
and zt has unknown distribution. By utilizing this specific structure, the authors propose the DEEP-C

algorithm based on multi-arm bandit that has a regret upper bound of rOdp
?
T q. The authors also pro-
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pose some variants of the algorithm and study them via simulations. Recently, Luo et al. [2021] study

a similar problem to ours, assuming a linear market valuation with unknown noise distribution. They

provide a DIP policy that achieves regret OdpT 2{3 ` }p✓ ´ ✓}1T q, where }p✓ ´ ✓}1 is the estimation

accuracy of the parameter ✓.

There are some literature studying other dynamic pricing algorithms [Amin et al., 2014, Cohen

et al., 2016, Mao et al., 2018, Leme and Schneider, 2018, Nambiar et al., 2019, Anton and Alexey,

2020, Alexey, 2020, Ban and Keskin, 2020, Li and Zheng, 2020, Javanmard et al., 2020, Chen and

Gallego, 2020, Liu et al., 2021]. For example, Mao et al. [2018] study a non-parametric dynamic

pricing pricing where the market value is modeled as a general non-parametric function fpxtq, where

xt are the features. A binary feedback is similarly observed based on the comparison between fpxtq
and the proposed price. The authors apply a variation of midpoint algorithm and achieve a regret upper

bound of OpT d{pd`1qq with d being the dimension of xt.

Semi-parametric and non-parametric statistical estimation. Our work is also closely related

to estimation of the single index model, or the generalized linear model with an unknown link. Such

model has been studied in the statistics and econometrics literature for decades, and has wide ap-

plications in fields like econometrics and finance [Powell et al., 1989, Ichimura, 1993, Hardle et al.,

1993, Klein and Spady, 1993, Weisberg and Welsh, 1994, Mallick and Gelfand, 1994, Horowitz and

Härdle, 1996, Carroll et al., 1997, Xia and Li, 1999, Delecroix et al., 2003, Fan and Li, 2004]. For

a comprehensive summary of these works, please refer to McCulloch [2000], Györfi et al. [2002],

Fan and Yao [2003], Ruppert et al. [2003], Tsybakov [2008], Horowitz [2012]. Various methods have

been proposed to estimate the parametric part that achieves root-n consistency under certain conditions

[Powell et al., 1989, Ichimura, 1993, Klein and Spady, 1993]. Carroll et al. [1997] study the general-

ized partial linear single index models, where the authors leverage local linear kernel regression with

quasi-likelihood method to estimate both the parametric and non-parametric parts of the model. Xia

and Li [1999] investigate in the single index coefficient model with strong-mixing features. Estimators

with uniform convergence rate to the ground truth based on kernel regression are proposed.

Given a root-n consistent estimation of the coefficients, standard univariate non-parametric regres-

sion techniques can be used to estimate the non-parametric part of the single index model that achieves
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`8 consistency, which is necessary in deriving regret upper bounds. One common estimator is the

Nadaraya-Watson estimator [Nadaraya, 1964, Watson, 1964]. Silverman [1978] and Mack and Silver-

man [1982] establish uniform convergence results for kernel density estimator and Nadaraya-Watson

estimator for regression functions. In addition, Stone [1980, 1982] derive uniform convergence results

for the more general local polynomial regression estimators. Masry [1996] prove similar results when

the covariates satisfy strong-mixing conditions.

In this paper, we’ll provide non-asymptotic error bounds for both coefficient estimation as well as

the plug-in Nadaraya-Watson estimator in a uniform sense. These non-asymptotic bounds are useful

for constructing regret bounds within a finite horizon.

1.2 Our Contributions

Our contributions are the following: First, compared to related works, our policy achieves a low regret

with few assumptions on the market noise distribution and little additional information. Given F P
Cpmq where F is the c.d.f. of zt, the regret over a time horizon T is upper bounded by rOppTdq 2m`1

4m´1 q;

If F is ‘super smooth’, the bound is further reduced to rOp
?
Tdq, which is nearly the same regret

order by assuming a parametric distribution for zt as in Javanmard and Nazerzadeh [2019] where the

s-sparsity on �0 is imposed. Table 1 illustrates the settings of our work as well as several related

literatures. Golrezaei et al. [2020] choose a more ‘conservative’ regret by comparing to a benchmark

policy which minimizes revenue with the worst demand function over the whole ambiguity function

class. In contrast, our notation of regret is more standard and ’accurate’ in that our benchmark policy

knows the exact demand function given any product features. Shah et al. [2019] consider a log-linear

relation between the market value and the covariates instead of a linear relation and derive a regret

upper bound of rOp
?
Td11{4q. Their algorithm based on multi-arm bandit has sub-optimal dependence

on the dimension d in terms of both regret and complexity, and is quite difficult to implement under

general conditions. Interestingly, the authors conjecture that under the linear settings, there is no

policy that achieves an rOdp
?
T q regret. Our work partly answers their guess by providing a policy

with a rOp
?
Tdq regret when the demand function is sufficiently smooth. Compared to the DIP policy

in Luo et al. [2021] and its regret OdpT 2{3 ` }p✓ ´ ✓}1T q, we are more clear on how p✓ are estimated
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Feature-based Non-parametric noise Regret

Kleinberg and Leighton [2003] X rOp
?
T q

Javanmard and Nazerzadeh [2019] X rOps
?
T q

Shah et al. [2019]
X

X rOp
?
Td11{4q

(log-linear model)

Golrezaei et al. [2020] X X
rOpdT 2{3q

(changed benchmark)

Luo et al. [2021] X X OdpT 2{3 ` }p✓ ´ ✓0}1T q

Our work
X

X rOppTdq 2m`1
4m´1 q

(linear model)

Table 1: Comparison with related works.

within the pricing algorithm, and we provide explicit rate on both the estimation error and the regret.

Moreover, compared to several fully non-parametric dynamic pricing literatures, such as Mao et al.

[2018] and Chen and Gallego [2020], our algorithm scales more nicely with dimension d, and can

easily be generalized to a high-dimensional setting. Our algorithm is also easy to implement compared

to some bandit-based algorithms that need dividing the feature space into bins.

Second, we generalize our results to the regime where the product features txtut•1 are weakly

dependent instead of independent, which is more likely in practice. For example, for many products

(such as softwares, electric products, etc.), the features of the products evolve over time and definitely

inherit some past information. In other situations, the products for sale might have some common time-

dependent factors shared by all products in the same industry (such as weather condition, population

composition, etc.). This setting with weakly-dependent features can also be found in literatures such

as Chen et al. [2022], where the authors study an offline pricing problem with parametric models and
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dependent covariates.

Last but not least, we establish non-asymptotic results on the `8 error bound of the nonparametric

kernel density and regression estimation, which are potentially useful in other related study as well.

As mentioned in the related literatures, most results on non-parametric kernel regression estimation

are established under the asymptotic settings. Meanwhile, we believe that non-asymptotic results

are necessary to achieve a finite-sample regret upper bound in the pricing problem. Please refer to

Appendix C.2 for related lemmas.

1.3 Notation

Throughout this work, we use rns to denote t1, 2, ¨ ¨ ¨ , nu. For any vector x P Rn and q • 0, we use

}x}q to represent the vector `q norm, i.e. }x}q “ p∞n
i“1 |xi|qq1{q. In addition, we let rxLp¨q,r2

xLp¨q
be the gradient vector and Hessian matrix of loss function Lp¨q with respect to x. For any given matrix

X P Rd1ˆd2 , we use } ¨ } to denote the spectral norm of X and we write X • 0 or X § 0 if X or ´X

is semidefinite. For any event A, we let IA be a indicator random variable which is equal to 1 if A is

true and 0 otherwise. In addition, we use Cpmq with m P N to denote the function class which contains

all functions with m-th order continuous derivatives. For two positive sequences tanun•1, tbnun•1,

we write an “ Opbnq or an À bn if there exists a positive constant C such that an § C ¨ bn and we

write an “ opbnq if an{bn Ñ 0. In addition, we write an “ ⌦pbnq or an Á bn if an{bn • c with some

constant c ° 0. We use an “ ⇥pbnq if an “ Opbnq and an “ ⌦pbnq. We use notations Odp¨q,⌦dp¨q
and ⇥dp¨q to denote similar meanings as above while treating the variable d as fixed. Moreover, we let
rOp¨q, r⌦p¨q, r⇥p¨q represent the same meaning with Op¨q,⌦p¨q and ⇥p¨q except for ignoring log factors.

1.4 Roadmap

The rest of this paper is organized as follows. We describe the problem in §2 and propose a solution

in §3 where some heuristic arguments are offered for bounding the regret. In §4, we provide our

theoretical results on the upper bounds of the regret and in §B, we discuss a lower bound result. Our

algorithm is illustrated in §5 by intensive simulation experiments.

8



2 Problem Setting

We consider the pricing problem where a seller has a single product for sale at each time period

t “ 1, 2, ¨ ¨ ¨ , T . Here T is the total number of periods (i.e. length of horizon) and may be unknown to

the seller. The market value of the product at time t is vt and is unknown. We assume that the range of

vt is contained in a closed interval in p0, Bq. In particular, we assume that vt P r�v, B ´ �vs for some

constant �v ° 0. At each period t, the seller posts a price pt. If pt § vt, a sale occurs, and the seller

collects a revenue of pt; otherwise, no sale occurs and no revenue is obtained. Let yt be the response

variable that indicates whether a sale has occurred at period t. Then

yt “

$
’&

’%

`1 if vt • pt ,

0 if vt † pt .
(1)

The goal of the seller is to design a pricing policy that maximizes the collected revenue.

In this paper, we further model the market value vt as a linear function of the product’s observable

feature covariate xt P Rd. In particular, define rxt “ pxJ
t , 1qJ, where we assume txtut•1 are i.i.d.

samples from an unknown distribution PX supported on a bounded subset X Ñ Rd. Assume that

vt “ ✓J
0 rxt ` zt, (2)

where ✓0 “ p�J
0 ,↵0qJ P Rd`1 is an unknown parameter, and tztut•1 is an i.i.d. sequence of idiosyn-

cratic noise drawn from an unknown distribution with zero mean and bounded support p´�z, �zq. The

cumulative distribution function of zt is denoted by F p¨q. The above model implies that

yt “

$
’&

’%

`1 with probability 1 ´ F
`
pt ´ ✓J

0 rxt

˘
,

0 with probability F
`
pt ´ ✓J

0 rxt

˘
.

(3)

Remark 1. In fact, each xt here can contain both product information and the buyer information, as

long as this information is revealed to the seller.
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Remark 2. The reason that we assume zt has bounded support r´�z, �zs is to ensure the market valua-

tion vt • 0, which is more reasonable in practice (Otherwise vt has positive probability to be negative,

since zt is independent with the covariates xt). The truncated Gaussian distribution falls in such cat-

egory. If the market allows vt, pt to be negative, then we can replace the boundness of zt by any

sub-Gaussian distributions.

In a non-dynamic setting, the model (3) is closely related to the single index model, or generalized

linear (logistic regression) model with unknown link function [Ichimura, 1993, Fan et al., 1995, Carroll

et al., 1997]. In their works, it’s usually assumed that pt “ 0 and tprxtqut•1 are independent observa-

tions, and the goal is to estimate ✓0 and F . Meanwhile, we work on the dynamic setting where we

need to optimize some revenue function by iteratively deciding pt given previous observations based

on dynamically learned ✓0 and F . These two problems are closely related but also decisively different.

We now state our objective in more details. Given observed features xt, the expected revenue at

time t with a posted price p is

revtpp,✓0, F q :“ Ep ¨ 1pvt • pq “ pp1 ´ F pp ´ ✓J
0 rxtqq. (4)

The optimal posted price p˚
t for a product with attribute xt is given by

p˚
t “ argmax

p•0
pp1 ´ F pp ´ ✓J

0 rxtqq, (5)

which depends on unknown parameters and needs to be learned dynamically from the data. As in

common practice, we evaluate the performance of any policy ⇡ that governs the rule of posted prices

tptut•1 by investigating the regret compared to the ‘oracle pricing policy’ that uses the knowledge

of both ✓0 and F p¨q and offers p˚
t according to (5) for any given t. In other words, we consider the

problem of maximizing revenue as minimizing the following maximum regret

Regret⇡pT q ” max
✓0P⌦

PXPQpX q
E

«
Tÿ

t“1

ˆ
p˚
t 1pvt • p˚

t q ´ ptp⇡q1pvt • ptp⇡qq
˙�

, (6)

where the expectation is taken with respect to the the idiosyncratic noise zt and xt, and ptp⇡q denotes

the price offered at time t by following policy ⇡. Here QpX q represents the set of probability distribu-

tions supported on a bounded set X . Our goal is to choose a good strategy ⇡ such that the above total

regret is small.
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Apparently, learning ✓0 and F p¨q over time gives the seller much more information to estimate the

market value of a new product given it’s feature covariates. On the other hand, the seller also wants to

always give optimized price so as to maximize the expected revenue by (5). Therefore, it’s necessary to

have a good policy that strikes a balance between exploration (collecting data information for learning

parameters) and exploitation (offering optimal pricing based on learned parameters).

Before proposing our algorithm, we first impose some regularity condition on F so that the opti-

mization problem (5) is ’well-behaved’.

Assumption 1. There exists a positive constant c� such that �1puq • c� for all u P p´�z, �zq, where

�puq :“ u ´ 1´F puq
F 1puq .

Assumption 1 ensures that �p¨q is strictly increasing, which implies a unique solution to (5). In

fact, the first order condition of (5) yields

p˚
t “ gp✓J

0 rxtq,

where gpuq fi u ` �´1p´uq.

Remark 3. We only put some necessary assumptions on F in order to guarantee the existence of

the unique optimal price p˚
t in (5), given observed rxt and unknown but fixed ✓0. Comparing to the

Assumption 2.1 in Javanmard and Nazerzadeh [2019], our Assumption 1 is weaker, since assumption

that 1 ´ F puq is log-concave is a special case of our assumption with c� • 1.

3 Algorithm and Basic Regret Analysis

We first propose Algorithm 1 in §3.1 which describes our policy for minimizing the regret given in (6),

and then provide the main idea for the regret analysis achieved by our Algorithm 1 in §3.2.

3.1 A Proposed Algorithm

In the following algorithm, we divide the time horizon into ‘episodes’ with increasing lengths. The

first part of each episode is a short exploration phase where the offered prices are i.i.d. to collect the
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data and model parameters (i.e. p✓, pF ) are then updated based on the collect data. The second part is

an exploitation phase, where the optimal pt is offered according to the current estimate of parameters

and the new rxt. The details are stated in Algorithm 1.
Algorithm 1: Feature-based dynamic pricing with unknown noise distribution

1: Input: Upper bound of market value (tvtut•1): B ° 0, minimum episode length: `0, degree of

smoothness: m.

2: Initialization: p1 “ 0, p✓1 “ 0.

3: for each episode k “ 1, 2, . . . , do

4: Set length of the k-th episode `k “ 2k´1`0; Length of the exploration phase ak “ rp`kdq 2m`1
4m´1 s.

5: Exploration Phase (t P Ik :“ t`k, ¨ ¨ ¨ , `k ` ak ´ 1u):

6: Offer price pt „ Unifp0, Bq.
7: Updating Estimates (at the end of the exploration phase with data tprxt, ytqutPIk):

8: Update estimate of ✓0 by p✓k “ p✓kptprxt, ytqutPIkq;

p✓k “ argmin
✓

Lkp✓q :“ 1

|Ik|
ÿ

tPIk
pByt ´ ✓Jrxtq2 (7)

9: Update estimates of F , F 1 by Fkpu, p✓kq “ Fkpu; p✓k, tprxt, yt, ptqutPIkq,

F p1q
k pu, p✓kq “ F p1q

k pu, p✓k, tprxt, yt, ptqutPIkq. The detailed formulas are given by (14) and (16).

10: Update estimate of � by p�kpuq “ u ´ 1´ pFkpuq
pF p1qpuq and estimate of g by pgkpuq “ u ` p�´1

k p´uq.

11: Exploitation Phase (t P I 1
k :“ t`k ` ak, ¨ ¨ ¨ , `k`1 ´ 1u):

12: Offer pt as

pt “ mintmaxtpgkprxJ
t

p✓kq, 0u, Bu. (8)

13: end for

Despite semiparametric model (3) with unknown link, by offering pt „ Unifp0, Bq, Byt follows

the linear model with regression rxJ
t ✓0 and this leads to the least-squares estimate (7). To see this, it

follows that

ErByt | rxts “ BEztEryt | rxt, zts “ BEztEr1ppt § ✓J
0 rxt ` ztq | rxt, zts “ BE✓J

0 rxt ` zt
B

“ rxJ
t ✓0.
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On the other hand, a uniform distribution for pt is actually critical for the above property. Suppose that

pt is drawn from a c.d.f. Fpp¨q and there is a transform f1 of yt that satisfies

Ef1pytq “ ErxJ
t ✓0 “ Evt

for all PX , then according to (3), we have

Evt “ EErf1pytq | rxt, zts “ EErf1p1ppt § rxJ✓0 ` ztqq | rxt, zts

“ EFpprxJ✓0 ` ztqf1p1q ` Ep1 ´ FpprxJ✓0 ` ztqqf1p0q

“ f1p0q ` pf1p1q ´ f1p0qqEFppvtq.

Since the above equation holds for all PX P QpXq, it can only be the case that Fp is linear within the

region r0, Bs, which implies that pt should follow a uniform distribution.

Remark 4. In Algorithm 1, the interval r0, Bs can be replaced with any interval that covers the range

of the market value vt. In practice, we can shrink the sampling interval at each exploration phase

according to the feedback information observed in the past.

Remark 5. If zt follows distributions with unbounded support and sub-Gaussian tails, in Algorithm 1,

we only need to replace B by Bk “ C
a
log |Ik| such that vt falls in p´Bk, Bkq with high probability.

We then offer pt „ Unifp´Bk, Bkq. Conditional on vt P p´Bk, Bkq, Bkp2yt ´1q serves as an unbiased

estimator for rxJ
t ✓0. Thus, all the following theoretical results work.

3.2 Main Idea for Regret Analysis

The main idea behind our regret analysis is a balance between exploration and exploitation. This idea

is shown in the following heuristic arguments. For simplicity, we assume for now that there is only

one episode, and that the total length of time (horizon) ` is known and d is bounded.

First, denote `1 as the length of the exploration phase. During this phase, the regret R1 at each time

is bounded by a constant due to bounded distribution F p¨q that entails bounded p˚
t in (5). Therefore,

the total regret in this phase is

R1 “ Op`1q. (9)
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For the second phase, the expected regret can be controlled by the estimation error of both ✓ and g

(which is a functional of F as mentioned in (8)). In fact, let the regret at each time point t be

Rt :“ p˚
t Ipvt•p˚

t q ´ ptIpvt•ptq.

Then the conditional expectation of regret at time t given previous information and rxt is

ErRt | H̄t´1s “ Erp˚
t Ipvt•p˚

t q ´ ptIpvt•ptq | H̄t´1s

“ p˚
t p1 ´ F pp˚

t ´ rxJ
t ✓0qq ´ ptp1 ´ F ppt ´ rxJ

t ✓0qq

“ revtpp˚
t ,✓0, F q ´ revtppt,✓0, F q (10)

Here H̄t “ �px1,x2, ¨ ¨ ¨ ,xt`1; z1, ¨ ¨ ¨ , ztq. On the other hand, under mild conditions, the above

difference in revenue can further be upper bounded by an order of ppt ´ p˚
t q2 using Taylor expansion.

Therefore, we have

ErRt|H̄t´1s À ppt ´ p˚
t q2 “ ppgpp✓Jrxtq ´ gp✓J

0 rxtqq2

§ 2ppgpp✓Jrxtq ´ gpp✓Jrxtqq2 ` 2pgpp✓Jrxtq ´ gp✓J
0 rxtqq2 (11)

:“ J1 ` J2.

In fact, J2 is upper bounded by }p✓ ´ ✓0}22 (given the Lipschitz property of g according to Assumption

1 and suitable conditions over PX). By solving (7), we prove that the squared `2 error is of order

Op`´1
1 q, which is the order of J2. The term J1 is upper bounded by }pg ´ g}28, and is further bounded

by maxt} pF ´F }28, } pF 1 ´F 1}28u. Note that by (1), F p¨q is the non-parametric function of 1´Yt given

wt “ pt ´ rxJ
t ✓0, in which pt is the observed price given in the exploration phase. Since ✓0 is estimated

at a faster rate, we can assume that wt is observable given a proper estimator of ✓0. Therefore, the error

rate is dominated by estimating F 1p¨q. Assuming F has an m-th continuous derivative, we construct pg

using the kernel estimator with a m-th order kernel, and prove that maxt} pF ´ F }8, } pF 1 ´ F 1}8u À
Op`´pm´1q{p2m`1q

1 q in which a logarithmic order is ignored for simplicity of presentation. Therefore,

the total regret during the exploitation phase can be upper bounded by

R2 À ` ¨ `´2pm´1q{p2m`1q
1 . (12)
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Combining (9) and (12), we know that by choosing `1 of the order of `p2m`1q{p4m´1q, we balance

the regret of both exploration and exploitation phase, and the total regret during the episode is given

by

R1 ` R2 “ Op`p2m`1q{p4m´1qq.

For a second order kernel, the above regret is of order Op`5{7q. For a relatively large m, the regret

is close to Op`1{2q, which is actually proven to be the lower bound for a wider class of problems.

4 Regret Results on Proposed Policy

In this section, we divide our results into three parts. In §4.1, we consider the setting with independent

covariates and finite differentiable noise distributions. In §4.2, we further extend our results in §4.1 to

the setting with correlated features. Finally we extend the aforementioned results to the regime with

infinitely differentiable noise distributions i.e. m “ 8 in §4.3.

4.1 Result under Independence Settings

The main result of this section is Theorem 1. To obtain this results, we first state some technical con-

ditions and technical lemmas, which demonstrate the accuracy of statistical learning in each episode.

These lemmas provide insights how statistical accuracy influences on the regret of our policy and have

interests of their own rights.

Assume that }✓0} § R⇥ for some constant R⇥ ° 0. We also define RX :“ supxPX }x}2. Before

stating our main results, we first make the following assumptions on xt.

Assumption 2. There exist positive constants cmin and cmax, such that the covariance matrix ⌃ given

by ⌃ “ ErrxtrxJ
t s satisfies cminI § ⌃ § cmaxI, where rxt “ pxJ

t , 1qJ

As we observe from J1,J2 given in (11), bounding the regret in the exploitation phase needs to

estimate both parameter ✓0 and function gp¨q. In the following, we first present an upper bound of

estimating ✓0 at the end of the exploration phase within each episode in the following Lemma 1. Recall

|Ik| is the length of the k-th exploration phase.
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Lemma 1. Under Assumption 2, there exist positive constants c0 and c1 depending only on absolute

constants given in assumptions such that for any episode k, as long as |Ik| • c0pd`1q, with probability

at least 1 ´ 2e´c1c2min|Ik|{16 ´ 2{|Ik|,

}p✓k ´ ✓0}2 § 8maxtRX , 1upRXR⇥ ` Bq
cmin

d
pd ` 1q log |Ik|

|Ik| . (13)

Let ⇥k :“ Bp✓0, Rkq, where Rk is the right hand side of (13). We conclude from Lemma 1 that

with high probability, Rk is of order at most
a
d log |Ik|{|Ik|, and we can achieve similar upper bounds

for J2 for any episode k.

Next, we proceed to construct the estimator pgk in each episode and bound its distance to g. Notice

that gpuq “ u ` �´1p´uq, and �puq “ u ´ 1´F puq
F 1puq . Thus, a natural way to construct pgk is from an

estimate of F and F 1, as mentioned in our algorithm. Moreover, the uniform error bounds of our

estimators pFk and pF p1q
k guarantee a uniform error bound of pgk.

We use the kernel regression method and p✓k obtained above to construct pFk and pF p1q
k . Recall

that by (3), we have Epyt|wtp✓0qq “ 1 ´ F pwtp✓0qq where wtp✓q :“ pt ´ rxJ
t ✓. Recall pt is the

observed price offered in the k-th exploration phase. Thus, given p✓k, F p¨q can be estimated by using

the Nadaraya-Watson kernel regression estimator and F 1p¨q can be estimated by the derivative of the

estimator. Specifically, we define

pFkpu,✓q “ 1 ´ prkpu,✓q “ 1 ´ hkpu,✓q
fkpu,✓q , (14)

and pFkpuq “ pFkpu, p✓kq, where

hkpu,✓q “ 1

|Ik|bk
ÿ

tPIk
Kpwtp✓q ´ u

bk
qYt, fkpu,✓q “ 1

|Ik|bk
ÿ

tPIk
Kpwtp✓q ´ u

bk
q, (15)

for a chosen m-th order kernel K and a suitable bandwidth bk. Now, we estimate the derivative F 1p¨q
by taking the derivative of the estimator. That is, pF p1q

k puq “ pF p1q
k pu, p✓kq where

pF p1q
k pu,✓q “ ´prp1q

k pu,✓q “ ´hp1q
k pu,✓qfkpu,✓q ´ hkpu,✓qf p1q

k pu,✓q
f 2
k pu,✓q , (16)

hp1q
k pu,✓q “ ´1

|Ik|b2k
ÿ

tPIk
K 1pwtp✓q ´ u

bk
qYt, f p1q

k pu,✓q “ ´1

|Ik|b2k
ÿ

tPIk
K 1pwtp✓q ´ u

bk
q. (17)
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Recall we mention in §2 that p´�z, �zq is the support of noise zt. In addition, we also mentions that

T denotes the length of time horizon which is unknown. In the following, we will state other necessary

assumptions to derive the regret upper bound:

Assumption 3. The density of wtp✓q (denoted as f✓) satisfies the following:

• (Smoothness) There exists an integer m • 2 and a constant lf such that for all ✓ P ⇥0 :“
 
✓ | }✓ ´ ✓0}2 § C✓T

´ 2m`1
4p4m´1qd

m´1
4m´1

?
log T ` 2 log d

(
, f✓puq P Cpmq, and f pmq

✓ is lf -Lipschitz

on I :“ r´�z, �zs.

• (Boundedness) There exists a constant f̄ ° 0 such that @u P R and ✓ P ⇥0, maxt|f✓puq|, |f 1
✓puq|u §

f̄ . In addition, there exists a universal constant c ° 0 such that f✓puq • c for all u P I , ✓ P ⇥0.

Remark 6. We provide some examples for Assumption 3. For any covariate x P Rd, as long as there

exists an entry of it that follows a continuous distribution in Cpmq, m • 1, such as Beta-distribution

or truncated Gaussian distribution, we can ensure the density of wp✓q “ pt ´ rxJ
t ✓ satisfies both the

smoothness and boundedness conditions in Assumption 3.

Assumption 4. r✓puq :“ Eryt |wtp✓q “ us satisfies the following:

• (Smoothness) h✓puq “ f✓puqr✓puq P Cpmq; hpmq
✓ is lf -Lipschitz on I for all ✓ P ⇥0. Here m and

lf are defined in Assumption 3.

• (Lipschitz) There exists a constant lr such that r✓0 “ 1 ´ F is lr-Lipschitz, and for any ✏ ° 0,

sup}✓´✓0}2§✏,uPI |r1
✓puq ´ r1

✓0puq| § lr✏.

Assumption 5. The kernel K satisfies the following:

• (Order-m kernel)
≥
Kpsqds “ 1,

≥
sjKpsqds “ 0 for j P t1, ¨ ¨ ¨ ,m´1u, and that

≥
|smKpsq|ds †

`8. Here m is the same as in Assumption 3.

• (Lipschitz) Both Kpsq and K 1psq are lK-Lipschitz continuous with bounded support.
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The Assumptions 3-5 are quite standard assumptions in non-parametric statistics; see Fan and Gij-

bels [1996], Tsybakov [2008] for more details. Given these assumptions, we will prove that with high

probability, the estimators pFkpu,✓q and pF p1q
k pu,✓q are sufficiently close to F puq and F 1puq respec-

tively given any ✓ P ⇥0 for every sufficiently large k. Specifically, we obtain the desired error bound

for pFkpuq “ pFkpu, p✓kq and pF p1q
k puq “ pF p1q

k pu, p✓kq.

Remark 7. Assumptions 3 and 4 can be relaxed in terms of the smoothness requirements: For all

m • 3, we only need f✓puq, h✓puq P Cpm´1q, and that f pm´1q
✓ puq, hpm´1q

✓ puq are `-Lipschitz for some

constant `. For m “ 2, we only need f✓puq, h✓puq P Cp1q, and that the second order derivatives

of f✓puq, h✓puq exist and are bounded. One is able to see assuming functions in Cpmq is a sufficient

condition for the aforementioned conditions to hold, for the simplicity of our notations here, we keep

the original assumptions.

Remark 8. If we only assume F p¨q is `-Lipschitz continuous (i.e. it may not be differentiable), we

also provide an alternative algorithm in §H which achieves a regret upper bound rOpT 3{4q.

Remark 9. One is also able to estimate F puq, F 1puq with the local polynomial estimator (see e.g.

Fan and Gijbels [1996]). In this case, the assumptions can be weaken further. Specifically, the local

polynomial estimators for F and F 1 enjoy all the theoretical guarantees given only the second part of

Assumptions 3 and 5 instead of both Assumptions 3 and 5. For example, Lipschitz continuous density

functions on r´�z, �zs satisfy Assumption 4.2. The proof is very similar. For simplicity, we only focus

on studying kernel regression in this paper.

Lemma 2. Under Assumptions 3, 4 and 5, there exist constants Bx,K , B1
x,K and Cx,K (depending only

the absolute constants within the assumptions) such that as long as

T • Bx,Kplog T ` 2 log dq 4m´1
m d

2m´1
m ,

we have for any k • tplogp
?
T ` `0q ´ log `0q{ log 2u ` 2 and � P r4 expp´B1

x,K |Ik| 2m
2m`1 { log |Ik|q, 12s,

with probability at least 1 ´ 2�,

sup
uPI,✓P⇥k

| pFkpu,✓q ´ F puq| § Cx,K |IK |´ m
2m`1

a
log |IK |p

?
d `

c
log

1

�
q. (18)
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Here I “ r´�z, �zs and we choose the bandwidth bk “ |Ik|´ 1
2m`1 .

Lemma 3. Under the same conditions as Lemma 2, with probability at least 1 ´ 4�, we have

sup
uPI,✓P⇥k

| pF p1q
k pu,✓q ´ F 1puq| § rCx,K |IK |´ m´1

2m`1

a
log |IK |p

?
d `

c
log

1

�
q. (19)

We next develop a uniform upper bound for term J1 given in (11) for the k-th episode in Lemma 4

below.

Lemma 4. Reinstating the notations and conditions in Lemma 2, with probability at least 1 ´ 6�, we

have

sup
uPr�z ,B´�zs

|pgkpuq ´ gpuq| § C̄x,K |IK |´ m´1
2m`1

a
log |IK |p

?
d `

c
log

1

�
q.

Remark 10. In Algorithm 1 we define pgkpuq “ u ` p�´1
k p´uq with u P r�z, B ´ �zs. Thus, computing

pgkpuq involves obtaining the inverse of p�k, which is not necessarily monotonic. Nevertheless, it’s not

difficult to define or compute p�´1
k . In fact, we’ll show in the proof of Lemma 4 that p�k is very ‘close’

to � in some main interval of interest, which contains r�´1p�z ´ Bq,�´1p´�zqs and depends only on

F . (Recall in Assumption 1 that �1 is bounded below from 0, so � is strictly increasing). Thus, for any

u P r�z, B ´ �zs, the above fact will guarantee the existence of p�´1
k p´uq as some x within the interval

such that p�kpxq “ ´u.

Combining the above lemmas, which give us upper bounds for terms J1,J2 in every episode, we

have the following Theorem 1, which provides an upper bound for the regret.

Theorem 1. Under Assumptions 1, 3, 4 and 5, there exist constants B̄x,K , B̄1
x,K and C˚

x,K (depending

only on the absolute constants within the assumptions) such that for all T satisfying

T • maxtB̄x,Kplog T ` 2 log dq 4m´1
m´1 d

2m`1
m´1 , 4d

2m`1
m´1 u,

the regret of Algorithm 1 over time T is no more than C˚
x,KpTdq 2m`1

4m´1 log T p1 ` log T {dq.

Remark 11. We note that Golrezaei et al. [2020] shares a similar framework with ours, although

with a different regret measure. Specifically, we use a more traditional notion of regret by setting the
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benchmark p˚
t from (5) with true ✓0 and F p¨q. In Golrezaei et al. [2020], the authors instead set the

benchmark p˚
t so as to maximize the worst function in their function class F , i.e.

p˚
t “ argmax

p•0
min
FPF

pp1 ´ F pp ´ ✓J
0 rxtqq.

Their optimal regret is of order rOdpT 2{3q, while ours is rOdpT 2m`1
4m´1 q, which is closer to OdpT 1{2q when

m is sufficiently large. Intuitively, a benchmark being the price maximizing the worst function is too

conservative when their ambiguity function class is very large and the market noises are only sampled

from a fixed distribution function in that function class, which is true in our semi-parametric setting.

On the other hand, Golrezaei et al. [2019] also work on similar but simpler settings, where they

assume having unknown demanding curves but observable valuations instead of censored responses.

By contrast, we work on a more common setting where the actual market values of products are

unknown.

Remark 12. Both Algorithm 1 and Theorem 1 depend on the smoothness class of the function F p¨q. A

popular choice in nonparametric curve estimation literature is m “ 2, as other choices do not improve

much for practical sample sizes. Nevertheless, we provide two ways to choose m that addresses a

referee’s query.

• Estimate m using cross-validation. Specifically, we pick some relatively small m during the

first episode. At each episode k • 2, before entering the exploration phase, we update the

estimate of m using cross-validation [Hall and Racine, 2015] with the data gathered from the

previous exploration phase. Then, we proceed with the main algorithm with this updated esti-

mate until the next episode. For more details of the cross-validation procedure and the combined

algorithm, see Section I.

• Pick a constant pessimistic estimation of m. In fact, we can directly fix a relatively small m

(e.g. m “ 2 or m “ 4). In many cases, the performance of the algorithm ( rOppTdq5{7q and
rOppTdq3{5q) will not be significantly different from where m is known (at least ⌦ppTdq1{2q).

The above two ways can be applied to all settings in this paper as long as F is only required to be

smooth to a finite degree.
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4.2 Results under the setting with strong-mixing features

As mentioned in the introduction, we believe that in many situations, the dependence of features over

time is inevitable. Thus, in this section, we generalize our results to the case where xt can be depen-

dent. For this purpose, we first impose the strong-mixing condition which measure the dependence

between covariates over time.

Definition 1. [�-mixing] For a sequence of random vectors xt P Rdˆ1 on a probability space p⌦,X ,Pq,

define �-mixing coefficient

�k “ sup
l•0

�p�pxt, t § lq, �pxt, t • l ` kqq

in which

�pA,Bq “ 1

2
sup

! ÿ

iPI

ÿ

jPJ
|PpAi X Bjq ´ PpAiqPpBjq|

)
,

the maximum being taken over all finite partitions pAiqiPI and pBiqiPJ of ⌦ with elements in A and B.

The following assumption ensures that txtut•1 are not too strongly dependent. Combining with

other assumptions, we ensure that the empirical covariance matrix 1
n

∞n
i“1 rxirxJ

i concentrate around

the population version, which is necessary in deriving the regret in every episode.

Assumption 6. The sequence xt, t • 0 are strictly stationary time series and follow �-mixing condi-

tion, in a sense we assume that �k § e´ck holds with some constant c.

In order to derive the final regret upper bound under the stong-mixing setting, we also need an

additional technical assumption stated below:

Assumption 7. Let r✓pui, ujq :“ Eryiyj |wjp✓q “ uj, wip✓q “ uis, j ° i • 0, r✓pujq :“ Eryj |wjp✓q “
ujs, j • 0 be the joint regression function and marginal regression function. In addition, we also set

f✓pui, ujq, j ° i • 0, f✓puiq, i • 0 as the joint density of wip✓q and wjp✓q and marginal density

of wip✓q respectively. Then we define g1,✓pui, ujq :“ r✓pui, ujqf✓pui, ujq ´ r✓puiqf✓puiqr✓pujqf✓pujq
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and g2,✓pui, ujq “ f✓pui, ujq´f✓puiqf✓pujq. We assume g1,✓pui, ujq and g2,✓pui, ujq follow l-Lipschitz

continuous condition, in a sense that

|gq,✓pui, ujq ´ gq,✓pu1
i, u

1
jq| § l

b
pui ´ u1

iq2 ` puj ´ u1
jq2, q P t1, 2u

holds for all pui, ujq, with i, j P rns and ✓ P ⇥0.

When the covariates xi,xj are independent, we have gq,✓pui, ujq “ 0, q P t1, 2u, for all pui, ujq.

Under such a mild assumption, we obtain a uniform upper bound of |gq,✓pui, ujq|, which is dominated

by the �-mixing constant �1{3
j´i, for all ✓ P ⇥0 and pui, ujq (see Appendix F.7). Thus, this assumption

essentially guarantees that the joint regression and density functions of the features still stay close to

the products of their marginal ones even if they are correlated.

Following similar analysis with §4.1, we reach the following theorem which gives a regret upper

bound at similar rate with Theorem 1 under the strong-mixing feature setting.

Theorem 2. Let Assumptions 1, 3, 4, 5, 6 and 7 hold. Then there exist constants B˚
mx,K and C˚

mx,K

(depending only on the absolute constants within the assumptions) such that for all T satisfying

T • maxtB˚
mx,Kplog T ` 2 log dq 12m´3

m´1 rpd ` 1q logpd ` 1qs 4m´1
m´1 {d2, d 2m`1

m´1 u

the regret of Algorithm 1 over time T is no more than C˚
mx,KpTdq 2m`1

4m´1 log4 T .

4.3 Result on infinitely differentiable market noise distribution

In §4.1 and §4.2, we analyze the regret upper bounds when the noise distribution F has an m-th order

continuous derivative, with any finite m • 2. The regret of our algorithm is of order rOppTdq 2m`1
4m´1 q,

which gets closer to rOp
?
Tdq as the degree of smoothness m goes to infinity. In fact, this is mainly

due to inaccurate estimation of F and F 1 resulting from the bias of the kernel estimator. In this section,

we deal with super smooth noise distributions [Fan, 1991], where F is infinitely differentiable. Under

mild conditions, we’re able to control the bias within Op1{|Ik| 12 q for each episode k by using extremely

smooth kernels. As a reminder, here |Ik| is the length of the k-th exploration phase. This leads to a
rOdp

?
T q regret bound in our algorithm. In particular, we assume the following:
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Assumption 8. Define �✓, ⇠✓, �p1q
✓ and ⇠p1q

✓ as the Fourier transform of the function f✓, h✓, f 1
✓ and h1

✓

respectively:

�✓psq “
ª 8

´8
f✓pxqeisxdx, ⇠✓psq “

ª 8

´8
h✓pxqeisxdx,

�p1q
✓ psq “

ª 8

´8
f 1
✓pxqeisxdx, ⇠p1q

✓ psq “
ª 8

´8
h1
✓pxqeisxdx,

and h✓pxq “ f✓pxqr✓pxq. There exist positive constant D� and d� and ↵ ° 0 such that

maxt|�✓psq|, |⇠✓psq|, |�p1q
✓ psq|, |⇠p1q

✓ psq|u § D�e
´d�|s|↵

for all s P R.

Remark 13. -This assumption is quite standard, and ensures that f✓puq, F✓puq P C8. The class of

functions are still infinite dimensional nonparametric functions. The class of supersmooth functions

has been used in non-parametric density literature. In particular, it has been used in Fan [1991] for

characterizing the difficulty of non-parametric deconvolution.

Under the Assumption of 8, for each episode k, we can successfully control the bias within

Op1{
a

|Ik|q via an infinite order kernel [McMurry and Politis, 2004, Berg and Politis, 2009]. In

order to construct an infinite order kernel K, we simply let K be the Fourier inverse transform of some

‘well-behaved’ function. In particular, let

Kpxq “ 1

2⇡

ª 8

´8
psqe´isxds, (20)

be the Fourier inversion of  satisfying

psq “

$
&

%
1, |s| § c

g8p|s|q, otherwise.

Here g8 is any continuous, square-integrable function that is bounded in absolute value by 1 and

satisfies g8p|c|q “ 1. This defines an infinity order kernel function [Fan and Gijbels, 1996].

By plugging the infinite order kernel K into our algorithm, we’re able to obtain the following

lemma:
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Lemma 5. Under Assumption 8, there exists a positive constant Cinf depending only on ↵, D� and

d� such that for all kernel K satisfying (20), for each episode k, by choosing the bandwidth bk “
cpd�{ log |Ik|q1{↵ in (15) and (17), we have

sup
uPI,✓P⇥k

|Erfkpu,✓qs ´ f✓puq| § Cinfa
|Ik|

, sup
uPI,✓P⇥k

|Erhkpu,✓qs ´ h✓puq| § Cinfa
|Ik|

,

sup
uPI,✓P⇥k

|Erf p1q
k pu,✓qs ´ f 1

✓puq| § Cinfa
|Ik|

, sup
uPI,✓P⇥k

|Erhp1q
k pu,✓qs ´ h1

✓puq| § Cinfa
|Ik|

.

Following similar proof procedures of Theorems 1 and 2, Lemma 5 leads to the following theorem,

which gives a regret upper bound of rOdp
?
T q, achieving the same convergence rate with the parametric

case up to logarithmic terms [Javanmard and Nazerzadeh, 2019].

Theorem 3. Let Assumptions 1, 3, 4, 5, 6, 7 and 8 hold. Then there exist constants B˚
inf and C˚

inf

(depending only on the absolute constants within the assumptions) such that by choosing |Ik| “ r
?
lkds

instead in Algorithm 1, for all T satisfying

T • B˚
infd

2plog T ` 2 log dq12`12{↵ log4pd ` 1q,

the regret of the algorithm over time T is no more than C˚
infpTdq 1

2 plog T q 3
2` 3

2↵ rlogpd ` 1q ` log T {ds.

Remark 14. Theorem 3 partly overturns the conjecture in Shah et al. [2019] that there is no policy

can achieve an rOdp
?
T q regret under the setting where the market value is linear in the features as in

(2). We provide a regime with super smooth market noise in which rOdp
?
T q regret upper bound is

attainable by our policy.

Remark 15. In §B, we provide discussions on minimax lower bound, adversarial agents, inference for

the demand, practical implementation, and extensions to the high dimensional setting.

5 Simulations

5.1 Justification of theoretical results

In this section, we illustrate the performance of our policy through large-scale simulations under var-

ious settings. Recall our model (2), where xt P Rd and zt follows distributions with bounded support
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and smooth c.d.f. Throughout this section, we let the dimension d “ 3 and the coefficients ↵0 “ 3,

�0 “
a
2{3 ¨ 13ˆ1. For each value of smoothness degree m P t2, 4, 6u, we fix a density function

from Cpm´1q for all zt (thus the c.d.f. F belongs to Cpmq). Specifically, we set the p.d.f. of zt as

fmpxq _ p1{4 ´ x2qm{2 ¨ It|x|§1{2u for m P t2, 4, 6u. Moreover, for each m, the covariates xt P R3 are

generated from a p.d.f. in Cpmq in the following ways:

• i.i.d. xt with independent entries: Each coordinate of xt is generated from density fmpxq _
p2{3 ´ x2qm`1 ¨ It|x|§

?
2{3u.

• i.i.d. xt with dependent entries: xt is generated from the density function fmpxq _ p1 ´
xJ⌃´1xqm`1. Here ⌃ is a positive definite matrix with pi, jq-th entry being equal to 0.2|i´j|, 1 §
i, j § 3.

• Strong mixing xt with dependent entries: We generate xt from the VAR (vector autoregres-

sion) model, where xt “ Axt´1 `Bxt´2 `⇠t. Here A,B P R3ˆ3 with Ai,j “ 0.4|i´j|`1, Bi,j “
0.1|i´j|`1, i, j P t1, 2, 3u. In addition, t⇠tut•1 are i.i.d. with density fmp⇠q _ p1´ ⇠J⌃´1⇠qm`1

where the ⌃ is the same as the one given in (ii).

When implementing our algorithm, we divide the time horizon into consecutive episodes by setting

the length of the k-th episode as `k “ 2k´1`0 with k P N` and `0 “ 200. We further separate

every episode into an exploration phase with length |Ik| “ mintpd`kqp2m`1q{p4m´1q, `ku depending on

the values of m and d. The exploitation phase contains the rest of the time in that episode. In the

exploration phase, we sample pt from Unifp0, B “ 6q, since B “ 6 is a valid upper bound of vt. In the

exploitation phase, we set the kernels as follows: For any given m P t2, 4, 6u prefixed at the beginning

of the algorithm, we choose the kernel function with m-th order. Here we choose the second, fourth,

sixth-order kernel functions as K2puq “ 35{12p1´u2q3 ¨ It|u|§1u, K4puq “ 27{16p1´ 11{3u2q ¨K2puq
and K6puq “ 297{128p1´26{3u2`13u4q¨K2puq respectively. In episode k, we set the bandwidth bk as

3¨|Ik|´ 1
2m`1 in (14) and (16) according to the settings in the theoretical analysis. In reality, one can also

tune the bandwidth by using cross validation at the end of every exploration phase. Moreover, when

calculating pt “ pgprxJ
t

p✓kq “ rxJ
t

p✓k ` p�´1
k p´rxJ

t
p✓kq, we find p�´1

k p´rxJ
t

p✓kq as follows: First, we look for

25



(a) (b) (c)

Figure 1: Regret log-log plot in the setting with i.i.d. covariates with independent entries. The

three subplots show the case m P r2, 4, 6s respectively. The x-axis is logpT q ´ logp1500q for

T P r1500, 2000, 3100, 4000, 5000, 6300s, while the y-axis is ÄregpT q :“ logpregpT qq ´ 2 log log T ´
plogpregp1500qq ´2 log log 1500q. The solid blue, green and red lines represent the mean ÄregpT q of the

Algorithm 1 with unknown gp¨q and ✓0, unknown gp¨q but known ✓0, and known gp¨q but unknown ✓0

respectively over 30 independent runs. The light color areas around those solid lines depict the stan-

dard error of our estimation of logpregpT qq´2 log log T . The dashed black lines in paq´pcq represents

the benchmark whose slopes are equal to 2m`1
4m´1 with m P t2, 4, 6u.

x P r´1, 1s such that p�kpxq “ ´rxJ
t

p✓k (The interval r´1, 1s contains the true support of �pxq [-0.5,

0.5], since in reality, we might only know a range of the true support). Then, we do a transformation

of variable x to xpyq “ ´2 ¨ exppyq{p1 ` exppyqq ` 1 and solve y as the root of p�kpxpyqq ` rxJ
t

p✓k “ 0

by using Newton’s method starting at y “ 0. Finally, we set x “ ´2 ¨ exppyq{p1 ` exppyqq ` 1 as
p�´1
k p´rxJ

t
p✓kq and offer pt according to the algorithm.

For any given m P t2, 4, 6u, under the three covariate settings discussed above, we input m into

the algorithm, select the corresponding kernel and repeat Algorithm 1 for 30 times until T “ 6300.

For each T P r1500, 2000, 3100, 4000, 5000, 6300s, we record the cumulative regret regpT q. For the

first two covariate settings, recall from Theorem 1 that the regret regpT q À T
2m`1
4m´1 log2 T . Thus, we

plot ÄregpT q against logpT q ´ logp1500q in Figure 1, 7, 8, where ÄregpT q :“ logpregpT qq ´ 2 log log T ´
plogpregp1500qq ´ 2 log log 1500q;

From Figures 1, 7, 8, we conclude that under all settings, the rates of the empirical regrets’ in-
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crements produced by Algorithm 1 (as shown by the solid blue lines) do not exceed their theoretical

counterparts given in Theorems 1 and 2 (as shown by the dashed black lines). In many cases, the

growth rates of the empirical regrets are very close to those of the theoretical lines. This demonstrates

the tightness of our theoretical results. Moreover, as all the solid lines have similar growth rates, we

show that Algorithm 1 is robust to the estimation of ✓0 and gp¨q. This is further proved in Appendix G,

where we directly plot regpT q for all the settings discussed here. See Appendix G for more plots and

discussions.

5.2 Comparison with other methods

In this subsection, we provide numerical studies which illustrate differences between our methods

and two highly related prior arts (‘RMLP-2’ and ‘Bandit’) using both synthetic and real data. Here,

‘RMLP-2’ is the policy proposed in Javanmard and Nazerzadeh [2019] that solves the same problem

as ours except that the noise distribution falls in a parametric function class. In addition, we denote the

policy proposed in Kleinberg and Leighton [2003] as ’Bandit’, which leverages a variant of UCB algo-

rithm under non-parametric noise distribution that achieves Op
?
T q regret without modeling covariate

information.

We first use synthetic data to illustrate the efficiency of our method over ‘RMLP-2’ and ‘Bandit’.

For each smoothness degree m “ t2, 4, 6u, we generate our data following the same way given in §5.1,

except that we only generate the distribution of xt according to the first option discussed in §5.1. We

illustrate the performance of our method against those two prior arts in the following figures. Here we

follow Algorithm 4 which uses a data-driven way to determine m before every episode. For RMLP-2,

since there is no way the algorithm knows the true noise distribution, we instead assume the noise falls

into a Gaussian distribution when executing the algorithm.

We see from the simulation results that the regret we achieved is much smaller than those two

benchmarks. As for the comparison with RMLP-2, our method is robust to the mis-specification of the

parametric function class since our algorithm can adapt to all functions in the non-parametric class.

For the comparison with ’Bandit’, we see that only using the non-parametric bandit algorithm without

considering the contextual information (heterogeneity of product) will lose much efficiency in gaining
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(a) (b) (c)

Figure 2: Regret Comparison between our methods and two benchmarks (RMLP-2 and Bandit). From

the left to the right, the true underlying degree of smoothness is m “ t2, 4, 6u respectively. The x-

axis denotes the time stamp T ranges from 1 „ 12000, and the y-axis denotes the regret at the time

T defined in (6). We repeat the experiment 30 times and record the averaged regrets (solid lines)

and standard errors (light areas) of every policy. The blue line denotes the regret of our policy (in

Algorithm 1) with knowing degree of smoothness m and the orange line represents the regret of our

policy (given in Algorithm 4) without knowing degree of smoothness m. The green and red lines are

the regrets of implementing ’RMLP-2’ and ’Bandit’ policy respectvely.

revenue.

5.2.1 Real Application

Next, we leverage a simulation based on the real data to further illustrate the merits of our Algorithm

over ’RMLP-2’ and ’Bandit’.

We use the real-life auto loan dataset provided by the Center for Pricing and Revenue Management

at Columbia University. This dataset is used by several related works [Phillips et al., 2015, Ban and

Keskin, 2020, Luo et al., 2021, Wang et al., 2020a] and many others. The dataset contains 208, 085

auto loan applications received from July 2002 to November 2004. Some features such as the amount

of loan, the borrower’s information is contained in that dataset. We adopt the feature selection in

the same way with Ban and Keskin [2020], Luo et al. [2021], Wang et al. [2020a] and consider the
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Figure 3: Comparison between our policy and ‘RMLP-2’ and ‘Bandit’ based on real data application.

following four features: the loan amount approved, FICO score, prime rate and competitor’s rate. As

for the price variable, we also computed it in the same way with the aforementioned literature, where

pt “ Monthly Payment ¨ ∞Term
t“1 p1 ` Rateq´t ´ Loan Amount. The rate is set as 0.12%, which is an

approximate average of the monthly London interbank rate for the studied time period. Moreover, this

dataset also records purchasing decision of the borrowers given the price set by the lender. For more

details on this dataset, please refer to Phillips et al. [2015], Ban and Keskin [2020].

Note that one is not able to obtain online responses to any algorithms, thus, we follow the calibra-

tion idea proposed in Ban and Keskin [2020], Luo et al. [2021], Wang et al. [2020b] to first estimate the

binary choice model and leverage it as the ground truth to conduct online numerical experiments. To

be more specific, we first scale all variables into the scale of r0, 1s (since the prediction results of sin-

gle index model won’t be affected by scale of the covariates). We randomly sample 5000 data points,

estimate ✓0 and F using semi-parametric estimation tools from these data. We next treat them as the

underlying true parameters for our binary choice model stated in (3). Given these key components, the

remaining experiments remain almost the same as discussed in §5.1 and §5.2, except that here we set

✓0, distribution F p¨q as the estimated one given above and sample xt from those four features above.

We set B0 “ 4, `0 “ 200 and conduct Algorithm 4 (in this algorithm, we use cross-validation to select

m at the beginning of every episode, details are given in Algorithm 5).

We next compare Algorithm 4 with ‘RMLP-2’ and ‘Bandit’ policies. The details are given in

Figure 3. To summarize, our policy outperforms the RMLP-2 [Javanmard and Nazerzadeh, 2019] and
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non-parametric bandit policy [Kleinberg and Leighton, 2003] in terms of both the regret performance

and the ability to adapt to different noise distributions.

6 Conclusion

In this paper, we study the contextual dynamic pricing problem where the market value is linear in

features, and the market noise has unknown distribution. We propose a policy that combines semi-

parametric statistical estimation and online decision making. Our policy achieves near optimal regret,

and is close to the regret lower bound where the market noise distribution belongs to a parametric

class. We further generalize these results to the case when the product features satisfy the strong

mixing condition. The practical performance of the algorithm is proved by extensive simulations.

There are several directions worth exploring in the future. First, we conjecture that the estimation

accuracy of the market noise distribution F is crucial in the regret. Thus, within the function class

F P Cpmq, we conjecture that a tighter regret lower bound ⌦dpT 2m`1
4m´1 q can be achieved instead of

⌦dp
?
T q, namely, our procedure is optimal. Second, in this work, we consider a linear model for the

market value. In case a more complex model is appropriate, it’s possible to extend our methodology

to where the market value is nonlinear in product features, e.g. vt “ �p✓J
0 xtq ` zt or other structured

statistical machine learning model such as the additive model vt “ f1pxt1q`¨ ¨ ¨`fdpxtdq`zt. Finally,

it’s worth studying similar pricing problems with adversarial or strategic buyers, which is potentially

more suitable in some specific applications.
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M. Delecroix, W. Härdle, and M. Hristache. Efficient estimation in conditional single-index regression. Journal
of Multivariate Analysis, 86(2):213–226, 2003.

A. V. den Boer. Dynamic pricing and learning: historical origins, current research, and new directions. Surveys
in Operations Research and Management Science, 20(1):1–18, 2015.

A. V. den Boer and B. Zwart. Simultaneously learning and optimizing using controlled variance pricing. Man-
agement Science, 60(3):770–783, 2014.

A. V. den Boer and B. Zwart. Mean square convergence rates for maximum quasi-likelihood estimators. Stochas-
tic systems, 4(2):375–403, 2015.

31



J. Fan. On the optimal rates of convergence for nonparametric deconvolution problems. The Annals of Statistics,
pages 1257–1272, 1991.

J. Fan and I. Gijbels. Local polynomial modelling and its applications. Chapman and Hall, 1996.

J. Fan and R. Li. New estimation and model selection procedures for semiparametric modeling in longitudinal
data analysis. Journal of the American Statistical Association, 99(467):710–723, 2004.

J. Fan and Q. Yao. Nonlinear Time Series: Nonparametric and Parametric Methods. Springer, 2003.

J. Fan, N. E. Heckman, and M. P. Wand. Local polynomial kernel regression for generalized linear models and
quasi-likelihood functions. Journal of the American Statistical Association, 90(429):141–150, 1995.

N. Golrezaei, P. Jaillet, and J. C. N. Liang. Incentive-aware contextual pricing with non-parametric market noise.
arXiv:1911.03508, 2019.

N. Golrezaei, A. Javanmard, and V. Mirrokni. Dynamic incentive-aware learning: Robust pricing in contextual
auctions. Operations Research, 69(1):297–314, 2020.
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Supplement material for “ Policy Optimization Using
Semi-parametric Models for Dynamic Pricing”

A Addition Figures

(a) (b) (c)

Figure 7: Regret log-log plot in the setting with i.i.d. covariates with dependent entries. The remaining
caption is the same as Figure 1.

(a) (b) (c)

Figure 8: Regret log-log plot in the setting with strong mixing covariates. The remaining caption is
the same as Figure 1.

B Discussion
1. [Minimax Lower Bound] Our work shares a similar setting with Broder and Rusmevichien-

tong [2012], in which they study a general choice model with parametric structure and binary
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response, but without any covariates. A lower bound of order ⌦p
?
T q is established by con-

structing an ‘uninformative price’ in their work. To be more precise, an uninformative price is
a price that all demand curves (probability of successful sales) as offered price indexed by un-
known parameters intersect. Namely, the demands at this uninformative price are the same for
all unknown parameters. In addition, such price is also the optimal price with some parameters.
In this case, the price is uninformative because it doesn’t reveal any information on the true pa-
rameter. Intuitively, if one tries to learn model parameters, the only way is to offer prices that
are sufficiently far from the uninformative price (optimal price) which leads to a larger regret.

Borrowing the idea from Broder and Rusmevichientong [2012] and Javanmard and Nazerzadeh
[2019], we deduce that there exists an ‘uninformative price’ in the following class of models:
Consider a class of distributions F which satisfies Assumption 1:

F :“ tF� : � ° 0, F� “ F px{�qu.

Here, F is the c.d.f. of a known distribution with mean zero. Moreover, we assume the support
of F 1

� is contained in r´a, as (For instance, the class of distributions with density f�pxq “
4{p3�3qp� ´ xqkp� ` xqk ¨ It|x|§�u, k • 1 or f�pxq “ C� exp

´
´ �2

�2´x2

¯
¨ It|x|§�u with � § a

etc.)

Let � “ 1{� and multiply � on both sides of (2), which leads to

rvpxtq “ r�J
0 xt ` r↵0 ` rzt.

Here, rvt “ �vt, r�0 “ ��0, r↵0 “ �↵0 and rzt “ �zt. The distribution of rzt is F1, which
is denoted as F here for convenience. Next, in our sub-parameter class, we first let �0 “ 0
and fix a number ⇠ with F 1p⇠q ‰ 0. Then we choose a collection of tp�,↵0qu which satisfies
� “ 1{� “ p⇠ ` r↵0q. Following the same arguments as in Javanmard and Nazerzadeh [2019],
one can prove that p “ 1 is indeed an uninformative price. Since in the sub-parametric class
given above, all demand curves intersect at a point 1 ´ F p⇠q when p “ 1, and for a special
p�,↵0q “ p1{p⇠ ´ �p⇠qq,´�p⇠q{p⇠ ´ �p⇠qq, p “ 1 is the optimal price. Thus the ⌦p

?
T q lower

bound applies.

Remark 1. When we only consider explore-then-commit algorithms and offer price as pt “
p�´1
k p´xJ

t
p✓q ` xJ

t
p✓, with p�kpuq “ u ´ 1´ pFkpuq

pF p1qpuq , the optimality of pt reduces to the optimality of
estimating F p¨q, fp¨q and ✓. According to Stone [1980, 1982], Tsybakov [2008], the statistical
rates of our estimators on pF , pF p1q and p✓ are minimax optimal in every episode. Thus, our posted
price is optimal constrained on this type of policies. However, if we consider a general policy
class, there is currently no lower bound for feature-based pricing given unknown noise distri-
bution with finite smoothness degree besides the general

?
T lower bound mentioned above. It

remains an open problem whether our upper bound is tight for finite m.
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2. [The adversarial setting] We note that in some real applications with potentially adversarial
contexts, the covariance of the feature vectors might be singular or ill-conditioned (e.g. due
to repeated buyers recorded in xt). However, our algorithm can be adjusted to cope with such
situations. The key observation here is that this assumption is only required in our exploration
phase: For any k, we allow arbitrary xt in the k-th exploitation phase, since we have already
obtained accurate estimators p✓k and pgkp¨q for ✓0 and gp¨q. Therefore, whenever there is a sign of
a repeated buyer, we can modify our algorithm slightly by using the pgk´1p¨q in the last episode to
offer a price, and then move this buyer to the corresponding exploitation phase. If the number of
similar buyers in the k-th episode is `rk with any r † 1 and we assume the remaining buyers are
sampled i.i.d. from a distribution, we are still able to proceed by only arranging some contexts
with similar buyers into the exploitation phase directly. This matches with some real situation
in online shopping where personal preference features will be recorded by the seller in order to
make recommendation in the future.

3. [Online inference of the demand] Recently, Wang et al. [2020] use a de-biased approach to
quantify the uncertainty of the demand function in a parametric class which offers new insight
to the field of statistical decision making.
In our work, we combine the non-parametric statistical estimation and online decision making
to derive a policy that maximize the seller’s revenue. We next also briefly discuss our intuition
on depicting the uncertainty of the demand curve in a non-parametric class. Recall the demand
curve given in (4). For given p,x, and estimators pFk, p✓k, in the k-th exploitation phase, deriving
asymptotic behavior of the demand curve reduces to deriving the asymptotic behavior of our
estimator on pFkp¨q. This is due to the statistical rate of pFkp¨q dominates that of p✓k. According
to asymptotic behavior of the kernel regression [Fan and Gijbels, 1996, Carroll et al., 1997, Fan
et al., 1998], we have the following pointwise confidence interval for pF :

a
|Ik|hkp pFkpuq ´ F puq ´ hm

k mBpuqq Ñ N
´
0,

ª
K2pxqdx�2puq{fpuq

¯
,

where fp¨q is the density of pt ´ xJ
t ✓0 with pt „ Unifp0, Bq and we recall that |Ik| is the length

of our k-th exploration phase. In addition, m “
≥
Kpxqxmdx, Bpuq “ F pmqpuqfpuq{m! `

F pm´1qpuqf p1qpuq{pm´1q!`¨ ¨ ¨`F p1qpuqf pm´1qpuq{pm´1q!, and �2puq “ Varpyt | pt´xJ
t ✓0 “

uq. Thus, for any given p,x, and an p✓k, we are able to derive the pointwise asymptotic behavior
of our demand curve as follows:

a
|Ik|hkpp pFkpp ´ xJ p✓kq ´ pF pp ´ xJ✓0q ´ phm

k mBpp ´ xJ✓0qq

Ñ N

ˆ
0, p2

ª
K2psqds�2pp ´ xJ✓0q{fpp ´ xJ✓0q

˙
.

The data-driven confidence interval for our demand curve given in (4) can be established via
bootstrap and the undersmoothing technique (to remove the bias), see e.g. Hall [1992], Horowitz
[2001] for more details. Similarly, uniform statistical inference results can also be established
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by using similar non-parametric tools, see e.g. Eubank and Speckman [1993], Neumann and
Polzehl [1998], Hall and Horowitz [2013] for more details. We will leave the detailed proof for
future work.

4. In some situations, it might be difficult for retailers to adopt a uniform pricing strategy even
during a short period of time. An alternative strategy might be the following: As in Algorithm
1, we divide the time horizon into episodes according to the doubling strategy. However, now
we no longer divide an episode into explore-then-exploitation phases. Instead, at the beginning
of each episode k ° 1, we leverage all the data tpt,xt, ytu collected from the previous episode
to estimate ✓0 and F . Then, we compute pgk from the estimates pFk and pF p1q

k , and perform
exploitation directly throughout this episode. This procedure can help us to get rid of uniform
exploration in practice. We leave the theoretical guarantees for this refined algorithm as our
future work.

B.1 Extension: High-dimensional Feature-based Dynamic Pricing
Algorithm 1 can be naturally extended to the high-dimensional setting, where ✓0 P Rd, d can be large
compared to T , while }✓0}0 § s for a relatively small sparsity s. This happens in applications when a
large amount of covariate information is available, and the actual market value only depends on some
essential factors. One way of extension is the following: at each episode, we can replace estimation of
p✓k in (7) with the two steps below.

Step 1. Let

r✓k “ argmin
✓

Lkp✓q ` �pp✓q, (1)

where

Lkp✓q :“ 1

|Ik|
ÿ

tPIk
pByt ´ ✓Jrxtq2, pp✓q “

pÿ

j“1

pp|✓pjq|q

for some penalty function pp¨q. As in Zhao and Yu [2006], Fan and Li [2001], Zhang [2010], by
choosing different pp¨q such as in the `1, SCAD or MCP penalty, under suitable conditions such as
irrepresentable condition, variable selection consistency is achieved with high probability.

Step 2. Let pSk “ supppr✓kq, we then refit the least squares (7) on pSk:

p✓k “ argmin
suppp✓qÑ pSk

Lkp✓q. (2)

Then the conclusions of Lemma 2 hold with high probability.
After Step 2, we continue the remaining steps of Algorithm 1 in the episode. In fact, if we can

learn the support of ✓0, we essentially translate the problem into a low-dimensional one, and we can
prove that Algorithm 1 achieves a regret upper bound of rOppTsq 4m`1

2m´1 q if F P Cpmq (or OppTsq1{2q if F
is super smooth).
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C Proof under the time-independent feature setting

C.1 Proof of Lemma 1
First, recall that RX :“ supxPX }x}2, we deduce that xt is also subgaussian with norm upper bounded
by  x “ RX . This fact is useful in later proofs as well. Now according to (7), for the k-th episode, our
loss function Lkp✓q is defined as

Lkp✓q “ 1

|Ik|
ÿ

tPIk
pByt ´ ✓Jrxtq2. (3)

For notational convenience, denote n “ |Ik|. Then the gradient and Hessian of Lkp✓q is given by

r✓Lkp✓q “ 1

n

ÿ

tPIk
2p✓Jrxt ´ Bytqrxt, (4)

r2
✓Lkp✓q “ 1

n

ÿ

tPIk
2rxtrxJ

t . (5)

Let p✓k be the global minimizer of Lkp✓q. We do a Taylor expansion of Lkpp✓kq at ✓0:

Lkpp✓kq ´ Lkp✓0q “ xrLkp✓0q, p✓k ´ ✓0y ` 1

2
xp✓k ´ ✓0,r2

✓Lkpr✓qpp✓k ´ ✓0qy. (6)

Here r✓ is a point lying between p✓k and ✓0. As p✓k is the global minimizer of loss (3), we have

xrLkp✓0q, p✓k ´ ✓0y ` 1

2
xp✓k ´ ✓0,r2

✓Lkpr✓qpp✓k ´ ✓0qy § 0

which implies

xp✓k ´ ✓0,
1

n

ÿ

tPIk
rxtrxJ

t pp✓k ´ ✓0qy § xrLkp✓0q,✓0 ´ p✓ky §
?
d}rLkp✓0q}8 ¨ }✓0 ´ p✓k}2. (7)

In order to achieve `2-convergence rate of p✓k, we separate our following analysis into two steps.
Step I: In this step, we lower bound the minimum eigenvalue of

⌃k :“
1

n

ÿ

tPIk
rxtrxJ

t . (8)

using concentration inequalities.
Since ⌃k is an average of n i.i.d. random matrices with mean ⌃ “ ErrxtrxJ

t s and that trxtu are sub-
Gaussian random vectors, according to Remark 5.40 in Vershynin [2012], there exist c1 and C ° cmin

such that with probability at least 1 ´ 2e´c1t2 ,

}⌃k ´ ⌃} § maxt�, �2u, where � :“ C

c
d ` 1

n
` t?

n
. (9)
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Here c1, C are both constants that are only related to sub-Gaussian norm of rxt. Now we plug in t “
cmin

?
n{4 and c0 “ 16C2{c2min, then as long as n • c0pd`1q, with probability at least 1´2e´c1c2minn{16,

pcmin{2q ¨ I § ⌃k. (10)

Step II: In this step, we provide an upper bound of }r✓Lkp✓0q}8.
First, we prove Err✓Lkp✓0qs “ 0. By definition we have

r✓Lkp✓0q “ 1

n

ÿ

tPIk
2p✓J

0 rxt ´ Bytqrxt

We take the conditional expectation of r✓Lkp✓0q and obtain

Err✓Lkp✓0q | rxts “ 1

n

ÿ

tPIk
2Erp✓J

0 rxt ´ Bytq | rxtsrxt.

By our definition on yt,

Er✓J
0 rxt ´ Byt | rxts “ ✓J

0 rxt ´ ErBItpt§vtu | rxts
“ ✓J

0 rxt ´ ErErBItpt§vtu | vts | rxts
“ ✓J

0 rxt ´ B ¨ Ervt{B | rxts “ 0,

where the third equality follows from pt „ Uniformp0, Bq. After finally taking expectation with
respective to rxt we deduce that Err✓Lkp✓0qs “ 0.

Next, we get an upper bound of }r✓Lkp✓q}8. By (4), we have every entry of r✓Lkp✓0q is mean
zero. In addition, according to our Assumption 2, we have xt are i.i.d. sub-Gaussian random vectors
with sub-Gaussian norm  x. Thus, we have maxiPrds }xt,i} 2 §  x. On the other hand, rxJ

t ✓0 ´ Byt is
bounded by the constant RXR⇥ ` B. Therefore,

P
`
|2p✓J

0 rxt ´ Bytqrxt,i| • u
˘

§ P
`
2pRXR⇥ ` Bq|rxt,i| • u

˘
§ 2 exp

´ ´u2

8 2
xpRXR⇥ ` Bq2

¯

for i P r2 : pd ` 1qs, which implies that 2p✓J
0 rxt ´ Bytqrxt,i, i P r2 : pd ` 1qs are sub-Gaussian random

variables with variance proxy 2 xpRXR⇥`Bq. Moreover, We can also obtain }2p✓J
0 rxt´Bytqrxt,1} 2 §

2pRXR⇥ ` Bq by Hoeffding’s inequality.
We now take the union bound of all entries of r✓Lkp✓0q:

P
`
}r✓Lkp✓0q}8 • t

˘
§ 2pd ` 1q exp

´ ´t2

8maxt 2
x, 1upRXR⇥ ` Bq2

¯
(11)

“ 2 exp
´ ´nt2

8maxt 2
x, 1upRXR⇥ ` Bq2 ` logpd ` 1q

¯
. (12)
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As we assume n • d ` 1, by taking t “ 4maxt x, 1upRXR⇥ ` Bq
a
log n{n in (12), then with

probability 1 ´ 2{n, we have

}r✓Lkp✓0q}8 § 4maxt x, 1upRXR⇥ ` Bq
c

log n

n
. (13)

Finally, combining (7), (10) and (13), we obtain that with probability at least 1 ´ 2e´c1c2min|Ik|{16 ´
2{|Ik|,

}p✓k ´ ✓0}2 § 8maxt x, 1upRXR⇥ ` Bq
cmin

d
pd ` 1q log |Ik|

|Ik| .

C.2 Proof of Lemma 2
For the following analysis, we fix any episode index k satisfying the conditions of Lemma 2. It’s easy
to verify that for any k • plogp

?
T ´ log `0qq{ log 2, ⇥k Ä ⇥0. Therefore, all the assumptions hold for

✓ P ⇥k. Our goal is to prove (18) holds with high probability on the k-th episode.
Now we have the i.i.d. samples twtp✓q :“ pt ´ rxJ

t ✓, ytutPIk from some distribution Pwp✓q,y.
According to the previous notations, the marginal distribution Pwp✓q has density f✓puq. Moreover,
r✓puq :“ Eryt |wtp✓q “ us. We’re interested in bounding the quantity supuPI,✓P⇥k

|prkpu,✓q ´ r✓0puq|,
which leads to the desired conclusion of the lemma.

For notational simplicity, let n “ |Ik| be the length of the exploration phase. Recall that prkpu,✓q “
hkpu,✓q{fkpu,✓q, where

hkpu,✓q “ 1

nbk

ÿ

tPIk
Kpwtp✓q ´ u

bk
qYt, fkpu,✓q “ 1

nbk

ÿ

tPIk
Kpwtp✓q ´ u

bk
q.

Here, bk ° 0 is the bandwidth (to be chosen), and Kp¨q is some kernel function.
Note that r✓puq “ h✓puq

f✓puq , we can write the difference between prk and r as

prkpu,✓q ´ r✓puq “ hkpu,✓q
fkpu,✓q ´ h✓puq

f✓puq “ hkpu,✓q ´ h✓puq
fkpu,✓q ` h✓puq ¨ r 1

fkpu,✓q ´ 1

f✓puqs. (14)

The following lemmas are used as tools to control the right hand side of the above equation. The proof
of the lemmas can be found in §F.1 and F.2.

Lemma 1. Under Assumptions 3 – 5, for any bk § 1,

sup
uPI,✓P⇥k

|Ehkpu,✓q ´ h✓puq| § Cp1q
x,Kb

m
k , (15)

sup
uPI,✓P⇥k

|Efkpu,✓q ´ f✓puq| § Cp1q
x,Kb

m
k . (16)

Here, Cp1q
x,K “ lf

≥ |smKpsq|ds
pm´1q! .
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Lemma 2. Under Assumptions 3 – 5, @bk § 1, � P r4e´nbk{3, 12q, as long as nbk • maxt132dplog 1
bk

`
1q, 3 log nu, either of the following inequalities holds with probability at least 1 ´ �:

sup
uPI,✓P⇥k

|hkpu,✓q ´ Ehkpu,✓q| § Cp2q
x,K

c
log n

nbk

´?
d `

a
log 1{�

¯
, (17)

sup
uPI,✓P⇥k

|fkpu,✓q ´ Efkpu,✓q| § Cp2q
x,K

c
log n

nbk

´?
d `

a
log 1{�

¯
. (18)

Here Cp2q
x,K “ lK

ˆ
8
?
22maxt2f̄

≥
K2ds, 2f̄

≥
K 12ds, 23K̄, 1u`

60p6?
log 2`?

c0q
c0

a
1 ` R2

X maxt�z, maxt1, xupB`RXR⇥q
cmin

u
˙

(Numerical constants are not optimized).

Now according to (14), we have

sup
uPI,✓P⇥k

|prkpu,✓q ´ rpuq| § sup
uPI,✓P⇥k

|hkpu,✓q ´ h✓puq|
|f✓puq ´ |fkpu,✓q ´ f✓puq||

` sup
uPI,✓P⇥k

h✓puq
f✓puq ¨ |fkpu,✓q ´ f✓puq|

|f✓puq ´ |fkpu,✓q ´ f✓puq||

§ supuPI,✓P⇥k
|hkpu,✓q ´ h✓puq|

c ´ supuPI,✓P⇥k
|fkpu,✓q ´ f✓puq| (19)

` sup
uPI,✓P⇥k

r✓puq ¨ supuPI,✓P⇥k
|fkpu,✓q ´ f✓puq|

c ´ supuPI,✓P⇥k
|fkpu,✓q ´ f✓puq|

§ supuPI,✓P⇥k
|hkpu,✓q ´ h✓puq|

c ´ supuPI,✓P⇥k
|fkpu,✓q ´ f✓puq| ` supuPI,✓P⇥k

|fkpu,✓q ´ f✓puq|
c ´ supuPI,✓P⇥k

|fkpu,✓q ´ f✓puq|
(20)

as long as we ensure that supuPI,✓P⇥k
|fkpu,✓q ´ f✓puq| § c

2 .

Let bk “ n´ 1
2m`1 . By letting Bx,K “ maxt4Cp3q

x,K

8{c8, p2c0q4, p2Cbq4u, we can verify that for any
qualifying episode k, nbk • maxtCbdplog 1

bk
` 1q, 3 log nu. Combining (15) and (17), we have that

@� P r4 expp´n
2m

2m`1 {3q, 12q, with probability at least 1 ´ �,

sup
uPI,✓P⇥k

|hkpu,✓q ´ h✓puq| § sup
uPI,✓P⇥k

|hkpu,✓q ´ Ehkpu,✓q| ` sup
uPI,✓P⇥k

|Ehkpu,✓q ´ h✓puq|

§ Cp1q
x,Kn

´ m
2m`1 ` Cp2q

x,K

c
log n

nbk

´?
d `

a
log 1{�

¯

§ Cp3q
x,Kn

´ m
2m`1

a
log n

´?
d `

a
log 1{�

¯
.
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Here, Cp3q
x,K “ Cp1q

x,K ` Cp2q
x,K . Similarly, with probability at least 1 ´ �,

sup
uPI,✓P⇥k

|fkpu,✓q ´ f✓puq| § Cp3q
x,Kn

´ m
2m`1

a
log n

´?
d `

a
log 1{�

¯
.

It’s easily seen that as long as n
m

2m`1 {?
log n • 2Cp3q

x,K

c p
?
d `

a
log 1{�q, The right hand side of the

above inequality is upper bounded by c{2, which guarantees that

sup
uPI,✓P⇥k

|fkpu,✓q ´ f✓puq| § c

2
.

(Remark: From the conditions in the lemma, by letting Bx,K “ maxt4Cp3q
x,K

8{c8, p2c0q4, p2Cbq4u and
B1

x,K “ mint
`

c

4Cp3q
x,K

˘2
, 1{3u, we have

n
m

2m`1 {
a
log n • 4Cp3q

x,K

c

?
d, n

m
2m`1 {

a
log n • 4Cp3q

x,K

c

c
log

1

�
,

which lead to n
m

2m`1 {?
log n • 2Cp3q

x,K

c p
?
d `

a
log 1{�q.)

Plugging the above results into inequality (20) gives

sup
uPI,✓P⇥k

|prkpu,✓q ´ r✓puq| § 4Cp3q
x,K

c
n´ m

2m`1

a
log n

´?
d `

a
log 1{�

¯
. (21)

Next, we proceed to upper bound the quantity suptPI,✓P⇥k
|r✓puq ´ r✓0puq|. We know that for any

✓ P ⇥k,

r✓puq “ ErYt | pt ´ rxJ
t ✓ “ us “ ErErYt | rxt, pts | pt ´ rxJ

t ✓ “ us “ Err✓0ppt ´ rxJ
t ✓0q | pt ´ rxJ

t ✓ “ us.

Moreover from the Lipchitz property of r✓0 ,

sup
xPX ,✓P⇥k

|r✓0ppt´rxJ✓0q´r✓0ppt´rxJ✓q| § lrRXRk “ lrRX ¨10maxt x, 1upB ` RXR⇥q
cmin

c
pd ` 1q log n

n
.

Therefore,

sup
uPI,✓P⇥k

|r✓puq ´ r✓0puq| § E
”

sup
xPX ,✓P⇥k

|r✓0ppt ´ rxJ✓0q ´ r✓0ppt ´ rxJ✓q| | pt ´ rxJ
t ✓ “ u

ı
§ Cp4q

x,K

c
d log n

n
,

(22)

where Cp4q
x,K “ lrRX ¨ 10maxt x,1upB`RXR⇥q

cmin
.

Finally, after combing our results in (21)-(22), we claim our conclusion for Lemma 2.
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C.3 Proof of Lemma 3
Following the same settings as in the proof of Lemma 2, we now aim at bounding the quantity
supuPI,✓P⇥k

|prp1q
k pu,✓q ´ r1

✓0puq|, where

rp1q
k pu,✓q “ hp1q

k pu,✓qfkpu,✓q ´ hkpu,✓qf p1q
k pu,✓q

f 2
k pu,✓q ,

hkpu,✓q “ 1

nbk

ÿ

uPIk
Kpwtp✓q ´ u

bk
qYt, fkpu,✓q “ 1

nbk

ÿ

tPIk
Kpwtp✓q ´ u

bk
q,

hp1q
k pu,✓q “ ´1

nb2k

ÿ

tPIk
K 1pwtp✓q ´ u

bk
qYt, f p1q

k pu,✓q “ ´1

nb2k

ÿ

tPIk
K 1pwtp✓q ´ u

bk
q.

Similar to the proof of Lemma 2, we will bound supuPI,✓P⇥k
|prp1q

k pu,✓q´r1
✓puq| and supuPI,✓P⇥k

|r1
✓puq´

r1
✓0puq| separately. First, notice that

r1
✓puq “ h1

✓puqf✓puq ´ f 1
✓puqh✓puq

f 2
✓puq ,

we can bound supuPI,✓P⇥k
|prp1q

k pu,✓q ´ r1
✓puq| from the following four terms: supuPI,✓P⇥k

|fkpu,✓q ´
f✓puq|, supuPI,✓P⇥k

|hkpu,✓q ´ h✓puq|, supuPI,✓P⇥k
|f p1q

k pu,✓q ´ f 1
✓puq| and supuPI,✓P⇥k

|hp1q
k pu,✓q ´

h1
✓puq|. In fact, we can upper bound the first two terms from Lemma 1 and 2. The lemmas below help

us bound the last two terms. The proof can be found in §F.3 and F.4.

Lemma 3. Given Assumptions 3-5, for any bk § 1,

sup
uPI,✓P⇥k

|Ehp1q
k pu,✓q ´ h1

✓puq| § Cp5q
x,Kb

m´1
k , (23)

sup
uPI,✓P⇥k

|Ef p1q
k pu,✓q ´ f 1

✓puq| § Cp5q
x,Kb

m´1
k . (24)

Here, Cp5q
x,K “ lf

pm´2q!
≥

|Kpsqsm´1|ds.

Lemma 4. Given assumptions 3, 4 and 5, @bk P r 1n , 1s, � P r4e´nbk{3, 12q, either of the following
inequalities holds with probability at least 1 ´ �:

sup
uPI,✓P⇥k

|hp1q
k pu,✓q ´ Ehp1q

k pu,✓q| § Cp2q
x,K

d
log n

nb3k

´?
d `

a
log 1{�

¯
, (25)

sup
uPI,✓P⇥k

|f p1q
k pu,✓q ´ Ef p1q

k pu,✓q| § Cp2q
x,K

d
log n

nb3k

´?
d `

a
log 1{�

¯
. (26)
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Here Cp2q
x,K “ lK

ˆ
8
?
22maxt2f̄

≥
K2ds, 2f̄

≥
K 12ds, 23K̄, 1u`

60p6?
log 2`?

c0q
c0

a
1 ` R2

X maxt�z, maxt1, xupB`RXR⇥q
cmin

u
˙

(Numerical constants are not optimized).

Now let bk “ n´ 1
2m`1 . Combining (23) and (25), we obtain that @� P r4 expp´n

2m
2m`1 {3q, 12q, with

probability at least 1 ´ �,

sup
uPI,✓P⇥k

|hp1q
k pu,✓q ´ h1

✓puq| § sup
uPI,✓P⇥k

|hp1q
k pu,✓q ´ Ehp1q

k pu,✓q| ` sup
uPI,✓P⇥k

|Ehp1q
k pu,✓q ´ h1

✓puq|

§ Cp5q
x,Kn

´ m´1
2m`1 ` Cp2q

x,K

d
log n

nb3k

´?
d `

a
log 1{�

¯

§ Cp6q
x,Kn

´ m´1
2m`1

a
log n

´?
d `

a
log 1{�

¯

Here, Cp6q
x,K “ Cp5q

x,K ` Cp2q
x,K . Similarly, with probability at least 1 ´ �,

sup
uPI,✓P⇥k

|f p1q
k pu,✓q ´ f 1

✓puq| § Cp6q
x,Kn

´ m´1
2m`1

a
log n

´?
d `

a
log 1{�

¯
.

Recall that when n
m

2m`1 {?
log n • 2Cp3q

x,K

c p
?
d `

a
log 1{�q, we have

sup
uPI,✓P⇥k

|fkpu,✓q ´ f✓puq| § c

2
, sup

uPI,✓P⇥k

|hkpu,✓q ´ h✓puq| § c

2
.

Moreover, we have

sup
uPI,✓P⇥k

maxt|h✓puq|, |f✓puq|, |f 1
✓puq|u § f̄ , sup

uPI,✓P⇥k

|h1
✓puq| “ sup

uPI,✓P⇥k

|f 1
✓puqr✓puq`f✓puqr1

✓puq| § lf`lrf̄ .

Therefore, from the definition of rp1q
k pu,✓q and r1

✓puq, we have

sup
uPI,✓P⇥k

|rp1q
k p✓, uq ´ r1

✓puq|

§ sup
uPI,✓P⇥k

ˇ̌
ˇ̌rh1

✓puqf✓puq ´ h✓puqf 1
✓puqs

„
1

fkpu,✓q2 ´ 1

f✓puq2
⇢ˇ̌

ˇ̌

` sup
uPI,✓P⇥k

ˇ̌
ˇ̌ 1

fkpu,✓q2 trhp1q
k pu,✓qfkpu,✓q ´ hkpu,✓qf p1q

k pu,✓qs ´ rh1
✓puqf✓puq ´ h✓puqf 1

✓puqs
ˇ̌
ˇ̌

§rlf f̄ ` plr ` 1qf̄ 2s ¨ sup
uPI,✓P⇥k

ˇ̌
ˇ̌fkpu,✓q2 ´ f✓puq2
fkpu,✓q2f✓puq2

ˇ̌
ˇ̌

` sup
uPI,✓P⇥k

1

fkpu,✓q2 |php1q
k pu,✓q ´ h1

✓puqqfkpu,✓q ` h1
✓puqpfkpu,✓q ´ f✓puqq

11



´ pf p1q
k pu,✓q ´ f 1

✓puqqhkpu,✓q ´ f 1
✓puqphkpu,✓q ´ h✓puqq|

§rlf f̄ ` plr ` 1qf̄ 2s ¨ sup
uPI,✓P⇥k

5
2f✓puq|fkpu,✓q ´ f✓puq|

fkpu,✓q2f✓puq2

` sup
uPI,✓P⇥k

1

fkpu,✓q2 r sup
uPI,✓P⇥k

|fkpu,✓q| ¨ |hp1q
k pu,✓q ´ h1

✓puqq| ` sup
uPI,✓P⇥k

|h1
✓puq| ¨ |fkpu,✓q ´ f✓puq|

` sup
uPI,✓P⇥k

|hkpu,✓q| ¨ |f p1q
k pu,✓q ´ f 1

✓puq| ` sup
uPI,✓P⇥k

|f 1
✓puq| ¨ |hkpu,✓q ´ h✓puq|s.

§Cp7q
x,Kn

´ m´1
2m`1

a
log n

˜
?
d `

c
log

1

�

¸
. (27)

when n
m

2m`1 {?
log n • 2Cp3q

x,K

c p
?
d `

a
log 1{�q. Here

Cp7q
x,K “

`10
c3

` 4

c2
˘
rlf pf̄ ` 1q ` plr ` 1qf̄ 2sCp3q

x,K `
`8f̄
c2

` 4

c

˘
Cp6q

x,K .

Next, we bound the term supuPI,✓P⇥k
|r1

✓puq ´ r1
✓0puq|. In fact, according to our assumptions,

sup
uPI,✓P⇥k

|r1
✓puq ´ r1

✓0puq| § Cp4q
x,K

c
d log n

n
, (28)

where Cp4q
x,K “ lrRX ¨ 8maxt x,1upB`RXR⇥q

cmin
. Finally, after combing our results in (27)-(28), we claim

our conclusion for Lemma 3.

C.4 Proof of Lemma 4
We’ll need the following auxiliary result in order to prove the lemma. The proof of Lemma 5 can be
found in section F.5.

Lemma 5. Given conditions of Lemma 4, for any rxt P X and ✓ P ⇥0, ✓Jrxt P r�z, B ´ �zs.

Now we proceed to the proof. First, we seek an uniform upper bound for |p�kpuq ´ �puq| from
lemma 2 and 3. Recall that �puq “ u ´ 1´F puq

F 1puq and p�kpuq “ u ´ 1´ pFkpuq
pF p1q
k puq . It’s easy to see that the

desired uniform bound can be achieved on an interval where F 1 is bounded below from 0. For this
reason, we choose some positive constant cF 1 and some interval rlF 1 , rF 1s (we’ll specify how to choose
them later) such that

inf
uPrlF 1 ,rF 1 s

F 1puq • cF 1 . (29)

From Lemma 3 we know that if in addition |Ik| m´1
2m`1 • 2 rCx,K

cF 1

a
log |Ik|p

?
d `

a
log 1{�q, then

supuPrlF 1 ,rF 1 s | pF p1q
k puq ´ F 1puq| § cF 1

2 with probability at least 1 ´ 4�. In fact, the above condition is

12



ensured by

T •
ˆ
4 rCx,K

cF 1

˙8

plog T ` 2 log dq 4m´1
m´1 d

2m`1
m´1 .

Combining (29), Lemma 2 and Lemma 3, we deduce that with probability at least 1 ´ 6�,

sup
uPrlF 1 ,rF 1 s

|p�kpuq ´ �puq| § sup
uPrlF 1 ,rF 1 s

ˇ̌
ˇ
p1 ´ pFkpuqqpF 1puq ´ pF p1q

k puqq
pF p1q
k puqF 1puq

ˇ̌
ˇ

` sup
vPrlF 1 ,rF 1 s

ˇ̌
ˇ

pFkpuq ´ F puq
F 1puq

ˇ̌
ˇ

§ 2 rCx,K ` Cx,KcF 1

c2F 1
|Ik|´ m´1

2m`1

a
log |Ik|

˜
?
d `

c
log

1

�

¸
(30)

Next, we proceed to bound supuPr�z ,B´�zs |pgkpuq ´ gpuq| from supuPr�z ,B´�zs |p�´1
k p´uq ´ �´1p´uq|

for some properly defined p�´1
k . To be more specific, we will also let

r�z ´ B,´�zs Ñ �prlF 1 , rF 1sq X p�kprlF 1 , rF 1sq. (31)

The way we ensure the above is the following: First, according to the assumptions, we know
�1puq • c� ° 0, and that limuÑ�z´0 �puq “ �z, lim

uÑlp1q
F `0

�puq “ ´8 with lp1q
F “ inftu : F 1puq °

0u ° ´�z. We can deduce that

mF 1 “ inf
uPr�´1p�z´Bq,�´1p´�zqs

F 1puq ° 0.

Therefore, there exists some �F 1 ° 0 such that

inf
uPr�´1p�z´Bq´�F 1 ,�´1p´�zq`�F 1 s

F 1puq ° mF 1

2
.

Now let lF 1 “ �´1p�z ´ Bq ´ �F 1 , rF 1 “ �´1p´�zq ` �F 1 , cF 1 “ mF 1
2 . From the assumptions on �, we

have
�plF 1q § �z ´ B ´ c��F 1 , �prF 1q • ´�z ` c��F 1 .

Combining (30), we obtain that as long as

2 rCx,K ` Cx,KcF 1

c2F 1
|Ik|´ m´1

2m`1

a
log |Ik|

˜
?
d `

c
log

1

�

¸
§ c��F 1 ,

we can ensure (31). The above condition can be obtained from the fact that

T •
ˆ
4 rCx,K ` 2Cx,KcF 1

c2F 1c��F 1

˙8

plog T ` 2 log dq 4m´1
m´1 d

2m`1
m´1 .

13



Define
p�´1
k puq :“ inftv P rlF 1 , rF 1s : p�kpvq “ uu. (32)

We proceed to upper bound supuPr�z´B,´�zs |p�´1
k puq ´ �´1puq|. In fact, for any u, let v1 “ �´1puq,

v2 “ p�´1
k puq. Then

|v1 ´ v2| § 1{c� ¨ |�pv1q ´ �pv2q| “ 1{c� ¨ |p�kpv2q ´ �pv2q|
§ 1{c� ¨ sup

vPrlF 1 ,rF 1 s
|p�kpvq ´ �pvq|

§ 2 rCx,K ` Cx,KcF 1

c�c2F 1
|Ik|´ m´1

2m`1

a
log |Ik|

˜
?
d `

c
log

1

�

¸

with probability at least 1 ´ 6�.
Finally, since gpuq “ u`�´1p´uq and pgkpuq “ u` p�´1

k p´uq, we conclude Lemma 4 by choosing

B̄x,K “ max

#
Bx,K , p4

rCx,K

cF 1
q8,

ˆ
4 rCx,K ` 2Cx,KcF 1

c2F 1c��F 1

˙8

,
”C2

✓

�2v
p1 ` R2

X q
ı 2p4m´1q

2m`1

+
,

B̄1
x,K “ min

#
B1

x,K , p cF 1

4 rCx,K

q2, p c2F 1c��F 1

4 rCx,K ` 2Cx,KcF 1
q2

+
,

and

C̄x,K “ 2 rCx,K ` Cx,KcF 1

c�c2F 1
.

C.5 Proof of Theorem 1
In order to bound the total regret, we first try to bound the regret at each episode k. First, for all
k § tplogp

?
T ` `0q ´ log `0q log 2u ` 1, we bound the total regret during episode k by B`k. It can be

easily verified that ÿ

k§tplogp
?
T``0q´log `0q log 2u`1

Regretk § 2B
?
T .

We now turn to the case where k ° tplogp
?
T ` `0q ´ log `0q log 2u ` 1. Recall that the conditional

expectation of regret at time t given previous information and rxt is

ErRt | H̄t´1s “ Erp˚
t Ipvt•p˚

t q ´ ptIpvt•ptq | H̄ts “ ⇢tpp˚
t q ´ ⇢tpptq,

where H̄t “ �px1,x2, ¨ ¨ ¨ ,xt`1; z1, ¨ ¨ ¨ , ztq, and we denote ⇢tppq :“ pp1 ´ F pp ´ ✓J
0 rxtqq. Using

Taylor expansion and the first order condition induced by the optimality of p˚
t , we have

⇢tpptq “ ⇢tpp˚
t q ` 1

2
⇢2
t p⇠tqppt ´ p˚

t q2,

14



where ⇠t is some value lying between pt and p˚
t . Note that for any p P r0, Bs, |⇢2

t ppq| “ |2F 1pp ´
✓J
0 rxtq ´ pF 2pp ´ ✓J

0 rxtq| § 2lr ` Bl1r. Thus we deduce that

ErRt | H̄t´1s “ ⇢tpp˚
t q ´ ⇢tpptq § p2lr ` Bl1rqppt ´ p˚

t q2,

which further implies that the expected regret at time t is bounded by

ERt § 1

2
p2lr ` Bl1rqEppt ´ p˚

t q2 (33)

On the other hand,

ppt ´ p˚
t q2 § ppgkprxJ

t
p✓kq ´ gprxJ

t ✓0qq2

§ 2ppgkprxJ
t

p✓kq ´ gprxJ
t

p✓kqq2 ` 2pgprxJ
t

p✓kq ´ gprxJ
t ✓0qq2

:“ J1 ` J2.

We first analyze J2. In fact, define the event

Ek :“ t}p✓k ´ ✓0} § Rku,

then according to Lemma 1, PpEkq § 1 ´ 2e´c1c2min|Ik|{16 ´ 2{|Ik|. On Ek we have

J2 § 2

c�2
prxJ

t
p✓k ´ rxJ

t ✓0q2 § 2

c�2
R2

X }p✓k ´ ✓0}2 § 2

c�2
R2

XR
2
k.

Therefore,
EJ2 § 2

c�2
R2

XR
2
k ` 2B2p2e´c1c2min|Ik|{16 ` 2{|Ik|q. (34)

As for J1, on the event Ek, we deduce from Lemma 4 that for any

� P r4 expp´B̄x,K |Ik| 2m´2
2m`1 { log |Ik|, 1

2
s

, with probability at least 1 ´ 6�,

J1 § 2

„
sup

uPr�z ,B´�zs
ppgkpuq ´ gpuqq

⇢2

§ 2C̄2
x,K |IK |´ 2pm´1q

2m`1 log |IK |
ˆ?

d `
c
log

1

�

˙2

.

By choosing � “ 1{|Ik|, we have

EJ1 § 2C̄2
x,K |IK |´ 2pm´1q

2m`1 log |IK |
ˆ?

d `
c
log

1

�

˙2

` 2B2 ¨ 6�

§ 4C̄2
x,K |IK |´ 2pm´1q

2m`1 log |IK |
ˆ
d ` log |IK |

˙
` 12B2

|Ik| (35)
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Combining (33), (34) and (35), we obtain an upper bound for the expected regret at any time t
during episode k:

ERt § C̄p1q
x,K |IK |´ 2pm´1q

2m`1 log |IK |
ˆ
d ` log |IK |

˙
,

where C̄p1q
x,K “ 1

2p2lr ` Bl1rq ¨ r 4
c2�
R2

X p10maxt x,1upRXR⇥`Bq
cmin

q2 ` 20B2 ` 4C 12
x,Ks. We choose |Ik| “

rplkdq 2m`1
4m´1 s. The total regret during the k-th episode is

Regretk “
ÿ

tPIk
ERt `

ÿ

tPI 1
k

ERt

§ B|Ik| ` lk ¨ ERt

§ Bplkdqp2m`1q{p4m´1q ` B ` lk ¨ C̄p1q
x,Kplkdq´p2m´2q{p4m´1q log T pd ` log T q

§ p2B ` C̄p1q
x,Kql

2m`1
4m´1

k d
2m`1
4m´1 log T p1 ` log T {dq.

Finally, the total regret defined in (6) can be bounded by

Regret⇡pT q “
Kÿ

k“1

Regretk § 2B
?
T ` p2B ` C̄p1q

x,Kqd 2m`1
4m´1 log T p1 ` log T {dq

Kÿ

k“1

lp2m`1q{p4m´1q
k

§
„
2B ` 2lp2m`1q{p4m´1q

0 p2B ` C̄p1q
x,Kq

2p2m`1q{p4m´1q ´ 1

⇢
pTdq 2m`1

4m´1 log T

ˆ
1 ` log T

d

˙
. (36)

Here K “ rlog2 T s. The proof is then finished by letting C˚
x,K “ 2B ` 2lp2m`1q{p4m´1q

0 p2B`C̄p1q
x,Kq

2p2m`1q{p4m´1q´1
.

D Proof under the strong-mixing feature setting
In this section, we mainly present the proof of Theorem 2. The proof will be decomposed to the
following lemmas, and their proof is also attached.

Before stating the lemmas, we introduce the ↵-mixing condition.

Definition 1. [↵-mixing] For a sequence of random variables xi defined on a probability space
p⌦,X ,Pq, define

↵k “ sup
l•0

↵p�pxt, t § lq, �pxt, t • l ` kqq

in which

↵pA,Bq “ sup
APA,BPB

t|PpA X Bq ´ PpAqPpBq|u

16



From the definition of strong �-mixing, we see that it can infer strong ↵-mixing conditions. So in
this case, our sequence xt also follows strong ↵-mixing conditions, with ↵k § e´ck.

Lemma 6. [Parametric estimation under dependence] Under Assumption 2 and 6, there exist positive
constants c1 and c2 (only depend on constants given in Assumptions) such that when |Ik| • maxtc1pd`
1q, c2 log2 |Ik| log log |Ik|u, for any episode k within the horizon, with probability 1´4{|Ik|2, we obtain

}p✓k ´ ✓0}2 § 2

cmin

d
pd ` 1qp6W 2

x log |Ik| ` 6Wx log
2 |Ik| log log |Ik|q

Cw|Ik| ,

where Wx “ 2RX pRXR⇥ ` Bq.
The proof of Lemma 6 can be found in §F.6. Next, we present the following results on estimation

error of F p¨q and F 1p¨q:

Lemma 7. Suppose that Assumptions 3, 4, 5, 6 and 7 hold. Then there exist constants Bmx,K , B1
mx,K , Cmx,K

only depending on RX :“ supxPX }x}2 and constants within assumptions, such that as long as

T • Bmx,Kplog T ` 2 log dq 12m´3
m rpd ` 1q logpd ` 1qs 4m´1

m {d2,
we have for any k • tplogp

?
T``0q´log `0q{ log 2u`2, and � P r8 expp´|Ik| 2m

2m`1 {pB1
mx,K log2 |Ik|qq, 1{2s

with probability at least 1 ´ 2�,

sup
uPI,✓P⇥k

| pFkpu,✓q ´ F puq| § Cmx,K |Ik|´ m
2m`1 log |Ik|

´a
pd ` 1q logpd ` 1q log |Ik| `

c
2 log

8

�

¯
.

(37)

Here I “ r´�z, �zs and we choose the bandwidth bk “ |Ik|´ 1
2m`1 .

The proof of Lemma 7 can be found in §F.7.

Lemma 8. Suppose that Assumptions 3, 4, 5, 6 and 7 hold. Then there exist constants B̄mx,K , B̄1
mx,K , C̄mx,K

that depending only on RX :“ supxPX }x}2 and the constants within the assmptions such that as long
as

T • B̄mx,Kplog T ` 2 log dq 12m´3
m rpd ` 1q logpd ` 1qs 4m´1

m {d2,
for any k • tplogp

?
T ` `0q ´ log `0q{ log 2u ` 2 and � P rt8 expp´|Ik| 2m

2m`1 {pB̄1
mx,K log2 |Ik|qq, 1{2s

we have with probability at least 1 ´ 4�,

sup
uPI,✓P⇥k

| pF p1q
k pu,✓q ´ F 1puq| § C̄mx,K |Ik|´ m´1

2m`1 log |Ik|
´a

pd ` 1q logpd ` 1q log |Ik| `
c
2 log

8

�

¯
.

(38)

Here I “ r´�z, �zs and we choose the bandwidth bk “ |Ik|´ 1
2m`1 .

The proof of this lemma can be found in §F.8.
By combining these two lemmas and following our conclusions from Lemma 4, we are able to

achieve the regret bound at the same order with Theorem 1 in Theorem 2.
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E Proof under the super smooth noise distribution setting
Proof of Theorem 3 can be followed directly from the proof of Theorem 2 by substituting the Lemma
5 with Lemma 6. Below we’ll only present the proof of Lemma 5.

Proof. We only bound supuPI,✓P⇥k
|Erfkpu,✓qs ´f✓puq| and supuPI,✓P⇥k

|Erf p1q
k pu,✓qs ´f 1

✓puq|, since
the analysis for fkpu,✓q and hkpu,✓q are the same. In fact, under the settings of Lemma 5, for any
u P I,✓ P ⇥k,

Erfkpu,✓qs ´ f✓puq “
ª

R

1

bk
K

´s ´ u

bk

¯
f✓psqds ´ f✓puq

“ F
ˆ
F´1

´ ª

R

1

bk
K

´s ´ u

bk

¯
f✓psqds

¯
´ F´1 ˝ f✓puq

˙

“ F
ˆ
�✓puq

”
F´1

´ 1

bk
K

´´u

bk

¯¯
´ 1

ı˙

“ Fp�✓puqrp´bkuq ´ 1sq.

Here F is the Fourier transform operator defined by

g Ñ F ˝ gpuq “ 1

2⇡

ª

R
gpxqe´iuxdx,

and we’ve utilized the fact that K “ F ˝ , �✓puq “ F´1 ˝ f✓. Since |pxq| § 1 for all x P R and that
pxq “ 1 for |x| § c,

sup
uPI,✓P⇥k

|Erfkpu,✓qs ´ f✓puq| § sup
uPI,✓P⇥k

|Fp�✓puqrp´bkuq ´ 1sq|

§ sup
✓P⇥k

1

2⇡

ª
|�✓psq| ¨ |p´bksq ´ 1|ds

§ sup
✓P⇥0

1

⇡

ª

|s|°c{bk
|�✓psq|ds

§ 2

⇡

ª

s°0

D�e
´d�ps`c{bkq↵ds

§ 2

⇡

ª

s°0

D�e
´d�{2¨rs↵`pc{bkq↵sds.

Here, the last inequality is due to the fact that for x, y P R, px ` yq↵ • mint2↵´1, 1upx↵ ` y↵q •
1
2px↵ ` y↵q. Thus, by choosing bk “ cpd�{ log |Ik|q1{↵, we obtain that

sup
uPI,✓P⇥k

|Erfkpu,✓qs ´ f✓puq| § Cinf{
?
n,

where Cinf “ 2D�{⇡ ¨
≥
s°0 expp´d�s↵{2qds.
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The analysis for supuPI,✓P⇥k
|Erf p1q

k pu,✓qs ´ f 1
✓puq| is similar as above. In fact, for any u P I,✓ P

⇥k,

Erf p1q
k pu,✓qs ´ f 1

✓puq “ ´
ª

R

1

b2k
K 1

´s ´ u

bk

¯
f✓psqds ´ f 1

✓puq

“
ª

R

1

bk
K

´s ´ u

bk

¯
f 1
✓psqds ´ f 1

✓puq

“ F
ˆ
F´1

´ ª

R

1

bk
K

´s ´ u

bk

¯
f 1
✓psqds

¯
´ F´1 ˝ f 1

✓puq
˙

“ F
ˆ
�p1q
✓ puq

”
F´1

´ 1

bk
K

´´u

bk

¯¯
´ 1

ı˙

“ Fp�p1q
✓ puqrp´bkuq ´ 1sq.

Following the same arguments as above, we deduce that

sup
uPI,✓P⇥k

|Erf p1q
k pu,✓qs ´ f 1

✓puq| § Cinf{
?
n.

F Proof of technical lemmas

F.1 Proof of Lemma 1
We only prove (15), since (16) can be proved in the same way.

Recall that hkpu,✓q “ 1
nbk

∞n
t“1 Kpwtp✓q´u

bk
qyt, and Eryt|wtp✓q “ us “ r✓puq “ h✓puq

f✓puq . We have

Ehkpu,✓q “ 1

bk
EKpwtp✓q ´ u

bk
qyt “ 1

bk
EKpwtp✓q ´ u

bk
qrpwtp✓qq.

Thus,

Ehkpu,✓q ´ h✓puq “
ª

1

bk
Kpwp✓q ´ u

bk
qr✓pwp✓qqf✓pwp✓qqdwp✓q ´ h✓puq

“
ª
Kpsqh✓pu ` bksqds ´ h✓puq. (39)

Using Taylor’s expansion, @s P R, there exists some ⇠ps, uq lying between the points u and u ` bks
such that

h✓pu ` bksq “ h✓puq `
m´2ÿ

i“1

hpiq
✓ puq
i!

pbksqi ` hpm´1q
✓ p⇠ps, uqq

pm ´ 1q! pbksqm´1.
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Plugging this into (39) gives

Ehkpu,✓q ´ h✓puq “
ª
Kpsq

«
h✓puq `

m´2ÿ

i“1

hpiq
✓ puq
i!

pbksqi ` hpm´1q
✓ p⇠ps, uqq

pm ´ 1q! pbksqm´1

�
ds ´ h✓puq

“
ª
Kpsqh

pm´1q
✓ p⇠ps, uqq

pm ´ 1q! pbksqm´1ds

“
ª
Kpsqh

pm´1q
✓ puq

pm ´ 1q! pbksqm´1ds `
ª
Kpsqrhpm´1q

✓ p⇠ps, uqq ´ hpm´1q
✓ puqs

pm ´ 1q! pbksqm´1ds

“
ª
Kpsqrhpm´1q

✓ p⇠ps, uqq ´ hpm´1q
✓ puqs

pm ´ 1q! pbksqm´1ds.

Thus we have that

|Ehkpu,✓q ´ h✓puq| §
ª

|Kpsq| |h
pm´1q
✓ p⇠ps, uqq ´ hpm´1q

✓ puq|
pm ´ 1q! |bks|m´1ds

§
ª

|Kpsq| lf |bks|
pm ´ 1q! |bks|m´1ds

§ C1b
m
k ,

where C1 “ lf ¨
≥

|smKpsq|ds{pm´1q!. Moreover, since the inequality holds for any u P I and ✓ P ⇥k,
we finish the proof.

F.2 Proof of Lemma 2
We only prove (17), since (18) can be proved in the same way.

For any u P I , ✓ P ⇥k, denote Zpu,✓q :“ hkpu,✓q ´ Ehkpu,✓q “ 1
nbk

∞
tPIkrKpwtp✓q´u

bk
qyt ´

EKpwtp✓q´u
bk

qyts. Then

sup
uPI,✓P⇥k

|hkpu,✓q ´ Ehkpu,✓q| “ sup
uPI,✓P⇥k

|Zpu,✓q| “ max
!

sup
uPI,✓P⇥k

Zpu,✓q, sup
uPI,✓P⇥k

p´Zpu,✓qq
)
.

We can then bound supuPI,✓P⇥k
|hkpu,✓q ´ Ehkpu,✓q| by upper bounding both supuPI,✓P⇥k

Zpu,✓q
and supuPI,✓P⇥k

p´Zpu,✓qq. We now give upper bound for supuPI,✓P⇥k
Zpu,✓q with high probability

(Bounding supuPI,✓P⇥k
p´Zpu,✓qq is essentially the same).

We use the chaining method to obtain the desired bound. First, we construct a sequence of "-nets
with decreasing scale. Denote the left and right endpoints of the interval I as LI and RI respectively.
For any i P N`, construct set Spiq

1 Ñ I as

Spiq
1 fi

"
LI ` j

2i
?
n

pRI ´ LIq : j P t1, 2, ¨ ¨ ¨ , p2i ´ 1qr
?
nsu

*
.
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For any u P I , i P N`, let ⇡piq
1 puq “ argmin

sPSpiq
1

|s ´ u|. Moreover, let ⇡p0q
1 puq “ u. Then we

can easily verify that |Spiq
1 | § 2ip?

n ` 1q, and @u P I , |⇡ipuq ´ ⇡i`1puq| § 2�z
2i´1

?
n . At the same

time, denote Spiq
2 as a Rk{2i-net with respective to l2-distance of ⇥k, where Rk denotes the radius of

⇥k. Similar to ⇡piq
1 , define ⇡piq

2 puq “ argmin
sPSpiq

2
|u ´ s|. By Corollary 4.2.13 in Vershynin [2018],

|Spiq
2 | § p2i`1 ` 1qd.

Combining the above two nets, we have Spiq :“ Spiq
1 ˆ Spiq

2 is a 2´i
a
4�2z{n ` R2

k-net of Uk :“
I ˆ ⇥k with cardinality |Spiq| § 2ip?

n ` 1q ¨ p2i`1 ` 1qd. In fact, for any u :“ pu,✓q P I ˆ ⇥k with
i • 1, denote ⇡ipuq :“ p⇡piq

1 puq, ⇡piq
2 p✓qq, then }⇡ipuq ´ u}2 § 2´i

a
4�2z{n ` R2

k.
Now, since Zpu,✓q is continuous a.s., we have for any M P N`

Zpuq ´ Zp⇡Mpuqq “
8ÿ

i“M

rZp⇡i`1puqq ´ Zp⇡ipuqqs,

and thus

sup
uPUk

Zpuq § sup
uPUk

Zp⇡Mpuqq `
8ÿ

i“M

sup
uPUk

rZp⇡i`1puqq ´ Zp⇡ipuqqs (40)

almost surely. Our goal is to choose a suitable M such that both terms on the right hand side of (40)
can be controlled in a reasonable manner.

For this reason, Let M “ r 3
log 2 log

1
bk

s ` 10. We first upper bound supuPUk
Zp⇡Mpuqq. Note that

Zpuq “ 1

nbk

ÿ

tPIk
Atpuq,

where Atpuq “ Kpwtp✓q´u
bk

qYt ´ EKpwtp✓q´u
bk

qYt. We have EAtpuq “ 0 and |Atpuq| § K̄ almost
surely. Moreover,

VarpAtpuqq § E
„
Kpwtp✓q ´ u

bk
qyt

⇢2

§ E
„
Kpwtp✓q ´ u

bk
q
⇢2

§
ª
Kpwtp✓q ´ u

bk
q2f✓pwtp✓qqdwtp✓q “ bk

ª
Kpsq2f✓pu ` bksqds § C4bk,

where C4 “ maxtf̄ ¨
≥
Kpsq2ds, f̄ ¨

≥
Kpsq12dsu. Thus according to Bernstein’s Inequality, for any

✏ ° 0,

Pp|Zpuq| • ✏q “ Pp|
ÿ

tPIk
Atpuq| • nbk✏q § 2e

´ n2b2k✏2

2C4nbk` 2
3 K̄nbk✏ § 2e´C5

nbk✏2

1`✏ ,

where C5 “ 1{maxt2C4,
2
3K̄, 1u. A union bound then gives
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Pp sup
uPUk

|Zp⇡Mpuqq| • ✏q § |SpMq| ¨ Pp|Zpuq| • ✏q

§ 2Mp?
n ` 1q ¨ p2M`1 ` 1qd ¨ 2e´C5

nbk✏2

1`✏

§ exp

ˆ
4dM log 2 ` log n ´ C5

2
nbk mint✏, ✏2u

˙
.

When � • 4e´nbk{3 and nbk • maxtCbdplog 1
bk

` 1q, 3 log nu for some absolute constant Cb ° 0, by
choosing
✏ “ ✏pkq “ 2

C5

1?
nbk

b
4dM log 2 ` log n ` log 4

� , we can verify that the last term above is upper
bounded by �

4 , and thus we have

P
ˆ
sup
uPUk

|Zp⇡Mpuqq| • ✏pkq
˙

§ �

4
. (41)

Now we proceed to bound the latter term on the right hand side of (40). For any u1 :“ pu,✓1q,u2 :“
ps,✓2q P I ˆ ⇥k, we have

Zpu1q ´ Zpu2q “ Zpu,✓1q ´ Zps,✓2q “ 1

nbk

ÿ

tPIk
Btpu,✓1, s,✓2q,

where

Btpu,✓1, s,✓2q “ yt

ˆ
Kpwtp✓1q ´ u

bk
q ´ Kpwtp✓2q ´ s

bk
q
˙

´Eyt
ˆ
Kpwtp✓1q ´ u

bk
q ´ Kpwtp✓2q ´ s

bk
q
˙
.

Then EBjpu,✓1, s,✓2q “ 0, and

|Zpu1q ´ Zpu2q| “ |Btpu,✓1, s,✓2q| § 2

ˇ̌
ˇ̌ytpKpwtp✓1q ´ u

bk
q ´ Kpwtp✓2q ´ s

bk
qq

ˇ̌
ˇ̌

§ 2lK
a

pmaxxPX }x}22 ` 1q
bk

¨ }u1 ´ u2}2.

Using Hoeffding’s Inequality, for any ✏ ° 0,

Pp|
ÿ

tPIk
Btpu1,u2q| • ✏q § 2e

´ 2✏2

4l2
K

pR2
X `1q{b2

k
¨n}u1´u2}22 “ 2e

´ b2k✏2

2l2
K

npR2
X `1q}u1´u2}22

Therefore,

Pp|Zpu1q ´ Zpu2q| • ✏q “ Pp|
ÿ

tPIk
Btpu1,u2q| • nbk✏q § 2e

´ nb4k✏2

2l2
K

pR2
X `1q}u1´u2}22 .
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Recall that @u, }⇡ipuq ´ ⇡i`1puq}2 § 2´i
a
4�2z{n ` R2

k. We use union bound to obtain

Pp sup
uPUk

|Zp⇡i`1puqq ´ Zp⇡ipuqq| • ✏q

§ 2ip?
n ` 1q ¨ p2i`1 ` 1qd ¨ 2e´ 22i´2n2b4k✏2

2l2
K

pR2
X `1qp4�2z`nR2

k
q .

Let ✏ “ lK
?

pR2
X `1qp4�2z`nR2

kq✏i
2i´1nb2k

. The above inequality reduces to

P
´
sup
uPUk

|Zp⇡i`1puqq ´ Zp⇡ipuqq| • lK
a

pR2
X ` 1qp4�2z ` nR2

kq✏i
2i´1nb2k

¯

§ 2ip?
n ` 1q ¨ p2i`1 ` 1qd ¨ 2e´ ✏2i

2 . (42)

Now we choose ✏i “
b
2 log 8

� ` log n ` p2i ` 4qpd ` 2q log 2 and define W ˚ :“
a

pR2
X ` 1qp4�2z ` nR2

kq.
Notice that

8ÿ

i“M

lKW ˚

nb2k

✏i
2i´1

§ lKW ˚

nb2k

8ÿ

i“M

?
2id log 2 `

b
p4d ` 8q log 2 ` log n ` 2 log 8

�

2i´1

§ lKW ˚

nb2k

«
a
2d log 2

8ÿ

i“M

i

2i´1
` 1

2M´2

c
p4d ` 8q log 2 ` log n ` 2 log

8

�

�

§ lKW ˚

nb2k

«
a
2d log 2

M ` 1

2M´2
` 1

2M´2

c
p4d ` 8q log 2 ` log n ` 2 log

8

�

�

§ lKW ˚
?
nbk

¨ 1

n1{2b3{2
k

M ` 2

2M´2

«c
2 log

8

�
` log n ` 4

a
d log 2

�

§ lKW ˚
?
nbk

«c
2

n
log

8

�
` 1 ` 6

?
log 2?
c0

�

Here we use the fact that when Bx,K • p2c0q4, combining the assumptions in the lemma, we have
n • c0d. Combining this fact and a union bound on (42), we get

P
˜
sup
uPUk

|Zpuq ´ Zp⇡Mpuqq| • lKW ˚
?
nbk

«c
2

n
log

8

�
` 1 ` 6

?
log 2?
c0

�¸

§P
˜
sup
uPUk

|Zpuq ´ Zp⇡Mpuqq| •
8ÿ

i“M

lKW ˚

nb2k

✏i
2i´1

¸

§P
˜ 8ÿ

i“M

sup
uPUk

|Zp⇡i`1puqq ´ Zp⇡ipuqq| •
8ÿ

i“M

lKW ˚

nb2k

✏i
2i´1

¸

23



§
8ÿ

i“M

P
ˆ
sup
uPUk

|Zp⇡i`1puqq ´ Zp⇡ipuqq| • lKW ˚

nb2k

✏i
2i´1

˙

§
8ÿ

i“M

2ip?
n ` 1q ¨ p2i`1 ` 1qd ¨ 2e´ ✏2i

2 §
8ÿ

i“M

�

4
¨ 1

2i`1
§ �

4 ¨ 2M § �

4
. (43)

Finally, combining (40), (41) and (43), we obtain that

�

2
• P

ˆ
sup
uPUk

|Zp⇡Mpuqq| • ✏pkq
˙

` P
ˆ

sup
uPUk

|Zpuq ´ Zp⇡Mpuqq| • lKW ˚
?
nbk

„c
2

n
log

8

�
` 1 ` 6

?
log 2?
c0

⇢˙

• P
ˆ

sup
uPUk

Zpuq • ✏pkq ` lKW ˚
?
nbk

„c
2

n
log

8

�
` 1 ` 6

?
log 2?
c0

⇢˙

• P
ˆ

sup
uPUk

Zpuq • 4
?
11{C5?
nbk

d

d

ˆ
1 ` log

1

bk

˙
` log n ` log

4

�
`

16
?
2

ˆ
1 ` 6

?
log 2

c0

˙
lK

a
1 ` R2

X?
nbk

max
!
�z,

maxt1, xupB ` RXR⇥q
cmin

)´a
d log n `

c
d log n

n
log

8

�

¯˙

• P
ˆ

sup
uPUk

Zpuq • CxlK

c
log n

nbk

´?
d `

a
log 1{�

¯ ˙
.

Here we let Cx “ 8
?
22{C5 ` 60p6?

log 2`?
c0q

c0

a
1 ` R2

X maxt�z, maxt1, xupB`RXR⇥q
cmin

u.
For the same reason, we have that

P
˜
sup
uPUk

p´Zpuqq • CxlK

c
log n

nbk

´?
d `

a
log 1{�

¯¸
§ �

2
.

Combining the above two inequalities, we finish the proof.

F.3 Proof of Lemma 3
We only prove (23), since (24) can be proved in a similar way. Recall hp1q

k pu,✓q “ ´1
nb2k

∞
tPIk K

1pwtp✓q´u
bk

qyt,
we have

Ehp1q
k p✓, uq “ ´1

b2k
EK 1pwtp✓q ´ u

bk
qyu “ ´1

b2k
EK 1pwtp✓q ´ u

bk
qrpwtp✓qq.

Then

Ehp1q
k pu,✓q ´ h1

✓puq “
ª ´1

b2k
K 1pwtp✓q ´ u

bk
qh✓pwtp✓qqdwtp✓q ´ h1

✓puq

“
ª
Kpsqh1

✓pu ` bksqds ´ h1
✓puq, (44)
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where (44) follows from integration by parts. By Taylor’s expansion, we have

h1
✓pu ` bksq “ h1

✓puq `
m´2ÿ

i“2

hpiq
✓ puq

pi ´ 1q!pbksqi´1 ` hpm´1q
✓ p⇠ps, uqq

pm ´ 1q! pbksqm´2.

Similar to our proof procedure of Lemma 1, under Assumption 5, we get

Ehp1q
k pu,✓q ´ h1

✓puq “
ª
Kpsqh

pm´1q
✓ p⇠ps, uqq ´ hpm´1q

✓ puq
pm ´ 2q! pbksqm´2ds.

Thus

|Ehp1q
k pu,✓q ´ h1

✓puq| §
ª

|Kpsqrhpm´1q
✓ p⇠ps, uqq ´ hpm´1q

✓ puqs
pm ´ 2q! pbksqm´2|ds

§ |Kpsq| lf |bks|
pm ´ 2q! |bks|m´2ds

§ Cp5q
x,Kb

m´1
k , (45)

in which Cp5q
x,K “ lf

pm´2q!
≥

|Kpsqsm´1|ds. Because (45) holds for any t P I and ✓ P ⇥k, we have

sup
uPI,✓P⇥k

|Ehp1q
k pu,✓q ´ h1

✓puq| § Cp5q
x,Kb

m´1
k ,

which claims inequality 23 of Lemma 3. On the other hand, (24) follows directly from our proof
procedure above, so we omit the details.

F.4 Proof of Lemma 4
For any u P I,✓ P ⇥k, write

Zp1qpu,✓q “ hp1q
k pu,✓q ´ Ehp1q

k pu,✓q “ ´1

bk
¨ 1

nbk

ÿ

tPIk

”
K 1pwtp✓q ´ u

bk
qyt ´ EK 1pwtp✓q ´ u

bk
qyt

ı

Under Assumption 4 and Assumption 5, by following a similar proof procedure with Lemma 2,
for � P r4e´nbk{3, 12q, with probability at least 1 ´ �,

sup
uPI,✓P⇥k

ˇ̌
ˇ
1

nbk

ÿ

tPIk
rK 1pwtp✓q ´ u

bk
qyt ´ EK 1pwtp✓q ´ u

bk
qyts

ˇ̌
ˇ § Cp2q

x,K

c
log n

nbk

´?
d `

a
log 1{�

¯
,

where Cp2q
x,K “ lK

ˆ
8
?
22maxt2f̄

≥
K2ds, 2f̄

≥
K 12ds, 23K̄, 1u`
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60p6?
log 2`?

c0q
c0

a
1 ` R2

X maxt�z, maxt1, xupB`RXR⇥q
cmin

u
˙

. Thus, with probability at least 1 ´ �,

sup
uPI,✓P⇥k

|hp1q
k pu,✓q ´ Ehp1q

k pu,✓q| § Cp2q
x,K

d
log n

nb3k

´?
d `

a
log 1{�

¯
,

which claims the inequality (25) in Lemma 4. Moreover, (26) also follows directly from our procedure
given above. Thus, we claim our our conclusion of Lemma 4.

F.5 Proof of Lemma 5
First, we argue that for any rxt,

✓J
0 rxt P r�z ` �v, B ´ �z ´ �vs. (46)

In fact, we have vt “ ✓J
0 rxt ` zt, where zt P r´�z, �zs and that ✓J

0 rxt is independent from zt. Therefore,
in order to satisfy the condition vt P r�v, B ´ �vs, it ought to be true that ✓J

0 rxt P r�z ` �v, B ´ �z ´ �vs.
On the other hand,

sup
rxtPX ,✓P⇥0

|✓Jrxt ´ ✓J
0 rxt| § sup

✓P⇥0

}✓ ´ ✓0} ¨ sup
rxtPX

}xt}

§ C✓T
´ 2m`1

4p4m´1qd
m´1
4m´1

a
log T ` 2 log d ¨ RX

§ �v. (47)

The last inequality is due to the condition on T . The lemma is proved by combining (46) and (47).

F.6 Proof of Lemma 6
The proof of Lemma 6 is similar with our proof of Lemma 1, the major difference between them is
that here we assume our covaraites rxt, t • 0 follow �-mixing condition instead of of i.i.d. assumption.
After following similar proof procedures of (3)-(7), we obtain the same inequality with (7) and we also
divide the following proofs into two steps.

Step I: In this step, we prove under �-mixing conditions given in Assumption 6, with high-
probability, there exists a constant c ° 0 such that �minp 1

|Ik|
∞

tPIk rxtrxJ
t q • c. In order to prove

this, we first use the following matrix Bernstein inequality under �-mixing conditions to prove the
concentration between ⌃k :“ 1

|Ik|
∞

tPIk rxtrxJ
t and ⌃ :“ ErrxtrxJ

t s. Similar to §C.1, here for notational
convenience, we also denote n “ |Ik| for any k • 1 respectively.

Lemma 9 (Matrix Bernstein Inequality under Mixing). We assume rxt, t • 0 satisfy Assumption 6, and
we also assume there exists a positive constant Mx such that }rxt}2 § Mx. Then for any x and integer
n • 2 we have

P
´

}
ÿ

tPIk
rxtrxJ

t ´ n⌃} • nx
¯

§ 2pd ` 1q exp
ˆ

´ Cun2x2

v2n ` M4
x ` nxM2

x log n

˙
(48)
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where C is a universal constant and

v2 “ sup
KPt1,...,nu

1

CardpKq�max

!
E

“ ÿ

iPK
prxirxJ

i ´ ⌃q
‰2)

and v2 is at the order of M4
x .

Proof. (48) is a direct consequence of Theorem 1 in Banna et al. [2016], so here we just need to prove
the order of v2.

�max

!
E

“ ÿ

iPK
prxirxJ

i ´ ⌃q
‰2) “ �max

! ÿ

i,jPK
Cov

`
rxirxJ

i , rxjrxJ
j

˘)

“ �max

! ÿ

iPK
VarprxirxJ

i q ` 2
ÿ

j°i, i,jPK
CovprxirxJ

i , rxjrxJ
j q

)

Then we get

v2 § max
iPK

�max

!
VarprxirxJ

i q ` 2
ÿ

j°i, i,jPK
CovprxirxJ

i , rxjrxJ
j q

)

We know }rxi}2 § Mx, so we have

�maxtVarprxirxJ
i qu § }ErrxirxJ

i rxirxJ
i s} § M4

x

In addition, we obtain

}CovprxirxJ
i , rxjrxJ

j q} “ }ErrxirxJ
i rxjrxJ

j s ´ ErrxirxJ
i sErrxjrxJ

j s} (49)

By Lemma 1.1 (Berbee’s Lemma) given in Bosq, we are able to construct a rx˚
j such that the distribution

of rx˚
j is the same with rxj but is independent with rxi. At the same time, we also have Pprx˚

j ‰ rxjq “ �j´i

according to Berbee’s Lemma. We then proceed to bound (49).

(49) “ }ErrxirxJ
i rxjrxJ

j s ´ ErrxirxJ
i sErrx˚

j rx˚J
j s}

“ }ErrxirxJ
i prxjrxJ

j ´ rx˚
j rx˚J

j qs}
§ }ErrxirxJ

i prxjrxJ
j ´ rx˚

j rx˚J
j q | rxj ‰ rx˚

j s}�j´i § M4
x�j´i

Then we obtain that there exists a constant Cv • 1 ` ∞
j°i �j´i s.t.

v2 § CvM
4
x ,

holds, since the term 1` ∞
j°i �j´i is finite by our Assumption 6 on �j, j • 0. Then we conclude our

proof of Lemma 9
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By using conclusions from this Lemma 9, according to Assumption 2 we have �minp⌃q “ cmin and
}rxt}2 § Mx :“

a
R2

X ` 1, so when

n • maxtp12CvpR2
X ` 1q2 log n ` 6pR2

X ` 1q log2 nq{pCu mintc2min{4, 1uq, d ` 1u,

�minp⌃kq • cmin{2. (50)

holds with probability 1 ´ 2{n2.
Step II: The next step is to prove the upper bound of }r✓Lkp✓0q}8. By definition we know

r✓Lkp✓0q “ 1

n

ÿ

tPIk
2p✓J

0 rxt ´ Bytqrxt.

Since the expression of r✓Lkp✓0q involves both rxt and yt, t P rns, next we show the sequence
prxt, ytq, t • 0 satisfy ↵-mixing condition with ↵k § expp´ckq under Assumption 6.

Lemma 10 (strong ↵-mixing of both rx and y). Here we denote A “ �pprxt, ytqt§lq and B “ �pprxt, ytqt§l`kq.
In addition, we also denote Ax “ �prxt, t§lq and Bx “ �prxt, t•l`kq. Then under Assumption 6, we have
for any l, k • 0,

sup
l•0

sup
APA,BPB

|PpA,Bq ´ PpAq ¨ PpBq| § ↵k

where the definition of ↵k is given in Definition 1.

Proof.

sup
l•0

sup
APA,BPB

|PpA,Bq ´ PpAq ¨ PpBq| “ sup
l•0

sup
APA,BPB

ˇ̌
ErIA,Bs ´ ErIAsErIBs

ˇ̌

“ sup
l•0

sup
APA,BPB

ˇ̌
ErErIA,B |Ax,Bxss ´ ErErIA |AxssErErIB |Bxss

ˇ̌

After conditioning on rxi, rxj , we observe that yi, yj are independent with each other, then we get
ErIA,B |Ax,Bxs “ ErIA |Axs ¨ ErIB |Bxs. Thus, we have for any k • 0,

sup
l•0

sup
APA,BPB

ˇ̌
ErIA,Bs ´ ErIAsErIBs

ˇ̌
“ sup

l•0
sup

APA,BPB

ˇ̌
ErErIA |Axs ¨ ErIB |Bxss ´ ErErIA |AxssErErIB |Bxss

ˇ̌

§ ↵k}IA}8 ¨ }IB}8 “ ↵k

The last inequality follows directly from Corollary 1.1 in Bosq, since ErIA |Axs lies in Ax and
ErIB |Bxs lies in Bx.

By using the same proof given in §C.1, we have Err✓Lkp✓0qs “ 0. In addition, we obtain an upper
bound of every entry of r✓Lkp✓0q in a way that there exists a upper bound Wx “ 2RX pRXR⇥ ` Bq
of |2p✓J

0 rxt ´ Bytqrxt,i|, for every i P rds. Then using the following vector Bernstein inequality under
↵-mixing conditions, we obtain an upper bound for }r✓Lkp✓0q}8.
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Lemma 11. (Vector Bernstein under ↵-Mixing Conditions, Theorem 1 in Merlevėde et al. [2009]) Let
Xj, j • 0 be a sequence of centered real-valued random variables. Suppose there exists a positive Wx

such that supi }Xi}8 § Wx, then when n • 4 and x • 0, we obtain

P
´ˇ̌

ˇ
1

n

nÿ

i“1

Xi

ˇ̌
ˇ • x

¯
§ exp

´
´ Cwn2x2

nW 2
x ` Wxnx log n log log n

¯

where Cw is a universal constant.

By leveraging conclusions from Lemma 11, we have

Pp}r✓Lkp✓0q}8 • xq § 2pd ` 1q exp
´

´ Cwn2x2

nW 2
x ` Wxnx log n log log n

¯
.

Thus, when n • maxtp6W 2
x log n ` 6Wx log

2 n log log nq{Cw, d ` 1u we obtain, with probability
1 ´ 2{n2, we have

}r✓Lkp✓0q}8 §
b

p6W 2
x log n ` 6Wx log

2 n log log nq{pCwnq. (51)

Then combining our results given in (7), (50) and (51), with probability 1 ´ 4{|Ik|2 we obtain

}p✓k ´ ✓0}2 § 2

cmin

d
pd ` 1qp6W 2

x log |Ik| ` 6Wx log
2 |Ik| log log |Ik|q

Cw|Ik|
for any k • 1.

F.7 Proof of Lemma 7
Proof. Similar with our proof given in §C.2, we suppose twtp✓q :“ pt ´ rxJ

t ✓, ytutPrns are observations
from the stationary distribution Pwp✓q,y. We assume that the marginal distribution Pwp✓q has density
f✓puq and let r✓puq “ Eryt |wtp✓q “ us be the regression function to be estimated by estimator

prkpu, ✓q “ hkpu, ✓q
fkpu, ✓q ,

where

hkpu, ✓q “ 1

nbk

nÿ

tPIk
Kpwtp✓q ´ u

bk
qYt, fkpu,✓q “ 1

nbk

nÿ

tPIk
Kpwtp✓q ´ u

bk
q.

Here, bk ° 0 is the bandwidth (to be chosen) in episode k, |Ik| is denoted as n for simplicity and Kp¨q
is some kernel function. For the true signal ✓0, we denote the true regression function as r✓0puq “
Eryt |wtp✓0q “ us. The following proof procedures are similar with that given in §C.2, where their
major differences are related to control the biases of |Erhkpu,✓qs ´ h✓puq| and |Erfkpu,✓qs ´ f✓puq|
given in Lemma 12 and the variances of hkpu,✓q and fkpu,✓q given in Lemma 13 under strong-mixing
settings respectively.
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Lemma 12. Under Assumptions 3-5 and 6, with any choice of bk § 1, we obtain

sup
uPI,✓P⇥k

|Ehkpu,✓q ´ h✓puq| § Cp1q
mx,Kb

m
k

sup
uPI,✓P⇥k

|Efkpu,✓q ´ f✓puq| § Cp1q
mx,Kb

m
k

where Cmx,K “ lf
≥ |smKpsqds

pm´1q! .

Proof. The proof of Lemma 12 is the same with the proof of Lemma 1. So we omit the details.

Lemma 13. Under Assumption 3-5 and 6, there exists a constant C 1
17 only depending on constants

given in assumptions, such that for I “ r´�z, �zs, if bk P r1{n, 1s, nbk • 4C 12
17 log

3 nrpd ` 1q logpd `
1qs and � P r8 expp´nbk{p8C 12

17 log
2 nqq, 1{2s, the following inequalities hold simultaneously with

probability 1 ´ �:

sup
uPI,✓P⇥k

|hkpu,✓q ´ Erhkpu,✓qs| § C 1
17 log n?
nbk

ˆa
pd ` 1q logpd ` 1q log n `

c
2 log

8

�

˙
(52)

sup
uPI,✓P⇥k

|fkpu,✓q ´ Erfkpu,✓qs| § C 1
17 log n?
nbk

ˆa
pd ` 1q logpd ` 1q log n `

c
2 log

8

�

˙
(53)

Proof. We only prove (52), since (53) can be proved in the same way. For any u P I and ✓ P ⇥k, we
denote Zpu,✓q :“ hkpu,✓q ´ Ehkpu,✓q “ 1

nbk

∞
tPIkrKpwtp✓q´u

bk
qyt ´ EKpwtp✓q´u

bk
qyts. Then we have

that

sup
uPI,✓P⇥k

|hkpu,✓q ´ Ehkpu,✓q| “ sup
uPI,✓P⇥k

|Zpu, ✓q| “ max
!

sup
uPI,✓P⇥k

Zpu,✓q, sup
uPI,✓P⇥k

p´Zpu,✓qq
)
.

Similar with our proof procedure of Lemma 2, we then bound supuPI,✓P⇥k
|hkpu,✓q ´ Ehkpu,✓q|

by upper bounding both supuPI,✓P⇥k
Zpu,✓q and supuPI,✓P⇥k

p´Zpu,✓qq. We next also use chaining
method to achieve desired bound. We also construct a sequence of ✏-nets with decreasing scale.

As a reminder, here we also denote the left and right endpoints of the interval I as LI and RI

respectively. For any i P N`, construct set Spiq
1 Ñ I as

Spiq
1 fi

"
LI ` j

2i
?
n

pRI ´ LIq : j P t1, 2, ¨ ¨ ¨ , p2i ´ 1qr
?
nsu

*
.

For any u P I , i P N`, let ⇡ipuq “ argmin
sPSpiq

1
|s ´ u|. Moreover, let ⇡0puq “ u. Then we can easily

verify that |Spiq
1 | § 2ip?

n ` 1q, and that @u P I , |⇡ipuq ´ ⇡i`1puq| § 2�z
2i´1

?
n .

As for the ✏-net of ⇥k, we let Si
2 be a Rm{p2i?nq-net with respective to l2-distance of ⇥k, where

Rm “ 2{cmin

a
6Wx{Cw (constants are specified in the Lemma 6). By Proposition 4.2.12 in Vershynin

[2018], we have |Spiq
2 | § p2i`1Cpd, nq`1qd, where Cpd, nq “

b
pd ` 1qpWx log n ` log2 n log log nq.
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Then we have for any u :“ pu,✓q P I ˆ ⇥k with i • 1, there exist ⇡ipuq P Spiq
1 and ⇡ip✓q P

Spiq
2 such that }⇡ipuq :“ p⇡ipuq, ⇡ip✓qq ´ u}2 §

a
4�2z ` R2

m{p2i?nq. So Spiq :“ Spiq
1 ˆ Spiq

2 is aa
4�2z ` R2

m{p2i?nq-net of Uk :“ I ˆ ⇥k with size |Spiq| § 2ip?
n ` 1q ¨ p2i`1Cpd, nq ` 1qd and

Cpd, nq “
b

pd ` 1qpWx log n ` log2 n log log nq.
Because Zpu,✓q is continuous almost surely, we have that for any M P N`

Zpuq ´ Zp⇡Mpuqq “
8ÿ

i“M

rZp⇡i`1puqq ´ Zp⇡ipuqqs,

and thus

sup
uPUk

Zpuq § sup
uPUk

Zp⇡Mpuqq `
8ÿ

i“M

sup
uPUk

rZp⇡i`1puqq ´ Zp⇡ipuqqs (54)

almost surely. If we can choose a M properly then the two terms at the right hand side of (54) can be
both well controlled. For this reason, we let M “ r 4

log 2 log
1
bn

s. We then first bound supuPUk
Zp⇡Mpuqq

by using a union bound. By our definition on Zpuq, we can write

Zpuq “ 1

nbk

ÿ

tPIk
Ajpuq.

in which Atpuq “ Kpwtp✓q´u
bk

qyt ´ EKpwtp✓q´u
bk

qyt. Similar with our case in proving Lemma 2, we
have that ErAtpuqs “ 0 and |Atpuq| § K̄ almost surely. We next prove the bound of variance of Atpuq
and the covariance between Ajpuq and Aipuq with j ° i. Following similar procedures with Lemma
2, we first conclude that

VarpAtpuqq § C 1
4bk,

where C 1
4 “ C4 “ maxtf̄ ¨

≥
Kpsq2ds, f̄ ¨

≥
K 1psq2dsu is defined in the same way with our proof of

Lemma 2. We next control the covariance of Ajpuq and Aipuq with j ° i.

CovpAjpuq, Aipuqq “ E
”
Kpwjp✓q ´ u

bk
qyjKpwip✓q ´ u

bk
qyi

ı
´ E

”
Kpwjp✓q ´ u

bk
qyj

ı
E

”
Kpwip✓q ´ u

bk
qyi

ı

“ E
”
Kpwjp✓q ´ u

bk
qKpwip✓q ´ u

bk
qEryjyi |wjp✓q, wip✓qs

ı

´ E
”
Kpwjp✓q ´ u

bk
qyj

ı
E

”
Kpwip✓q ´ u

bk
qyi

ı

For simplicity, for any ✓ P ⇥0, we define rpui, ujq :“ Eryiyj |wjp✓q “ uj, wip✓q “ uis and rpujq “
Eryj |wjp✓q “ ujs. Then after some simple calculation, we further obtain

CovpAjpuq, Aipuqq “
ª ª

Kpwjp✓q ´ u

bk
qKpwip✓q ´ u

bk
qrpwip✓q, wjp✓qqfpwip✓q, wjp✓qqdwip✓qdwjp✓q
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´
ª ª

Kpwjp✓q ´ u

bk
qKpwip✓q ´ u

bk
qrpwip✓qqrpwjp✓qqfpwip✓qqfpwjp✓qqdwip✓qdwjp✓q

“ b2k

ª ª
Kps1qKps2qrrpbks1 ` u, bks2 ` uqfpbks1 ` u, bks2 ` uq

´ rpbks1 ` uqrpbks2 ` uqfpbks1 ` uqfpbks2 ` uqsds1ds2

We next prove that hpui, uiq :“ rpui, ujqfpui, ujq stays close to hpuiqhpujq :“ rpuiqfpuiqrpujqfpujq
for all pui, ujq in the following Lemma 14.

Lemma 14. Under Assumptions given in Lemma 13. We let g˚pui, ujq :“ hpui, ujq ´ hpuiqhpujq, if
we further assume g˚pui, ujq is Lipschitz continuous w.r.t. pui, ujq with Lipschitz constant l, then we
have

sup
ui,uj

|g˚pui, ujq| § p1{4 `
?
2lq�1{3

j´i

Proof. For any x we define

Bpx, ✏q;“ tx1 : }x1 ´ x} § ✏u, ✏ ° 0, x P R

First, we prove |EryiyjItwip✓qPBpx,✏q,wjp✓qPBpy,✏qus ´ EryiItwip✓qPBpx,✏qusEryjItwjp✓qPBpy,✏qus| § �j´i. We
have

ˇ̌
EryiyjItwip✓qPBpx,✏q,vjp✓qPBpy,✏qus ´ EryiItwip✓qPBpx,✏qusEryjItvjp✓qPBpy,✏qus

ˇ̌

“
ˇ̌
ErItwip✓qPBpx,✏q,vjp✓qPBpy,✏quEryiyj | rxi, rxj, pi, pjss

´ ErItwip✓qPBpx,✏quEryi | rxi, pissErItwjp✓qPBpy,✏quEryj | rxj, pjss
ˇ̌

“
ˇ̌
ErEryiItwip✓qPBpx,✏qu | rxi, pisEryjItwjp✓qPBpy,✏qu | rxj, pjss

´ ErEryiItwip✓qPBpx,✏qu | rxi, pissErEryjItwjp✓qPBpy,✏qu | rxj, pjss
ˇ̌

As pi, i P |Ik|, k • 0 are independent, so the �-algebra generated by the joint distribution of rxi, pi still
follows strong-� and -↵ conditions given in our Assumption 6. Moreover, we have EryiItwip✓qPBpx,✏qu | rxi, pis
lies in �prxi, piq and EryjItwjp✓qPBpy,✏qu | rxj, pjs lies in �prxj, pjq with j ° i. So we are able to obtain the
upper bound:

ˇ̌
EryiyjItwip✓qPBpx,✏q,wjp✓qPBpy,✏qus ´ EryiItwip✓qPBpx,✏qusEryjItwjp✓qPBpy,✏qus

ˇ̌
§ �j´i (55)

by using Corollary 1.1 in Bosq.
Next, we get an upper bound of suppui,ujq |g˚pui, ujq|. From (55) and our definition on g˚, we

obtain

�j´i •
ˇ̌
ˇ
ª

Bpx,✏qˆBpy,✏q
g˚pui, ujqduiduj

ˇ̌
ˇ :“ I
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Then by the mean value property we have I “ 4✏2|g˚px1, y1q| for some px1, y1q P Bpx, ✏q ˆ Bpy, ✏q.
Moreover, as we assume g is Lipschitz, then we get

|g˚px, yq| § |g˚px1, y1q| `
?
2l✏

Hence, we finally achieve
|g˚px, yq| § �j´i{p4✏2q `

?
2l✏.

for any fixed px, yq. As this inequality holds for all ✏ ° 0, we choose ✏ “ �1{3
j´i and we conclude the

proof of our Lemma 14.

By our conclusion from Lemma 14, we are able to find a constant C 1
5 such that | ∞

j°i CovpAjpuq, Aipuqq| §
C 1

5bn holds according to our assumptions on �j´i, j ° i, where we set C 1
5 “ p1{4 `

?
2lq ∞

j°0 �
1{3
j .

Next we introduce the following Bernstein inequality under strong-mixing conditions, in order to
achieve an upper bound of Zpuq.

Lemma 15. [Theorem 2 in Merlevėde et al. [2009]] Under conditions of Lemma 13, for all n • 2, we
have

Pp|Zpuq| • nbkxq “ Pp|
ÿ

jPIk
Ajpuq| • nbkxq § 2 exp

´
´ Cbb2kn

2x2

v2n ` K̄2 ` nbkx log
2 n

¯

Here

v2 “ sup
i°0

pVarpAipuqq ` 2
ÿ

j°i

|CovpAipuq, Ajpuqq|q,

Cb is a pure constant and K̄ is defined as the upper bound of |Ajpuq| with any j P rns.
By our conclusions from Lemma 14 and Lemma 15, we conclude there exists a constant C 1

6 “
pC 1

4 ` 2C 1
5q such that v2 § C 1

6bn, so we obtain

Pp|Zpuq| • xq § 2 exp
´

´ Cbb2kn
2x2

C 1
6nbk ` K̄2 ` nbkx log

2 n

¯

§ 2 exp
´

´ Cbnbkx2

pC 1
6 ` K̄2 ` log2 nqp1 ` xq

¯

The last inequality follows from our assumption that bk • 1{n “ 1{|Ik| for any k • 1 in given Lemma
13. Further, we set C 1

7 “ Cb{p2C 1
6 ` 2K̄2 ` 2q. Then we take the union bound over Uk, which gives

Ppsup
uPUk

|Zp⇡Mpuqq| • xq § |SpMq| ¨ Pp|Zpuq| • xq

§ 2 ¨ 2Mp?
n ` 1q ¨ p2M`1

?
d ` 1qd ¨ e´C1

7nbk
log2 n

mintx,x2u
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§ 2e
pd`1qM log 2`logp?

n`1q`d logp2Cpn,dq`2q´C1
7nbk

log2 n
mintx,x2u

.

Since we define M “ r 4
log 2 log

1
bk

s, then we choose

xpn, dq :“ log n?
nbk

c”
pd ` 1q4 log 1

bk
` 2pd ` 1q log 2 ` logp?

n ` 1q ` d logp2Cpn, dq ` 2q ` log
8

�

ı
{C 1

7,

(56)

where Cpn, dq “
b

pd ` 1qpWx log n ` log2 n log log nq. We then have

Ppsup
uPUk

|Zp⇡Mpuqq| • xpn, dqq § �

4
.

when � ° 8 expp´nbk{pC 1
7 log

2 nqq and nbk • 2 log2 nrpd ` 1q4 log 1
bk

` 2pd ` 1q log 2 ` logp?
n `

1q `d logp2Cpn, dq `2qs{C 1
7 (because under such conditions, we have xpn, dq § 1). Now, we proceed

to bound the later term at the right hand side of (54). Similar with our cases stated in the proof of
Lemma 2, for any u1 :“ pu,✓1q,u2 :“ ps,✓2q P I ˆ ⇥k, we have that

Zpu1q ´ Zpu2q “ Zpu,✓1q ´ Zps,✓2q “ 1

nbk

ÿ

tPIk
Btpu,✓1, s,✓2q,

where

Btpu,✓1, s,✓2q “ yt

ˆ
Kpwtp✓1q ´ u

bk
q ´ Kpwtp✓2q ´ s

bk
q
˙

´Eyt
ˆ
Kpwtp✓1q ´ t

bk
q ´ Kpwtp✓2q ´ s

bk
q
˙
.

We have EBtpu,✓1, s,✓2q “ 0, and that

|Zpu1q ´ Zpu2q| “ |Btpu,✓1, s,✓2q| § 2

ˇ̌
ˇ̌yjpKpwtp✓1q ´ u

bk
q ´ Kpwtp✓2q ´ s

bk
qq

ˇ̌
ˇ̌

§ 2lK
a
1 ` maxxPX }x}22 ` 1

bn
¨ }u1 ´ u2}2 :“

C˚

bn
}u1 ´ u2}2.

The last inequality follows from the Lipschitz property of Kp¨q and for simplicity we use C˚ to denote
the constant 2lK

a
maxxPX }x}22 ` 2 “ 2lK

a
R2

X ` 2. Then according to the Bernstein inequality
given in Lemma 11, we have

Pp|
nÿ

t“1

Btpu1,u2q| • nbkxq § 2 exp

ˆ
´ Cwn2b2kx

2

nC˚2}u1´u2}22
b2k

` nbkx
C˚}u1´u2}2

bk
log2 n

˙
.

Recall that @u P Un, we have }⇡ipuq ´ ⇡i`1puq}2 §
?

4�2z`R2
m

2i´1
?
n . We then use the union bound to get
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Ppsup
uPUk

|Zp⇡i`1puqq ´ Zp⇡ipuqq| • xq

§ 22i`2p?
n ` 1q2p2i`2Cpn, dq ` 1q2d ¨ 2e

´ C1
82

i´1n3{2b4kx2

p 4�
2
z`R2

m
2i´1?

n
`b2

k

?
4�2z`R2

m log2 nqp1`xq

in which C 1
8 “ Cw{maxtC˚2, C˚u. We let x “

b
p4�2z`R2

mq{p2i´1
?
nq`b2k

?
4�2z`R2

m log2 n

2pi´1q{2n3{4b2k
¨ ✏i. Then we have

P
ˆ

sup
uPUk

|Zp⇡i`1puqq ´ Zp⇡ipuqq| •
b

p4�2z ` R2
mq{p2i´1

?
nq ` b2k

a
4�2z ` R2

m log2 n{p2pi´1q{2n3{4b2kq ¨ ✏i
˙

(57)

§ 22i`2p?
n ` 1q2p2i`2Cpn, dq ` 1q2d ¨ 2e

´ C1
8✏

2
i

1`

c
p4�2z`R2

mq{p2i´1?
nq`b2

k

?
4�2z`R2

m log2 n

2pi´1q{2n3{4b2
k

¨✏i
(58)

We observe that if we could choose ✏i such that
b

p4�2z ` R2
mq{p2i´1

?
nq ` b2k

a
4�2z ` R2

m log2 n

2pi´1q{2n3{4b2k
¨ ✏i † 1,

holds, then the right hand side of (58) satisfies

(58) § 22i`2p?
n ` 1q2p2i`2Cpn, dq ` 1q2d ¨ 2e´C1

8✏
2
i

2 . (59)

Now we choose ✏i “
a

rp4d ` 6qpi ` 1q log 2 ` 4 logp?
n ` 1q ` 4d logp2Cpn, dq ` 2q ` 2 logp8{�qs{C 1

8.
Then we have

b
p4�2z ` R2

mq{p2i´1
?
nq ` b2k

a
4�2z ` R2

m log2 n

2pi´1q{2n3{4b2k
¨ ✏i

§ 1

2pi´1q{2n3{4bk

” a
4�2z ` R2

m

2pi´1q{2bkn1{4 ` p4�2z ` R2
mq1{4 log n

ı
¨ ✏i.

Here we only consider i • M “ r 4
log 2 log

1
bk

s, and we have 2M{4 ¨ bk “ 1. In addition, we also get
maxipi ` 1q{2pi´2q{2 § 3. Hence, we have

1

2pi´1q{2n3{4bk

” a
4�2z ` R2

m

2pi´1q{2bkn1{4 ` p4�2z ` R2
mq1{4 log n

ı
¨ ✏i † 1,
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if � • 8 expp´C 1
8n

3{2{p16p4�2z ` R2
mq log2 nqq and n • t8p4�2z ` R2

mq log2 n ¨ rp12d ` 18q log 2 `
4 logp?

n ` 1q ` 4d logp2Cpn, dq ` 2qs{C 1
8u2{3. Then after plugging our setting of ✏i into (59), we

obtain

P
ˆ

sup
uPUk

|Zp⇡i`1puqq ´ Zp⇡ipuqq| •
b

p4�2z ` R2
mq{p2i´1

?
nq ` b2k

a
4�2z ` R2

m log2 n{p2pi´1q{2n3{4b2kq ¨ ✏i
˙

§ 1

2i`1
¨ �
4
.

And we notice

8ÿ

i“M

b
p4�2z ` R2

mq{p2i´1
?
nq ` b2k

a
4�2z ` R2

m log2 n

2pi´1q{2n3{4b2k
¨ ✏i

§
8ÿ

i“M

a
4�2z ` R2

m

2i´1nb2k
¨ ✏i `

b
p4�2z ` R2

mq log2 n
2pi´1q{2n3{4bk

¨ ✏i :“ I ` II.

For term I, we have

I “
8ÿ

i“M

a
4�2z ` R2

m

2i´1nb2k
¨
b

rp4d ` 6qpi ` 1q log 2 ` 4 logp?
n ` 1q ` 4d logp2Cpn, dq ` 2q ` 2 logp8{�qs{C 1

8

§
a

p4�2z ` R2
mq{C 1

8

nb2k

”a
p4d ` 6q log 2

8ÿ

i“M

i ` 1

2i´1
`

a
4 logp?

n ` 1q ` 4d logp2Cpn, dq ` 2q ` 2 logp8{�q
2M´2

ı

§
a

p4�2z ` R2
mq{C 1

8

nb2k

2M

2M´2

”a
p4d ` 6q log 2 `

b
4 logp?

n ` 1q `
a
4d logp2Cpn, dq ` 2q `

a
2 logp8{�q

ı

§
a

p4�2z ` R2
mq{C 1

8

n

8M

2M{2
1

2M{2b2k

”a
p4d ` 6q log 2 `

b
4 logp?

n ` 1q

`
a
4d logp2Cpn, dq ` 2q `

a
2 logp8{�q

ı

§ C 1
9

n

”a
p4d ` 6q log 2 `

b
4 logp?

n ` 1q `
a
4d logp2Cpn, dq ` 2q `

a
2 logp8{�q

ı
,

in which C 1
9 is a pure constant such that C 1

9 “
a

p4�2z ` R2
mq{C 1

8¨maxip8i{2i{2q “ 16
a

p4�2z ` R2
mq{C 1

8

and Cpn, dq §
b

pd ` 1qpWx log n ` log3 nq. Then we obtain

a
4d logp2Cpn, dq ` 2q §

c
4d log

´
4
b

pd ` 1qpWx log n ` log3 nq
¯

§
c
4d log

´
4
?
2
b

pd ` 1qmaxt1,Wxu log3 n
¯
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§
b
4d logp4

?
2q `

a
2d logpmaxtWx, 1upd ` 1qq `

a
6d log n. (60)

Next, we are able to find a pure constant C 1
10 “ 6

?
6 such that

a
p4d ` 6q log 2 `

a
4 logp?

n ` 1q `a
4d logp2Cpn, dq ` 2q § 6

?
6
a

pd ` 1q logpmaxtWx, 1upd ` 1qq log n as long as n • 3 according
to (60). Thus, we finally achieve

I § C 1
11

n

´a
pd ` 1q logpmaxtWx, 1upd ` 1qq log n `

a
2 logp8{�q

¯
,

where C 1
11 “ C 1

10 ¨ C 1
9. For term II, we obtain

II “
8ÿ

i“M

b
p4�2z ` R2

mq log2 n{C 1
8

2pi´1q{2n3{4bk
r
a

p4d ` 6qpi ` 1q log 2

`
b
4 logp?

n ` 1q `
a
4d logp2Cpn, dq ` 2q `

a
2 logp8{�qs

§
a

p4�2z ` R2
mq{C 1

8 log n

n3{4bk

”a
p4d ` 6q log 2

8ÿ

i“M

i ` 1

2pi´1q{2

`
a
4 logp?

n ` 1q ` 4d logp2Cpn, dq ` 2q ` 2 logp8{�q
2pM´2q{2

ı

§
a

p4�2z ` R2
mq{C 1

8 log n

n3{4
8
?
2M

2M{4
1

2M{4bk

”a
p4d ` 6q log 2 `

b
4 logp?

n ` 1q

`
a
4d logp2Cpn, dq ` 2q `

a
2 logp8{�q

ı
.

We are also able to find a pure constant C 1
12 such that C 1

12 “
a

p4�2z ` R2
mq{C 1

8 maxip8
?
2i{2i{4q “

24
a

p4�2z ` R2
mq{C 1

8 and C 1
13 “ C 1

10 ¨ C 1
12. Then we obtain

II § C 1
13 log n

n3{4

´a
pd ` 1q logpmaxtWx, 1upd ` 1qq log n `

a
2 log 8{�

¯
.

After combining our inequalities of I and II, we obtain a union bound:

P
ˆ

sup
uPUk

|Zpuq ´ Zp⇡Mpuqq| • x2pn, dq : “ C 1
14 log n

n3{4

´a
pd ` 1q logpmaxtWx, 1upd ` 1qq log n

`
a
2 logp8{�q

¯˙

§
8ÿ

i“M

1

2i`1

�

4
§ �

4
,

in which we choose C 1
14 “ 2maxtC 1

11, C
1
13u. Then we get

P
´
sup
uPUk

Zpuq • xpn, dq ` x2pn, dq
¯

§ �

4
` �

4
“ �

2
.
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where the expression of xpn, dq is given in (56). As a reminder, we have

xpn, dq :“ log n?
nbk

c”
pd ` 1q4 log 1

bk
` 2pd ` 1q log 2 ` logp?

n ` 1q ` d logp2Cpn, dq ` 2q ` log
8

�

ı
{C 1

7.

We obtain there exist a universal constant C 1
15 “ 8{

a
C 1

7 such that

xpn, dq § C 1
15 log n?
nbk

ˆa
pd ` 1q logpmaxtWx, 1upd ` 1qq log n `

c
2 log

8

�

˙
.

Then we finally achieve

P
ˆ

sup
uPUk

Zpuq • C 1
16 log n?
nbk

ˆa
pd ` 1q logpmaxtWx, 1upd ` 1qq log n `

c
2 log

8

�

˙˙
“ �

2
,

where we let C 1
16 “ 2maxtC 1

14, C
1
15u and C 1

17 “ C16 logpmaxtWx, euq. Thus, nbk • 4C 12
17 log

3 nrpd `
1q logpd ` 1qs and � • 8 expp´nbk{p8C 12

17 log
2 nqq becomes a sufficient condition to make xpn, dq `

x2pn, dq be smaller than 1. Following similar procedure, we are able to prove the same inequality for
fn, so we conclude our proof of Lemma 13.

The remaining part of Lemma 7 only involves getting a uniform upper bound for |r✓puq ´ r✓0puq|
and thus |prkpu,✓q ´r✓0puq| for any ✓ P ⇥k and u P I . Similar with the corresponding proof of Lemma
2, we have

sup
uPI,✓P⇥k

|r✓puq ´ r✓0puq| § lrRX ¨ 2

cmin

d
pd ` 1qp6W 2

x log n ` 6Wx log
2 n log log nq

Cwn
.

Finally, by setting bk “ n´1{p2m`1q and combining our results obtained in Lemma 12 and Lemma 13,
we conclude our results for Lemma 7. In addition, our way of deriving constants Bmx,K , B1

mx,K and
Cmx,K is similar with that in Lemma 7, so we omit the details here.

F.8 Proof of Lemma 8 and Theorem 2
The proof of Lemma 8 and Theorem 2 are straight forward by combining the proof of Lemma 3 and
Lemma 7, so we omit the details here.

G Additional Plots
In this section, we directly plot regpT q for all the settings discussed in the main paper. From Figure
9 - Figure 11, we see that the blue solid lines depicted in every figure are close to the other two lines
that depict regrets with either known ✓0 or gp¨q in Algorithm 1. This fact reflects the robustness of our
estimators on ✓0 and gp¨q in every episode.
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(a) (b) (c)

Figure 9: From left to right, we plot empirical regret regpT q against T p2m`1q{p4m´1q log2 T with m P
r2, 4, 6s in the setting with i.i.d. covariates with independent entries. Solid blue, green, red lines,
represent the mean regret collected by implementing the Algorithm 1 for 30 times with unknown gp¨q,
✓0, unknown gp¨q but known ✓0 and known gp¨q but unknown ✓0 in the exploitation phase respectively.
Light color areas around those solid lines depict the standard error of our estimation of regpT q.

(a) (b) (c)

Figure 10: From left to right, we plot empirical regret regpT q against T p2m`1q{p4m´1q log2 T with m P
r2, 4, 6s in the setting with i.i.d. covariates but dependent entries. The rest caption is the same as in
Figure 9.

39



(a) (b) (c)

Figure 11: From left to right, we plot empirical regret regpT q against T p2m`1q{p4m´1q log410 T with
m P r2, 4, 6s in the setting with strong-mixing covariates. The rest caption is the same as in Figure 9.

H Regret bounds when F p¨q is Lipschitz
All our main results require bounded second derivatives of F . This allows the pricing strategy pt “
p�´1
k p´xJ

t
p✓q `xJ

t
p✓ to achieve low regret if the revenue function has bounded second derivative. When

F p¨q is only Lipschitz continuous, the above method is no longer applicable. Fortunately, we can
directly define the offered price based on the substitution of p✓ and pF into (5) We summarize these in
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the following Algorithm 3.
Algorithm 3: Feature based dynamic pricing with unknown noise distribution when F p¨q is
`-Lipschitz

1: Input: Upper bound of market value (tvtut•1): B ° 0, minimum episode length: `0, degree of
smoothness: m “ 0.

2: Initialization: p1 “ 0, p✓1 “ 0.
3: for each episode k “ 1, 2, . . . , do
4: Set length of the k-th episode `k “ 2k´1`0; Length of the exploration phase ak “ rp`kdq 3

4 s.
5: Exploration Phase (t P Ik :“ t`k, ¨ ¨ ¨ , `k ` ak ´ 1u):
6: Offer price pt „ Unifp0, Bq.
7: Updating Estimates (at the end of the exploration phase with data tprxt, ytqutPIk):
8: Update estimate of ✓0 by p✓k “ p✓kptprxt, ytqutPIkq;

p✓k “ argmin
✓

Lkp✓q :“ 1

|Ik|
ÿ

tPIk
pByt ´ ✓Jxtq2 (61)

9: Update estimates of F , by Fkpu, p✓kq “ Fkpu; p✓k, tprxt, yt, ptqutPIkq given by (14).
10: Exploitation Phase (t P I 1

k :“ t`k ` ak, ¨ ¨ ¨ , `k`1 ´ 1u):
11: Offer pt as

pt “ argmaxp•0tpp1 ´ pFkpp ´ xJ
t

p✓kqqu (62)

12: end for

Theorem 1. Let Assumptions 1, 3, 4 and 5 hold. Then there exist constants C (depending only on
the absolute constants within the assumptions) such that for all T satisfying T • Cd, the regret of
Algorithm 3 over time T is no more than C˚

x,KpTdq 3
4 log T p1 ` log T {dq.

Proof. We write

ErRt|H̄t´1s “ p˚
t p1 ´ F pp˚

t ´ xJ
t ✓0qq ´ ptp1 ´ F ppt ´ xJ

t ✓0qq (63)
“ revtpp˚

t ,✓0, F q ´ revtppt,✓0, F q. (64)

The last inequality follows from our definition of (4). When t P I 1
k (the k-th exploitation phase) we

can then further expand (64) into

(64) “ revtpp˚
t ,✓0, F q ´ revtpp˚

t , p✓k, F q (65)

` revtpp˚
t , p✓k, F q ´ revtpp˚

t , p✓k, pFkq (66)

` revtpp˚
t , p✓k, pFkq ´ revtppt, p✓k, pFkq (67)

` revtppt, p✓k, pFkq ´ revtppt, p✓k, F q (68)
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` revtppt, p✓k, F q ´ revtppt,✓0, F q. (69)

For (67), by our definition on pt in (8) , we have

(67) “ revtpp˚
t , p✓k, pFkq ´ revtppt, p✓k, pFkq § 0 (70)

For terms (65) and (69), we can control both of them by difference between p✓k and ✓0 in a sense that

(65), (69) À |xxt, p✓k ´ ✓0y| À 1?
ak

(71)

holds with high probability by our Lemma 4.1, since we assume F is Lipschitz continuous. Recall
ak “ |Ik|, which is the length of the k-th exploration phase

For the rest two parts (66) and (68), as we are able to control pF pxq to F pxq uniformly with rate
a´1{3
k using data in the exploration phase. we can then bound ErRts by

ErRts “ ErErRt|H̄t´1ss À 1

a1{3
k

(72)

Then for the regret in k-th episode we can bound it as

Regretk “
ÿ

tPIk
prev˚

t ´ revtq `
ÿ

tPEkzIk
prev˚

t ´ revtq (73)

§ Bak ` ak{a1{3
k “ a3{4

k ` ak{a1{4
k “ Opa3{4

k q (74)

let K “ tlog2 T u ` 1, we have our total regret can be bounded by

Regret⇡pT q “
Kÿ

k“1

23pk´1q{4 “ OpT 3{4q. (75)

I A Data Driven Way to Determine m

As mentioned in Remark 12, we are able to adopt the cross-validation method [Hall and Racine, 2015]
to determine the order of smoothness m using data from the previous exploration phase. In the below,
we briefly introduce how the order of smoothness can be determined in local polynomial regression in
the context of nonparametric regression.

Given training data txi, yiuni“1 and we assume they are generated following model

Y “ g˚pXq ` ✏,
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with Er✏ |Xs “ 0. Define

CVph,mq “ 1

n

nÿ

i“1

pYi ´ pg´ipXiqq2,

where pg´ip¨q is fitted using all samples except the i-th pair pxi, yiq. Here we use bandwidth h and
m-th order local polynomial to fit the regression function. According to Theorem 3.2 given in Hall
and Racine [2015], optimizing CVph,mq is equivalent to optimizing over ph,mq with respective to the
averaged summed squared errors defined in (76) up to some small order terms.

1

n

nÿ

i“1

ppgpxiq ´ g˚pxiqq2. (76)

Thus, this method is a valid way to determine the order of smoothness. We summarize the combined
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procedure in Algorithm 4.
Algorithm 4: Feature based dynamic pricing with unknown m

1: Input: Upper bound of market value (tvtut•1): B ° 0, minimum episode length: `0.
2: Initialization: p1 “ 0, p✓1 “ 0.
3: for each episode k “ 1, 2, . . . , do
4: If k • 2, use txJ

t
p✓k´1, pt, ytutPIk´1

and Algorithm 4 to determine m. If k “ 1, set pm “ 2.

5: Set length of the k-th episode `k “ 2k´1`0; Length of the exploration phase ak “ rp`kdq 2xm`1
4xm´1 s.

6: Exploration Phase (t P Ik :“ t`k, ¨ ¨ ¨ , `k ` ak ´ 1u):
7: Offer price pt „ Unifp0, Bq.
8: Updating Estimates (at the end of the exploration phase with data tprxt, ytqutPIk):
9: Update estimate of ✓0 by p✓k “ p✓kptprxt, ytqutPIkq;

p✓k “ argmin
✓

Lkp✓q :“ 1

|Ik|
ÿ

tPIk
pByt ´ ✓Jrxtq2. (77)

10: If pm • 1, update estimates of F , F 1 by Fkpu, p✓kq “ Fkpu; p✓k, tprxt, yt, ptqutPIk ,phkq,
F p1q
k pu, p✓kq “ F p1q

k pu, p✓k, tprxt, yt, ptqutPIk ,phkq. The detailed formulas are given by (14) and
(16).

11: Update estimate of � by p�kpuq “ u ´ 1´ pFkpuq
pF p1qpuq and estimate of g by pgkpuq “ u ` p�´1

k p´uq.

If pm “ 0, update estimates of F , by Fkpu, p✓kq “ Fkpu; p✓k, tprxt, yt, ptqutPIkq, The detailed
formulas are given by (14).

12: Exploitation Phase (t P I 1
k :“ t`k ` ak, ¨ ¨ ¨ , `k`1 ´ 1u):

13: If pm • 1, offer pt as

pt “ mintmaxtpgkprxJ
t

p✓kq, 0u, Bu. (78)

If pm “ 0, offer pt as

pt “ argmaxp•0tpp1 ´ pFkpp ´ xJ
t

p✓kqqu.

14: end for

Algorithm 5: Selection of m.

1: Input: Data txJ
t

p✓t´1, pt, ytutPIk´1

2: For pm,hq P M ˆ H, compute:

p pm,phq “ argmin
pm,hq

Lpm,hq “ 1

|Ik´1|
|Ik´1|ÿ

i“1

pYi ´ pgpm,hq
´i pXiqq2

3: Output: pm
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