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Abstract. Identifying cause-effect relations among variables is a key step in the decision-
making process. Whereas causal inference requires randomized experiments, researchers
and policy makers are increasingly using observational studies to test causal hypotheses
due to the wide availability of data and the infeasibility of experiments. The matching
method is the most used technique to make causal inference from observational data.
However, the pair assignment process in one-to-one matching creates uncertainty in the
inference because of different choices made by the experimenter. Recently, discrete optimi-
zation models have been proposed to tackle such uncertainty; however, they produce 0-1
nonlinear problems and lack scalability. In this work, we investigate this emerging data sci-
ence problem and develop a unique computational framework to solve the robust causal
inference test instances from observational data with continuous outcomes. In the pro-
posed framework, we first reformulate the nonlinear binary optimization problems as fea-
sibility problems. By leveraging the structure of the feasibility formulation, we develop
greedy schemes that are efficient in solving robust test problems. In many cases, the pro-
posed algorithms achieve a globally optimal solution. We perform experiments on real-
world data sets to demonstrate the effectiveness of the proposed algorithms and compare
our results with the state-of-the-art solver. Our experiments show that the proposed algo-
rithms significantly outperform the exact method in terms of computation time while
achieving the same conclusion for causal tests. Both numerical experiments and complexity
analysis demonstrate that the proposed algorithms ensure the scalability required for har-
nessing the power of big data in the decision-making process. Finally, the proposed frame-
work not only facilitates robust decision making through big-data causal inference, but it
can also be utilized in developing efficient algorithms for other nonlinear optimization
problems such as quadratic assignment problems.
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1. Introduction
In this paper, we consider an emerging data science
problem in robust causal inference and develop a
unique computational framework consisting of a novel
reformulation technique and innovative algorithms to
facilitate decision making from large-scale observatio-
nal data. As a natural process of digitization, we are
continuously generating data on our health, behavior,
mood, choices, and physical activity, which creates a
fertile field of prospective (collecting data that is gener-
ated as a natural process over time) or retrospective
(experimenting on already collected data) observatio-
nal experiments. Such experiments on nonrandomized

data are being used in identifying cause-effect relation-
ships among variables to make informed policy deci-
sions in public and private sectors (Nikolaev et al.
2013). Policy decisions across different domains are
made by intervening in different socioeconomic varia-
bles or process parameters (treatment), and measur-
ing their causal effect on the desired outcome. Even
though randomized experiments are the gold standard
for cause-effect analysis, they are often infeasible due
to legal or ethical reasons. In addition, controlled ex-
periments can be expensive and inapplicable to events
that have already occurred. For instance, we might
be interested in the effect of cloudy weather on bike
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rentals or the effect of eating fast food on children’s
learning ability. Hence, in many decision-making
processes, we are constrained to use observational
data only, and rapid digitization is making this more
prevalent.

Identifying a causal effect or testing a causal hypoth-
esis from observational data is prone to confound-
ing bias because of distributional differences between
treated and control samples on the measured covari-
ates (Stuart 2010). A common strategy adopted by re-
searchers across different domains, known as the
matching method, is to adjust for observed covariates to
reduce the confounding bias. The matching method
aims to restore the properties of a randomized experi-
ment by finding a control group that is identical to the
treatment group in terms of the joint distribution of
the measured covariates (Stuart 2010, Nikolaev et al.
2013, Sauppe et al. 2014, Sauppe and Jacobson 2017).
Due to the well-established methodological frame-
work, matching methods have been used in many
disciplines, including public health (Islam et al. 2019),
economics (Dehejia andWahba 1999), sociology (Gangl
2010), and education (Zubizarreta et al. 2014). How-
ever, forming matched pairs by assigning treated sam-
ples to control samples is a data mining problem
(Morucci et al. 2018). The matched-pair construction is
done by minimizing a single criterion between the
treated and control samples such as multivariate dis-
tance (Rubin 1979), the probability of receiving treat-
ment (Rosenbaum and Rubin 1983), or the χ2 test
statistic (Iacus et al. 2011, Nikolaev et al. 2013). Even
so, finding pairs that balance the empirical distribu-
tions of the study subgroups is a difficult problem. In
the past, this problem was solved with network flow
algorithms that pursued covariate balance indirectly
and relied heavily on iterative postassignment balance
checking (Iacus et al. 2011). These methods involve a
significant amount of guesswork, and the experimen-
ter has little to no control over the matching process
(Hill 2011). In recent years, discrete optimization mod-
els have been developed (Zubizarreta 2012, Nikolaev
et al. 2013, Zubizarreta et al. 2014, Zubizarreta 2015)
to solve matching problems that directly aim to mini-
mize the imbalance metrics. Use of mixed-integer pro-
gramming (MIP) models puts the experimenter in
control of the matching process and provides the flexi-
bility of including higher-order moments and multi-
variate moments as the imbalancemeasure.

Traditionalmatching techniques, including the recent
methods using MIP models, choose a single set of
matched pairs, whereas other possible sets of matched
pairs may exist with equal or similar match quality.
Ignoring other equally or almost equally good sets of
matched pairs creates a source of uncertainty in the
inference that is dependent on the choice of the experi-
menter over different matching methods (Morucci et al.

2018). For instance, in an attempt to evaluate the effect
of the hospital readmission reduction program (HRRP)
(McIlvennan et al. 2015) onnonindex readmission (read-
mission to a hospital that is different from the hospital
that discharged the patient), Islam et al. (2019) showed
that with more than 15,000 matched pairs, one experi-
menter can find HRRP as a cause of higher nonindex
readmission, while another experimenter can find the
opposite. Such uncertainty becomes more prominent
for observational studies involving big data, as the
chance of having multiple sets of good matches in-
creases with the increase of the size of the data. Coker
et al. (2021) refer to such uncertainty in statistical infer-
ence as the hacking interval in the context of linear regres-
sion and popular machine learning algorithms like the
K-nearest neighbor (KNN) and support vector machine
(SVM) algorithms. There are a variety of sensitivity
analysis techniques available in the causal inference lit-
erature; however, they mostly focus on the sensitivity
of experiment design (i.e., confounding effect of un-
measured variables) and assumptions. Some of those
techniques identify the bound of allowable unmeasured
confounding (see chapter 4 in Rosenbaum 2002),
whereas others consider the heterogeneity of the effect
(Fogarty 2020) or aim to develop nonparametric techni-
ques (Howard and Pimentel 2021). Nonetheless, these
sensitivity analysis methods do not consider the uncer-
tainty in the poststudy design phase due to the choices
made by an experimenter.

To test a causal hypothesis that is robust to the
experimenter’s choice of the matching algorithm,
Morucci et al. (2018) proposed discrete optimization-
based tests for causal hypothesis with binary and con-
tinuous outcomes. The robust causal hypothesis tests
explore all possible pair assignments by computing
the maximum and minimum test statistics given a
good set of matches. Whereas the robust tests pro-
posed by Morucci et al. (2018) address the uncertainty
in inference, the integer programmingmodels produce
nonlinear-binary optimization problems that are diffi-
cult to solve, even for small instances.

In general, the nonlinear problem with binary varia-
bles is considered one of the challenging problems, yet,
such problems abound in science and engineering ap-
plications (Murray and Ng 2010, Anthony et al. 2017).
Specifically, optimization problems arising in com-
puter vision, machine learning, and statistics are often
nonlinear in nature when posed as MIP. On the other
hand, Bertsimas et al. (2016) show that if the problem is
computationally tractable, then the MIP approach can
produce significantly better solutions than the numeri-
cal optimization techniques commonly used in data
science. Unfortunately, there are very few successful
solution algorithms available in the literature, and even
the linearly constrained problem with quadratic objec-
tive, which is considered the simplest case among
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nonlinear problems, is NP-hard (Murray and Ng 2010).
In the optimization literature, there are four major ap-
proaches to solve general nonlinear integer program-
ming problems: continuous reformulation, quadratic
reformulation, linearization with piecewise linear func-
tions, and a heuristic/metaheuristic approach. The con-
tinuous reformulation aims to transform the nonlinear
binary problem into an equivalent problem of finding
global optimum in continuous variables through the use
of algebraic, geometric, and analytic techniques (Murray
and Ng 2010) or relaxing the binary constraint and add-
ing a penalty in the objective (Lucidi and Rinaldi 2010).
However, such reformulation techniques often intro-
duce exponentially large number of variables to the
model and can make it even more difficult to solve
(Murray andNg 2010).

Similar to the continuous reformulation, quadrati-
zation adds a large number of variables in construct-
ing an equivalent problem. For instance, quadratic
reformulation of a nonlinear problem with n binary
variables will need at least 2n=2 auxiliary variables (see
theorem 1 in Anthony et al. 2017). Classical lineariza-
tion techniques also introduce an exponentially large
number of additional variables (Anthony et al. 2017)
and will be impractical for large-scale problems aris-
ing from big data. However, several heuristic algo-
rithms have been successful in solving moderately
sized problems with binary variables when the objec-
tive function is quadratic (Glover et al. 2002, Boros
et al. 2007). Researchers often use metaheuristics like
the genetic algorithm (Gopalakrishnan and Kosanovic
2015) and neighborhood search algorithm (Archetti
et al. 2020) to solve nonlinear binary optimization prob-
lems. In recent years, a variety of commercial nonlinear
programming solvers has been developed; however,
their applicability is limited to very small-scale instan-
ces (see Cafieri and Omheni 2017). A more related work
is Islam et al. (2019), which developed scalable and effi-
cient algorithms to solve nonlinear binary problems in
robust causal hypothesis tests with binary outcome
data. However, the proposed solution approach is very
specific to the objective function structure and not gen-
eralizable to the problem that deals with continuous
outcomes.

On the other hand,modernMIP solvers (e.g., Gurobi,
Cplex, Mosek) have gained significant computational
power over the last few decades due to the algorithmic
development and improvement of hardware capabil-
ity. For instance, we can solve many MIPs in seconds
today that, 25 years ago, would have taken 71,000 years
to solve (Bertsimas and Dunn 2019). Usually, MIP solv-
ers use a combination of branch-and-bound, cutting
plane, and group-theoretic approaches to solve practi-
cal problems (Bixby 2012). Instead of employing spe-
cific branching rules, MIP solvers often use a hybrid

branching strategy by combining rules like nonchimeri-
cal branching (Fischetti and Monaci 2012), reliability
branching, and inference branching (Martin et al. 2005).
Cutting planes are a pivotal tool for the solvers, espe-
cially when solving integer linear programs (ILPs).
Quadratic integer programs (QIPs) also take advantage
of the branch-and-bound algorithm, where, at each
node, a quadratic program is solved using efficient
techniques like barrier methods. In addition to these
techniques, MIP solvers often use efficient preprocess-
ing methods to tighten the original formulation and
reduce the size of the problem (Achterberg and Wun-
derling 2013). There is a wide range of starting and
improvement heuristics available in the solvers that
provide a good incumbent solution or a sufficient one
when the problem is intractable (see the survey by
Fischetti and Lodi 2010).

Apart from the algorithmic developments, modern
MIP solvers take advantage of hardware technology
by running multiple optimizers concurrently on multi-
ple threads and choosing the best one, as we often do
not know which algorithm, branching rule, or their
combination would be most efficient for the problem
at hand. To further increase the efficiency of MIP
solvers, researchers are exploring different machine
learning (Alvarez et al. 2014, He et al. 2014) and rein-
forcement learning (Etheve et al. 2020) techniques for
better branching and predicting the subtree size at a
node. However, these MIP solvers cannot solve a gen-
eral nonlinear problem. To leverage the improvements
of the MIP solvers, we need a linear or at least a quad-
ratic formulation of the current nonlinear problems in
robust causal inference.

In this paper, we consider the nonlinear binary opti-
mization models of robust causal inference tests pro-
posed by Morucci et al. (2018) for continuous outcome
data and develop a computational framework that
can handle large-scale observational data. First, we pro-
pose a unique approach to reformulate the nonlinear
binary optimization problems as equivalent and less-
restrictive feasibility problems. By exploiting the struc-
ture of the feasibility problem, we then develop greedy
algorithms to solve the original robust causal hypothe-
sis test problems. The reformulation into a feasibility
problem also provides an opportunity to formulate the
robust test problems as quadratic integer programming
problems that can take advantage of recent develop-
ments in commercial MIP solvers. Without this refor-
mulation, we cannot use MIP solvers to get guaranteed
optimality. A major advantage of the reformulation
approach is that, unlike state-of-the-art quadratization
techniques, here, we do not need to add any additional
variables. Moreover, the proposed unique reformula-
tion approach can be leveraged to model general non-
linear and quadratic optimization problems (e.g., the
quadratic assignment problem) as feasibility problems
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and to develop efficient algorithms. Nonetheless, the
proposed algorithms are very efficient in solving
practical-sized problems and are scalable to very-large-
scale problems. Our numerical experiments on real-
world data sets show that the proposed computational
framework provides the same inference to robust tests
while taking a fraction of the time required by the exact
method. The time complexity demonstrates that the
developed algorithms are scalable enough to harness
the power of big data in performing robust causal anal-
ysis, which consequently will provide robust policy
decisions.

The remainder of the paper is organized as follows.
We discuss thematchingmethod and the robust causal
hypothesis test with continuous outcomes (i.e., robust
Z-test) along with its challenges in Section 2. We pro-
vide a feasibility formulation of the robust Z-test in
Section 3. In Section 4, we develop greedy algorithms
to solve the reformulated Z-test and analyze the prop-
erties and complexity of the proposed algorithms.
We apply our algorithms to three real-world data sets
of varying sizes in Section 5 and compare our result
with Gurobi and the ILP-based heuristic proposed by
Morucci et al. (2018). Finally, we provide concluding
remarks in Section 6.

2. Matching Method and Robust Test
In this section, we discuss the matching method in
general and the robust causal hypothesis test with
continuous outcomes. We first discuss the matching
method and introduce necessary notations and re-
quired assumptions to make causal inference from
observational data. We then discuss the integer pro-
gramming model for a robust causal hypothesis test
with continuous outcomes, existing methods to solve
the robust test, and issues with the current solution
method.

2.1. Matching Method
In this paper, we consider the potential outcome
framework (Holland 1986) that has led to the develop-
ment of matching methods. Under the potential out-
come framework, treatment effect or causal effect is
measured by comparing the counterfactual: the differ-
ence in the potential outcomes of a sample unit in
both the treated and control scenarios. The fundamen-
tal problem in causal inference is that we can only
observe one scenario (either treated or control) for
each sample. A sample i ∈S, where S :� {1, 2, : : : ,N}
can only have outcome Yi � Y1

i Ti +Y0
i (1−Ti), where

Ti ∈ {0, 1} (Holland 1986). Here, Y1
i represents the out-

come under treatment (i.e., Ti � 1), and Y0
i represents

outcome without treatment (i.e., Ti � 0). This problem
is overcome by considering the average of the treat-
ment effect τ � Y1 −Y0 over the study population S.

Whereas this strategy works for randomized experi-
ments, experiments with observational data produce
biased inference due to the distributional differences
of the groups that received treatment (i.e., T ⊂S)
and the group which did not (i.e., C ⊂S) on some
pretreatment covariates.

The matching method provides an unbiased estima-
tion of the treatment effect by identifying pairs (t, c),
where t ∈T and c ∈ C or subsets T ⊂T and C ⊂ C are
matched exactly in terms of their covariate set X ∈ X
(Rosenbaum and Rubin 1983, Stuart 2010). However, it
is almost impossible to find exact matches, even with a
small number of covariates (Rosenbaum and Rubin
1983, Zubizarreta 2012). A large number of matching
methods have been developed to make (t, c) pairs or
(T ,C) subsets as similar as possible in terms of X
(Stuart 2010, Nikolaev et al. 2013). In this paper, we
will restrict the scope to one-to-one matching and
consider the matching algorithms that identify (t, c)
pairs. Some commonly used matching methods are
propensity score matching (Rosenbaum and Rubin
1983), nearest neighbor matching (Stuart 2010), opti-
mal matching (Rosenbaum 1989), Mahalanobis dis-
tance matching (Rubin 1979), and genetic matching
(Diamond and Sekhon 2013). One of the popularmeth-
ods (if not the most popular) (Stuart 2010, Zubizarreta
2012) is the propensity score matching method (Rose-
nbaum and Rubin 1983) that employs a logistic model
to estimate each sample’s propensity of receiving treat-
ment and find the (t, c) pairs that are minimizing the
differences in their propensity scores. The matching
process is repeated and evaluated iteratively until the
desired quality of the matches is achieved. Once a suit-
able set of matches is identified, we can test the null
hypothesis in (1) and (2) to make causal inference.
Note that HSATE

0 in (1) tests the zero sample average
treatment effect (SATE) hypothesis on the whole sam-
ple set, and HSATT

0 in (2) tests the zero sample average
treatment effect hypothesis on the treated (SATT)
samples. Here, wemake the assumptions that are com-
monly used in causal inference literature (see Appen-
dix 1 of Online Supplement S1):

HSATE
0 :� EY |X[Y1 −Y0 |X] � 0, (1)

HSATT
0 :� EY |X[Y1 −Y0 |X,T � 1] � 0 (2)

2.2. Uncertainty Due to the Choice of the
Experimenter

Aswementioned in Section 2.1, matchingmethods aim
to minimize a specific set of criteria to find the matched
pairs (t, c) in one-to-one matching. In the causal infer-
ence literature, there are plentiful algorithms to find
such matched-pair sets; however, they offer little to

Islam et al.: Computational Framework for Solving Robust Causal Inference Problems
4 INFORMS Journal on Computing, Articles in Advance, pp. 1–19, © 2022 INFORMS

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

08
.7

.3
6.

95
] o

n 
10

 A
ug

us
t 2

02
2,

 a
t 0

8:
31

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 
Published in INFORMS Journal on Computing on August 10, 2022 as DOI: 10.1287/ijoc.2022.1226. 

This article has not been copyedited or formatted. The final version may differ from this version.



no clear guidance on the choices of matching proce-
dure (Morgan and Winship 2015). A common practice
among researchers and practitioners is to use widely
adopted and cited techniques and software (Morucci
et al. 2018). Therefore, starting with the same data set
and the same matching objectives, two experimenters
can get two different sets of matched pairs. As the pair
assignment process does not consider outcomes, tradi-
tional inference techniques do not guarantee the same
inference by both experimenters. For instance, treated
unit t ∈T can have multiple potential assignments
c1, c2, : : : , cn{ } ∈ C with equal match quality but differ-
ent outcomes. Each possible assignment will poten-
tially have a different treatment effect: Y1

t −Y0
c1 ≠ Y1

t −
Y0
c2 ≠⋯≠ Y1

t −Y0
cn , which creates an uncertainty in the

inference. Moreover, this phenomenon is more promi-
nent in big data observational studies due to the avail-
ability ofmore pairing options.

2.3. Robust Approach for Causal
Hypothesis Tests

To make a causal inference that is robust to the choice
of the experimenter, recently, Morucci et al. (2018)
proposed a new methodology based on discrete opti-
mization techniques. Before discussing its difference
with the classical method of making causal inference
(Rosenbaum and Rubin 1985, Holland 1986), we need
to define the pair assignment variables ai,j and the set
of good matchesM.

Definition 1 (A Set of Good Matches). The set of good
matches M includes treated samples T ⊂S and con-
trol samples C ⊂S that satisfy user-defined matching
criteria such thatM :� (ti, cj) ∈ (T × C) : ti � cj |X{ }

.

The set of good matches M can be stored in a logi-
cal matrix D |T | × |C | . Here, an element in D, di,j � 1 if
treated unit i is a good match to a control unit j, and 0
otherwise.

Definition 2 (Pair Assignment Operator). We have
that aij ∈ 0, 1{ } is the pair assignment operator, where
aij � 1 if treated unit ti ∈T is paired with a control
unit cj ∈ C and the pair (ti, cj) ∈M; aij � 0 otherwise.

Here, we are interested in testing the causal hypoth-
esis (1) or (2) given a good set of matches M. The
classical approach selects one matched-pair set from
M, calculates the test statistic Λ, and makes inference
based on Λ or the corresponding p-value. On the
other hand, the robust approach explores all possible
pair assignments within M without replacement by
calculating the maximum and minimum test statis-
tics (Λmax,Λmin). Using (Λmax, Λmin), a robust test can
be defined as the following.

Definition 3 (Robust Test). Given a level of significance
α to test the hypothesis H0 and (Λmax,Λmin) calculated

from M, the test is called α-robust if |p-value(Λmax) −
p-value(Λmin) | ≤ α. The test H0 is called absolute-robust
when p-value(Λmin) � p-value(Λmax).

However, computing the test statistics requires solv-
ing binary optimization problems, and their structure
depends on the nature of the test statistics. For example,
McNemar’s test (McNemar 1947) and the Z-test (Low
et al. 2016) proposed by Morucci et al. (2018) for binary
and continuous data, respectively, produce nonlinear
binary optimization problems. Whereas they ensure
robustness in inference, nonlinear-binary optimization
problems are extremely difficult to solve, even for
smaller instances. Islam et al. (2019) developed efficient
algorithms for McNemar’s test with binary outcomes
by converting the original nonlinear problem into a
counting problem. The robust tests with the continuous
outcome, on the other hand, remain difficult to solve
for practical-sized problems. In the following section,
we discuss the robust Z-test model, the current solution
approach, and challengeswith the current approach.

2.4. Robust Z-Test and Challenges
To test the zero causal effect hypothesis with continu-
ous outcomes, one can consider the canonical Z-test
(Morucci et al. 2018) with the test statistics Λ :�
Z(a) �

��
n

√ (τ̂−0)
σ̂ . Here, n is the number of matched pairs,

τ̂ � 1
n
∑

i∈T
∑

j∈C(yti − ycj )ai,j is the average treatment ef-
fect among the matched pairs, and σ̂ is the sample
standard deviation of the treatment effect. Given a set
of good matches M, an integer programming formu-
lation of the Z-test proposed by Morucci et al. (2018) is
provided in (3)–(8):

max=min Z(a)

�
1��
n

√ ∑
i∈T

∑
j∈C(yti − ycj )ai,j�������������������������������������������������������������������

1
n
∑

i∈T
∑

j∈C [(yti − ycj )ai,j]2 − 1
n
∑

i∈T
∑

j∈C(yti − ycj )ai,j
( )2√

(3)
subject to :

∑
i∈T

aij ≤ 1 ∀j, (4)

∑
j∈C

aij ≤ 1 ∀i, (5)

ai,j ≤ di,j ∀i, j, (6)∑
i∈T

∑
j∈C

aij � n, (7)

aij ∈ 0, 1{ } ∀i, j: (8)

Here, the objective function Z(a) represents the test
statistic Λ, and the denominator in the objective func-
tion (Equation (3)) is the sample standard deviation
(σ̂) of the treatment effect. As we can see, to compute
the test statistic, we have to solve the above nonlinear
binary optimization problems. The current solution
approach proposed in Morucci et al. (2018) linearizes
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the above model by imposing an upper bound on σ̂,∑
i∈T

∑
j∈C [(yti − ycj )ai,j]2 ≤ bl, and by replacing the objec-

tive with max/min
∑

i∈T
∑

j∈C(yti − ycj )ai,j. Therefore, the
linearized Z-test model takes the following form:

max=min
∑
i∈T

∑
j∈C

(yti − ycj )ai,j (9)

subject to :
∑
i∈T

∑
j∈C

[(yti − ycj )ai,j]2 ≤ bl and

Constraints(4) − (8) (10)

The integer linear program (ILP)–based heuristic of
Morucci et al. (2018) solves the model (9)–(10) itera-
tively by changing the upper bound of standard devia-
tion bl on a grid. Starting with a coarse grid of bl, the
proposed algorithm solves a series of ILPs and creates
a new, refined mesh at each iteration. The iterative
process continues on the grid of bl until the desired
level of tolerance on the upper bound bl is achieved.
Whereas this innovative approach provides a working
solution to a complex problem, it faces several chal-
lenges in practice. The first challenge is that, at each
grid point, we need to solve an ILP, and, after refining
the grid of bl, we have to solve the ILP with updated
constraints. As we have to iterate over the grid of bl
many times, the ILP has to be solved hundreds of times
if not thousands. One can solve small ILP instances
with commercial MIP solvers efficiently; however, in
today’s big data world, such smaller problems are
highly unlikely. In addition, solving hundreds of ILPs
adds a significant computational burden. The second
challenge is that the range of bl can be very large, which
significantly increases the number of ILPs that we have
to solve to calculate the test statistics. For instance, in a
case study with Bikeshare data (Fanaee-T and Gama
2014), the range of bl is 1.12million to 26.12million.

To overcome these challenges, in this paper, we
reformulate the nonlinear-binary formulation of the
Z-test into a less-restricted feasibility problem. By lev-
eraging the structure of the feasibility problem, we
develop greedy algorithms that are very efficient and
scalable to big data observational experiments. The
feasibility formulation also allows us to convert the
Z-test problems into a quadratic integer program to
take advantage of recent developments inMIP solvers.

3. Reformulation of the Z-Test
The optimization model discussed for the robust Z-test
in (3)–(8) has a fractional objective in the form of
Z(a) � f (x)

g(x). Both f(x) and g(x) can be written as a func-
tion of treatment effect between treated sample i and
control sample j: (yti − ycj )ai,j. In addition, we can bound
Z(a) in the range of Z(a) ≤ |4 | , as, beyond this range,
we will have approximately zero area under the stand-
ard normal distribution curve, and optimizing further

beyond this range will not make any difference in the
inference. For instance, let’s assume that we find a
suboptimal solution for the maximization problem,
a set of treated-control pair assignments for which
Z(a) � 4:10. In theory, we can find a global optimal
solution better than the current solution; however,
improving the solution quality further will not
change the robust inference of the hypothesis test.
Using this property of the optimization model, we
reformulate the robust Z-test problem as a feasibility
problem.

To reformulate the robust Z-test as a feasibility prob-
lem, let’s assume that, for the minimization model,
∃ ai,j such that Z(a) ≤ γ, where γ is a scalar parameter.
We can iterate over different values of γ to find its opti-
mal value. Thenwe have the following:

1��
n

√ ∑
i∈T

∑
j∈C

(yti − ycj )ai,j

≤ γ ×
������������������������������������������������������������
1
n

∑
i∈T

∑
j∈C

[(yti − ycj )ai,j]2 −
1
n

∑
i∈T

∑
j∈C

(yti − ycj )ai,j
( )2√√√

,

(11)

1
n

∑
i∈T

∑
j∈C

(yti − ycj )ai,j
( )2

≤ γ2 1
n

∑
i∈T

∑
j∈C

[(yti − ycj )ai,j]2

− γ2 1
n

∑
i∈T

∑
j∈C

(yti − ycj )ai,j
( )2

:

(12)

It is important to note that, in Inequality (12), we are
taking the square of an inequality for further simplifi-
cation. Both sides of Inequality (11) can be negative
and nonnegative depending on the intervals of sum of
treatment effects (

∑
i∈T

∑
j∈C(yti − ycj )ai,j) and γ. There-

fore, to ensure the correct direction of the inequality,
we must consider four possible combinations of the
sum of treatment effects and γ. We consider these
combinations in four cases and discuss them in the
following subsection. Before we discuss the four cases,
let us introduce the proposed feasibility formulation
by assuming that Inequality (12) is a valid inequality.
Simplifying Inequality (12) further, we get the follow-
ing quadratic constraint:

1+ γ2 1
n

( ) ∑
i∈T

∑
j∈C

(yti − ycj )ai,j
( )2

− γ2
∑
i∈T

∑
j∈C

[(yti − ycj )ai,j]2 ≤ 0:

(13)

Therefore, the nonlinear-binary optimization problem
can be framed as the following binary feasibility prob-
lem: ∃ a set of assignments ai,j so that Z(a) ≤ γ with
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Constraints (14)–(20):

1+γ2 1
n

( ) ∑
i∈T

∑
j∈C

(yti − ycj )ai,j
( )2

−γ2
∑
i∈T

∑
j∈C

[(yti − ycj )ai,j]2 ≤ 0,

(14)∑
i∈T

aij ≤ 1 ∀j, (15)

∑
j∈C

aij ≤ 1 ∀i, (16)

ai,j ≤ di,j ∀i, j, (17)∑
i∈T

∑
j∈C

aij � n, (18)

Additional constraints to validate
Inequality (14) (19)

aij ∈ 0,1{ } ∀i, j: (20)

3.1. Advantage of the Proposed Feasibility
Formulation

The reformulation (14)–(20) converts a nonlinear optimi-
zation problem into an equivalent and less-restrictive
feasibility problem that offers several advantages.

First, it presents an opportunity to formulate the
robust Z-test problem as a quadratic integer program
(QIP) (see Section 4). Whereas general nonlinear inte-
ger optimization problems are difficult to solve, QIP
formulation can benefit from the recent developments
in MIP solvers.

Second, feasibility formulation facilitates new algorith-
mic development. For example, we can show that the
reformulated problem (14)–(20) is a convex-feasibility
problem with binary variables. Solving the feasibility
problem for any γ and finding an optimal γ in the range
of −4 ≤ γ ≤ 4 with a binary search algorithm can solve
the robust Z-test problem. Note that the range of γ is
fixed for all data sets and is very small compared with bl
used in the ILP-based approach, as beyond Z(a) � |4 |
will have approximately zero area under the standard
normal distribution curve. Similar to the Z-test, most
parametric hypothesis tests (i.e., Student’s t-test, Welch’s
t-test, F-test, χ2-test) use test statistics in the f (x)

g(x) form,
where both f(x) and g(x) are functions of data, and the
test statistics follow certain distributions. If those tests
are conducted in the spirit of the hacking interval pro-
posed byCoker et al. (2021), then, regardless of the appli-
cation domain, we can use the bounded nature of the
distribution of test statistics and its structure to create a
feasibility formulation. The proposed feasibility refor-
mulation scheme will provide guidance to develop scal-
able solution techniques for other robust hypothesis
tests. With regard to solving the feasibility problem,

convex feasibility problems with continuous variables
have been studied extensively in the optimization litera-
ture (Escalante and Raydan 2011), and iterative
projection-based algorithms (Zhao et al. 2018, De Ber-
nardi et al. 2019, Necoara et al. 2019, Li et al. 2019,
Morshed et al. 2021) have proved to be very efficient in
solving such problems. Unfortunately, to our best
knowledge, there is no efficient algorithm available to
solve convex feasibility problems with binary variables.
Recently, projection-based algorithms have been devel-
oped (Chubanov 2012, 2015; Basu et al. 2014) to solve lin-
ear feasibility problems with binary variables. We
believe that new algorithms can be developed for solving
convex feasibility problemswith integer variables. Apart
from the causal hypothesis test problem, other types of
optimization problems such as the quadratic assignment
problem (QAP) (Pitsoulis and Pardalos 2009) can be for-
mulated as a feasibility problem and can be solved with
iterative projection-based algorithms.

Finally, this unique reformulation simplifies the
structure of the problem. By leveraging the structure,
we can develop algorithms to solve such a computa-
tionally expensive problem. In that vein, we develop
several greedy schemes to solve the robust Z-test
problems that are efficient and scalable to harness the
power of big data in causal analysis.

3.2. Cases for the Minimization Problem
To simplify the test statistic Z(a) and formulate it as a
feasibility problem, we took the square of an inequality
in (12). To ensure the validity of this inequality, we need
to add additional constraints that lead to four possible
cases. The resulting cases along with the constraints
are presented below. It is important to note that σ̂ ������������������������������������������������������������������������

1
n
∑

i∈T
∑

j∈C [(yti − ycj )ai,j]2 − (1n
∑

i∈T
∑

j∈C (yti − ycj )ai,j)2
√
> 0, therefore, will not influence the cases.

Case 1. For this case, we consider γ ≥ 0 and
∑

i∈T∑
j∈C(yti − ycj )ai,j ≥ 0. Now, Inequality (11) can be written

as 1��
n

√ ∑
i∈T

∑
j∈C(yti − ycj )ai,j ≤ γσ̂. Here, γ ≥ 0, σ̂ > 0 and∑

i∈T
∑

j∈C(Ti −Cj)ai,j ≥ 0. So, both sides of the inequal-
ity are positive. Taking the square will not change the
sign of the inequality. Hence, we will have the follow-
ing constraints:

1+γ2 1
n

( ) ∑
i∈T

∑
j∈C

(yti − ycj )ai,j
( )2

−γ2
∑
i∈T

∑
j∈C

[(yti − ycj )ai,j]2 ≤ 0,

(21)∑
i∈T

∑
j∈C

(yti − ycj )ai,j ≥ 0: (22)

Case 2. For this case, we consider γ ≤ 0 and
∑

i∈T∑
j∈C(yti − ycj )ai,j ≤ 0. As both sides of Inequality (11) are

negative, the sign of the quadratic constraint will
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change, and we will have the following constraints:

1+γ2 1
n

( ) ∑
i∈T

∑
j∈C

(yti − ycj )ai,j
( )2

−γ2
∑
i∈T

∑
j∈C

[(yti − ycj )ai,j]2 ≥ 0,

(23)∑
i∈T

∑
j∈C

(yti − ycj )ai,j ≤ 0: (24)

Case 3. For this case, we consider γ ≥ 0 and
∑

i∈T
∑

j∈C
(yti − ycj )ai,j ≤ 0. As

∑
i∈T

∑
j∈C(yti − ycj )ai,j ≤ 0, the left-hand

side of Inequality (11) is nonpositive, but γ ≥ 0 and
σ̂ > 0, which makes the right-hand side nonnegative.
Since this is true for all γ ∈ R, γ ≥ 0, we have that

1��
n

√ ∑
i∈T

∑
j∈C

(yti − ycj )ai,j ≤min
γ∈R (γσ̂) � 0: (25)

Therefore, we will have the following constraints. For
this case, our nonlinear feasibility problem becomes a
linear feasibility problem:∑

i∈T

∑
j∈C

(yti − ycj )ai,j ≤ 0: (26)

Case 4. For this case, we consider γ ≤ 0 and
∑

i∈T∑
j∈C(yti − ycj )ai,j ≥ 0. As the left-hand side of Inequality

(11) is nonnegative and the right-hand side is nonposi-
tive, the above equation only holds at equality:∑

i∈T
∑

j∈C(yti − ycj )ai,j � 0. However, this specific case is
redundant, as it is already considered in the other
cases. All of the above-mentioned cases and resulting
constraints are summarized in Table 1.

Each of the above cases has two conditions, one on
the sum of treatment effect (

∑
i∈T

∑
j∈C(yti − ycj )ai,j) and

another on γ. The condition of the sum of treatment
effect

∑
i∈T

∑
j∈C(yti − ycj )ai,j ≥ 0 (or ≤ 0) depends on the

assignment variable; therefore, this condition is
included in the optimization model as a constraint in
(19). For Case 1 in the minimization problem, this con-
straint takes the form of Inequality (22). Moreover, γ
is not dependent on the assignment variable, so we do
not include it in the optimization model. The condi-
tion on γ is considered after solving the assignment
problems, as discussed in the following section.

The maximization model follows the same argu-
ment. For completeness, we provide the correspond-
ing cases of the maximization problem in Appendix 2
of Online Supplement S1.

4. Algorithmic Approach
In this section, we develop greedy algorithms to solve
the derived cases of the robust Z-test by exploiting the
structure of the feasibility problem formulated in the
previous section. First, we consider Case 1 of the mini-
mization problem. In Case 1, apart from the assign-
ment constraints, we have to satisfy Constraints (21)
and (22) to calculate γ∗ in the range γ ≥ 0. Simplifying
Constraint (21) will result in the following:

nγ2

n+ γ2

( )∑
i∈T

∑
j∈C

(yti − ycj )ai,j
[ ]2 ≥ ∑

i∈T

∑
j∈C

(yti − ycj )ai,j
[ ]2

:

(27)

As our objective is to find a set of assignments ai,j that
produces the smallest value of γ while satisfying Con-
straints (27) and (22), we can exploit the structure of
Inequality (27). Note that in Inequality (27), for any
number of samples (n), the minimum possible value
of γ is possible when

∑
i∈T

∑
j∈C [(yti − ycj )ai,j]2 is maxi-

mized and [∑i∈T
∑

j∈C(yti − ycj )ai,j]2 is minimized, which
can be written as the following optimization problem:

max
ai,j∈M

∑
i∈T

∑
j∈C

(yti − ycj )ai,j
[ ]2 − ∑

i∈T

∑
j∈C

(yti − ycj )ai,j
[ ]2

subject to : Constraints (4)–(8), and (22) (28)

The above quadratic integer program (QIP) (28) can
be solved with any commercial MIP solver. Using the
solution of (28) and a prespecified n, we can calculate
the optimal solution γ∗ by solving the quadratic Equa-
tion (29) for γ. As the condition for Case 1 of the mini-
mization problem is γ ≥ 0, γ∗ would be the minimum
nonnegative solution of γ from Equation (29). Simi-
larly, we can develop QIPs for Cases 1 and 2 of both
the minimization and maximization problems (see
Table 2). The details on QIP formulation are provided
in Appendix 3 of Online Supplement S1. Case 3 for

Table 1. Cases and Resulting Constraints for the Minimization Problem Feasibility Formulation of the Robust
Z-Test

Case Case constraints Quadratic constraint

1 γ ≥ 0,
∑

i∈T
∑

j∈C(yti − ycj )ai,j ≥ 0 1+γ2 1
n

( )
(∑i∈T

∑
j∈C(yti − ycj )ai,j)2 − γ2∑

i∈T
∑

j∈C [(yti − ycj )ai,j]2 ≤ 0

2 γ ≤ 0,
∑

i∈T
∑

j∈C(yti − ycj )ai,j ≤ 0 1+γ2 1
n

( )
(∑i∈T

∑
j∈C(yti − ycj )ai,j)2 − γ2∑

i∈T
∑

j∈C [(yti − ycj )ai,j]2 ≥ 0

3 γ ≥ 0,
∑

i∈T
∑

j∈C(yti − ycj )ai,j ≤ 0 No quadratic constraint

4 γ ≤ 0,
∑

i∈T
∑

j∈C(yti − ycj )ai,j ≥ 0 No quadratic constraint (redundant, only true when both inequalities are zero)
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both problems results in a linear feasibility problem:

nγ2

n+ γ2

( )∑
i∈T

∑
j∈C

[(yti − ycj )ai,j]2 �
∑
i∈T

∑
j∈C

(yti − ycj )ai,j
[ ]2

:

(29)

Even though we converted the general nonlinear inte-
ger optimization problems to QIPs, it is still computa-
tionally expensive to solve practical-sized problems.
Therefore, in the following, we develop greedy algo-
rithms to solve the QIPs in Table 2. We propose three
algorithms for solving both theminimization andmax-
imization problems. First, in Algorithm 1, we propose
a greedy scheme for efficiently solving Cases 1 and 2 of
the minimization problem. Second, in Algorithm 2, we
extend a variant of this setup to the maximization
problem for Cases 1 and 2. Case 3 of both the minimi-
zation and maximization problems are discussed in
Algorithm 3. Finally, in Algorithm 4, we provide a
combined framework for solving the Z-test problem
using Algorithms 1–3. Before we delve into the details
of the algorithms, first let us define the following con-
stants for Algorithm 1:

Case 1 : α1 � 1, α2 � 0, Case 2 : α1 � 0, α2 � −1:
(30)

Moreover, for all i ∈T, j ∈ C, we set Δij � [yti − ycj ] �
Dij and construct the list Υ as follows:

Υ[r, (ir, jr)] � (Υ)r � Δirjr ;

Υ[r, (ir, jr)] ≤ Υ[r+ 1, (ir+1, jr+1)], Δirjr ≠ 0 ∀r ∈ ‖D‖0:
(31)

This list will be used as input list Υ in Algorithms 1
and 2.

Algorithm 1 (γ � G1(Υ,n,α1,α2))
Initialize k← 0, εk ← 0, l← |Υ | ;
while k ≤ α1�n2� + |α2 |n or εk > 0, do

If α2Υ[1, (i1, j1)] + α1Υ[l, (il, jl)] < 0
Stop; No feasible solution.

Else

If |Υ[1, (i1, j1)] | − α2Υ[1, (i1, j1)] − α1Υ[l, (il, jl)]
≥ 0
Assign ail,jl � 1.

Else
Assign air,jr � 1 such that |Υ[1, (i1, j1)] +Υ[r,
(ir, jr)] | is minimized.

Denote the assigned entry as air̄ jr̄ and remove
the entries of the list that contains indices ir̄
or jr̄ .
εk ← εk +Υ[r̄, (ir̄ , jr̄)];

If α1 � 1
Assign aip,jp � 1 such that Υ[p, (ip, jp)] +Υ[r̄, (ir̄ ,
jr̄ )] ≥ 0 and is minimized. Remove the entries
that contains the indices ip or jp from the list.
l← l− 2;
k← k+ 1;

Else
l← l− 1;
k← k+ 1;

end while
return γ � α2γmin + α1γmax; γmin and γmax are
respectively the minimum and maximum roots of
Equation (29).

In a similar fashion, the following constants will be
used in Algorithm 2:

Case 1 : β1 � −1, β2 � 0, Case 2 : β1 � 0, β2 � 1:

(32)

Algorithm 2 (γ � G2(Υ,n,β1,β2))
Initialize k← 0, εk ← 0, l← |Υ | ;
while k ≤ β2�n2� + |β1 |n or εk > 0, do

If β1Υ[1, (i1, j1)] + β2Υ[l, (il, jl)] < 0
Stop; No feasible solution.

Else
If (1+ β1) |Υ[1, (i1, j1)] | − β2Υ[l, (il, jl)] ≤ 0

Assign ail,jl � 1.
Else

Assign air,jr � 1 such that Υ[l, (il, jl)] −Υ[r, (ir,
jr)] is maximized.

Denote the assigned entry as air̄ jr̄ and remove
the entries of the list that contains indices ir̄
or jr̄ .

Table 2. Quadratic Integer Programs (QIPs) for the Robust Z-Test Cases

Minimization problems

Case Case Constraints QIP

1 γ ≥ 0,
∑

i∈T
∑

j∈C(yti − ycj )ai,j ≥ 0 maxai,j∈M
∑

i∈T
∑

j∈C[(yti − ycj )ai,j]2 − [∑i∈T
∑

j∈C(yti − ycj )ai,j]2
2 γ ≤ 0,

∑
i∈T

∑
j∈C(yti − ycj )ai,j ≤ 0 maxai,j∈M[∑i∈T

∑
j∈C(yti − ycj )ai,j]2 −∑

i∈T
∑

j∈C[(yti − ycj )ai,j]2
Maximization problems

1 γ ≥ 0,
∑

i∈T
∑

j∈C [(yti − ycj )ai,j] ≥ 0 maxai,j∈M[∑i∈T
∑

j∈C(yti − ycj )ai,j]2 −∑
i∈T

∑
j∈C[(yti − ycj )ai,j]2

2 γ ≤ 0,
∑

i∈T
∑

j∈C [(yti − ycj )ai,j] ≤ 0 maxai,j∈M
∑

i∈T
∑

j∈C[(yti − ycj )ai,j]2 − [∑i∈T
∑

j∈C(yti − ycj )ai,j]2

Note. All the QIPs are subject to Constraints (4)–(8) and the case constraints.
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εk ← εk +Υ[r̄, (ir̄ , jr̄ )];
If β2 � 1

Assign aip,jp � 1 such that Υ[p, (ip, jp)] − |Υ[r̄, (ir̄ ,
jr̄ )] | and is maximized. Remove the entries that
contains the indices ip or jp from the list.
l← l− 2;
k← k+ 1;

Else
l← l− 1;
k← k+ 1;

end while
return γ � β2γmin + β1γmax; γmin and γmax are
respectively the minimum and maximum roots of
Equation (29).

In Algorithm 1, we consider Cases 1 and 2. For
Case 3, we can design an exact method by leveraging
the assignment problem structure. Note that, for this
case, the nonlinear feasibility problem becomes a linear
feasibility problem with constraint

∑
i∈T

∑
j∈C [(yti − ycj )

ai,j] ≤ 0 along with necessary assignment constraints.
Solving this linear feasibility problem is similar to solv-
ing an assignment problem where the assignment cost
of assigning the ith treated sample to the jth control
sample is yti − ycj . Using this idea, we propose Algo-
rithm 3 to solve Case 3 of theminimization problem.

Algorithm 3 (γ � G3(Δ,n))
Step 1: Put a sufficiently large number M where

assignments are not possible. Convert the negative
entries of Δ to nonnegative by adding minΔi,j to all the
elements. Assume that the new cost matrix is Δ′.

Step 2: Solve the assignment problem for cost matrix
Δ′ with the Hungarian-Munkres algorithm tominimize
(for the minimization problem) and maximize (for the
maximization problem).

Step 3: For a given n, take the first n assignments
achieved in Step 2 and calculate the total cost of the
assignment using the original cost matrix Δ. Set εk �
total assignment cost of n pairs. If εk ≤ 0 (maximization,
εk ≥ 0) then, γ∗ � 0; otherwise, no feasible solution is
possible.

For Case 3 of the maximization problem, we follow
the same scheme, except that, in the maximization
problem, instead of minimizing, we maximize the
assignment cost.

Algorithm 4 (γ∗ �A(Δ,n)
Sort the list Δ following (31).
For the minimization problem:
Solve γ � G1(Υ,n, 0, − 1)

If no feasible solution.
Solve γ � G3(Δ,n)
If no feasible solution.

Solve γ � G1(Υ,n, 1, 0)
If no feasible solution.

n pairs are not possible.
Else return the current γ as optimal.

Else return the current γ as optimal.
For the maximization problem:
Solve γ∗ � G2(Υ,n, − 1, 0)
If no feasible solution.

Solve γ � G3(Δ,n)
If no feasible solution.

Solve γ∗ � G2(Υ,n, 0, 1)
If no feasible solution.

n pairs are not possible.
Else return the current γ as optimal.

Else return the current γ as optimal.
Return γ∗.

4.1. Properties of the Greedy Algorithms
As we are making assignments in a greedy way, we
may achieve a local optimal solution instead of a
global optimal solution. In addition, we may have a
smaller number of matched pairs than an exact
method, as a greedy approach ignores the combinato-
rial nature of the problem. In this section, we discuss
properties of the algorithms that show that our algo-
rithms can achieve a global optimal solution in some
cases, and, for specific matching restrictions, we will
have the same number of pairs as an exact method. In
addition, we discuss the time complexity of the pro-
posed algorithms.

Proposition 1. If the set of good matches M is identified
through exact matching, then D can be partitioned into a
set of disjoint matrices {Δ1,Δ2, : : : ,Δr, : : : }, and each row
in Δr is identical.

Proof. In exact matching, a treated sample ti can be
matched to a control sample cj1 if covariate vector
Xt
i � Xc

j1 . In the matrix D (representing the set of good

matches M), the entry di,j1 :� 1 if Xt
i � Xc

j1 ; otherwise,
di,j1 :� 0. Let’s assume that treated sample ti can be
matched to the set of control samples c′ � {cj1 , cj2 , cj3 ,
: : : , cjq}. As the matching is done exactly, we can say
that Xt

i � Xc
j1 � Xc

j2 � Xc
j3 � ⋯ � Xc

jq . So, di,jl :� 1, ∀l ∈
{1, 2, : : : ,q} and the rest of the values in the ith row of
the matrixD are zero. Now, assume that treated unit th
is a good match to a control sample ck ∈ c′; then, by the
definition of exact match, th is a good match for all the
control samples in c′. Hence, the vector dh,jl will be
identical to di,jl . Now, by reorganizing the rows of D,
we can partition it into disjoint matrices, where rows
within each of the matrices are identical. As D � S �D,
it can be partitioned into disjoint matrices {Δ1,
Δ2, : : : ,Δr, : : : }. w

From Proposition 1, we see that the D can be
partitioned into disjoint matrices and rows within a

Islam et al.: Computational Framework for Solving Robust Causal Inference Problems
10 INFORMS Journal on Computing, Articles in Advance, pp. 1–19, © 2022 INFORMS

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

08
.7

.3
6.

95
] o

n 
10

 A
ug

us
t 2

02
2,

 a
t 0

8:
31

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 
Published in INFORMS Journal on Computing on August 10, 2022 as DOI: 10.1287/ijoc.2022.1226. 

This article has not been copyedited or formatted. The final version may differ from this version.



partitioned matrix are identical. So, by making greedy
assignments, wewill not lose other possible assignments
at any point in the future.

Proposition 2. If (yti − ycj )ai,j is considered as the assign-
ment cost of assigning treated unit i to control unit j, where
ai,j ∈ {0, 1} is an assignment variable, then the total assign-
ment cost

∑
i∈T

∑
j∈C(yti − ycj )ai,j is independent of the order

of assignment in Δr.

Proof. From Proposition 1, we know that, in Δr, each
row has nonzero elements in the same columns and
the respective partition of D has identical rows. Now
assume that a possible assignmentA1 � {a1,1 � 1,a2,2 �
1, : : : ,am,m � 1, : : : }. The total cost of assignment of A1
is the following:∑
i∈T

∑
j∈C

(yti − ycj )ai,j

� (yt1 − yc1) + (yt2 − yc2)+⋯ +(ytm − ycm)+⋯ (33)

� (yt1 + yt2+⋯ +ytm+⋯) − (yc1 + yc2+⋯ +ycm+⋯): (34)

Now, from expression (34), we see that the total cost
is independent of the information pair ai,j; that is, we
see which treated unit is paired with which control
unit. Therefore, in each partition of D, the total cost
of the assignment is independent of the order of pair
assignment. w

Proposition 3. The greedy scheme proposed in Algorithm 1
provides an optimal solution of Case 2 of the minimiza-
tion problem when n pairs are matched. There are at least n
possible pairs with Δij ≤ 0, and M is identified with exact
matching.

Proof. In Case 2 of the minimization problem, we are
trying to maximize [∑i∈T

∑
j∈C(yti − ycj )ai,j]2 −∑

i∈T
∑

j∈C
[(yti − ycj )ai,j]2 with Constraints (24) and (4)–(8). This
quantity is increasing in |∑i∈T

∑
j∈C(yti − ycj )ai,j | when

the difference between the outcomes (yti − ycj )ai,j of all
pairs are of the same sign. From Proposition 2, we can
see that in each Δr ∈ D the cost

∑
i∈T

∑
j∈C(yti − ycj )ai,j is

independent of the order of assignment. Therefore,
the greedy assignment will produce an optimal solu-
tion for each Δr ∈ D. On the other hand, from Proposi-
tion 1, we see that each Δr ∈ D is disjoint when a good
set of match M is identified with exact matching.
Hence, the optimal solution of each disjoint set of pos-
sible assignments will produce an optimal solution of
the complete assignment problem. w

Case 1 of the maximization problem follows the
same scheme as the Case 2 of the minimization prob-
lem. Hence, the result in Proposition 3 is also valid for
Case 1 of the maximization problem. It is important to
note that Proposition 3 assumes that the matched
pairs are constructed with exact matching. In reality,

finding exact matches is highly unlikely when covari-
ates are continuous. However, exact matching is pos-
sible for categorical covariates like those in the case
study presented in Section 5.3. In addition, the contin-
uous covariates can be transformed into categorical
values by applying any suitable discretization techni-
que as a preprocessing step.

Proposition 4. Denote d �max ln ‖D‖0,n{ }. Then the
proposed greedy algorithms have running time complexity
of O d‖D‖0( ) and have a storage cost of O(‖D‖0).
Proof. Note that if we run sorting algorithms such as
HeapSort and MergeSort on a list of n entries, then the
best worst-case running time complexity that can be
achieved is O(n lnn). In our proposed schemes, we
run a sorting algorithm on the respective D matrix,
and then we input the sorted data on the main algo-
rithms (Algorithms 1 and 2). As both algorithms run
in at most n loops (i.e., α1�n2� + |α2 |n,β2�n2� + |β1|n ≤ n),
we can calculate the running time complexity as fol-
lows:

T1(n) � n 1+ 1+ ‖D‖0 + 2+ ‖D‖0
[ ] �O n‖D‖0( ):

Then, considering the time complexity of the sorting
scheme, we can find the total time complexity of the
proposed scheme as follows:

T(n) :� Sorting run time + Running time of
Algorithm 1 (or Algorithm 2)

� O ‖D‖0ln ‖D‖0( ) +O n‖D‖0( )
� O max{n, ln ‖D‖0}‖D‖0( ) � O d‖D‖0( ):

Here, we used the fact that we run the sorting scheme
on the nonzero elements of the matrix D, which has a
total of ‖D‖0 entries. It’s easy to check that both
schemes have a total storage cost of O(‖D‖0), as,
throughout the scheme, we only need to store at most
‖D‖0 entries. w

Proposition 5. The proposed heuristic for Case 3 runs in
strongly polynomial time. Moreover, it will provide us an
exact solution.

Proof. Since we are using the Hungarian-Munkres
algorithm for solving the main problem, we can calcu-
late the time complexity of the proposed heuristic as
follows:

T(n) � O(n) +O(n3) � O(n3):
Here, we used the complexity result of the Hungarian-
Munkres algorithm (Edmonds and Karp 1972) and the
initial time complexity of O(n). Furthermore, as the
Hungarian-Munkres scheme provides an exact solu-
tion, the proposed heuristic will also provide an exact
solution. w
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5. Numerical Experiments
In this section, we apply the proposed greedy algo-
rithms to test causal hypotheses from three real-world
data sets of varying size. We also compare the solu-
tion of the proposed algorithms to the quadratic inte-
ger programming (QIP) models in Table 2 solved with
Gurobi 9.0.2 (Gurobi 2020) and the ILP-based heuristic
proposed by Morucci et al. (2018). It is important to
note that we implemented a simpler but computation-
ally less efficient version of the proposed algorithm,
as we use unsorted D and find the maximum or mini-
mum Δi,j at each iteration. After calculating the maxi-
mum and minimum Z(a) using the proposed greedy
algorithms and alternative methods, we convert them
into p-values using the relations in Equations (35) and
(36), as p-values are commonly used to make inference
from the statistical test:

p-valuemax � arg max
a∈M

[1−φ(Z(a))]

� 1−φ arg min
a∈M

Z(a)
( )

, (35)

p-valuemin � arg min
a∈M

[1−φ(Z(a))]

� 1−φ arg max
a∈M

Z(a)
( )

: (36)

Here, φ(Z(a)) represents the area under the standard
normal distribution curve to the right of Z(a). For all
the experiments, we consider the level of significance
α � 0:05 as a rule of thumb to make robust inference.
Even so, our experiments show that the proposed
algorithm is scalable and can handle very-large-scale
problems, whereas state-of-the-art commercial solvers
either provide a worse solution or cannot solve prob-
lems of moderate to large sizes. Although the experi-
ments show interesting causal insights, we use them
to demonstrate the effectiveness of our algorithms. All
the experiments are performed in a Dell Precision
7510 workstation with an Intel Core i7-6820HQ CPU

running at 2.70 gigahertz (GHz) and 32 gigabytes (GB)
of RAM.

5.1. Effect of Fly Ash on Strength of Concrete
Fly ash, a by-product of thermal power plants, is a
common element in producing concrete (Bilodeau
and Malhotra 2000). In this experiment, we hypothe-
size that fly ash has zero effect on concrete’s compres-
sive strength. We use a concrete compressive strength
data set (Yeh 1998) to test the causal hypothesis using
the robust Z-test. The data set has 1,030 instances and
nine attributes. The control group includes 529 sam-
ples with no fly ash component, whereas the treat-
ment group has 501 samples with at least 24.5 kg/m3

of fly ash. We perform the matching operation on
seven pretreatment covariates. A treated unit i is a
good match with control unit j (i.e., di,j � 1) if their dif-
ferences in cement, blast furnace slag, and water are
less than or equal to 30, the difference in superplasti-
cizer is less than or equal to 20, fine and coarse aggre-
gate is less than or equal to 50, and age is less than or
equal to 5. The outcome is concrete’s compressive
strength. The matching process resulted in a group of
68 treated samples that can be matched with 60 con-
trol samples, where many treated samples have multi-
ple pair assignment options. The D matrix has 146
nonzero entries, which indicates that we need to solve
a nonlinear optimization problem with 146 binary
variables.

Table 3 shows the maximum andminimumZ-values
achieved for different numbers of pairs (n) with the
greedy algorithms (GA) and solving the QIPs in Table 2
with Gurobi 9.0.2. For the QIPs, we used for the stop-
ping criteria a 500-second time limit or a 2% optimality
gap. As we can see, the QIPs provide better solutions
compared with the proposed greedy algorithm. How-
ever, the greedy approach takes a fraction of a second,
whereas the QIP takes more than 500 seconds. For
the minimization problem with the number of pairs

Table 3. Comparison of Greedy Algorithm (GA) and QIP Solved with Gurobi for the Concrete Compressive Strength Data
Set

n

Maximum Z Minimum Z

Z with GA Z with QIP Time GA Time QIP Z with GA Z with QIP Time GA Time QIP

20 12.257 13.343 0.019 500 0.927 0.4346 0.028 500
22 12.446 13.555 0.016 500 1.2246 0.626 0.019 500
24 12.584 13.78 0.019 500 1.5594 1.1292 0.022 500
26 12.645 15.272 0.021 500 1.993 1.6151 0.023 471
28 12.564 15.195 0.021 500 2.424 2.0858 0.021 230
30 12.129 15.232 0.029 500 2.8573 2.5886 0.030 130
32 11.624 14.79 0.019 500 3.3077 3.0315 0.023 50
34 11.171 14.187 0.016 500 3.7772 3.525 0.029 51
36 9.5952 13.567 0.019 500 4.2498 4.0181 0.037 61
38 7.8861 12.948 0.024 500 4.7101 4.4831 0.027 45

Note. The QIP is solved with stopping criteria of a 500-second time limit or 2% optimality gap.
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greater than 24, the QIP achieves a 2% optimality gap
in a fairly short duration, but, after that, it takes days to
reach optimality. The resulting p-values are presented
in Figure 1. In Figure 1, we also include the result using
the ILP-based heuristic proposed by Morucci et al.
(2018). For the number of pairs greater than 26, all three
algorithms achieve p-values less than 0.05, and, after 38
pairs, both the greedy algorithm and the ILP-based
heuristic did not find any pairs. As both the maximum
andminimum p-values coincide in Figure 1, we achieve
an absolute robust test according to Definition 3. Even
though the ILP-based heuristic and QIP perform better
in terms of solution quality, for a larger number of
pairs, the greedy algorithm achieves similar quality sol-
utions. All three algorithms reject the hypothesis of the
zero treatment effect, which supports the traditional
knowledge of fly ash’s positive effect on concrete
strength (Yeh 1998). This result shows that the pro-
posed greedy approach (GA) can achieve the same con-
clusion as the ILP-based heuristics and QIPs, but in a
significantly smaller amount of time.

5.2. Effect of Misty Weather on Number of
Bike Rentals

In this experiment, we consider a slightly larger-sized
problem compared with the concrete compressive
strength data set. We evaluate the effect of misty
weather on the number of bike rentals. Our naive
hypothesis is that there is no effect of mist on the usage
of rental bikes. To test this hypothesis, we use a bike-
sharing data set (Fanaee-T and Gama 2014) available
in the UCI Machine Learning Repository. The data set
contains the daily count of bikes rented for 731 days,
weather, and seasonal information of corresponding
days between 2011 and 2012 in the capital bike-share
system in Washington, DC. We consider 247 days as
the treatment group, which had mist with a different
combination of clouds; 463 days are considered as the

control group, which consisted of dayswith clear skies,
few clouds, or partial clouds (without any mist). The
seasonal information such as season, year, and work-
day were matched exactly. The weather variables such
as temperature, wind speed, and humidity were
matched if the differences were less than or equal to 2,
6, and 6, respectively. If treated sample i and control
sample j follow the above criteria, then di,j � 1, and 0
otherwise. This matching process produced a nonlin-
ear optimization problem with 326 binary variables,
more than double in size compared with the previous
experiment. The robust test statistics achieved by the
proposed algorithms and solving the QIPs of Table 2
with Gurobi, as well as the computation times, are pro-
vided in Table 4 and Figure 2. We followed the same
QIP stopping criteria as in the previous experiment.

From Table 4, we can see that the greedy approach
outperforms the QIP for all numbers of pairs. In fact,
the QIP could not find an initial integer solution
within the time limit for n greater than 82. For n
between 50 and 82, the QIP solution improves margin-
ally after 500 seconds. On the other hand, the greedy
algorithm finds better solutions with a significantly
lower amount of time for a number of matched pairs
up to 88.

We also compare the results from the greedy algo-
rithm with the ILP-based heuristic of Morucci et al.
(2018) in Figure 2. For a fair comparison, we use the
same matching algorithm and recommended heuristic
settings as described in Morucci et al. (2018). Figure 2
shows that the greedy algorithm finds 88 pairs in
the good set of matches, and, after 87 matched pairs,
both maximum and minimum p-values are less than
α � 0:05. Therefore, we have an α-robust test that fails
to reject our hypothesis on the effect of mist on rental
bike usage. The ILP-based heuristic also achieves the
α-robust test; however, it finds 94 matched pairs in the
data set. As the ILP-based heuristic solves an integer

Figure 1. (Color online) Comparison Between Greedy Algorithm (GA), ILP-Based Heuristic (ILP) Proposed byMorucci et al.
(2018), and Gurobi Solving the QIP on p-Values and Computation Time for the Concrete Data Set
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linear program iteratively by bounding the sample
standard deviation, it finds the maximum number of
pairs. In contrast, the proposed algorithm assigns pairs
greedily, so it may select a smaller number of pairs.
Nonetheless, as we show in Proposition 3, the greedy
algorithm can achieve an optimal solution and the
maximum number of pairs if the matching is per-
formed using exact matching methods. In terms of
computation time, the greedy algorithm takes a frac-
tion of a second, whereas the ILP-based heuristic takes
more than nine seconds to solve an instance of the
problem.

5.3. Effect of Product’s Location on Price
To show the scalability of the proposed greedy algo-
rithm, we consider a very-large-scale clickstream data

set of online shopping. We used the clickstream data
from Lapczynski and Bialowas (2013), which contain
information on clicks from online stores that are selling
clothes for pregnant women. In this paper, we refer
to the data set as the e-shop data set. We hypothesize
that if a store web page is split horizontally into two
panels, top and bottom, then the top part is as valuable
as the bottom part and high-price products are not
always placed on the top panels. The data set consists
of 165,474 instances of clicks, and each instance con-
tains information on the product clicked on, time of the
click, and origin of the IP address. The treatment group
includes more than 35,000 click instances on the top-
left panel products, and the control group includes
more than 27,000 clicks on products displayed on the
bottom-left panel. We implemented exact matching on

Table 4. Comparison of Greedy Algorithm (GA) and QIP Solved with Gurobi for the Bike-Sharing Data Set

n

Maximum Z Minimum Z

Z with GA Z with QIP Time GA Time QIP Z with GA Z with QIP Time GA Time QIP

50 6.9736 6.7914 0.034 500 −11.5334 −10.1657 0.035 500
55 6.0925 5.8509 0.032 500 −11.2922 −9.6567 0.034 500
60 5.1916 4.8345 0.034 500 −10.9022 −9.1222 0.028 500
65 4.2864 3.7268 0.036 500 −10.5792 −8.4047 0.036 500
70 3.4461 2.6946 0.039 500 −10.181 −7.5596 0.036 500
75 2.5065 1.0067 0.034 500 −9.6883 −6.2907 0.041 500
80 1.4238 0.2036 0.043 500 −9.1318 −5.0902 0.036 500
81 1.216 −0.2893 0.039 500 −9.0138 −4.7659 0.036 500
82 0.9255 −0.5338 0.036 500 −8.9001 −4.4127 0.039 500
83 0.6468 — 0.049 500 −8.7803 — 0.050 500
84 0.3713 — 0.039 500 −8.6469 — 0.047 500
85 −1.2046 — 0.045 500 −8.4748 — 0.036 500
86 −1.3929 — 0.037 500 −8.2821 — 0.036 500
87 −1.6767 — 0.053 500 −8.0448 — 0.046 500
88 −1.9539 — 0.043 500 −7.7887 — 0.037 500

Notes. The QIP is solved with stopping criteria of a 500-second time limit or a 2% optimality gap. “—” implies no integer solution found within
the time limit.

Figure 2. (Color online) Comparison Between Greedy Algorithm (GA), ILP-Based Heuristic (ILP) Proposed byMorucci et al.
(2018), and Gurobi Solving the QIP on p-Values and Computation time for the Bike-Sharing Data Set
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the pretreatment covariates: month, order, country of
IP address, product category, color, model photogra-
phy, and page number within the website. For treated
and control samples i and j, di,j � 1 if two samples have
exactly the same value on all the covariates. Product
price is the outcome. Compared with the concrete
strength and bike-sharing examples, the e-shop data
set has a significantly large number of samples and
produces a nonlinear optimization problem with more
than 350,000 binary variables. The decision problem of
this scale is almost impossible to solve with state-of-
the-art commercial solvers. However, the proposed
greedy algorithm can solve the problem in a reason-
able amount of time considering the problem size.

Figure 3 presents the maximum and minimum
p-values achieved with the greedy algorithms for the
robust Z-test and the time required for a different
number of pairs. After 3,800 pairs, both the maximum
and minimum p-values coincide at zero. So, we reject
the hypothesis and conclude that the product location
and price have a causal relation: high-price products
are placed on the top panel. From CPU time consump-
tion in Figure 3, we can see that the greedy algorithm
takes a significantly higher time at around 1,300 sec-
onds to solve the Z-test problems for e-shop data com-
pared with the concrete strength and bike-sharing
data sets. However, considering a nonlinear optimiza-
tion problem with over 350,000 binary variables, the
time consumption can be considered reasonable. On
the other hand, after running several hours, the ILP-
based heuristic and QIP (solved with Gurobi) ran out
of memory and could not find a solution.

As the ILP-based heuristic performs better than the
greedy heuristics on the smaller data sets, we con-
ducted three sets of experiments to compare their per-
formance on e-shop data set with increased memory
and more processors. We used a more powerful com-
puting workstation with an Intel Xeon CPU E5-2670
v3 running at 2.30 GHz (two processors) with 64 GB

of memory for these experiments. We conducted the
same experiment on the complete e-shop data set.
Unfortunately, the increased memory is not enough
for the ILP-based heuristic, as it ran out of memory
and could not find a solution for the complete e-shop
data set. Therefore, to compare the performance of the
ILP-based heuristic with the proposed greedy method
when memory is not an issue, we created two data
sets by taking (i) the first 25% and (ii) the first 10% of
treated and control samples from the e-shop data set.
We were able to conduct experiments on these two
reduced data sets without running out of memory.
However, the ILP-based heuristic was not able to
solve a single instance (i.e., for a specific number of
pairs n) of the robust causal inference problem within
four days when 25% samples are used. On the other
hand, for the smaller data set, one with the first 10%
of treated and control samples, the ILP-based heuristic
was able to solve the problem within a reasonable
amount of time. We present the p-value and computa-
tion time comparison between these methods in Fig-
ure 4. As shown in Figure 4, the ILP-based heuristic
performs marginally better for the larger number of
pairs. However, the greedy heuristics can solve the
problems in a fraction of seconds, whereas the ILP-
based heuristic takes more than 500 seconds with a
1% MIP gap. The p-value comparison shows that both
methods provide the same inference decision that a
robust conclusion could not be made possible.

Considering the results from the three data sets, it is
evident that both the ILP-based heuristic and solving
the QIP with a commercial solver provide solutions of
marginally better quality but nonetheless find the
same inferential conclusion. For very small problems
(i.e., problems similar to the concrete compressive
strength data sets), the ILP-based heuristic can be a
reasonable choice; however, in today’s big data world,
such small problems are highly unlikely in practice. In
contrast, the greedy algorithm proposed in this paper

Figure 3. (Color online) Comparison Between Greedy Algorithm (GA) and Gurobi Solving the QIP on p-Values and Computa-
tion Time for the e-Shop Data Set
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provides same conclusion on the robust inference in a
significantly smaller amount of time and is highly
scalable for practical-sized problems.

5.4. Inferential Implication
In general, the greedy algorithms proposed in this
paper make local optimal choices. In this section, we
investigate the inferential implication of such approxi-
mate solution choices by identifying how much devia-
tion from the global optimal solution is allowable to
preserve the actual inference of the robust hypothesis
test.

In Figure 5, we present three possible scenarios of
p-value for the robust Z-test. The p-values can be close
to 0 or 1 (Figure 5, (a) and (c), respectively) or some-
where in the middle (Figure 5(b)). Let’s assume that
Zgreedy
max is the solution of the greedy algorithm and that

Zopt
max is the global optimal solution of the maximiza-

tion problem in any scenario. Now, as the greedy
algorithm will produce a suboptimal solution, we
can say that Zgreedy

max � Zopt
max − gap, where gap represents

the optimality gap between two methods. Therefore,
based on Equations (35) and (36), p-values with greedy
algorithm and optimal solution will have the following

relation: Pgreedy
min ≥ Popt

min. Now, for a level of significance

α, the p-value with greedy algorithm (Pgreedy
min ) can devi-

ate by the amount α without changing the conclusion
on robustness. As the p-value is calculated from the
standard normal distribution curve, we can establish a
connection between α and gap � Zopt

max −Zgreedy
max using

Equations (35) and (36)—namely, how much deviation
on the Z(a)we can allow without altering the inference
on robustness. We can derive a similar relation for Pmax

from the minimization problem following the same
argument.

Using α � 0:05 as the rule of thumb and the proba-
bilities from the standard normal distribution table,
we can calculate the maximum allowable gap. For all
the scenarios, if the optimal solutions of both the max-
imization and minimization problems are very large
(i.e., Z ≥ 4 in Figure 5(a)) for the maximum number of
pairs (n), like the solutions of the e-shop and concrete
compressive strength data sets, then it would require
more than a 50% optimality gap between the greedy
and global optimal solutions to reverse the inference
on robustness. This also applies to the situation when
both problems have very small Z-values (i.e., Z ≤ −4
in Figure 5(c)) for the maximum value of n in the data

Figure 5. (Color online) Different Scenarios Showing the Gap Between p-Values Obtained by an Exact Method and the Greedy
Algorithm

Figure 4. (Color online) Comparison Between Greedy Algorithm (GA) and ILP-Based Heuristic on p-Values and Computation
Time for the 10% Samples of the e-Shop Data Set
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set, as the area under the normal distribution curve is
very small for Z ≥ |4 | . When Z ≤ |4 | , an approximate
allowable gap is 18%. In the case Concrete Compres-
sive Strength study, we know the optimal solution for
seven instances. For those seven instances, the average
gap between the greedy and global optimal solution
is around 11% which is lower than the allowable gap.
For the cases in Figure 5, (a) and (c), we will have
the same allowable gap due to the symmetry of the
standard normal distribution curve. When both the
maximum and minimum Z-values deviate from opti-
mality, as shown in Figure 5(b), we can split the allow-
able gap in half for each problem. Despite the fact that
the observed optimally gaps of the proposed greedy
algorithms are well below the maximum allowable
gap, our analysis shows that the proposed greedy al-
gorithms will find an optimal solution (with zero gap)
for restricted cases (i.e., when match pairs are con-
structed with exact matching). If all the variables in
the data set are categorical, then we can apply an exact
matching algorithm to find the good set of matches.
In addition, we can take the same advantage with con-
tinuous data by converting them into categories by
applying domain knowledge or any appropriate dis-
cretization algorithm.

5.5. Practical Guideline
In the numerical experiments, we show the test statis-
tics for a wide variety of sample sizes (n). Our purpose
here is to show the level of uncertainty in the infer-
ence; however, in practice, the experimenter’s goal is
to find the robust inference. Hence, we do not need to
consider such a wide range of n. Instead, we can pick
a suitable n and increase (decrease) it until the prob-
lem becomes infeasible (or feasible) due to Constraint
(18):

∑
i∈T

∑
j∈C aij � n. In the good set of matches, mul-

tiple treated units can be a good match to a single con-
trol unit (or the other way around). As we are
considering a one-to-one pair assignment, we may not
be able to assign pairs for all the treated or control
samples. Therefore, if we keep increasing n, then, after
a certain number of pairs, the optimization problem
will be infeasible. Conversely, if we select a large n
and decrease it, for a certain number of pairs, the
problem will be feasible. Unfortunately, identifying
that specific value of n is not possible without solving
a combinatorial optimization problem. In this case,
an efficient approach can be to start with the highest
and lowest values of n possible (nmax,nmin) and apply
a binary search strategy until the problem becomes
infeasible.

We recommend starting the experiment with nmax,
as the smallest number of treated or control samples
in the good set of matches D |T | × |C | : nmax �min( |T | ,
|C | ), where |T | is the number of treated samples that

are good matches for |C | , the number of control
samples. The experimenter can set nmin based on
the number possible good matches in the data set. If
there are many nonzero entries available in D |T | × |C | ,
then an experimenter can choose a larger value of
nmin that can save significant computation time. For
instance, in the experiment with the concrete compres-
sive strength data set, we can start with nmax � 60,
as the matching algorithms provided a group of 68
treated samples that can be matched with 60 control
samples. If we apply a binary search strategy consid-
ering nmin � 20% of nmax, then we can find a robust
test with a single run of the proposed algorithm.
Using the exact strategy for the Bikeshare data set, we
can find a robust solution by checking for only two
different values of n.

6. Conclusion
In this study, we investigate the robust causal hypothe-
sis test, the robust Z-test, from observational data with
continuous outcomes and develop a unique computa-
tional framework that includes a novel reformulation
technique and efficient algorithms. The robust Z-test
produces nonlinear integer optimization problems
that are difficult to solve for very small data sets,
where, in today’s big data world, causal hypothesis
test problems are becoming larger and larger. We
reformulated the nonlinear optimization models of the
robust Z-test into feasibility problems. By leveraging
the structure of the reformulation, we developed
greedy algorithmic schemes that are very efficient and
scalable. The feasibility reformulation also allows us to
pose the robust test problems as quadratic integer pro-
gramming problems, and, for smaller data sets, we can
use any commercial MIP solvers to achieve exact solu-
tions. Moreover, the proposed unique reformulation
scheme can be used to model general nonlinear and
quadratic optimization problems (e.g., the quadratic
assignment problem) as feasibility problems. Apart
from the scalability, we show that the greedy ap-
proaches achieve the global optimal solution in many
cases. The effectiveness of the proposed algorithms
is demonstrated with three real-world case studies of
varying sizes and by comparing the result with eq-
uivalent QIPs solved with the exact method and the
ILP-based heuristic proposed by Morucci et al. (2018).
Numerical experiments on the case studies reveal that
the proposed algorithms achieve the same inference
as the exact method for the small test case; however,
it takes significantly less computational time. On the
other hand, for moderate to large instances, the pro-
posed algorithms significantly outperform both meth-
ods. For moderately size problems, our algorithm
produces a better solution in a fraction of a second,
whereas the exact method struggles to find any integer
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solution in hundreds of seconds. With the availability
of observational data and increasing use of causal
inference in decision making, our algorithms can be
very effective in harnessing the power of big data in
the decision-making process. A major limitation of the
greedy algorithms is that they provide local optimal
solutions; hence, there is a chance of altering the ro-
bustness inference. Nonetheless, it would take a signif-
icantly large optimally gap to change the conclusion
on robustness, and alternative methods cannot solve
large-scale problems.

As a future extension, we plan to use the feasibility
formulation of the Z-test to develop several potential
algorithms. First, we plan to develop an iterative
projection-based algorithm to solve the feasibility
problems with quadratic constraints and binary varia-
bles. Then, we intend to incorporate algorithmic accel-
eration schemes to further improve the efficiency of
the iterative algorithm and ensure scalability.
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