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Abstract

We propose the Factor Augmented (sparse linear) Regression Model (FARM) that not only ad-
mits both the latent factor regression and sparse linear regression as special cases but also bridges
dimension reduction and sparse regression together. We provide theoretical guarantees for the es-
timation of our model under the existence of sub-Gaussian and heavy-tailed noises (with bounded
p1 ` #q-th moment, for all # ° 0) respectively. In addition, the existing works on supervised
learning often assume the latent factor regression or sparse linear regression is the true underlying
model without justifying its adequacy. To fill in such an important gap on high-dimensional infer-
ence, we also leverage our model as the alternative model to test the sufficiency of the latent factor
regression and the sparse linear regression models. To accomplish these goals, we propose the
Factor-Adjusted deBiased Test (FabTest) and a two-stage ANOVA type test respectively. We also
conduct large-scale numerical experiments including both synthetic and FRED macroeconomics
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1 Introduction

Over the past two decades, along with the development of technology, datasets with high-dimensionality

in various fields such as biology, genomics, neuroscience and finance have been collected. One styl-

ized feature of the high-dimensional data is the high dependence across features that give rises to

near collinearity. A common structure to characterize the dependence across features is the approxi-

mate factor model [Bai, 2003, Fan et al., 2013], in which the variables are correlated with each other

through several common latent factors. More specifically, we assume the observed d-dimensional

covariate vector x follows from the model

x “ Bf ` u, (1.1)

where f is a K-dimensional vector of latent factors, B P RdˆK is the corresponding factor loading

matrix, and u is a d-dimensional vector of idiosyncratic component which is uncorrelated with f .

To tackle the high-dimensionality of datasets, various methods have been proposed. Among these,

dimensionality reduction and sparse regression are two popularly used ones to circumvent the curse of

dimensionality. They also serve as the backbones for many emerging statistical methods.

In terms of dimension reduction, the factor regression model is one of the most popular methods

and has been widely used [Stock and Watson, 2002, Bai and Ng, 2006, Bair et al., 2006, Bai and Ng,

2008, Fan et al., 2017b, Bing et al., 2019, Bunea et al., 2020, Bing et al., 2021]. It assumes that the

latent factors drive both dependent and independent variables as follows:

Y “ f
J
� ` ",

x “ Bf ` u. (1.2)

Here Y is the response variable and " P R is the random noise which is independent with the factor

f . When the factors are unobserved, one usually learns the latent factors based on observed x and

substitutes the sample version into the regression model (1.2). There are several methods for estimating

latent factors such as Principal Component Analysis (PCA) [Bai, 2003, Fan et al., 2013], maximum

likelihood estimation [Bai and Li, 2012], and random projections [Fan and Liao, 2020]. In particular,
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when the leading Principal Components are used as an estimator for f , the sample version of (1.2)

reduces to the classical Principal Component Regression (PCR) [Hotelling, 1933].

As for sparse regression, a commonly used model is the following (sparse) linear regression:

Y “ x
J
� ` ". (1.3)

In the high dimensional regime where the dimension d can be much larger than the sample size n, it is

commonly assumed that the population parameter vector � P Rd is sparse. Over the last two decades,

various regularized methods, which incorporate this notion of sparsity, have been proposed. See, for

instance, LASSO [Tibshirani, 1996], SCAD [Fan and Li, 2001], Least Angle Regression [Efron et al.,

2004], Dantzig selector [Candes and Tao, 2007], Adaptive LASSO [Zou, 2006], MCP [Zhang, 2010]

and many others. For more details, please refer to Fan et al. [2020b] for a comprehensive account.

In this paper, we introduce the Factor Augmented (sparse linear) Regression Model (FARM) (1.4),

which incorporates both the latent factor and the idiosyncratic component into the covariates,

Y “ f
J
�

‹ ` u
J
�

‹ ` ",

x “ Bf ` u, (1.4)

where �‹ P RK and �
‹ P Rd are population parameter vectors quantifying the contribution of the latent

factor f and the idiosyncratic component u, respectively. Obviously, the factor regression model (1.2)

is a special case of (2.1) in which �
‹ “ 0. To better illustrate the difference between model (1.4) and

the sparse linear model (1.3), our model can be written in an equivalent form,

Y “ f
J
'

‹ ` x
J
�

‹ ` ", x “ Bf ` u, (1.5)

where '
‹ “ �

‹ ´ B
J
�

‹ P RK quantifies the extra contribution of the latent factor f beyond the ob-

served predictor x. Therefore, FARM expands the space spanned by x into useful directions spanned

by f . It is clear that the sparse regression model (1.3) is also a special case of (1.4) with '
‹ “ 0. Thus,

our model is general enough to bridge the dimensionality reduction and the sparse regression.

The motivation of our factor augmented linear model (1.4) comes from two perspectives.
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1. Firstly, it origins from Fan et al. [2020a]. In order to get precise estimation of �‹ based on highly

correlated variables, they study the sparse regression estimation by substituting (1.1) into (1.3)

and obtain

Y “ pBf ` uqJ
�

‹ ` " “ f
JpBJ

�
‹q ` u

J
�

‹ ` ". (1.6)

We observe from (1.6), when the sparse linear regression is adequate, for a given �
‹, the re-

gression coefficient on f is fixed at �‹ “ B
J
�

‹. However, in reality, especially when the

variables are highly correlated, it is very likely that the leading factors possess extra contribu-

tions to the response instead of only a fixed portion B
J
�

‹. This results in our proposition of

model (1.4), where we augment the leading factors into sparse regression that expands the linear

space spanned by x into useful directions.

2. Secondly, it origins from the factor regression given in (1.2). In reality, the leading common

factors f indeed provides some important contributions to the response, but it is hard to believe

that they will have fully explanation power, especially when the effect of the factors is weak. Be-

sides, in real applications, several examples illustrate the poor performance of factor regression

model or PCR, see Jolliffe [1982] for more details. Thus, completely ignoring the idiosyncratic

component u will harm in model generalization. This also motivates us to propose model (1.4),

in which we augment the sparse regression by incorporating the idiosyncratic component u into

the original factor regression.

In this paper, we first study the properties of estimated parameters under the proposed model (1.4).

Specifically, we assume the factors given in (1.4) are unobserved and leverage PCA to estimate them.

Incorporated with penalized least-squares with the `1-penaly, we derive the `2-consistency results for

parameter vectors �‹ and �
‹. Going beyond the linear regression model and the least squares estima-

tion, our idea can be naturally extended to more general supervised learning models through different

loss functons. For instance, quantile regression [Belloni and Chernozhukov, 2011, Fan et al., 2014],

support vector machine [Zhang et al., 2016, Peng et al., 2016], Huber regression [Fan et al., 2017a, Sun

et al., 2020], generalized linear model [Van de Geer, 2008, Fan et al., 2020a] and many other variants.
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In order to demonstrate the general applicability of our proposed methods, in our paper, we further

extend our model settings to robust regression. To be more specific, we only assume the existence

of p1 ` #q-th moment of the noise distribution for some # ° 0. We adopt Huber loss together with

adaptive tuning parameters and `1-penalization to derive the consistency results for the parameters of

our interest. Besides the aforementioned extensions, it is worth to note that our model is also applica-

ble in the field of causal inference [Imbens and Rubin, 2015, Hernan and Robins, 2019]. To be more

specific, the latent factors f given in our model is able to be treated as the unobserved confounding

variables which affect both the covariate x and the response Y . From the causal perspective, we pro-

vide a methodology to conduct (robust) statistical estimation as well as inference of our model under

the existence of latent confounding variables.

The aforementioned works on factor regression and sparse linear regression mainly investigate the

theoretical properties based on the assumption that either of them is the true underlying model [Stock

and Watson, 2002, Tibshirani, 1996, Fan and Li, 2001, Zou, 2006, Bai and Ng, 2006, Zhang, 2010, Fan

et al., 2017b, 2020a, Bing et al., 2021]. However, whether a given model is adequate to explain a given

dataset plays a crucial role in the model selection step. This motivates us to fill the gap by leveraging

our model as the alternative one to perform hypothesis testing on the adequacy of the factor regression

model as well as the sparse linear regression model when covariates admit a factor structure.

For the hypothesis test on the adequacy of the latent factor regression model, we consider testing

the hypotheses

H0 : Y “ f
J
�

‹ ` " versus H1 : Y “ f
J
�

‹ ` u
J
�

‹ ` ". (1.7)

This amounts to testing H0 : �
‹ “ 0 under FARM model. To this end, we propose the Factor-

Adjusted deBiased Test statistic (FabTest) r�� which serves as a de-sparsify version of the estimator p��
obtained under `1-regularization. The asymptotic distribution of the proposed test statistic is derived

by leveraging the high-dimensional Gaussian approximation. The critical value controlling the Type-

I error is estimated based on the multiplier bootstrap method. As a byproduct, we are also able to

conduct entrywise and groupwise hypothesis testing on parameter �‹ by following similar de-biasing

procedure.
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For validating the adequacy of the sparse linear regression model, we consider testing the hypothe-

ses

H0 : Y “ x
J
�

‹ ` " versus H1 : Y “ f
J
'

‹ ` x
J
�

‹ ` ", (1.8)

or '‹ “ 0 under the FARM model. To tackle the testing problem, we propose a two-stage ANOVA

test. In the first stage, we use marginal screening [Fan and Lv, 2008] to pre-select a group of variables

which cope well the curse of high dimensionality. In the second stage, we derive the ANOVA-type

test statistic. Asymptotic null distribution and the power of the test statistic are derived. In addition,

we further extend the aforementioned two-stage ANOVA test to linear multi-modal models [Li and

Li, 2021], whose data framework has been well applied in a wide range of scientific fields (e.g multi-

omics data in genomics, multimodal neuroimaging data in neuroscience, multimodal electronic health

records data in health care).

In summary, our main contributions are as follows:

1. Motivated from the factor regression and sparse regression, we propose the Factor Augmented

(sparse linear) Regression Model (FARM) (1.4) [also (1.5)] and investigate in the parameter

estimation properties on �
‹ and �

‹ given in (1.4). Our work serves as an extension of Fan et al.

[2020a] to a general setting with weaker assumptions. It augments the sparse linear regression

in useful directions of common factors.

2. To further demonstrate the wide applicability of our methods, we extend our model to a more

robust setting, where we only assume the existence of p1 ` #q-th moment (# ° 0) of our noise

distribution. Leveraging the `1-penalized adaptive Huber estimation, we establish statistical

estimation results for our parameters of interest. Comparing with those closely related literature

[Fan et al., 2020a, 2021a], our assumption on the moment condition of the noise variable is the

weakest. Our robustified factor augmented regression also serves as an extension of Sun et al.

[2020] to a more general setting.

3. In terms of testing the adequacy of the factor regression, we propose the FabTest by incorpo-

rating the factor structure into the de-biased estimators [van de Geer et al., 2014, Zhang and
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Zhang, 2014, Javanmard and Montanari, 2014]. Accompanied with Gaussian approximation,

the asymptotic distribution of our test statistic is derived. As for implementation, we propose

the multiplier bootstrap method to estimate the critical value in order to control the Type-I error.

4. For testing the adequacy of sparse linear regression model, we propose a two stage ANOVA-type

testing procedure. Asymptotic distribution (under the null) and power (under the alternative) of

our constructed test statistic are investigated. In addition, we further extend the methodology to

the multi-modal sparse linear regression model [Li and Li, 2021], by testing whether the sparse

linear regression for some given modals is adequate.

5. We conduct large scale simulation studies for our proposed methodology using both synthetic

data and real data. Simulation results via synthetic data lend further support to our theoretical

findings. As for real data, we apply our methodology to the studies of the macroeconomics

dataset named FRED-MD [McCracken and Ng, 2016]. The experimental results also illustrate

the high efficiency and robustness of our model (FARM) against latent factor regression as well

as sparse linear regression.

1.1 Notation

For a vector � “ p�1, . . . , �mqJ P Rm, we denote its `q norm as }�}q “ p∞m
`“1 |�`|qq1{q, 1 § q † 8,

and write }�}8 “ max1§`§m |�`|. For any integer m, we denote rms “ t1, . . . ,mu. The sub-Gaussian

norm of a scalar random variable Z is defined as }Z} 2 “ inftt ° 0 : E exppZ2{t2q § 2u. For a

random vector x P Rm, we use }x} 2 “ sup}v}2“1 }vJ
x} 2 to denote its sub-Gaussian norm. Let It¨u

denote the indicator function and let IK denotes the identity matrix in RKˆK . For a matrix A “ rAjks,
we define }A}F “

b∞
jk A

2
jk, }A}max “ maxjk |Ajk| and }A}8 “ maxj

∞
k |Ajk| to be its Frobenius

norm, element-wise max-norm and matrix `8-norm, respectively. Moreover, we use �minpAq and

�maxpAq to denote the minimal and maximal eigenvalues of A, respectively. We use |A| to denote

the cardinality of set A. For two positive sequences tanun•1, tbnun•1, we write an “ Opbnq if there

exists a positive constant C such that an § C ¨ bn and we write an “ opbnq if an{bn Ñ 0. In addition,

an “ OPpbnq and an “ oPpbnq have similar meanings as above except that the relationship of an{bn
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holds with high probability.

1.2 RoadMap

The rest of this paper is organized as follows. We study the parameter estimation properties of our

proposed model (FARM) in section 2, where theoretical results of both regular and robust estimators

are analyzed. In section 3, we construct a de-biased test statistic to test the adequacy of latent factor

regression model. In addition, in section 4, we construct a two-stage ANOVA test to study the adequacy

of sparse linear regression under the setting with highly correlated features. Moreover, to corroborate

our theoretical findings, in section 5, we conduct exhaustive simulation studies. Last but not least, we

apply our methodology to study the real data FRED-MD in section 5.4.

2 Factor Augmented Regression Model

The primary objective of this section is to propose a regularized estimation method for our factor

augmented sparse linear model and investigate the corresponding statistical properties. Suppose we

observe n independent and identically distributed (i.i.d.) random samples tpxt, Ytqunt“1 from px, Y q,

which satisfy that

xt “ Bft ` ut and Yt “ f
J
t �

‹ ` u
J
t �

‹ ` "t, t “ 1, . . . , n, (2.1)

where f1, . . . ,fn P RK , u1, . . . ,un P Rd and "1, . . . , "n P R are i.i.d. realizations of f , u and ",

respectively. To ease the presentation, we rewrite (2.1) in a more compact matrix form as follows,

X “ FB
J ` U ,

Y “ F�
‹ ` U�

‹ ` E , (2.2)

where X “ px1, . . . ,xnqJ, F “ pf1, . . . ,fnqJ, U “ pu1, . . . ,unqJ, Y “ pY1, . . . , YnqJ and

E “ p"1, . . . , "nqJ. Throughout the whole paper, we assume we only get access to observations

tpxt, Ytqunt“1. Both the latent factors F and the idiosyncratic components U are unobserved and need
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to be estimated from the observed predictors X . Thus, in the following, we shall first illustrate how to

estimate F and U and then proceed with the regularized estimation for model (2.2).

2.1 Factor Estimation

Since only the predictor vector x is observable, the latent factor f and the corresponding loading

matrix B are not identifiable under the factor model (1.1). More specifically, for any non-singular

matrix S P RKˆK , we have x “ Bf ` u “ pBSqpS´1
fq ` u. To resolve this issue, we impose the

following identifiability conditions [Bai, 2003, Fan et al., 2013]:

Covpfq “ IK and B
J
B is diagonal.

Consequently, the constrained least squares estimator of pF ,Bq based on X is given by

p pF , pBq “ argmin
F PRnˆK ,BPRdˆK

}X ´ FB
J}2F

subject to
1

n
F

J
F “ IK and B

J
B is diagonal.

Elementary manipulation yields that the columns of pF {?
n are the eigenvectors corresponding to the

largest K eigenvalues of the matrix XX
J and pB “ p pF J pF q´1 pF J

X “ n´1 pF J
X . Then the least

squares estimator for U is given by pU “ X ´ pF pBJ “ pIn ´ n´1 pF pF JqX .

Before presenting the asymptotic properties of the estimators t pF , pB, pUu, we first impose some

regularity conditions.

Assumption 2.1. There exists a positive constant c0 † 8 such that }f} 2 § c0 and }u} 2 § c0.

Assumption 2.2. There exists a constant ⌧ ° 1 such that d{⌧ § �minpBJ
Bq § �maxpBJ

Bq § d⌧ .

Moreover, we assume n log2 n “ Opdq.

Assumption 2.3. Let ⌃ “ Covpuq. There exists a constant ⌥ ° 0 such that }B}max § ⌥ and

E|uJ
u ´ trp⌃q|4 § ⌥d2.

Assumption 2.4. There exist a positive constant  † 1 such that  § �minp⌃q, }⌃}1 § 1{ and

min1§k,`§d Varpuku`q • .
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Remark 1. Assumptions 2.1–2.4 are standard assumptions in the studies of large dimensional factor

model. We refer to Bai [2003], Fan et al. [2013] and Li et al. [2018] for more details.

We next summarize the theoretical results related to consistent factor estimation in the following

proposition which directly follows from Lemmas D.1 and D.2 in Wang and Fan [2017].

Proposition 2.1. Assume that d “ opexppnqq. Let H “ n´1
V

´1 pF J
FB

J
B, where V P RKˆK

is

a diagonal matrix consisting of the first K largest eigenvalues of the matrix n´1
XX

J
. Then, under

Assumptions 2.1–2.4, we have

1. } pF ´ FH
J}2F “ OPpn{d ` 1{nq.

2. For any I Ä t1, 2, . . . , du, we have max`PI
∞n

t“1 |put` ´ ut`|2 “ OPplog |I| ` n{dq.

3. }HJ
H ´ IK}2F “ OPp1{n ` 1{dq.

4. max`Prds }pb` ´ Hb`}22 “ OPtplog dq{nu.

Remark 2. In practice, the number of latent factors K is typically unknown and it is an important

issue to determine K in a data-driven way. There have been various methods proposed in the literature

to estimate the number K [Bai and Ng, 2002, Lam and Yao, 2012, Ahn and Horenstein, 2013, Fan

et al., 2022]. Our theories always work as long as we replace K by any consistent estimator pK, i.e. we

only require

Pp pK “ Kq Ñ 1, as n Ñ 8.

Thus, without loss of generality, we assume the number of factors K is known throughout all the

theories developed in this paper. As for the application part, throughout this paper, we utilize the

eigenvalue ratio method [Lam and Yao, 2012, Ahn and Horenstein, 2013] to select the number of

factors. More specifically, we let �kpXX
Jq denote the eigenvalues of the Gram matrix XX

J and the

number of factors is given by

pK “ argmax
K§K

�kpXX
Jq

�k`1pXXJq , (2.3)

where 1 § K § n is a prescribed upper bound for K.
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2.2 Regularized Estimation

Under the high dimensional regime where the dimension d can be much larger than the sample size n,

it is often assumed that only a small portion of the predictors contribute to the response variable, which

amounts to assuming that the true parameter vector �‹ is sparse. Then the regularized estimator for

the unknown parameter vectors �‹ and �
‹ of our factor augmented linear model is defined as follows:

p p��, p�q “ argmin
�PRd,�PRK

"
1

2n
}Y ´ pU� ´ pF�}22 ` �}�}1

*
, (2.4)

where � ° 0 is a tuning parameter.

We let rY “ pIn ´ pP qY denote the residuals of the response vector Y after projecting onto

the column space of pF , where pP “ n´1 pF pF J is the corresponding projection matrix. Recall that
pU “ pIn ´ pP qX . Hence pF J pU “ 0 and it is straightforward to verify that the solution of (2.4) is

equivalent to

p�� “ argmin
�PRd

"
1

2n
} rY ´ pU�}22 ` �}�}1

*
,

p� “ p pF J pF q´1 pF J
Y “ 1

n
pF J

Y .

For any subset S of t1, . . . , du, we define the convex cone CpS, 3q “ t� P Rd : }�Sc}1 § 3}�S}1u. For

simplicity of notation, we write

Vn,d “ n

d
`

c
log d

n
`

c
n log d

d
. (2.5)

To investigate the consistency property of p p��, p�q, we impose the following moment condition on the

random noise ".

Assumption 2.5. There exists a positive constant c1 † 8 such that }"} 2 § c1.

Theorem 2.2. Recall '
‹ “ �

‹ ´ B
J
�

‹ P RK
. Under Assumptions 2.1–2.5, we have

}p� ´ H�
‹}2 “ OP

#
1?
n

`
ˆ

1?
n

` 1?
d

˙
}'‹}2 ` }�‹}1

˜c
log |S‹|

n
` 1?

d

¸+
,
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where S‹ “ tj P rds : �‹
j ‰ 0u and |S‹| is its cardinality. Furthermore, if |S‹|

`
log d
n ` 1

d

˘
“ op1q, then,

by taking � “ pI0{nq} pUJp rY ´ pU�
‹q}8 for some constant I0 • 2, we have p�� ´ �

‹ P CpS‹, 3q and

} p�� ´ �
‹}2 “ OP

˜c
|S‹| log d

n
` Vn,d}'‹}2

a
|S‹|

n

¸
. (2.6)

Remark 3. In most of literature investigating the regularized estimation of sparse linear regression

model (1.3), it is commonly assumed that the observed covariate vector x is a sub-Gaussian ran-

dom vector with bounded sub-Gaussian norm }x} 2 . See, for instance, Loh and Wainwright [2012],

Nickl and Van De Geer [2013], van de Geer et al. [2014], Zhang and Cheng [2017] and many others.

However, such assumption can be unreasonable in the presence of highly correlated covariates. To

see this, suppose now both f and u are Gaussian random vectors and the underlying x satisfies the

factor model (1.1). Then x is also a Gaussian random vector with Covpxq “ BB
J ` ⌃. Under

the pervasiveness condition (Assumption 2.2) and Assumption 2.4, it is straightforward to verify that

}x} 2 “
a
8{3�maxpBB

J ` ⌃q — d, which violates the assumption on bounded sub-Gaussian norm.

In contrast, our model can circumvent such issue because we decompose the covariate x into pf ,uq,

and we only need impose sub-Gaussian assumption on pf ,uq. As the sparse linear regression model

serves as a special case to our model, our model serves as a more robust choice to conduct parameter

estimation comparing with using linear regression directly, even if the sparse linear regression model

is adequate.

Remark 4. Theorem 2.2 substantially generalize the results in Fan et al. [2020a] with weaker as-

sumptions. First, we did not impose the irrepresentable condition on the design matrix U , only the

lower bound on ⌃ “ Covpuq is required. In addition, although Fan et al. [2020a] also decompose

the covariate x into pf ,uq in order to get precise estimator for �‹, they mainly focus on the linear

model Y “ x
J
�

‹ ` " which corresponds to the special case with '
‹ “ 0 in our results given in

Theorem 2.2.

Remark 5. Our study is different from the related work by Fan et al. [2021a], although they also

study one kind of factor augment linear regression model. First of all, they do hypothesis testing for

covariance matrix of the idiosyncratic component whereas we focus on testing the adequacy of factor
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regression and sparse regression and address also robustness issue. Secondly, their study focuses on

panel data and concerning more on prediction rather than the inference.

2.3 Factor Augmented Robust Linear Regression

In reality, datasets, especially collected from the field of finance, are often contaminated by noises with

relatively heavy tails. To resolve such issue, we leverage the adaptive Huber regression to study the

parameter of interest in our FARM under the existence of heavy-tailed noise [Sun et al., 2020].

Let ⇢!p¨q denote the Huber function,

⇢!pzq “

$
&

%
z2{2, if |z| § !,

!z ´ !2{2, if |z| ° !,

where ! ° 0 is the robustification parameter which balances robustness and bias. As an robust version

of (2.4), our factor augmented adaptive Huber estimator for p�‹,�‹q is given by

p p�h, p�hq “ argmin
�PRd,�PRK

#
1

n

nÿ

t“1

⇢!pyt ´ puJ
t � ´ pfJ

t �q ` �}�}1
+
, (2.7)

where � ° 0 is a tuning parameter and ! depends on sample size, dimenality, and noise level. For

simplicity of notation, we write p�h “ p p�J
h , p�J

h qJ P Rd`K and r� “ p�‹J, r�JqJ P Rd`K , where

r� “ pBJ
�

‹ ` n´1 pF J
F'

‹. The following theorem establishes the statistical consistency of p�h.

Proposition 2.3. Assume that E|"|1`# † 8 for some constant # ° 0. Let

! —
ˆ

n

log d

˙ 1
1`p#^1q

and � —
ˆ
log d

n

˙ #^1
1`p#^1q

.

Furthermore, we assume that p|S‹| ` Kqplog dq3{2 “ opnq,

log n

n `
?
d

}'‹}2 “ op!q and Vn,d}'‹}2 “ Op! log dq. (2.8)

Then, under Assumptions 2.1–2.4, we have

} p�h ´ r�}1 “ OP

#
p|S‹| ` Kq

ˆ
log d

n

˙ #^1
1`p#^1q

+
.
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We establish the `1-statistical rate for the parameters in model (1.4)[also (1.5)] by only assuming

the existence of p1 ` #q-th moment of the noise distribution. Specifically, when # • 1, the results

reduce to the same rate as the sub-Gaussian assumption of ". Our result serves as an extension of Sun

et al. [2020], who study the robust estimation for high-dimensional linear regression, to a more general

setting by incorporating latent factors.

Remark 6. It is worth noting that the statistical errors we obtained throughout section 2 are non-

asymptotic, in the sense that the results always hold as long as n is greater than some fixed constant.

As our learned covariates contain statistical errors, novel analysis analysis is required for downstream

statistical estimation and inference under both scenarios with light and heavy-tailed noises

3 Is Factor Regression Model Adequate?

The latent factor regression is widely applied in many fields as an efficient dimension reduction

method. A natural question arises is whether the model is adequate and FARM (1.4) serves naturally

as the alternative model. To be more specific, we consider testing the hypotheses

H0 : �
‹ “ 0 versus H1 : �

‹ ‰ 0 (3.1)

in FARM (1.4). As the penalized least-squares estimator p�� is used for estimating �
‹, it creates biases

and make it difficulty for inferences. Thus, we first introduce a de-biased version of p�� given in (2.4).

3.1 Bias Correction

We begin with the construction of bias-corrected estimator for �
‹ following similar idea of Zhang

and Zhang [2014], van de Geer et al. [2014] and Javanmard and Montanari [2014]. Specifically, let
p⇥ P Rdˆd be an approximation for the inverse of the Gram matrix r⌃ “ n´1 pUJ pU , the de-biased

estimator for �‹ is then defined as

r�� “ p�� ` 1

n
p⇥ pUJpY ´ pU p��q. (3.2)
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The rationale behind such construction is that we are able to decompose estimation error as

r�� ´ �
‹ “ 1

n
p⇥ pUJ

E ` 1

n
p⇥ pUJ

F'
‹ ` pId ´ p⇥r⌃qp p�� ´ �

‹q, (3.3)

after we expand Y according to (2.2) and replace X by X “ pF pB ` pU . The first term on the right

hand side of (3.3) quantifies the uncertainty of our estimator r�� and the last two terms are biases which

will be shown to be of smaller order.

One observes that constructing the de-biased estimator r�� given above requires an estimator p⇥.

There are many methods for estimating such precision matrix, for example, the node-wise regression

proposed in Zhang and Zhang [2014] and van de Geer et al. [2014], and the CLIME-type estimator

given in Cai et al. [2011], Javanmard and Montanari [2014] and Avella-Medina et al. [2018]. In

our work, we do not restrict p⇥ to be any specific one, but require to satisfy the following general

conditions.

Assumption 3.1. Let ⇥ “ ⌃´1 with ⌃ defined in Assumption 2.3. There exist positive ⇤max and �8

such that

}Id ´ p⇥r⌃}max “ OPp⇤maxq and } p⇥ ´ ⇥}8 “ OPp�8q.

Without loss of generality, here we assume that �8 § }⇥}8.

Remark 7. To give a concrete example, under the mild conditions therein, Assumption 3.1 is satisfied

with

⇤max “ O

ˆc
log d

n
` 1

d

˙
and �8 “ O

ˆ
max
jPrds

|Sj|
c

log d

n
` 1

d

˙
,

by using node-wise regression [Zhang and Zhang, 2014, van de Geer et al., 2014], where |Sj| “
∞d

k“1 It⇥jk ‰ 0u quantifies the sparsity of j-th column of the precision matrix ⇥ for each 1 § j § d.

In Appendix ??, we will provide a detailed analysis on estimating r⌃´1 via node-wise regression and

establish precise theoretical upper bounds for the statistical rates given in Assumption 3.1.
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3.2 Gaussian Approximation

The goal of this section is to derive the asymptotic distribution of } r�� ´�
‹}8 in the high dimensional

setting. To this end, we apply the Gaussian approximation result given in Chernozhukov et al. [2013,

2017, 2020] for high dimensional random vectors. More specifically, we let Z “ pZ1, . . . , ZdqJ P Rd

be a zero-mean Gaussian random vector with the same covariance matrix as that of n´1{2⇥U
J
E , that

is,

CovpZq “ Cov

ˆ
1?
n
⇥U

J
E

˙
“ �2⇥. (3.4)

We next present the theoretical results on Gaussian approximation of our test statistics under some

mild conditions.

Theorem 3.1. Recall '
‹ “ �

‹ ´ B
J
�

‹ P RK
. We assume that plog dq5{n Ñ 0,

p⇤max|S‹| ` �8q log d Ñ 0 and

ˆ
Vn,d}'‹}2 `

c
n

d
`

a
log d

˙
}⇥}8

c
log d

n
Ñ 0, (3.5)

with Vn,d. Then under Assumption 3.1, we have

sup
x°0

ˇ̌
ˇP

´?
n} r�� ´ �

‹}8 § x
¯

´ P p}Z}8 § xq
ˇ̌
ˇ Ñ 0.

For any ↵ P p0, 1q, let c1´↵ denote the p1´↵q-th quantile of the distribution of }Z}8. Theorem 3.1

leads to an approximately level ↵ test for (3.1) as follows:

 8,↵ “ I
!?

n} r��}8 ° c1´↵
)
. (3.6)

3.3 Gaussian multiplier bootstrap

The critical value c1´↵ depends on the unknown �2 and ⇥, which can be estimated by the following

Gaussian multiplier bootstrap.

1. Generate i.i.d. random variables ⇠1, . . . , ⇠n „ Np0, 1q and compute

pL “ 1?
n

} p⇥ pUJ
⇠}8, where ⇠ “ p⇠1, ⇠2, . . . , ⇠nqJ.
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2. Repeat the first step independently for B times and obtain pL1, . . . , pLB. Estimate the critical

value c1´↵ via 1 ´ ↵ quantile of the empirical distribution of the bootstrap statistics:

pc1´↵ “ inftt • 0 : HBptq • 1 ´ ↵u, where HBptq “ 1

B

Bÿ

b“1

I
!

pLb § t
)
.

Reject the null hypothesis H0 when
?
n} r��}8{p� ° pc1´↵, for a given consistent estimator p� of �. To

validate the procedure, we need some additional conditions on p⇥ and p�.

Assumption 3.2. There exists a �max ° 0 such that } p⇥ ´ ⇥}max “ OPp�maxq.

Assumption 3.3. There exists a 0 † �� § 1 such that |p�{� ´ 1| “ OPp��q.

Remark 8. The estimation of �2 for high dimensional linear regression has been studied in the lit-

erature. For example, Fan et al. [2012] proposed refitted cross-validation to construct a consistent

estimator with clearly quantified uncertainty of p� in ultra-high dimension. In addition, Sun and Zhang

[2012] and Yu and Bien [2019] derived scaled-Lasso and organic Lasso respectively for estimating �.

Like our case of estimating ⇥, we also do not restrict estimating � by any fixed method mentioned

above, our theory works as long as the general condition of Assumption 3.3 holds.

Let P‹p¨q “ Pp¨|X,Y q denote the conditional probability. In the following theorem, we establish

the validity of the proposed bootstrap procedure.

Theorem 3.2. Let Assumptions 3.1–3.3 hold. Assume that

⇤max}⇥}8 ` �max ` �� “ o

ˆ
1

log d

˙
. (3.7)

Then, under conditions of Theorem 3.1, we have

sup
x°0

ˇ̌
ˇP

´?
n} r�� ´ �

‹}8 § x
¯

´ P‹
´

pL § x
¯ˇ̌

ˇ PÑ 0.

Remark 9. Following the same de-biasing procedure as given in (3.2), we are also able to construct

entrywise [Javanmard and Montanari, 2014] and groupwise [Zhang and Cheng, 2017, Dezeure et al.,
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2017] simultaneous confidence intervals for �‹. For each 1 § j § d, a p1´↵q-confidence interval for

�‹
j is given by

CI↵p�‹
j q “

$
&

%
r�j,� ´ p�z1´↵{2

d
p⇥jj

n
, r�j,� ´ p�z1´↵{2

d
p⇥jj

n

,
.

- ,

where z1´↵{2 is the p1 ´ ↵{2q-th quantile of standard normal distribution. By choosing this cut-off

value, we obtain a tighter confidence interval comparing with using c1´↵. For simultaneous groupwise

inference of �‹, let G be a subset of t1, . . . , du of interest and consider testing the hypotheses

H0,G : �‹
j “ �˝

j for all j P G versus H1,G : �‹
j ‰ �˝

j for some j P G.

In particular, when �˝
j “ 0 for all j P G, this reduces to testing the significance of a group of parame-

ters. We obtain that the asymptotic distribution of maxjPG
?
n|r�j,� ´ �‹

j | converges to the distribution

of maxjPG |Zj| by leveraging the Gaussian approximation. The remaining steps follow directly by

conducting the Gaussian multiplier bootstrap.

4 Is Sparse Linear Model Adequate?

Sparse linear regression, which serves as the backbone of high dimensional statistics, has been widely

applied in many areas of science, engineering, and social sciences. However, its adequacy has never

been validated. This section focuses on testing the adequacy of the sparse linear model.

4.1 Main Results

As mentioned in introduction, the proposed model (1.5) contains the sparse linear regression model as

a special case. Thus, we consider testing the hypotheses

H0 : Y “ x
J
�

‹ ` " versus H1 : Y “ f
J
'

‹ ` x
J
�

‹ ` ", (4.1)

which is equivalent to test whether '‹ “ �
‹ ´ B

J
�

‹ “ 0. Since B is an unknown dense matrix,

simultaneously testing this linear equation will suffer from the curse of dimensionality.
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On the other hand, for any set S Ä rds with S‹ Ä S , we have B
J
S�

‹
S “ B

J
�

‹. Hence, it suffices

to compare the following two linear models in reduced dimension:

H0 : Y “ x
J
S�

‹
S ` " versus H1 : Y “ f

J
'

‹ ` x
J
S�

‹
S ` ". (4.2)

This hinges applying a sure screening method to reduce the dimensionality. There exist several meth-

ods which lead to the sure screening property. Among those, the commonly used one is the marginal

screening method [Fan and Lv, 2008, Fan and Song, 2010, Zhu et al., 2011, Li et al., 2012, Liu et al.,

2014, Barut et al., 2016, Chu et al., 2016, Wang and Leng, 2016].

We propose an ANOVA-type test for (4.1) with two stages. In the first stage, the data set is split

into two data sets pY p1q,Xp1qq and pY p2q,Xp2qq, with sample sizes m and n´m, respectively. We use

pY p1q,Xp1qq to screen variables. Let pS1 denote the set of variables selected. In the second stage, we

leverage the selected pS1 and remaining data pY p2q,Xp2qq to perform hypothesis testing based on the

ANOVA-type test statistic for low-dimensional model (4.2) with S replaced by pS1. As the first step is

based on marginal screening and is relatively crude, the sample size m is relatively small in comparing

with the second step. We impose a general assumption on the set pS1.

Assumption 4.1 (Sure screening property). There exists an sn ° 0 such that

P
´

| pS1| § sn and S‹ Ä pS1

¯
Ñ 1, as n Ñ 8.

A simple procedure that satisfies the above assumption is the follow factor-adjusted marginal

screening based on the data pY p1q,Xp1qq.

1. Estimation. Compute the latent factor estimator pF p1q, idiosyncratic component pU p1q based on

X
p1q, and rY p1q “ pIm ´ pF p1qp pF p1qJ pF p1qq´1 pF p1qJqY p1q, the residual after factor regression.

2. Marginal regression. Compute the least square estimate p�`,M “ pU p1qJ
`

rY p1q{p pU p1qJ
`

pU p1q
` q for

each 1 § ` § d.

3. Screening. Let pS1 :“ pS� “ t` P rds : |p�`,M | ° �u for some prescribed � ° 0.

Here pU p1q
` P Rd stands for the `-th column of the matrix pU p1q. We next provide a sufficient condition

for the Assumption 4.1 to hold.
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Proposition 4.1. Assume that m “ opd log dq and

O

ˆ} ˚}2
d

` }�˚}2
c

log d

m

˙
§ � § O

ˆ
min
`Prds

�‹
`,M

˙
, (4.3)

where �‹
`,M :“ ⌃J

` �
‹{⌃``. Here ⌃` denotes the `-th column of ⌃. Then, under the Assumptions 2.1–

2.5, we have

P
´
S‹ Ä pS�

¯
Ñ 1, as m Ñ 8.

Furthermore, we assume that min`PS‹ |�‹
`,M | • c‹m´

for some positive constant  † 1{2. Then for

any � “ c˛m´
with c˛ § c‹{p1 ` c̄q, we have

P
"

| pS�| § c2˛m
2}⌃�

‹}22
�2minp⌃qp1 ´ c̄q2

*
Ñ 1 as m Ñ 8.

Remark 10. From the conclusion of Proposition 4.1, we obtain sure screening property by using our

first data set with sample size m “ n↵ for some ↵ † 1 as long as the signal satisfies min`PS‹ |�‹
`,M | •

c‹m´. Thus, the size of the remaining data set for constructing the test statistic in our second step is

n ´ n↵ « n. It is worth to note that this does not lose any efficiency in terms of the asymptotic power

in our hypothesis test when n goes to infinity.

Remark 11. Fan et al. [2020a] proposed a similar sure screening estimator which is a special case of

our Proposition 4.1 with '
‹ “ �

‹ ´ B
J
�

‹ “ 0. Moreover, we also provide an upper bound for the

number of selected variables whereas Fan et al. [2020a] only provided a sufficient condition for the

sure screening property.

Next, we proceed to the second stage of our hypothesis testing. In this step, we construct an

ANOVA test statistic for (4.2) with S replaced by pS1, which is given by

Qp2q
n “

››››

ˆ
In´m ´ P

Xp2q
pS1

˙
Y

p2q
››››
2

2

´
››››

ˆ
In´m ´ P pF p2q ´ P pU p2q

pS1

˙
Y

p2q
››››
2

2

. (4.4)

We then summarize our results on the asymptotic behaviors of Qp2q
n in the following Theorem 4.2.
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Theorem 4.2. Let Assumptions 2.1–2.5 and Assumption 4.1 hold with

sn

ˆ
log d

n
` 1

d

˙
Ñ 0 and �� Ñ 0.

We obtain

sup
x°0

ˇ̌
P

`
Qp2q

n § xp�2|H0

˘
´ Pp�2

K § xq
ˇ̌

Ñ 0, as n Ñ 8.

Theorem 4.2 yields a level ↵ test for (4.1) , with critical region
!
Qp2q

n ° p�2�2
K,1´↵

)
, where �2

K,1´↵

is the p1 ´ ↵q-th quantile of �2
K-distribution.

Remark 12. Under stronger conditions such as irrepresentable condition [Zhao and Yu, 2006] or

RIP condition [Candes and Tao, 2007], the pS achieved by certain explicit regularization [Zhao and

Yu, 2006, Fan and Lv, 2011, Shi et al., 2019, Fan et al., 2020a] or implicit regularization accompanied

with early stopping and signal truncation [Zhao et al., 2019, Fan et al., 2021b] enjoys variable selection

consistency Pp pS “ S‹q Ñ 1. In this scenario, we take the test statistic as

Qn “
›››
´
P pF ` P pU pS

´ PX pS

¯
Y

›››
2

2

without using sample splitting. Under Assumptions 2.1–2.5, we obtain

sup
x°0

ˇ̌
P

`
Qn § xp�2|H0

˘
´ Pp�2

K § xq
ˇ̌

Ñ 0, (4.5)

by following similar proof idea with Theorem 4.2.

We now present the power of the test statistic (4.4).

Theorem 4.3. Define

Dp↵, ✓q “
"
' P RK :

n}'}2
1 ` Ksn}B}2max{�minp⌃q • �2p2 ` �qp�2

K,1´↵ ` �2
K,1´✓q

*
,

where � ° 0 is some constant, sn is the size of selected set from the first stage and K is the number of

factors. In addition, parameter ✓ is a threshold such that for any '
‹ P Dp↵, ✓q, the power of the test

is larger than 1 ´ ✓. To be more specific, we assume that

}'‹}2
´a

n{d ` 1{?
n

¯
Ñ 0. (4.6)
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Then, under the conditions of Theorem 4.2, we have

inf
'‹PDp↵,✓q

Pp ↵ “ 1|H1q • 1 ´ ✓,

where  ↵ “ ItQp2q
n °p�2�2

K,1´↵u.

Remark 13. Dataset with multiple types are now frequently collected for a common set of experimen-

tal subjects. This new data structure is also called multimodal data. It is worth to mention, the above

hypothesis test can be further extended to test the adequacy of multi-modal sparse linear regression

model [Li and Li, 2021]. Interested readers are referred to Appendix F.4 for more details.

5 Numerical Studies

5.1 Accuracy of Estimation

For data generation, we let number of factors K “ 2, dimension of covariate d “ 1000, �‹ “
p0.5, 0.5q, the first s “ 3 entries of �

‹ be 0.5 and remaining d ´ s entries be 0. Throughout this

subsection, we generate every entry of F ,U from the standard Gaussian distribution and let every

entry of B be generated from the uniform distribution Unif p´1, 1q. We choose the noise distribution

of " given in model (2.1) from (i) standard Gaussian, (ii) uniform, and (iii) t3 distribution respectively.

Distributions (i) and (ii) have sub-Gaussian tails. For these two cases, we select sample size n

so that s
a
log d{n takes uniform grids in r0.15, 0.5s . Then we generate n response variables from

model (2.1) and estimate our parameters via (2.4). The results are shown as the red lines in Figure 1.

They lend further support to our theoretical findings given in section 2 as the statistical rates there

are upper bounded by Ops
a
log d{nq. Moreover, we also show the estimation results by using Lasso

directly on measurements pX,Y q. Results are shown as the blue lines given in the first two figures in

Figure 1. Using Lasso directly on pX,Y q leads to much worse results due in part to the inadequacy

of the model. In addition, as shown in Fan et al. [2020a], even when the sparse regression model is

correct, we still have better estimation accuracy using factor adjusted regression.

Distribution (iii) has only the bounded second moment, but no third moment. Likewise, we select

corresponding number of observations n so that ps`Kq
a
log d{n takes uniform grids in r0.4, 0.7s. The
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(a) (b) (c)

Figure 1: Accuracy for p�� with distpp��, �‹q :“ }p�� ´ �‹}1 based on 500 replications. The light color

regions indicate the standard errors across the simulation. Figure (a) and (b) depict the estimation

results of model (1.4) with noise ✏ following the standard Gaussian and uniform distributions respec-

tively. In (a) and (b), the red lines denote the estimation results using the method (2.4) (labeled as

FA Lasso in the figure) and the blue lines represent the results using Lasso with data pX,Y q. In

Figure (c), the noise ✏ follows t3-distribution. The red line in (c) represents the result of robust factor

adjusted regression (Robust FA Lasso) via adaptive Huber estimation together with `1-penalty given

in (2.7) and the blue line represents the result achieved by using FA Lasso.

reduced sample sizes help reduce the computation cost on the regularized adaptive Huber estimation

using cross-validation to choose the parameter !. We compare the results for the robust estimator (2.7)

with that of the factor adjusted regression (2.4). The results are shown as the red and blue lines in part

(c) of Figure 1 respectively. They provide stark evidence that it is necessary to conduct the robust

version of factor adjusted regression (2.7) when noises have heavy tails.

5.2 Adequacy of Factor Regression

Data Generation Processes. We choose n “ 200, K “ 2 and d either 200 or 500 and the matrix

X “ FB
J ` U using the following two models with entries of B generated from Unifp´1, 1q.

1. We generate every row of F P RnˆK ,U P Rnˆd from Np0, IKq and Np0, Idq respectively.

2. We let the t-th row ft P RK of F P RnˆK follow ft “ �ft´1 ` ⇠t where � P RKˆK with
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�i,j “ 0.5|i´j|`1, i, j P rKs. In addition, t⇠tut•1 are drawn independently from Np0, IKq. We

generate every row of U from Np0,⌃q where ⌃i,j “ 0.6|i´j|, i, j P rds.

The response vector follows Y “ F�
‹ ` U�

‹ ` E in (4.1) with every entry of E P Rn being

generated independently from either from Np0, 0.52q or uniform distribution Unif p´
?
3{2,

?
3{2q.

We set �‹ “ p0.5, 0.5q and �
‹ “ pw,w,w, 0, ¨ ¨ ¨ , 0q, where w • 0. When w “ 0, the null hypothesis

Y “ F�
‹ ` E holds and the simulation results correpond to the size of the test. Otherwise, they

correspond to the power of the test.

For n “ 200, K “ 2, d P t200, 500u and all w P t0, 0.05, 0.10, 0.15, 0.20u, we generate the

data from each model and compute the testing results based on procedures in §3 and 2000 simulatons

with ↵ “ 0.05. For every replication, we conduct bootstrap 2000 times to compute the critical value

pc1´↵ given in §3. The results are depicted in the Table 1. The column named Gaussianpiq, i P t1, 2u
represents the simulation results under model i with Gaussian noise. Similar labels applied to the

uniform noise distribution.

Gaussian (1) Gaussian (2) Uniform (1) Uniform (2)

p “ 200

w “ 0 0.044 0.047 0.046 0.048

w “ 0.05 0.067 0.119 0.065 0.108

w “ 0.10 0.326 0.714 0.311 0.653

w “ 0.15 0.859 0.989 0.854 0.984

w “ 0.20 0.998 1.000 0.996 1.000

p “ 500

w “ 0 0.043 0.040 0.048 0.436

w “ 0.05 0.067 0.080 0.059 0.071

w “ 0.10 0.253 0.632 0.237 0.563

w “ 0.15 0.787 0.974 0.780 0.962

w “ 0.20 0.993 1.000 0.987 1.000

Table 1: Simulation results of section 3 under different regimes.

Table 1 reveals that our test gives approximately the right size (subject to simulation error; see the

rows with w “ 0). This is consistent with our theoretical findings given in section 3. In addition,

when 0 † w † 0.2, the power of our test increases rapidly to 1 which reveals the efficiency of our test
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statistic.

5.3 Adequacy of Sparse Regression

This subsection provides finite-sample validations for the results in section 4. We take the number of

data used for screening m “ rn0.8s, use Iterative Sure Independence Screening method [Fan and

Lv, 2008, Saldana and Feng, 2018, Zhang et al., 2019] to select pS1 and apply the refitted cross-

validation [Fan et al., 2012] to estimate �2. The size and the power of the test are computed based

on 2000 simulations.

Data Generation Processes. We let n “ 250, K “ 3 and d be either 250 or 600. The noises "

are i.i.d from Np0, 0.52q or Unif p´
?
3{2,

?
3{2q. The covariate X P Rnˆd follows the factor model

X “ FB
J ` U . We generate F , U and B in the same way as those in section 5.2. In addition, the

response variable follows Y “ F'
‹ ` X�

‹ ` E in (4.1) with �
‹ “ p0.8, 0.8, 0.8, 0.8, 0, ¨ ¨ ¨ , 0q and

'
‹ “ v ¨1Kˆ1 for several different values of v • 0. The case v “ 0 corresponds to the null hypothesis

and it is designed to test the validity of the size.

Results. For n “ 250, K “ 3, d P t250, 600u and v P t0, 0.04, 0.08, 0.12, 0.16u, we implement the

proposed method for every model in section 5.2. The simulation results are depicted in Table 2. The

column named Gaussian (or uniform) piq, i P t1, 2u represents the results under model i with Gaussian

(or uniform) noise mentioned in section 5.2. When v “ 0, the null hypothesis holds, our Type-I error

is approximately 0.05 which matches with the theoretical value. In addition, when we increase the size

of v from v “ 0.04 to v “ 0.16, the power of our test statistic increases sharply to 1, which reveals its

efficiency.

We next discuss the necessity of using sample splitting. Suppose we do not split samples and

use the whole dataset to do sure screening and construct the test statistic. This will result in the high

correlation between the selected set pS and covariates when pS is not a consistent estimator of S‹. In

this case, the asymptotic behavior of our test statistic is hard to capture. To demonstrate this point,

we simulate the null distribution of the test statistic constructed without using sample splitting and

compare it with the asymptotic distribution (�2
K) via the quantile-quantile plot in Figure 7 in appendix
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Gaussian (1) Gaussian (2) Uniform (1) Uniform (2)

p “ 250

v “ 0 0.051 0.054 0.056 0.053

v “ 0.04 0.215 0.278 0.233 0.286

v “ 0.08 0.659 0.740 0.655 0.750

v “ 0.12 0.965 0.993 0.965 0.996

v “ 0.16 1.000 1.000 1.000 1.000

p “ 600

v “ 0 0.051 0.052 0.050 0.052

v “ 0.04 0.208 0.362 0.197 0.353

v “ 0.08 0.624 0.802 0.604 0.785

v “ 0.12 0.941 0.994 0.934 0.999

v “ 0.16 1.000 1.000 0.999 1.000

Table 2: Simulation results of section 4 under different regimes.

§B.2. Figure 7 reveals that the test statistic constructed without using sample splitting has heavier right

tail than that of the �2
K distribution. The sizes of the test are much larger than the results in Table 2

when v “ 0.

We summarize the numerical results as follows. In terms of statistical estimation, our estimated

parameters of FARM behave much better than those estimated parameters via sparse linear regression

model due to mis-specification. As for prediction, we also conduct additional simulations on compar-

ing FARM with the latent factor regression and sparse linear regression model. Interested readers are

referred to §B.1 for more details. For high-dimensional inference, as illustrated in §5.2 and §5.3, when

the null hypothesises hold, the size of the test is well-controlled. On the other hand, when the null

hypothesises do not hold, the power of our test statistics grow rapidly to 1 even for weak signals.

5.4 Empirical Applications

In this section, we use a macroeconomic dataset named FRED-MD [McCracken and Ng, 2016] to

illustrate the performance of our factor augmented regression model (FARM) and investigate whether

the latent factor regression model and sparse linear model are adequate.

There are 134 monthly U.S. macroeconomic variables in this dataset. As they measure certain
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aspects of economic health, these variables are driven by latent factors and hence correlated. They

can be well explained by a few principal components. In our study, we pick out two variables named

’HOUSTNE’ and ’GS5’ as our responses respectively and let the remaining variables be the covari-

ates. Here ’HOUSTNE’ represents the housing starts in the northeast region. Studying the number of

housing starts helps one to understand the residents’ life condition and economic environment. ‘GS5’

is correlated with many important variables such as interests rates, inflation and economic growth. It

is an important indicator on the financial condition and economics environment of a country.

There exist significant structural breaks for many variables around the year of financial crisis in

2008 which makes our data non-stationary even after performing the suggested transformations. Thus,

we analyze the dataset in two separate time periods independently. Specifically, we study the monthly

data collected from February 1992 to October 2007 and from August 2010 to February 2020 respec-

tively after examing the missingness and stationarity of the data.

We next compare the performance of our proposed FARM against several benchmarks presented

in a few related references which study the same or similar datasets. In specific, we compare the

forcasting results of FARM with Lasso (sparse linear regression), PCR (latent factor regression), Ridge

(Ridge regression), El-Net (Elastic Net) used in Coulombe et al. [2021b], Smeekes and Wijler [2018],

Hall et al. [2018], RF (Random Forest) used in Goulet Coulombe [2020], Coulombe et al. [2021a],

Bianchi et al. [2021] and FarmSelect (Factor adjusted Lasso) used in Fan et al. [2020a]. For every

given time period and model, we perform the prediction by using the moving window approach with

window size 90 months. Indexing the panel data from 1 for each of the two time periods, for all

t ° 90, we use the 90 previous measurements tpxt´90, Yt´90q, ¨ ¨ ¨ , pxt´1, Yt´1qu to train a model

(FARM, sparse linear regression model, latent factor regression model, ridge regression, elastic net,

factor adjusted Lasso, random forest), and output a prediction pYt as well as the in-sample average

Ȳt :“ 1
90

∞t´1
i“t´90 Yi (the detailed implementations for different methods are presented in the appendix

§B.3). We measure the prediction accuracy by using out-of-sample R2:

R2 “ 1 ´
∞T

t“91pYt ´ pYtq2∞T
t“91pYt ´ Ȳtq2

,

where T denotes the number of total data points in a given time period. Table 3 presents the out-
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of-sample R2 obtained by the aforementioned several models in the two time periods for predicting

’HOUSTNE’ and ’GS5’.

From the results, we observe that FARM outperforms all other benchmarks. In specific, in compar-

ison with PCR, our performance is better. This is due to the possibility that the latent factor regression

did not adequately explain the data. Additionally, applying traditional penalized regression methods

like Lasso or Elastic Net (El-Net) directly will result in an erroneous estimator p� and worse prediction

outcomes when the covariates have a factor structure (highly-correlated). Fan et al. [2020a] propose

a factor-adjusted lasso estimator (FarmSelect) to mitigate the impact of latent factors, but they still

assume the sparse regression as a sufficient method. From this point of view, their model could be

misspecified and performs worse than ours. In terms of the Ridge regression, it assumes the underly-

ing signal �˚ is dense instead of sparse. From the outcomes, we conclude that the dense model may

not explain this dataset. Finally, our FARM also outperforms the random forest, a well-used model for

making predictions via machine learning.

Time period Data FARM Lasso PCR Ridge El-Net RF FarmSelect

02.1992-10.2007
HOUSTNE 0.769 0.684 0.372 0.221 0.699 0.497 0.741

GS5 0.720 0.702 0.056 0.249 0.699 0.557 0.709

08.2010-02.2020
HOUSTNE 0.743 0.374 0.079 0.125 0.348 0.421 0.569

GS5 0.681 0.650 0.032 0.342 0.653 0.557 0.626

Table 3: Out-of-sample R2 for predicting ’HOUSTNE’ and ’GS5’ data using different models in

different time periods. In this table, the values in the FARM column denote the prediction results

through the factor-augmented linear regression model. In addition, we also compare the prediction

results with several benchmarks, Lasso (sparse linear regression), PCR (latent factor regression), Ridge

(Ridge regression), El-Net (Elastic Net), RF (Random Forest), and FarmSelect (Factor adjusted Lasso).

We next conduct the hypothesis testing on the adequacy of latent factor regression and sparse linear

regression respectively by using FARM as the alternative model. As computing the bootstrap estimate

of the null distribution is expensive for testing the adequacy of the factor model, we only conduct the

hypothesis testing using the data in the entire two subperiods: 02.1992-10.2007 and 08.2010-02.2020.
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The P-values for the tests are given in Table 4. Taking the significant level 0.05, the hypothesis testing

results indicate that in most of the cases, the latent factor regression and sparse linear regression, are

not sufficient to explain the dataset. These results match well with our prediction results.

Time period Data LA factor SP Linear

02.1992-10.2007
HOUSTNE † 10´3 † 10´3

GS5 1.5 ¨ 10´3 4.73 ¨ 10´3

08.2010-02.2020
HOUSTNE † 10´3 1.64 ¨ 10´1

GS5 1.98 ¨ 10´1 2.94 ¨ 10´2

Table 4: p-values for testing the adequacy of the latent factor regression and sparse linear regression

models to explain ’HOUSTNE’ and ’GS5’ data in two different time periods. The LA Factor and

SP Linear have the same meaning as those in Table 3.

6 Conclusion and Discussion

In this paper, we propose a model named Factor Augmented (sparse linear) Regression Model (FARM),

which contains the latent factor regression and the sparse linear regression as our special cases. The

model expands the space spanned by covariates into useful principal component directions and hence

use additional information beyond the linear space spanned by the predictors. We provide theoretical

guarantees for our model estimation under the existence of light-tailed and heavy-tailed noises respec-

tively. In addition, we leverage the FARM model as the alternative one to test the adequacy of the latent

factor regression model and sparse regression model. We believe that the study is among the first of

this kind in high-dimensional inference. The practical performance of our model estimation and our

constructed test statistics are proven by extensive simulation studies including both synthetic data and

real data. Moreover, it is worth to mention that our model and methodology can be extended to more

general supervised learning problems such as nonparametric regression, quantile regression, regres-

sion and classification trees, support vector machines, among others where the factor augmentation

idea is always useful.
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Next, we provide some discussion with several related works. First, we make comparison with

Luciani [2014]. It is worth noting although our work shares similar idea with Luciani [2014] in terms

of incorporating factors into sparse regression, our framework is more general, systematic and con-

tains theirs as special case. Moreover, our intuition is different. To be more specific, they provide a

conceptual idea without specifying any statistical model and do not provide any theoretical guarantees.

In contrast, we provide a thorough study of the factor augmented sparse regression model (FARM),

from the perspective of (robust) estimation to uncertainty quantification with well established method-

ology and theoretical results. We further utilize our model to test the goodness-of-fit of two important

models, namely, factor regression and sparse regression. More importantly, the starting points of de-

riving our FARM is different from that in Luciani [2014]. Specifically, our model is intuitive from the

inadequacy of factor regression and sparse regression in many situations, whereas they mainly focus

on using past factors and idiosyncratic components to forecast time series data.

Next, we discussion our connection with the sparse and dense model proposed by Giannone et al.

[2021]. They consider the model

Y “ x
J
t �

˚ ` z
J
t '

‹ ` ✏,

where zt is a low-dimensional vectorwhose regression parameter '‹ is considered to be dense and xt

is a high-dimensional covariate whose regression coefficient �‹ is considered to be sparse. It is worth

noting that their model acts as a special case to our FARM when we assume the factor is observable

with zt “ ft and xt possess factor structure. Moreover, they aim at identifying explainable regres-

sion variables and degree of sparseness using tools from Bayesian statistics and empirical illustration,

whereas we provide consistency estimation results and also conduct hypothesis testing on �˚ elemen-

twisely or groupwisely via both theories and numerical studies. Last but not least, it is mentioned in

their paper, when they analyze the macroeconomic data, although their posterior sparse level is low,

the heat map shows high uncertainty on whether certain predictors should be included in the model

due to high colinearity of predictors. In such a scenario, conducting regression directly using their

method will fail to recover the true support of the covariates [Zhao and Yu, 2006] and thus results in

unstable estimation results. To remedy this issue, one needs to decompose covariates into the factor

and idiosyncratic component and run factor adjusted regression via FARM. This showcases the neces-
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sity of estimating this sparse and dense model using FARM instead of ordinary linear regression under

strongly correlated covariate.

It is worth mentioning that, we also discuss the connections with several other related literature, such

as Lin and Michailidis [2020], Kneip and Sarda [2011], discuss the model selection consistency, and

test the contribution of a particular xi to Y . Due to the space limit, we put them in the appendix §A.
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Supplement material for “Are Latent Factor Regression and
Sparse Regression Adequate?”

A More Discussion
1. Comparison with related work

• Comparison with Kneip and Sarda [2011]. Kneip and Sarda [2011] study a similar problem by
incorporating factors into sparse regression under stronger assumptions. Their model requires
the idiosyncratic component ut to be uncorrelated, which is quite a strong assumption in the
high dimension, whereas we only require the conditional number of the covariance of ut to be
bounded. In addition, they require the noise distribution to be Gaussian, whereas our framework
not only allow for general sub-Gaussian noises but heavy-tailed noises as well. Most impor-
tantly, in addition to estimating the parameters of interest, we also focus on high-dimensional
inference: testing the goodness of fit of two important models, factor regression and sparse
regression which are not considered in Kneip and Sarda [2011].

• Connection with Lin and Michailidis [2020]. Lin and Michailidis [2020] study factor model
xt “ Bft ` ut where factors, idiosyncratic component following certain vector autoregression
(VAR) model. In this case, they predict the current covariate xt by augmenting factors to past
covariate xt´1. Compared with them, we study different objectives in a sense that we focus on
high-dimensional inference for regression problems with general responses. It is worth to note
that when our Yt “ xt,i, i P rds, their model becomes our special case.

2. [Model Selection Consistency] Model selection consistency (recovering the true support of �˚)
plays an essential role in model prediction, especially if the dataset is in high dimension but the under-
lying model is sparse. However, when the features are strongly co-linear, the irrepresentable condition
fails, and we can not achieve model selection consistency [Zhao and Yu, 2006]. Just as the case men-
tioned in Giannone et al. [2021], one may delete the actual important variables but involve useless ones
while making predictions. However, it is worth noting that even when sparse regression is adequate,
if one decomposes X into pF ,U q, which are two less correlated ones, one will eliminate the high-
colinearity across the features and thus obtain model selection consistency [Fan et al., 2020]. Thus,
even if the sparse model is adequate, FARM still has many merits in the sense that we can achieve
model selection consistency while preserving mean square errors.
3. Contribution of a particular xi to Y . There are two ways for xi to influence the response Y .
The first is through idiosyncratic component ui and the other is indirect effect through ft. To test the
first effect, we leverage the debiasing idea given in section 3 to test whether �˚

i
“ 0.

For the indirect influence of xi on Y through ft, this procedure is more involved. This is equiva-
lent to testing whether the i-th row of the B is zero or not. Recall that in our model formulation,
we have the eigenspace with respect to spiked eigenvalues of Covpxq is spanned by columns of B.
Thus, testing whether the i-th row of B is zero is equivalent to testing whether the i-th row of spiked
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eigenvectors Vi,¨ of Covpxq is zero. To accommodate this issue, we leverage the recent development
on doing statistical inference on eigenspace [Yan et al., 2021]. They derive asymptotic distribution
for pVi,¨R ´ Vi,¨ Ñ Np0,⌃V,iq. Here pVi,¨ P R

K is the i-th row of the estimated spiked eigenvectors
of X, R P R

KˆK is a rotation matrix and ⌃V,i is a covariance matrix that can be estimated via data.
Under the null hypothesis, we have Vi,¨ “ 0. In this scenario, we have pVi,¨RRJ pV J

i,¨ Ñ }Z}22 with
Z „ Np0,⌃U,iq. Thus, the hypothesis testing can be done by comparing pVi,¨ pV J

i,¨ with 1 ´ ↵ quantile
of the distribution of }Z}22, which can be estimated via bootstrap.

B Additional Numberical Results

B.1 Model Prediction
In this subsection, we provide a detailed simulation study on the prediction performance of latent factor
regression and sparse regression with respective to FARM when our FARM is the true underlying
model. First, we demonstrate how latent factor regression and sparse regression behave when the they
have different levels of misspecification.
As for data generation, we let n “ 200, K “ 5, dimention of covariate d “ 1000, '‹ “ 0.8 ¨1K , �‹ “
pv ¨ 1J

20,0
J
p´20qJ with the magnitude of v varies uniformly from 0 to 1.20. Throughout this subsection,

we generate every entry of F and U from the standard Gaussian distribution and let every entry of B
be generated from uniform distribution with Unifp´2, 2q. The noise distribution ✏ is given by standard
Gaussian distribution. The experiment is repeated 500 times and we record the out-of-sample MSE.
We then illustrate our comparion with factor regression in Table 1. As for our comparison with sparse

}�‹}8 0.00 0.20 0.40 0.60 0.80 1.00 1.20
FA Reg 0.25 1.02 3.69 8.33 13.42 18.74 28.14
FARM 0.27 0.65 0.69 0.67 0.65 0.74 0.96

Table 1: Out-of-sample MSE of our model (FARM) with factor regression (FA Reg).

regresssion, we adopt the aforementioned setting, except that we fix �‹ “ p0.8 ¨ 1J
20,0

J
p´20qJ and let

'‹ “ v ¨ 1K , with v ranges uniformly from 0 to 1.20. We summarize the comparison results in Table
2.

}'‹}8 0.00 0.20 0.40 0.60 0.80 1.00 1.20
SP Reg 1.94 2.14 2.15 2.37 2.24 2.40 2.54
FARM 0.55 0.59 0.61 0.62 0.59 0.60 0.61

Table 2: Out-of-sample MSE of our model (FARM) with sparse regression (SP Reg).

Finally, we illustrate the model prediction performances of factor regression and sparse regression

2



with respective to our FARM when the same size n increases. All settings are the same with those
mentioned above, except that we fix �‹ “ p0.8 ¨ 1J

20,0
J
p´20qJ and let '‹ “ 0.8 ¨ 1K . The out-of-

sample MSE are recorded below in Table 3. In addition, we also compare FARM with the other two
models (Sparse regression and Latent factor regression) using huber loss when there exist heavy-tailed
noise. We keep all the aforementioned settings except for changing the noise distribution from standard
Gaussian distribution to t3 distribution. The simulation results are summarized in the following Table
4.

n 200 229 257 286 314 343 371 400
FA Reg 13.59 12.03 14.37 11.81 12.27 13.20 11.79 12.46
SP Reg 2.25 1.86 1.87 1.63 1.59 1.49 1.36 1.38
FARM 0.58 0.48 0.45 0.39 0.35 0.39 0.34 0.31

Table 3: Out-of-sample MSE of our model (FARM) with sparse regression (SP Reg) and factor regres-
sion (FA Reg) when n varies.

n 200 229 257 286 314 343 371 400
FA Reg 16.39 18.00 16.60 14.37 15.12 15.97 18.19 14.85
SP Reg 13.73 15.06 14.07 12.63 13.22 13.90 16.67 13.14
FARM 6.67 5.99 4.71 4.04 4.02 3.53 4.77 2.93

Table 4: Out-of-sample MSE of our model (FARM) with sparse regression (SP Reg) and factor regres-
sion (FA Reg) when n varies when heavy-tailed error exists.

B.2 Additional Plots

B.3 Implementation Details of Empirical Applications
In this section, we describe the implementation details of different methods used in Empirical Applica-
tions. For the implementation of Lasso [Tibshirani, 1996], Ridge, Elastic Net [Zou and Hastie, 2005]
we use glmnet package in R directly to conduct the numerical studies. The tuning parameters � and ↵
in the models are chosen via leave-one-out cross-validation (by definition, the parameter ↵ only needs
to be tuned in Elastic Net). For the stableness of the algorithms, for FARM, PCR, FarmSelect [Fan
et al., 2020], throughout this empirical application, we use PCA to estimate the factors, as suggested
in §2, and let the number of factors be the maximum number of (2.3) and 2. For the implementation
of FARM, FarmSelect, their first steps of estimating p� are the same. In specific, we decompose the
covariate X into factor and idiosyncratic component r pF , pU s and then use Lasso to estimate the load-
ings p� as we described in §2. The prediction procedures are different, namely, we use covariate xnew

and r pfnew, punews to make prediction, for FarmSelect and FARM, respectively. In terms of using Ran-
dom Forest, we use the package randomForest in R to implement the model estimation and prediction

3
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Figure 7: Quantiles of the �2
K

distribution against those of the test statistic without sample splitting.
The x-axis represents the quantiles of the test statistic whereas y-axis is the quantiles of �2

K
distribution.

directly. For more details of our implementation and reproduction, we put the relevant codes in github
path given in the ACC form.

C Technical Lemmas
Recall that r⌃ “ n´1 pUJ pU and CpS, 3q “ tv P R

d : }vS}1 § 3}vSc}1u for any subset S Ä rds. First,
we introduce the following Lemma C.1. In this Lemma, when the RSC condition is satisfied, we are
able to achieve some certain `2-statistical rates for p�� and pU p��.

Lemma C.1. Assume that � • p2{nq} pUJp rY ´ pU�‹q}8 and for some positive constant pS‹, 3q,

min
0‰vPCpS‹,3q

vJ r⌃v

}v}22
• pS‹, 3q.

Then we have p�� ´ �‹ P CpS‹, 3q,

} p�� ´ �‹}2 § 3�
a

|S‹|
pS‹, 3q and } pU p p�� ´ �‹q}22 § 9n�2|S‹|

pS‹, 3q .

Proof of Lemma C.1. Write � “ p�� ´�‹. Following the proof of Theorem 7.2 in Bickel et al. [2009],
we obtain � P CpS‹, 3q and

pS‹, 3q}�}22 § �J r⌃� “ 1

n
} pU�}22 § 3�}�S‹}1 § 3�

a
|S‹|}�}2.

4



Then we have

}�}2 § 3�
a

|S‹|
pS‹, 3q and } pU�}22 § 3n�

a
|S‹|}�}2 § 9n�2|S‹|

pS‹, 3q .

In the next Lemma C.2, we prove that under quite mild conditions, the RSC condition given in
Lemma C.1 holds with high probability.

Lemma C.2. Under Assumptions 2.1–2.4, for any set S Ä t1, . . . , du with

|S|
ˆ
log d

n
` 1

d

˙
Ñ 0, (C.1)

there exists a constant pS, 3q ° 0 such that

P

˜
min

0‰vPCpS,3q
vJ r⌃v

}v}22
• pS, 3q

¸
Ñ 1, as n Ñ 8.

Proof of Lemma C.2. For any vector v P R
d such that }vSc}1 § 3}vS}1, we have

}v}21 § 16}vS}21 § 16|S|}vS}22 § 16|S|}v}22,

which implies that

vJ r⌃v

}v}22
• vJ p⌃v

}v}22
´ } r⌃ ´ p⌃}max}v}21

}v}22
• vJ p⌃v

}v}22
´ 16|S|} r⌃ ´ p⌃}max, (C.2)

where p⌃ “ n´1UJU . Combining this with Lemma C.6 and (C.1), we obtain

PpE1q :“ P

ˆ
16|S|} r⌃ ´ p⌃}max § �minp⌃q

8

˙
Ñ 1, as n Ñ 8.

For � ° 0, define the sparse set Kp�q “ tv P R
d : }v}0 § �, }v}2 § 1u. Taking �˛ “ 128|S|. It

follows from (C.1) that �˛ “ opn{ log dq. Then, by Lemma 15 in Loh and Wainwright [2012] and
Assumption 2.1, it follows that

PpE2q :“ P

˜
sup

vPKp2�˛q
|vJp p⌃ ´ ⌃qv| § �maxp⌃q

54

¸
Ñ 1, as n Ñ 8.

Under the event E2, by Lemma 13 in Loh and Wainwright [2012],

vJ p⌃v • �minp⌃q
2

}v}22 ´ �minp⌃q
�˛

}v}21 • �minp⌃q
2

}v}22 ´ 16|S|�minp⌃q
�˛

}v}22.

5



Combining this with (C.2), under E1 X E2, we obtain

vJ r⌃v

}v}22
• �minp⌃q

2
´ 16|S|} r⌃ ´ p⌃}max ´ 16|S|�minp⌃q

�˛
• �minp⌃q

4
.

Lemma C.3. Under Assumptions 2.1–2.4, for any vector � P R
K with }�}2 “ 1, we have

} pUJF�}8 “ OPpVn,dq. (C.3)

Proof of Lemma C.3. Define E� “ t�minpHJHq • 1{2u. It follows from Lemma 2.1 that PpE�q Ñ 1.
Since pF J pU “ O, under E�, we have

} pUJF�}8 “ } pUJpF ´ pFH´Jq�}8 § }p pU ´ U qJpFHJ ´ pF qH´J�}8

` }UJpFHJ ´ pF qH´J�}8 “: �˛ ` �˝.

We first bound �˛. By Lemma 2.1 and the Cauchy-Schwarz inequality, it follows that

�˛ §
˜
max
jPrds

nÿ

t“1

|putj ´ utj|2
¸1{2

} pF ´ FHJ}F}H´J�}2

“ OP

#d´
log d ` n

d

¯ ˆ
n

d
` 1

n

˙+
“ OPpVn,dq.

We now bound �˝. Recall that H “ n´1V ´1 pF JFBJB and pFV “ n´1XXJ pF . Hence

pF ´ FHJ “ 1

n
FBJUJ pFV ´1 ` 1

n
UBF J pFV ´1 ` 1

n
UUJ pFV ´1.

By the triangle inequality, it follows that

�˝ § 1

n

´
}UJFBJUJ pFV ´1H´J�}8 ` }UJUBF J pFV ´1H´J�}8

` }UJUUJ pFV ´1H´J�}8
¯

“: �˝
1 ` �˝

2 ` �˝
3.

By Assumptions 2.1 and 2.3, we have E}BJUJ}2
F

“ ntrpBJ⌃Bq and

E}BJUJF }2
F

“ nE}BJu}22}f}22 § n
b
E}BJu}42

b
E}f}42 “ Opndq.

Consequently, by Lemma 2.1, it follows that

}BJUJ pF }F § }BJUJp pF ´ FHJq}F ` }BJUJFHJ}F

6



§ }BJUJ}F} pF ´ FHJ}F ` }H}2}BJUJF }F

“ OP

#d

nd

ˆ
n

d
` 1

n

˙
`

?
nd

+
“ OP

´
n `

?
nd

¯
.

Combining this with maxjPrds }eJ
j
UJF }22 “ maxjPrds } ∞

n

t“1 utjft}22 “ OPpn log dq, we obtain

�˝
1 “ max

jPrds
1

n
|eJ

j
UJFBJUJ pFV ´1H´J�|

§ max
jPrds

1

n
}eJ

j
UJF }2}BJUJ pF }F}V ´1}2}H´J}2

“ OP

!a
plog dq{d `

a
n log d{d

)
.

Write B “ prb1, . . . ,rbKq P R
dˆK . By Assumptions 2.3 and 2.4,

max
kPrKs

max
jPrds

E

´
uju

Jrbk
¯

“ max
kPrKs

max
jPrds

⌃J
j

rbk § max
kPrKs

max
jPrds

}⌃j}1}rbk}8 § ⌥


,

where ⌃j P R
d denotes the j-th column of the covariance matrix ⌃. Moreover, by Assumption 2.1,

for each k P rKs, tutjuJ
t

rbkun
t“1 is a sequence of i.i.d. sub-exponential random variables with

max
kPrKs

max
jPrds

}utju
J
t

rbk} 1 § max
jPrds

}utj} 2 max
kPrKs

}uJ
t

rbk} 2 § c20 max
kPrKs

}rbk}2 § c20⌥
?
d.

Hence, it follows that

max
jPrds

›››››

nÿ

t“1

utju
J
t
B

›››››
2

§ nmax
jPrds

››Epuju
JBq

››
2

` max
jPrds

›››››

nÿ

t“1

E0putju
J
t
Bq

›››››
2

“ OP

´
n `

a
nd log d

¯
,

where E0p¨q “ ¨ ´ Ep¨q. Consequently, we obtain

�˝
2 “ max

jPrds
1

n

ˇ̌
ˇ̌
ˇ

nÿ

t“1

utju
J
t
B

nÿ

s“1

fs
pfJ
s
V ´1H´J�

ˇ̌
ˇ̌
ˇ

§ 1

n
}V ´1}2}H´J}2

›››››

nÿ

s“1

pfsf
J
s

›››››
2

max
jPrds

›››››

nÿ

t“1

utju
J
t
B

›››››
2

“ OP

!
n{d `

a
nplog dq{d

)
.

By the triangle inequality,

�˝
3 § 1

n

ˆ
max
jPrds

}ejU
JUUJFHJ}2 ` max

jPrds
}ejU

JUUJp pF ´ FHJq}2
˙

}V ´1}2}H´J}2

7



“: �˝
31 ` �˝

32

By Assumptions 2.3 and Lemma 2.1, it follows that

nÿ

t“1

E

›››››

nÿ

s“1

E0puJ
t
usqfs

›››››

2

2

À nE}E0puJuqf}22 ` n2
E}uJ

1 u2f2}22 À n2d.

Combining this with the fact that maxjPrds }eJ
j
UJF }22 “ OPpn log dq, we obtain

�˝
31 § max

jPrds
trp⌃q
n

›››››

nÿ

t“1

utjft

›››››
2

}H}2}V ´1}2}H´J}2

` max
jPrds

1

n

›››››

nÿ

t“1

utj

nÿ

s“1

E0puJ
t
usqfs

›››››
2

}V ´1}2}H´J}2

“ OP

!a
plog dq{n `

a
n{d

)
.

Similarly, by Lemma 2.1, we have �˝
32 “ OPpn{d ` 1{n `

a
n{dq. Putting all these pieces together,

we obtain (C.3).

Lemma C.4. Under Assumptions 2.1–2.5, we have

}p pU ´ U qJ
E}8 “ OP

ˆc
log d ` n

d

˙
.

Proof of Lemma C.4. Recall that pU “ X ´ pF pBJ. By the triangle inequality,

}p pU ´ U qJ
E}8 § }p pB ´ BHJq pF J

E}8 ` }BHJp pF ´ FHJqJ
E}8

` }BpHJH ´ IKqF J
E}8 “: �1 ` �2 ` �3.

By Lemma 2.1 and the Cauchy-Schwarz inequality, we have

�1 § max
jPrds

}pbj ´ Hbj}2} pF J
E}2 “ OP

´a
log d

¯

�2 § max
jPrds

}bj}2}H}2}p pF ´ FHJqJ
E}2 “ OP

´
1{?

n `
a
n{d

¯

�3 § max
jPrds

}bj}2}HJH ´ IK}F}F J
E}2 “ OP

´
1 `

a
n{d

¯
.

Lemma C.5. Under Assumptions 2.1–2.5, we have

} pUJp rY ´ pU�‹q}8 “ OP

´a
n log d ` Vn,d}'‹}2

¯
.
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Proof of Lemma C.5. By Lemmas C.3 and C.4, we have } pUJF'‹}8 “ OPpVn,d}'‹}2q and

} pUJ
E}8 § }p pU ´ U qJ

E}8 ` }UJ
E}8 “ OP

´a
n log d

¯
.

Consequently, as pUJp rY ´ pU�‹q “ pUJ
E ` pUJF'‹, it follows that

} pUJp rY ´ pU�‹q}8 § } pUJ
E}8 ` } pUJF'‹}8 “ OP

´a
n log d ` Vn,d}'‹}2

¯
.

Lemma C.6. Under Assumptions 2.1–2.4, we have

} pUJ pU ´ UJU}max “ OP

´n

d
` log d

¯
.

Proof of Lemma C.6. By the triangle inequality, we have

} pUJ pU ´ UJU}max § 2} pUJp pU ´ U q}max ` }p pU ´ U qJp pU ´ U q}max.

Recall that X “ FBJ ` U “ pF pBJ ` pU and pF J pU “ O. Hence, it follows from Lemma C.3 that

} pUJp pU ´ U q}max “ } pUJFBJ}max “ max
jPrds

} pUFbj}8 “ OPpVn,dq “ OP

´n

d
` log d

¯
.

Similarly, by Lemma 2.1,

}p pU ´ U qJp pU ´ U q}max § max
jPrds

nÿ

t“1

|putj ´ utj|2 “ OP

´n

d
` log d

¯
.

D Proof of Results in Section 2

D.1 Proof of Theorem 2.2
Proof of Theorem 2.2. Recall that pF J pU “ O and p� “ n´1 pF JY . Hence

p� ´ H�‹ “ 1

n
pF J

E ` 1

n
pF JpF ´ pFHq'‹ ` p pBJ ´ HBJq�‹.

By Proposition 2.1, we have

} pF JpF ´ pFHq'‹}2 § } pF }F}F ´ pFH}F}'‹}2 “ OP

"ˆ?
n ` n?

d

˙
}'‹}2

*
,
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}p pB ´ BHJqJ�‹}2 § max
jPS‹

}pbj ´ Hbj}2}�‹}1 “ OP

˜
}�‹}1

c
log |S‹|

n
` 1

d

¸
.

Combined with the fact that } pF J
E}2 “ OPp?

nq, we obtain the bound for }p� ´ H�‹}2 by the tri-
angle inequality. We now bound } p�� ´ �‹}2. Applying Lemma C.1 with Lemmas C.5 and C.2, we
obtain (2.6).

D.2 Proof of Proposition 2.3
Proof. We introduce several key ingredients for proving Proposition 2.3 in the following several Lem-
mas. First, the following Lemma D.1 provides upper bounds for several key terms. Here we let
p⌫t “ ppuJ

t
, pfJ

t
qJ P R

d`K .

Lemma D.1. Under Assumptions 2.1–2.4, we have

max
tPrns

}p⌫t}8 “ OP

´a
log d

¯
and max

tPrns
|eJ

t
pIn ´ pP qF'‹| “ OP

ˆ
log n

n `
?
d

}'‹}2
˙
.

Furthermore, under the assumption, for any positive constant ⌧ † 8, we have

max
jPrds

nÿ

t“1

It|"t| ° ⌧!u|p⌫tj|2 “ OPplog dq.

Second, we provide an upper bound for the first order derivative of our loss function ⇢!p¨q evaluated
at the global optimizer. In the following, we let  !p¨q be the first-order derivative function of ⇢!p¨q and
let S˛ “ S‹ Y td` 1, . . . , d`Ku. Recall that p�h “ p p�J

h
, p�J

h
qJ P R

d`K and r� “ p�‹J, r�JqJ P R
d`K ,

where r� “ pBJ�‹ ` n´1 pF JF'‹. Hence we have Y ´ pF r� ´ pU�‹ “ pIn ´ pP qF'‹ ` E .

Lemma D.2. Assume that n “ Opd log dq and E|"|1`# † 8 for some constant # ° 0. Then, under
Assumptions 2.1–2.4, we have

›››››

nÿ

t“1

 !pyt ´ p⌫J
t

r�qp⌫t

›››››
8

“ OP

´
Vn,d}'‹}2 `

a
n!1´p#^1q log d ` ! log d

¯
.

Third, we prove the local strong convexity of our loss function ⇢!p¨q in the following Lemma D.3.

Lemma D.3. Let p�n “ n´1
∞

n

t“1 It|"t| § !{3up⌫tp⌫J
t

. Assume that |S˛| log d “ opnq and E|"|1`# † 8
for some constant # ° 0. Then, under Assumptions 2.1–2.4, there exists a constant %0 ° 0 such that

min
0‰vPCpS˛,3q

vJp�nv

}v}22
• %0. (D.1)
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For some constant 0 ° 0, we define

E� “
"
max
tPrns

|eJ
t

pIn ´ pP qF'‹| § !

3

*
and E⌫ “

"
max
tPrns

}p⌫t}8 § !%0
36p1 ` 0q�|S˛| “: M⌫

*
.

Next, we prove that PpE�q Ñ 1 and PpE⌫q Ñ 1. By Lemma D.1 and (2.8), we have

max
tPrns

|eJ
t

pIn ´ pP qF'‹| “ OP

ˆ
log n

n `
?
d

}'‹}2
˙

“ oPp!q.

Therefore PpE�q Ñ 1. As maxtPrns }p⌫t}8 “ OPp?
log dq and |S˛|plog dq3{2 “ opnq, then

maxtPrns }p⌫t}8
M⌫

“ OP

ˆ
�|S˛|?log d

!

˙
“ oPp1q.

Hence PpE⌫q Ñ 1.
By the choice of !, we have

2

n

›››››

nÿ

t“1

 !

´
yt ´ p⌫J

t
r�

¯
p⌫t

›››››
8

“ OP

´
Vn,d}'‹}2 `

a
n!1´p#^1q log d ` ! log d

¯
“ OPp! log dq.

Combining all conclusions given above, we conclude the proof of Proposition 2.3 by the following
Lemma D.4.

Lemma D.4. Assume that E|"|1`# † 8 for some constant # ° 0, and maxtPrns }p⌫t}8 § M⌫ for some
M⌫ • 0. Let

� • 2

n

›››››

nÿ

t“1

 !

´
yt ´ p⌫J

t
r�

¯
p⌫t

›››››
8

and ! • 3max
tPrns

|eJ
t

pIn ´ pP qF'‹|. (D.2)

Furthermore, we assume that there exists a constant %0 ° 36�M⌫ |S˛|{! such that

min
0‰vPCpS˛,3q

vJp�nv

}v}22
• %0. (D.3)

Then we have } p�h ´ r�}1 § 12�|S˛|{%0.
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D.3 Proof of Lemma D.1
Proof. By Lemma 2.1,

max
tPrns

} pft}8 § max
tPrns

}Hft}8 ` max
tPrns

} pft ´ Hft}8 “ OP

ˆa
log n ` log n

n `
?
d

˙
“ OP

´a
log n

¯
.

Decompose ut ´ put “ p pB ´ BH´1qp pft ´ Hftq ` p pB ´ BH´1qHft ` BH´1p pft ´ Hftq. Then,
by Lemma 2.1,

max
tPrns

}ut ´ put}8 § K} pB ´ BH´1}max} pF ´ FHJ}max

`
?
K} pB ´ BH´1}max}H}2 max

tPrns
}ft}2

` K}H´1}2}B}max} pF ´ FHJ}max

“ OP

´a
plog dqplog nq{n

¯
“ OP

´a
log d

¯
.

Consequently, by Assumption 2.1, we have

max
tPrns

}put}8 § max
tPrns

}ut}8 ` max
tPrns

}put ´ ut}8 “ OP

´a
log d

¯
.

We now bound maxtPrns |eJ
t

pIn ´ pP qF'‹|. Observe that pIn ´ pP q pF “ O. Hence

max
tPrns

|eJ
t

pIn ´ pP qF'‹| § max
tPrns

|eJ
t

pIn ´ pP qpFHJ ´ pF qH´J'‹|

§ max
tPrns

|p pft ´ HftqJH´J'‹| ` max
tPrns

1

n
| pfJ

t
pF JpFHJ ´ pF qH´J'‹|

§ max
tPrns

} pft ´ Hft}2}H´J}2}'‹}2 ` max
tPrns

1

n
} pft}2} pF }F}FHJ ´ pF }F}H´J}2}'‹}2

“ OP

˜
log n

n `
?
d

}'‹}2 ` 1

n

a
log n

?
n

c
1

n
` n

d
}'‹}2

¸
“ OP

ˆ
log n

n `
?
d

}'‹}2
˙
.

Recall that n´1 pF J pF “ IK . Hence

E

˜
max
kPrKs

nÿ

t“1

It|"t| ° ⌧!u| pftk|2
¸

§ E

˜
nÿ

t“1

It|"t| ° ⌧!u} pft}22
¸

§ nKE|"|1`p#^1q

p⌧!q1`p#^1q .

Then it suffices to bound maxjPrds
∞

n

t“1

∞
n

t“1 It|"t| ° ⌧!uu2
tj

as maxjPrds
∞

n

t“1pputj´utjq2 “ OPplog d`
n{dq. By Assumption 2.1, we have E exppu2

tj
{c20q § 2 uniformly for j P rds. By Jensen’s inequality

and

E

˜
max
jPrds

1

c20

nÿ

t“1

It|"t| ° ⌧!uu2
tj

¸
§ log

#
dÿ

j“1

E exp

˜
1

c20

nÿ

t“1

It|"t| ° ⌧!uu2
tj

¸+
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§ log

«
dmax

jPrds

"
E exp

ˆ
u2
tj

c20

˙
Pp|"| ° ⌧!q ` Pp|"| § ⌧!q

*n
�

§ log d ` nE|"|1`p#^1q

p⌧!q1`p#^1q .

D.4 Proof of Lemma D.2
Proof. Recall that Y ´ pU�‹ ´ pF r� “ E ` pIn ´ pP qF'‹. Hence, by Taylor’s formula,

nÿ

t“1

 !pyt ´ p⌫J
t

r�qp⌫t “
nÿ

t“1

 !p"tqpp⌫t ´ r⌫tq `
nÿ

t“1

 !p"tqr⌫t

`
nÿ

t“1

eJ
t

pIn ´ pP qF'‹ p⌫t

ª 1

0

I

!
|"t ` seJ

t
pIn ´ pP qF'‹| § !

)
ds

“: �1 ` �2 ` �3,

where r⌫t “ puJ
t
,fJ

t
HJqJ P R

d`K . Note that E| !p"q|2 § E|"|1`p#^1q!1´p#^1q. Hence, by Lemma 2.1
and the Cauchy-Schwarz inequality,

}�1}28 §
nÿ

t“1

t !p"tqu2 max
1§j§d`K

nÿ

t“1

pp⌫tj ´ ⌫tjq2 “ OP

!
n!1´p#^1q

´
log d ` n

d

¯)
.

By Lemma C.6 in Sun et al. [2020] and Lemma 2.1, we have

}�2}8 “ OP

´a
n!1´p#^1q log d ` ! log d

¯
.

Decompose

�3 “
nÿ

t“1

eJ
t

pIn ´ pP qF'‹ p⌫t ´
nÿ

t“1

eJ
t

pIn ´ pP qF'‹ p⌫t

ª 1

0

I

!
|"t ` seJ

t
pIn ´ pP qF'‹| ° !

)
ds

“: �31 ` �32.

Observe that
∞

n

t“1 e
J
t

pIn ´ pP qF'‹ pft “ pF JpIn ´ pP qF'‹ “ 0. Hence, by Lemma C.3,

}�31}8 “ } pUJpIn ´ pP qF'‹}8 “ OPpVn,d}'‹}2q.

Since
nÿ

t“1

|eJ
t

pIn ´ pP qF'‹|2 § }FHJ ´ pF }2
F
}H´J}22}'‹}22 “ OP

"ˆ
1

n
` n

d

˙
}'‹}22

*
.
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Combined with the fact that Pp|"t| ° 2!{3q À plog dq{n, we obtain

�˛
32 :“

nÿ

t“1

I

"
|"t| ° 2!

3

*
|eJ

t
pIn ´ pP qF'‹|2 “ oP

ˆ
V

2
n,d

log d

˙
.

Consequently, by the Cauchy-Schwarz inequality and Lemma D.1,

}�32}8 §
˜
�˛

32 max
kPrKs

nÿ

t“1

I

"
|"t| ° 2!

3

*
p⌫2
tj

¸1{2

“ oPpVn,d}'‹}2q.

D.5 Proof of Lemma D.3
Proof. For simplicity of notation, write

r�n “ 1

n

nÿ

t“1

I

!
|"t| § !

3

)
r⌫tr⌫J

t
and �n “ 1

n

nÿ

t“1

I

!
|"t| § !

3

)
⌫t⌫

J
t
,

where ⌫t “ puJ
t
,fJ

t
qJ P R

d`K . For any v P CpS˛, 3q, we write v “ pvJ
rds,v

J
r´dsqJ P R

d`K , where
vrds P R

d and vr´ds P R
K . We first bound sup0‰vPCpS˛,3q |vJpp�n ´ r�nqv|. Decompose

vJpp�n ´ r�nqv “ 1

n

nÿ

t“1

I

!
|"t| § !

3

)  
ppuJ

t
vrdsq2 ´ puJ

t
vrdsq2

(

` 2

n

nÿ

t“1

I

!
|"t| § !

3

) ´
vJ

rds put
pfJ
t
vr´ds ´ vJ

rdsutf
J
t
HJvr´ds

¯

` 1

n

nÿ

t“1

I

!
|"t| § !

3

) !
p pfJ

t
vr´dsq2 ´ pfJ

t
HJvr´dsq2

)

“:
1

n
t�1pvq ` 2�2pvq ` �3pvqu.

Let D “ diagtD11, . . . , Dnnu P R
nˆn denote an identity matrix, where Dtt “ It|"t| § !{3u for each

t P rns. Then, for any v P CpS˛, 3q,

�1pvq “ vJ
rds

´
pUJD pU ´ UJDU

¯
vrds

“ vJ
rds

´
pUJ pU ´ UJU

¯
vrds ` vJ

rds
´

pU ´ U
¯J

D̄Uvrds ` vJ
rds pUJD̄

´
pU ´ U

¯
vrds

“: �11pvq ` �12pvq ` �13pvq.
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where D̄ “ diagt1 ´ D11, . . . , 1 ´ Dnnu P R
nˆn. By Lemma C.6, we have

sup
0‰vPCpS˛,3q

|�11pvq|
}v}22

§ sup
0‰vPCpS˛,3q

} pUJ pU ´ UJU}max}vrds}21
}v}22

§ 32|S˛|} pUJ pU ´ UJU}max “ OPp|S˛| log dq.

By the Cauchy-Schwarz inequality and Lemma D.1,

sup
0‰vPCpS˛,3q

|�12pvq|
}v}22

§ 32|S˛| max
1§j,`§d

ˇ̌
ˇ̌
ˇ

nÿ

t“1

I

!
|"t| ° !

3

)
putjpput` ´ ut`q

ˇ̌
ˇ̌
ˇ

§ 32|S˛| max
1§j,`§d

«
nÿ

t“1

I

!
|"t| ° !

3

)
u2
tj

nÿ

s“1

I

!
|"t| ° !

3

)
pput` ´ ut`q2

�1{2

“ OP

"
|S˛|plog dq1{2

´
log d ` n

d

¯1{2*
“ OPp|S˛| log dq.

Similarly, we have sup0‰vPCpS˛,3qt|�13pvq|{}v}22u “ OPp|S˛| log dq. We now upper bound |�2pvq|.
Decompose

�2pvq “ vJ
rds

´
pUJD pF ´ UJDFHJ

¯
vr´ds

“ vJ
rdsU

JFHJvr´ds ` vJ
rds

´
pU ´ U

¯
D̄FHJvr´ds ` vJ

rds pUJD̄
´

pF ´ FHJ
¯
vr´ds

“: �21pvq ` �22pvq ` �23pvq.

By Assumption 2.1 and the Cauchy-Schwarz inequality, it follows that for any 0 ‰ v P CpS˛, 3q,

|�21pvq|
}v}22

§ }vrds}1}UJFHJvr´ds}8
}v}22

§ max
jPrds

›››››

nÿ

t“1

utjft

›››››
2

}HJ}2
p4

a
|S‹|}vS‹}2 ` 3

?
K}vr´ds}2q}vr´ds}2

}v}22

§ 7max
jPrds

›››››

nÿ

t“1

utjft

›››››
2

}HJ}2
a

|S˛| “ OP

´a
n|S˛| log d

¯
.

Similarly, we have

sup
0‰vPCpS˛,3q

|�22pvq|
}v}22

§ 7max
jPrds

›››››

nÿ

t“1

I

!
|"t| ° !

3

)
pputj ´ utjqft

›››››
2

}HJ}2
a

|S˛|

“ OP

"c
|S˛|plog dq

´
log d ` n

d

¯*
“ oP

´a
n|S˛| log d

¯
,
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and sup0‰vPCpS˛,3qt|�23pvq|{}v}22u “ oPp
a
n|S˛| log dq. Therefore sup0‰vPCpS˛,3qt|�2pvq|{}v}22u “

OPp
a
n|S˛| log dq. Decompose

�3pvq “ vJ
r´ds

´
pF JD pF ´ HF JDFHJ

¯
vr´ds

“ vJ
r´ds

`
nIK ´ HF JFHJ˘

vr´ds ` vJ
r´ds

´
pF ´ FHJ

¯J
D̄FHJvr´ds

` vJ
r´ds pF JD̄

´
pF ´ FHJ

¯
vr´ds

“: �31pvq ` �32pvq ` �33pvq.
By Lemma 2.1, we have

sup
0‰vPCpS˛,3q

|�31pvq|
}v}22

§ sup
0‰vPCpS˛,3q

}nIK ´ HF JFHJ}2}vr´ds}22
}v}22

§ n}IK ´ HHJ}2 ` }H}2}nIK ´ F JF }2}HJ}2
“ OP

´?
n ` n{

?
d

¯
,

sup
0‰vPCpS˛,3q

|�32pvq|
}v}22

§
›››››

nÿ

t“1

I

!
|"t| ° !

3

)
p pft ´ HftqfJ

t

›››››
2

}HJ}2

§
˜

nÿ

t“1

I

!
|"t| ° !

3

)
} pft ´ Hft}22

nÿ

t“1

I

!
|"t| ° !

3

)
}ft}22

¸1{2

}HJ}2

“ oP
´?

n ` n{
?
d

¯
,

and sup0‰vPCpS˛,3qt|�33pvq|{}v}22u “ oPp?
n ` n{

?
dq. Putting all these pieces together, we obtain

sup
0‰vPCpS˛,3q

|vJpp�n ´ r�nqv|
}v}22

“ OP

˜
|S˛| log d

n
`

c
|S˛| log d

n
` 1?

n `
?
d

¸
“ oPp1q.

For any v P CpS˛, 3q, write rv “ pvJ
rds,v

J
r´dsHqJ P R

d`K . Define EH “ t�minpHJHq • 1{4u. It
follows form Lemma 2.1 that PpEHq Ñ 1. Under EH , we have

}rvSc˛ }1 “ }vSc˛ }1 § 3}vS‹}1 ` 3}vr´ds}1 § 3}vS‹}1 ` 6
?
K}HJvr´ds}1 § 6

?
K}rvS˛}1.

Combined with the fact that

}rv}22 “ }vrds}22 ` }HJvr´ds}22 • }vrds}22 ` 1

4
}vr´ds}22 • 1

4
}v}22,

we obtain

inf
0‰vPCpS˛,3q

vJr�nv

}v}22
• inf

0‰rvPCpS˛,6
?
Kq

rvJ�nrv
}v}22

• inf
0‰rvPCpS˛,6

?
Kq

rvJ�nrv
4}rv}22

.
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Observe that It|"t| § !{3u⌫t P R
d`K , t “ 1, . . . , n, are i.i.d. sub-Gaussian random vectors. Hence,

similar to Lemma C.2, Pp|"| § !{3q • 1{2 and �mintCovp⌫tqu • p�minp⌃q ^ 1q, we obtain

P

"
inf

0‰rvPCpS˛,6
?
Kq

rvJ�nrv
}rv}22

• 1

8
p�minp⌃q ^ 1q

*
Ñ 1.

Putting all these pieces together, we obtain (D.1).

D.6 Proof of Lemma D.4
Proof. By the definition of p p�h, p�hq, we have

1

n

nÿ

t“1

⇢!
´
yt ´ p⌫J

t
p�h

¯
` �} p�h}1 § 1

n

nÿ

t“1

⇢!
´
yt ´ p⌫J

t
r�

¯
` �}�‹}1. (D.4)

Let �� “ p�h ´ r�. Since ⇢!p¨q is convex, it follows from (D.2) that

�}�‹}1 ´ �} p�h}1 • 1

n

nÿ

t“1

 !

´
yt ´ p⌫J

t
r�

¯
p⌫J
t
�� • ´�

2
}��}1.

Observe that }��,Sc˛ }1 “ } p�h,Sc‹ }1 and }�‹}1 “ } r�S‹}1. Hence

0 § �} r�S‹}1 ´ �} p�h,S‹}1 ´ �}��,Sc˛ }1 ` �

2
}��,S˛}1 ` �

2
}��,Sc˛ }1

§ �}��,S˛}1 ´ �

2
}��,Sc˛ }1 ` �

2
}��,S˛}1

“ 3�

2
}��,S˛}1 ´ �

2
}��,Sc˛ }1.

Therefore �� P CpS˛, 3q and it follows from (D.3) that

�J
�

p�n�� • %0}��}22. (D.5)

Since maxtPrns }p⌫t}8 § M⌫ and maxtPrns |eJ
t

pIn ´ pP qF'‹| § !{3, for each t P rns, we have

I

!
|"t ` eJ

t
pIn ´ pP qF'‹ ` sp⌫J

t
��| § !

)

• I

"
|"t| ` max

tPrns
|eJ

t
pIn ´ pP qF'‹| ` |s|max

tPrns
}p⌫t}8}��}1 § !

*

• I

!
|"t| § !

3

)
I

"
|s| § !

3M⌫}��}1

*
.
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Combined with (D.4) and (D.5), we obtain

3�

2
}��,S˛}1 • 1

n

nÿ

t“1

pp⌫J
t
��q2

ª 1

0

p1 ´ sqI
!

|"t ` eJ
t

pIn ´ pP qF'‹ ` sp⌫J
t
��| § !

)
ds

• 1

n

nÿ

t“1

I

!
|"t| § !

3

)
pp⌫J

t
��q2

ª 1^ !
3M⌫}��}1

0

p1 ´ sqds

• 1

2

ˆ
1 ^ !

3M⌫}��}1

˙
1

n

nÿ

t“1

I

!
|"t| § !

3

)
pp⌫J

t
��q2

• %0
2

ˆ
1 ^ !

3M⌫}��}1

˙
}��}22

• %0
2

ˆ
1 ^ !

12M⌫}��,S˛}1

˙ }��,S˛}21
|S˛| .

If 12M⌫}��,S˛}1 § !, then }��,S˛}1 § 3�|S˛|{%0. Consequently, since !%0 ° 36�M⌫ |S˛|, it follows
that

}��,S˛}1 § min

"
!

12M⌫

,
3�|S˛|
%0

*
“ 3�|S˛|

%0
.

Otherwise, if 12M⌫}��,S˛}1 ° !, then 36�M⌫ |S˛| • !%0, which contradicts to the assumption that
%0 ° 36�M⌫ |S˛|{!.

E Proof of Results in Section 3

E.1 Example with node-wise regression
Example E.1. In this example, we use node-wise regression in van de Geer et al. [2014] to estimate
p⇥. More specifically, for each j P rds, we first get

p!j “ argmin
!PRd´1

#
1

2n

nÿ

t“1

|putj ´ !J put,´j|2 ` �j}!}1
+

with components of p!j “ tp!j`; ` “ 1, 2, . . . , d, ` ‰ ju, where �j ° 0 is a tuning parameter. We next
obtain

p⌫2
j

“ 1

n

nÿ

t“1

|putj ´ p!J
j

put,´j|2 ` �j}p!j}1.

Then the estimator for ⇥ is given by p⇥ “ pp⇥j`q P R
dˆd, where p⇥jj “ 1{p⌫2

j
and p⇥j` “ ´p!j`{p⌫2

j
for

j ‰ `.
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We shall first impose a sparsity assumption on the columns of the precision matrix ⇥. To be more
specific, for each k P rKs, we let Sj “ t` ‰ j : ⇥j` ‰ 0u denote the support of the j-th column of ⇥.
We then define the population parameter

!‹
j

“ argmin
!PRd´1

E|uj ´ !Ju´j|2 and ⌫2
j

“ E|uj ´ !‹J
j
u´j|2.

In addition, for each j P rds, let r!‹
j

denote the d-dimensional vector with components r!‹
jj

“ 1 and
r!‹
j`

“ ´!‹
j`

for ` ‰ j.
The following proposition provides theoretical guarantees for the estimator p⇥ constructed above.

Proposition E.1. Let Assumptions 2.1–2.4 hold. Assume that

max
jPrds

|Sj|
ˆ
log d

n
` 1

d

˙
Ñ 0 and max

jPrds
Vn,d

n

b
|Sj|}BJ r!‹

j
}2 Ñ 0. (E.1)

Then, with suitably chosen �j — n´1} pUJ
´j

pU r!‹
j
}8 uniformly for j P rds, we have

}Id ´ p⇥r⌃}max “ OP

˜c
log d

n
` 1?

d
` max

jPrds
Vn,d

n
}BJ r!‹

j
}2

¸
,

} p⇥ ´ ⇥}max “ OP

˜
max
jPrds

d

|Sj|
ˆ
log d

n
` 1

d

˙
` max

jPrds
Vn,d

n

b
|Sj|}BJ r!‹

j
}2

¸
,

} p⇥ ´ ⇥}8 “ OP

˜
max
jPrds

|Sj|
c

log d

n
` 1

d
` max

jPrds
Vn,d

n
|Sj|}BJ r!‹

j
}2

¸
. (E.2)

E.2 Proof of Proposition E.1
Lemma E.2. Under Assumptions 2.1–2.4, uniformly for j P rds, we have

} pUJ
´j

pU r!‹
j
}8 “ OP

ˆa
n log d ` n?

d
` Vn,d}BJ r!‹

j
}2

˙
.

Proof of Lemma E.2. By the triangle inequality, for each j P rds,

} pUJ
´j

pU r!‹
j
}8 § }UJ

´j
�j}8 ` } pUJ

´j
p pU ´ U qr!‹

j
}8 ` }p pU ´ U qJ�j}8

where �j “ U r!‹
j
. By the definition of r!‹

j
and Assumption 2.4, it follows that

}r!‹
j
}22 § r!‹J

j
⌃r!‹

j

�minp⌃q “ 1

⇥jj�minp⌃q § �maxp⌃q
�minp⌃q § 1

2
.
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Hence tuJ
t

r!‹
j
un
t“1 are i.i.d. zero-mean sub-Gaussian random variables with }uJ

t
r!‹
j
} 2 § c0{ and for

any ` ‰ j, tut`uJ
t

r!‹
j
un
t“1 are i.i.d. zero-mean sub-exponential random variables with max`‰j }ut`uJ

t
r!‹
j
} 1 §

c20{. Consequently, by Lemmas 2.1 and C.3, we obtain }UJ
´j
�j}28 “ OPpn log dq, } pUJ

´j
p pU ´

U qr!‹
j
}8 § } pUJFBJ r!‹

j
}8 “ OPpVn,d}BJ r!‹

j
}2q and

}p pU ´ U qJ�j}28 § }�j}22 max
jPrds

nÿ

t“1

|putj ´ utj|2 “ OP

ˆ
n log d ` n2

d

˙
.

Proof of Proposition E.1. Following the proof of Lemma C.2, under (E.1) and Assumptions 2.1–2.4,
there exists a positive constant r such that

P

˜
min
jPrds

inf
hPRd´1:}hSc

j
}1§3}hSj

}1

hJ pUJ
´j

pU´jh

n}h}22
• r

¸
Ñ 1, as n Ñ 8.

Then, by Lemma C.1, we have }p!j ´ !‹
j
}1 “ OPp�j|Sj|q and }p!j ´ !‹

j
}2 “ OPp�j

a
|Sj|q uniformly

for all j P rds. Similar to the proof of Theorem 2.4 in van de Geer et al. [2014], we obtain |p⌫2
j

´⌫2
j
| PÑ 0

uniformly for j P rds. Putting all these pieces together, we obtain (E.2).

E.3 Proof of Theorem 3.1
Proof of Theorem 3.1. We first derive a Gaussian approximation result for n´1{2⇥UJ

E . To this end,
we shall apply Theorem 2.1 in Chernozhukov et al. [2017] and verify the conditions therein. By
Assumption 2.4, we have �maxp⌃q § }⌃}1 § 1{. Hence minjPrds ⇥jj • �minp⇥q •  ° 0.
Combined with Assumption 2.1, for each j P rds, t⇥J

j
ut"tunt“1 are i.i.d. zero-mean sub-exponential

random variables with Covp⇥J
j
ut"tq “ �2⇥jj • �2 and

max
jPrds

}⇥J
j
ut"t} 1 § c1 max

jPrds
}⇥J

j
ut} 2 § c0c1


.

Then, by Theorem 2.2 given in Chernozhukov et al. [2020],

⇢6 :“ sup
x°0

ˇ̌
P

`
n´1{2}⇥UJ

E}8 § x
˘

´ Pp}Z}8 § xq
ˇ̌

Ñ 0.

Next, we will quantify the difference between our test statistics and n´1⇥UJ
E . We first introduce

Lemma E.3 below.

Lemma E.3. Assume that Vn,d}'‹}2 À ?
n log d. Then, under Assumption 3.1 and conditions of

Theorem 2.2, we have

}np r�� ´ �‹q ´ p⇥ pUJ
E}8 “ OP

´
⇤max|S‹|

a
n log d ` Vn,d}⇥}8}'‹}2

¯
,

} p⇥ pUJ
E ´ ⇥UJ

E}8 “ OP

ˆ
}⇥}8

c
log d ` n

d
` �8

a
n log d

˙
.
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By Lemma E.3, we have
?
n} r�� ´ �‹ ´ n´1⇥UJ

E}8 “ OPp�n,dq, where

�n,d “ ⇤max|S‹|
a
log d ` Vn,d}⇥}8}'‹}2?

n
` }⇥}8

c
log d

n
` 1

d
` �8

a
log d.

It follows from (3.5) that �n,d

?
log d Ñ 0. Taking r�n,d “

a
�n,d{plog dq1{4, then we have

r�n,d

a
log d Ñ 0 and P

´?
n} r�� ´ �‹ ´ n´1⇥UJ

E}8 ° r�n,d

¯
Ñ 0.

Consequently, by Lemma in Chernozhukov et al. [2017] and Lemma E.3, we obtain

sup
x°0

ˇ̌
ˇP

´?
n} r�� ´ �}8 § x

¯
´ Ppn´1{2}⇥UJ

E}8 § xq
ˇ̌
ˇ

§ P

´?
n} r�� ´ �‹ ´ n´1⇥UJ

E}8 ° r�n,d

¯
` 2⇢6 ` sup

x°0
Ppx † }Z}8 § x ` r�n,dq

§ P

´?
n} r�� ´ �‹ ´ n´1⇥UJ

E}8 ° r�n,d

¯
` 2⇢6 ` C r�n,d

a
log d Ñ 0.

E.4 Proof of Theorem 3.2
Proof of Theorem 3.2. By Theorem 3.1, it suffices to prove that

⇢‹ :“ sup
x°0

ˇ̌
ˇPp}Z}8 § xq ´ P

‹
´

pL § x
¯ˇ̌

ˇ PÑ 0.

Note that n´1{2 p⇥ pUJ⇠ is a zero-mean Gaussian random vector with covariance matrix

Cov‹
ˆ

1?
n

p⇥ pUJ⇠

˙
“ p�2 p⇥r⌃p⇥J.

By (3.7) and Assumptions 3.1–3.2, we have

}p�2 p⇥r⌃p⇥J ´ �2⇥}max § p�2} p⇥r⌃ ´ Id}max} p⇥}8 ` p�2} p⇥ ´ ⇥}max ` |p�2 ´ �2|}⇥}max

“ OPp⇤max}⇥}8 ` �max ` ��q “ OP

ˆ
1

log d

˙
.

Then it follows from Lemma 2.1 in Chernozhukov et al. [2020] that ⇢‹ PÑ 0.
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E.5 Proof of Lemma E.3
Proof of Lemma E.3. By (3.3) and the triangle inequality,

}np r�� ´ �‹q ´ p⇥ pUJ
E}8 § } p⇥ pUJF'‹}8 ` n}pId ´ p⇥r⌃qp p�� ´ �‹q}8.

Since Vn,d}'‹}2 À ?
n log d, it follows from Theorem 2.2 that } p�� ´ �‹}1 “ OPp|S‹|

a
plog dq{nq.

Combining this with Assumption 3.1, we obtain

}pI ´ p⇥r⌃qp p�� ´ �‹q}8 § }Id ´ p⇥r⌃}max} p�� ´ �‹}1 “ OP

˜
⇤max|S‹|

c
log d

n

¸
.

By Assumption 3.1, we have } p⇥}8 § } p⇥ ´ ⇥}8 ` }⇥}8 “ OPp}⇥}8q. Then, it follows from
Lemma C.3 that

} p⇥ pUJF'‹}8 § } p⇥}8} pUJF'‹}8 “ OPpVn,d}⇥}8}'‹}2q.

By Lemma C.4 and Assumption 2.1, we have }UJ
E}28 “ OPpn log dq and

} p⇥ pUJ
E ´ ⇥UJ

E}8 § } p⇥}8}p pU ´ U qJ
E}8 ` } p⇥ ´ ⇥}8}UJ

E}8

“ OP

ˆ
}⇥}8

c
log d ` n

d
` �8

a
n log d

˙
.

F Proof of Results in Section 4

F.1 Proof of Proposition 4.1
Proof. For each ` P rds, let �‹

`,M
P R denote the corresponding population version of the marginal

least square estimator p�`,M , that is,

�‹
`,M

“ argmin
�PR

EpY ´ u`�q2 “ ⌃J
`
�‹

⌃``

.

For each ` P rds, we have

p�`,M ´ �‹
`,M

“ 1
pUJ
`

pU`

!
pUJ
`

p rY ´ pU�‹q `
´

pUJ
`

pU ´ meJ
`
⌃

¯
�‹ `

´
pUJ
`

pU` ´ m⌃``

¯
�‹
`,M

)

“: �`,1 ` �`,2 ` �`,3.

22



Let U` “ pu1`, . . . , um`qJ P R
m denote the `-th column of the design matrix U . By Assumption 2.1,

u1`, . . . , um` are i.i.d. sub-Gaussian random variables with }u1`} 2 § c0. Hence, for any x ° 0, by
Bernstein’s inequality,

P

ˆ
max
`Prds

|UJ
`
U` ´ m⌃``| ° x

˙
§ 2d exp

"
´cmin

ˆ
x2

mc40
,
x

c20

˙*
.

Here c ° 0 is an absolute constant. Combined with Lemma 2.1, we obtain that

max
`Prds

| pUJ
`

pU` ´ m⌃``| § max
`Prds

| pUJ
`

pU` ´ UJ
`
U`| ` max

`Prds
|UJ

`
U` ´ m⌃``| “ OP

´a
m log d

¯
.

Since log d “ opmq, we have

PpEUq :“ P

ˆ
min
`Prds

pUJ
`

pU` • m

2
min
`Prds

⌃``

˙
Ñ 1.

Under EU , it follows from Lemma C.5 that

max
`Prds

|�`,1| § } pUJp rY ´ pU�‹q}8

min`Prds pUJ
`

pU`

§ 2} pUJp rY ´ pU�‹q}8
mmin`Prds ⌃``

“ OP

˜
Vm,d

m
}'‹}2 `

c
log d

m

¸
.

Similarly, by Lemma C.6, we have

max
`Prds

|�`,2| § 2} pUJ pU ´ UJU}max}�‹}1 ` 2}UJU�‹ ´ m⌃�‹}8
mmin`Prds ⌃``

“ OP

˜
}�‹}1

log d

m
` }�‹}2

c
log d

m

¸
,

and

max
`Prds

|�`,3| § max`Prds | pUJ
`

pU` ´ m⌃``||�‹
`,M

|
mmin`Prds ⌃``

“ OP

˜
}�‹}8

c
log d

m

¸
.

Putting all these pieces together, it follows from (4.3) that max`Prds |p�`,M ´�‹
`,M

| “ op�q, which implies
that

P pE�q :“ P

ˆ
max
`PS‹

|p�`,M ´ �‹
`,M

| § c̄�

˙
Ñ 1, as m Ñ 8.

Under E�, by (4.3),

min
`PS‹

|p�`,M | • min
`PS‹

|�‹
`,M

| ´ max
`PS‹

|p�`,M ´ �‹
`,M

| • p1 ` c̄q� ´ c̄� “ �.
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Consequently, we obtain

P

´
S‹ Ä pS�

¯
• P

ˆ
min
`PS‹

|p�`,M | ° �

˙
• PpE�q Ñ 1.

Under E�, elementary calculations show that

| pS�| “
dÿ

`“1

I

!
|p�`,M | ° �

)
§

dÿ

`“1

I

"
max
`Prds

|p�`,M ´ �‹
`,M

| ` |�‹
`,M

| ° �

*

§
dÿ

`“1

I
 

|�‹
`,M

| ° p1 ´ c̄q�
(

§
dÿ

`“1

|�‹
`,M

|2
p1 ´ c̄q2�2

§ }⌃�‹}22
�2
minp⌃qp1 ´ c̄q2�2

“ c2˛m
2}⌃�‹}22

�2
minp⌃qp1 ´ c̄q2 .

F.2 Proof of Theorem 4.2
Proof. Before proceeding to the proof of the theorem, we first introduce the following Lemma.

Lemma F.1. Let rS be an estimator for S‹ such that Pp| rS| § snq Ñ 1 and PpS‹ Ä rSq Ñ 1. Moreover,
we assume that rS is independent of pX,Y q and

sn

ˆ
log d

n
` 1

d

˙
Ñ 0. (F.1)

Then, under Assumptions 2.1–2.5, we have that as n Ñ 8,

r⇢K “ sup
x°0

ˇ̌
ˇ̌P

ˆ
E

JP rSE

�2
§ x

˙
´ Pp�2

K
§ xq

ˇ̌
ˇ̌ Ñ 0, where P rS “ P pF ` P pU rS

´ PX rS
.

By Lemma F.1, we have

⇢K “ sup
x°0

ˇ̌
ˇ̌
ˇP

˜
Qp2q

n

�2
§ x

¸
´ Pp�2

K
§ xq

ˇ̌
ˇ̌
ˇ Ñ 0 (F.2)

Hence, it suffices to prove that

⇢� “ sup
x°0

ˇ̌
ˇ̌
ˇP

˜
Qp2q

n

p�2
§ x

¸
´ P

˜
Qp2q

n

�2
§ x

¸ˇ̌
ˇ̌
ˇ Ñ 0.

After conducting some elementary calculations, we obtain

⇢� § P

ˆ
Qp2q

n

�2

ˇ̌
ˇ̌�

2

p�2
´ 1

ˇ̌
ˇ̌ °

a
��

˙
` sup

x°0
P

´
x † �2

K
§ x `

a
��

¯
` 2⇢K “: �1 ` �2 ` 2⇢K .

As �� Ñ 0, we have �2 Ñ 0. Moreover, by Assumption 3.3, we have |�2{p�2 ´ 1| § |�{p� ´ 1| “
OPp��q. Combined with (F.2), we obtain �1 Ñ 0. Thus, we claim our conclusion of Theorem 4.2.

24



F.3 Proof of Lemma F.1
Proof. As rS is independent of pX,Y q, it follows that

r⇢K § Pp| rS| ° snq ` sup
SÄrds:|S|§sn

sup
x°0

ˇ̌
ˇ̌P

ˆ
E

JPSE

�2
§ x

˙
´ Pp�2

K
§ xq

ˇ̌
ˇ̌ .

Since Pp| rS| ° snq Ñ 0 as n Ñ 8, it suffices to prove that

⇢˛ :“ sup
SÄrds:|S|§sn

sup
x°0

ˇ̌
ˇ̌P

ˆ
E

JPSE

�2
§ x

˙
´ Pp�2

K
§ xq

ˇ̌
ˇ̌ Ñ 0.

For any set S Ä rds such that |S| § sn and S‹ Ä S , we define

AS “
"
�minp pUJ

S
pUSq • n�0

2

*
.

Then by Theorem 1.1 given in Bentkus [2005], it follows that

sup
x°0

ˇ̌
ˇ̌P

ˆ
E

JPSE

�2
§ x

˙
´ Pp�2

K
§ xq

ˇ̌
ˇ̌ § PpAc

S
q ` CE|"t|3K5{4

E

ˆ
max
tPrns

a
PS,tt

˙
ItASu, (F.3)

where C ° 0 is an absolute constant. Now we proceed to prove (F.3). Recall that PS “ P pF ` P pUS
´

PXS is a projection matrix onto the linear space generated by the columns of rF “ pIn ´ PXS q pF P
R

nˆK . Hence, under AS , we can write

PS “ rF p rF J rF q´1 rF J “ rF p rF J rF q´1{2p rF J rF q´1{2 rF J “: WW J,

where W “ pw1,w2, . . . ,wnqJ P R
nˆK . Therefore,

E
JPSE “ E

JWW J
E “

›››››

nÿ

t“1

wt"t

›››››

2

2

,

which further implies that for any x ° 0,

P
`
E

JPSE § x
˘

“ P

˜
nÿ

t“1

wt"t P BKp?
xq

¸
,

where BKprq denotes the K-dimensional ball centered at the origin with radius r ° 0. Observe that

Cov

˜
nÿ

t“1

wt"t

¸
“

nÿ

t“1

wtw
J
t

“ W JW “ p rF J rF q´1{2 rF J rF p rF J rF q´1{2 “ IK .
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To apply Theorem 1.1 in Bentkus [2005], let Z P R
K be a zero-mean Gaussian random vector with

covariance matrix CovpZq “ IK , then }Z}2 „ �2
K

and

sup
x°0

ˇ̌
P

`
E

JPSE § x|X
˘

´ Pp�2
K

§ xq
ˇ̌

“ sup
r°0

ˇ̌
ˇ̌
ˇP

˜
nÿ

t“1

wt"t P BKprq|X
¸

´ PpZ P BKprqq
ˇ̌
ˇ̌
ˇ

§ cK1{4
nÿ

t“1

E}wt"t}32 “ cK1{4
nÿ

t“1

}wt}32E|"t|3

§ cK1{4
E|"|3 max

tPrns
}wt}2

nÿ

t“1

}wt}22.

Observe that the diagonal elements of the matrix PS are }w1}22, . . . , }wn}22. Hence

nÿ

t“1

}wt}22 “ trpPSq “ K and max
tPrns

}wt}2 “ max
tPrns

a
PS,tt.

Consequently, we obtain

sup
x°0

ˇ̌
P

`
E

JPSE § x|X
˘

´ Pp�2
K

§ xq
ˇ̌

§ cK5{4
E|"|3 max

tPrns

a
PS,tt,

and

sup
x°0

ˇ̌
P

`
E

JPSE § x
˘

´ Pp�2
K

§ xq
ˇ̌

§ cK5{4
E|"|3E

ˆ
max
tPrns

a
PS,ttItASu

˙
` PpAc

S
q. (F.4)

Recall that both P pF ` P pUS
´ PXS and PXS are orthogonal projection matrices. Hence

max
tPrns

PS,tt “ max
tPrns

´
P pF ` P pUS

´ PXS

¯

tt

§ max
tPrns

P pF ,tt
` max

tPrns
P pUS ,tt

.

By Lemma 2.1, it follows that

max
tPrns

P pF ,tt
“ max

tPrns
1

n
} pft}22 À max

tPrns
1

n
} pft ´ Hft}22 ` max

tPrns
1

n
}H}22}ft}22 “ OP

ˆ
log n

n

˙
. (F.5)

Now we bound maxtPrns P pUS ,tt
. Under event AS , we have

max
tPrns

P pUS ,tt
§ 1

�minp pUJ
S

pUSq
max
tPrns

ÿ

`PS
|put`|2 § 2

n�0
max
tPrns

ÿ

`PS
|put`|2.
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Recall that pU “ pIn ´ pP qX “ pIn ´ pP qFBJ ` pIn ´ pP qU and pF J pU “ O. Hence, under the event
E�, we have

pU “ pIn ´ pP qpFHJ ´ pF qH´JBJ ´ pP pU ´ pU q ` U .

Consequently, it follows that

max
tPrns

ÿ

`PS
|put`|2 À max

tPrns

ÿ

`PS
|eJ

t
pIn ´ pP qpFHJ ´ pF qH´Jb`|2

` max
tPrns

ÿ

`PS
|eJ

t
pP pU¨` ´ pU¨`q|2 ` max

tPrns

ÿ

`PS
|ut`|2

“: �6
1 ` �6

2 ` �6
3.

By Lemma 2.1, we have

�6
1 § }FHJ ´ pF }2

F
}H´J}22

ÿ

`PS
}b`}22 “ OP

ˆ |S|
n

` |S|n
d

˙
,

�6
2 § |S|

n
max
tPrns

} pft}22 max
`Prds

nÿ

s“1

|pus` ´ us`|2 “ OP

"
|S| log n

ˆ
log d

n
` 1

d

˙*
,

and �6
3 “ OPp|S| ` log nq. Therefore, under event AS , we have

max
tPrns

P pUS ,tt
§ 2

n�0
max
tPrns

ÿ

`PS
|put`|2 “ OP

ˆ
sn

n ^ d
` log n

n

˙
.

Combined with (F.5), we obtain

max
tPrns

PS,tt “ OPp$nq, where $n “ sn
n ^ d

` log n

n
.

Note that $n Ñ 0 by (F.1). As PS is an orthogonal matrix, we have maxtPrns PS,tt § 1 and conse-
quently

sup
SÄrds:|S|§sn

E

ˆ
max
tPrns

PS,tt

˙
ItASu § ?

$n ` sup
SÄrds:|S|§sn

P

ˆ
max
tPrns

PS,tt ° ?
$n

˙
Ñ 0.

In view of (F.3), we obtain ⇢˛ Ñ 0 once we prove that

sup
SÄrds:|S|§sn

PpAc

S
q “ sup

SÄrds:|S|§sn

P

"
�minp pUJ

S
pUSq § n�0

2

*
Ñ 0. (F.6)

Next, we will prove (F.6). Recall that r⌃ “ n´1 pUJ pU and p⌃ “ n´1UJU . By Weyl’s theorem on
eigenvalues, it follows that

sup
SÄrds:|S|§sn

P

"
�minp pUJ

S
pUSq § n�0

2

*
§ sup

SÄrds:|S|§sn

P

ˆ
} r⌃SS ´ p⌃SS} ° �0

4

˙
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` sup
SÄrds:|S|§sn

P

ˆ
} r⌃SS ´ p⌃SS} ° �0

4

˙
“: ⇡1 ` ⇡2.

We first bound ⇡1. By Lemma C.6 and (F.1),

sup
SÄrds:|S|§sn

} r⌃SS ´ p⌃SS} § sup
SÄrds:|S|§sn

|S|} r⌃ ´ p⌃}max “ OP

ˆ
sn log d

n
` sn

d

˙
“ oPp1q. (F.7)

Hence ⇡1 Ñ 0 as n Ñ 8. Now we bound ⇡2. For any subset S Ä rds such that |S| § sn, by Lemma
5.4 in Vershynin [2012] and Assumption 2.1,

P

ˆ
} p⌃SS ´ ⌃SS} ° �0

4

˙
§ 9|S| sup

vPSd´1:vSc“0

P

˜ˇ̌
ˇ̌
ˇ
1

n

nÿ

t“1

puJ
t
vq2 ´ vJ⌃v

ˇ̌
ˇ̌
ˇ ° �0

8

¸

§ 2 exp
 

|S| log 9 ´ Cmin
`
n�2

0, n�0

˘(
. (F.8)

Consequently, by (F.1), we obtain

⇡2 § sup
SÄrds:|S|§sn

2 exp
`
|S| log 9 ´ Cnmint�2

0,�0u
˘

§ 2 exp
`
sn log 9 ´ Cnmint�2

0,�0u
˘

Ñ 0.

Lemma F.2. Assume that

}'‹}2
´a

n{d ` 1{?
n

¯
Ñ 0. (F.9)

Define

Hp↵, ✓q “
"
' P R

K :
n}'}22

1 ` Ksn⌥2{�minp⌃q • �2p2 ` �qp�2
K,1´↵

` �2
K,1´✓

q
*

for some � ° 0. Then, under the conditions of Lemma F.1, we have

inf
'‹PHp↵,✓q

P

ˆ}P rSY }22
�2

° �2
K,1´↵

˙
• 1 ´ ✓. (F.10)

Proof of Lemma F.2. Recall that Y “ F'‹ ` X�‹ ` E “ Y “ F'‹ ` X rS�
‹
rS ` E . Hence P rSY “

P rSE `P rSF'‹. Without loss of generality, we assume that � “ 1. By the Cauchy-Schwarz inequality,

}P rSY }22 • 1

2
}P rSF'‹}22 ´ }P rSE}22.
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Therefore, for any '‹ P Hp↵, ✓q, we have

P
`
}P rSY }22 ° �2

K,1´↵

˘
• P

ˆ
1

2
}P rSF'‹}22 ° �2

K,1´↵
` }P rSE}22

˙
.

We first bound }P rSF'‹}22. By Lemma 2.1 and the Cauchy-Schwarz inequality, for ✏ ° 0,

}P rSF'‹}22 • p1 ´ ✏q}P rS
pFH'‹}22 ´

ˆ
1

✏
´ 1

˙
}P rSpF ´ pFHq'‹}22.

As P rS is a projection matrix, it follows from Lemma 2.1 and (F.9) that

}P rSpF ´ pFHq'‹}2 § }F ´ pFH}F}'‹}2 “ OP

´
}'‹}2

a
n{d ` }'‹}2

a
1{n

¯
“ oPp1q.

Recall that P rS “ P pF ` P pU rS
´ PX rS

and r⌃ “ n´1 pUJ pU . Hence

}P rS
pFH'‹}22 “ npH'‹qJ

"
IK ´ pBJ

rS

´
pB rS

pBJ
rS ` r⌃ rS rS

¯´1 pB rS

*
pH'‹q

“ npH'‹qJ
´
IK ` pBJ

rS
r⌃´1

rS rS
pB rS

¯´1

pH'‹q

“ n'‹J
!

pHJHq´1 ` H´1 pBJ
rS

r⌃´1
rS rS

pB rSH
´J

)´1

'‹ “: n'‹JxW´1'‹.

Let W “ IK ` BJ
rS⌃

´1
rS rS
B rS . We first upper bound }xW ´ W}2. For any h P R

| rS| with }h}2 “ 1, we
decompose hJpxW ´ Wqh “  1 ` 2 ` 3 ` 4, where

 1 “ hJpHJHq´1
`
IK ´ HJH

˘
h,

 2 “ hJH´1
´

pB rS ´ B rSH
J

¯J r⌃´1
rS rS

pB rSH
´Jh,

 3 “ hJBJ
rS

r⌃´1
rS rS

´
⌃ rS rS ´ r⌃ rS rS

¯
⌃´1

rS rS
pB rSH

´Jh,

 4 “ hJBJ
rS⌃

´1
rS rS

´
pB rS ´ B rSH

J
¯
H´Jh.

By Lemma 2.1, we have }HJH ´ IK}F “ oPp1q and Pt�minpHJHq • 1{2u Ñ 1. Therefore

 1 § }HJH ´ IK}F
�minpHJHq “ oPp1q

and Pp}H´Jh}22 § 2q Ñ 1. Since Pp| rS| § snq Ñ 1, it follows that
›››
´

pB rS ´ B rSH
J

¯
H´Jh

›››
2

§ | rS|max
jPrds

}pbj ´ Hbj}2}H´Jh}2 “ OP

"
sn

ˆ
log d

n
` 1

d

˙*
.
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Combining this with (F.1) and the fact that }B rSh}2 § K| rS|K2, we obtain

 2 § } pB rSH
´Jh}

�minp r⌃ rS rSq

›››
´

pB rS ´ B rSH
J

¯
H´Jh

››› “ oP
`
s1{2
n

˘
.

Similarly, by (F.7) and (F.8), we have } r⌃ rS rS ´ ⌃ rS rS}2 “ oPp1q,

 3 § }B rSh}} r⌃ rS rS ´ ⌃ rS rS}2} pB rSH
´Jh}

�minp r⌃ rS rSq�minp⌃ rS rSq
“ oP

`
s1{2
n

˘
.

and

 4 § }B rSh}
�minp⌃ rS rSq

›››
´

pB rS ´ B rSH
J

¯
H´Jh

››› “ oP
`
s1{2
n

˘
.

Consequently, we obtain }xW ´ W}2 “ oPp?
snq. Combining this with the fact that

P

"
�maxpWq § 1 ` Ksn}B}2max

�minp⌃q

*
Ñ 1,

we obtain

P

"
}xW ´ W}2 § ✏˛

ˆ
1 ` Ksn}B}2max

�minp⌃q

˙*
Ñ 1.

Note that

}P rS
pFH'‹}2 • n}'‹}2

�maxpxWq
• n}'‹}2

�maxpWq ` }xW ´ W}2
.

Hence

P

"
}P rS

pFH'‹}2 • n}'‹}2
p1 ` ✏˛qp1 ` Ksn}B}2max{�minp⌃qq

*
Ñ 1.

Putting all these pieces together, we obtain (F.10).

F.4 Application to multi-modal sparse regression model
Dataset with multiple types are now frequently collected for some mutual experimental subjects. This
data structure is called as multimodal data and is becoming more and more popular in many fields.
Factor analysis is commonly used in integrative analysis of multimodal data, and is particularly useful
to overcome the curse of high dimensionality and high correlations. Recently Li and Li [2021] study
sparse linear multi-modal regression model with factor structures. However, the hypothesis testing
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problem on whether sparse regression for a given modal (a certain group of modal) is adequate hasn’t
been investigated.

Thus, in this subsection, we extend our results given in the last subsection to the multi-modal sparse
regression model. Our observations are pY ,X1,X2, ¨ ¨ ¨ ,XMq in which we assume covariate Xi is
generated from i-th group (modal). Moreover, for every i P rM s, Xi is assumed to have its own factor
structure Xi “ FiBJ

i
` Ui. We next consider the hypothesis test as follows:

H0 : Y “
Lÿ

i“1

Xi�
‹
i

`
Mÿ

i“L`1

Xi�
‹
i

` E versus H1 : Y “
Lÿ

i“1

pFi�
‹
i

` Ui�
‹
i
q `

Mÿ

i“L`1

Xi�
‹
i

` E .

Here we aim at simultaneously testing whether the sparse regression is adequate for the first L modals.
L is assumed to be any fixed number in rM s. The hypothesis testing problem in the previous section
is a special case to this with L “ M “ 1.

In order to proceed the hypothesis testing procedure, similar to section 4, we separate our dataset
into two parts with size m and n ´ m respectively. We let Xpjq

i
and Y pjq, j P t1, 2u denote the

i-th modal and our response respectively in the j-th part of our splitted data. Next, we decom-
pose every Xp1q

i
into p pF p1q

i
, pU p1q

i
q and then use sure screening to select p pS1, pS2, pS3, ¨ ¨ ¨ , pSMq by using

pY p1q, pU p1q
1 , pU p1q

2 , ¨ ¨ ¨ , pU p1q
L

, pU p1q
L`1, ¨ ¨ ¨ , pU p1q

M
q. Here we also make an assumption that

Assumption F.1. Here we assume

P

˜
for all i P rM s, S‹

i
Ä pSi and

Mÿ

i“1

|Si| § sM
n

¸
Ñ 1. (F.11)

Next, we also impose an assumption on the covariance of our factors and idiosyncratic components
.

Assumption F.2. We assume

Covpf1,t,f2,t, ¨ ¨ ¨ ,fM,tq “ IK , Covpu1,t,u2,t, ¨ ¨ ¨ ,uM,tq “ ⌃u,

with 0 † �minp⌃uq,�maxp⌃uq § C with C being a absolute constant. Moreover, pf1,t, . . . ,fM,tq, t P
rns is assumed to be uncorrelated with pu1,t, . . . ,uM,tq, where fi,t and ui,t are the t-th row of Fi and
Ui respectively.

Next, we use the second part of the data to construct our test statistic. For simplicity we denote

Z1 “ pXp2q
pS1
, ¨ ¨ ¨ ,Xp2q

pSL
, pF p2q

L`1, pU p2q
pSL`1

, ¨ ¨ ¨ , pF p2q
M

, pU p2q
pSM

q
and

Z2 “ p pF p2q
1 , pU p2q

pS1
, ¨ ¨ ¨ , pF p2q

L
, pU p2q

pSL
, pF p2q

L`1, pU p2q
pSL`1

, ¨ ¨ ¨ , pF p2q
M

, pU p2q
pSM

q.
The test statistic is given by

Qp2q
n,M

“
››pIn´m ´ PZ1qY p2q››2

2
´

››pIn´m ´ PZ2qY p2q››2
2

“
››pPZ2 ´ PZ1qY p2q››2

2
.

We finally summarize the asymptotic behaviors of our test statistic in the following Corollary F.3.
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Corollary F.3. Let Assumptions 2.1–2.5 and Assumption F.1 hold with

sM
n

ˆ
log d

n
` 1

d

˙
Ñ 0 and �� Ñ 0,

where �� is given in Assumption 3.3. Then we have

sup
x°0

ˇ̌
ˇP

´
Qp2q

n,M
{p�2 § x|H0

¯
´ P

`
�2
K‹ § x

˘ˇ̌
ˇ Ñ 0, as n Ñ 8,

in which K‹ “ ∞
L

i“1 Ki. In addition, we define ' “ p'1,'2, ¨ ¨ ¨ ,'Lq and

D
‹p↵, ✓q “

"
' P R

K :
n}'}2

1 ` K‹sM
n
⌥2{�minp⌃uq • �2p2 ` �qp�2

K‹,1´↵
` �2

K‹,1´✓
q
*
,

where � ° 0 is some constant. Then when sM
n

“ opn1{6q, we have

inf
'‹PD‹p↵,✓q

Pp ‹
↵

“ 1|H1q • 1 ´ ✓, (F.12)

in which

 ‹
↵

“ I

!
Qp2q

n,M
{p�2 • �2

K‹,1´↵

)
.

F.5 Proof of Corollary F.3
Proof. Here we assume p rS1, ¨ ¨ ¨ , rSMq are independent with pX1, ¨ ¨ ¨ ,XM ,Y q.

First, PZ2 ´ PZ1 is a projection matrix onto the space of

pI ´ PZ1qZ2.

Recall that

Z2 “ p pF p2q
1 , pU p2q

pS1
, ¨ ¨ ¨ , pF p2q

L
, pU p2q

pSL
, pF p2q

L`1, pU p2q
pSL`1

, ¨ ¨ ¨ , pF p2q
M

, pU p2q
pSM

q.

Note that for each 1 § l § L,

pI ´ PZ1qp pF p2q
l

, pU p2q
pSl

q “ pI ´ PZ1qp pF p2q
l

,Xp2q
pSl

´ pF p2q
l

pBp2q
pSl

q.

For any vector �, if we there exists an r� such that Z1� “ Z2
r�, we obtain colpZ1q Ä colpZ2q.

Thus, we have PS
˚
M

:“ PZ2 ´ PZ1 is a projection matrix onto the column space spanned by rF ‹ :“
pIn´PZ1qp pF1, ¨ ¨ ¨ , pFLq P R

nˆK
‹ , in which K‹ “ ∞

L

i“1 Ki. rF ‹ :“ pIn´PZ1qp pF1, ¨ ¨ ¨ , pFLq P R
nˆK

‹
.
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Similar with the proof of Lemma F.1, we are able to write PS
‹
M

“ W ‹W ˚J, and we also obtain

sup
x°0

ˇ̌
PpEJPS

‹
M
E § x|Xq ´ Pp�˚2

K
§ xq

ˇ̌
§ cK˚1{4

E|"t|3 max
tPrns

}w‹
i
}

nÿ

t“1

}w‹
t
}2

with maxtPrns }w‹
i
} “ maxtPrns

a
PS

‹
M ,tt.

Recall we have PS
˚
M
:“ PZ2 ´ PZ1 and

Z2 “ p pF p2q
1 , pU p2q

pS1
, ¨ ¨ ¨ , pF p2q

L
, pU p2q

pSL
, pF p2q

L`1, pU p2q
pSL`1

, ¨ ¨ ¨ , pF p2q
M

, pU p2q
pSM

q.

We first denote the event
AZ2 “

"
�minpZJ

2 Z2q • n�0

2

*
,

in which �0 is a absolute constant. We know from (F.4), in order to prove Corollary F.3, we only need
to prove (i). ErmaxtPrns

a
PS

‹
M ,ttIAZ2

s Ñ 0 and (ii). PpAc

Z2
q Ñ 0.

Next, we prove the term (i).
Since PZ1 is a projection matrix with PZ1,tt ° 0 for any t P rns, we have

max
tPrns

b
PS

‹
M ,tt § max

tPrns

a
PZ2,tt.

The next step is prove that ErmaxtPrns
a
PZ2,ttIAZ2

s Ñ 0. We first prove that

max
tPrns

PZ2,tt § 1

�minpZJ
2 Z2q max

tPrns

¨

˝
Mÿ

i“1

|f piq
t |2 `

Mÿ

i“1

ÿ

`P rSi

|put`|2
˛

‚

§ 1

�minpZJ
2 Z2q max

tPrns

Mÿ

i“1

|f piq
t |2 ` max

tPrns

Mÿ

i“1

ÿ

`P rSi

|put`|2

Leveraging similar techniques given in section F.3, we have

E

„
max
tPrns

b
PS

‹
M ,ttIAZ2

⇢
§ E

„
max
tPrns

a
PZ2,ttIAZ2

⇢
Ñ 0

Next, using certain concentration inequalities given in section F.3, we prove that there exists an positive
constant �0 such that

PpAc

Z2
q :“ P

ˆ
�minpZJ

2 Z2q
2

§ n�0

2

˙
Ñ 0.

Thus, we claim our conclusion for the first part of Corollary F.3.
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We now prove (F.12). The proof details are the almost the same with the proof of Lemma F.2, so
we only describe the outline here. We let

Z2 “ p pF p2q
1 , . . . , pF p2q

M
, pU p2q

pS1
, . . . , pU p2q

pSM
q.

Note that PZ2 “ PZ2 . Hence it is equivalent to bound maxtPrns PZ2,tt. Let

Z1 “ pX pS1
, . . . ,X pSL

, pU pSL`1
, . . . , pU pSM

, pFL`1, . . . , pFMq.

Then PZ2´PZ1 “ PZ2´PZ1 , which is a projection matrix onto the column space of pI´PZ1qp pF1, . . . , pFLq “:
pI ´ PZ1qpF. Here we denote pF :“ p pF1, . . . , pFLq.

Under the alternative hypothesis, Y “ ∞
L

m“1pFm'‹
m

`Xm�‹
m

q`∞
M

m“L`1pFm'‹
m

`Xm�‹
m

q`E .
We have,

}pPZ2 ´ PZ1q
Mÿ

m“L`1

pFm'
‹
m

` Xm�
‹
m

q}2 “ }pPZ2 ´ PZ1q
Mÿ

m“L`1

Fm'
‹
m

}

“ op1q ` }pPZ2 ´ PZ1q
Mÿ

m“L`1

pFmHm'
‹
m

} “ op1q

and

}pPZ2 ´ PZ1qE}2 „ �2
K‹ ,

where K‹ “ ∞
L

i“1 Ki. According to the definition of Z1, we obtain

Z1 “ pX pS1
, . . . ,X pSL

, pU pSL`1
, . . . , pU pSM

, pFL`1, . . . , pFMq
“ p pU pS1

, . . . , pU pSL
, pU pSL`1

, . . . , pU pSM
, pFL`1, . . . , pFMq

` p pF1, . . . , pFLq

¨

˚̋
pBJ
1,pS1

¨ ¨ ¨ ¨ ¨ ¨
0 O

pBJ
L,pSL

˛

‹‚“: pU ` pFpBJ

In addition, we let F :“ pF1, . . . ,FLq and H “ pH1, . . . ,HLq. We obtain

}pPZ2 ´ PZ1q
Lÿ

m“1

pFm'
‹
m

` Xm�
‹
m

q}2 “ }pPZ2 ´ PZ1q
Lÿ

m“1

Fm'
‹
m

}2 “ }pPZ2 ´ PZ1qF'‹}2

“ op1q ` }pPZ2 ´ PZ1qpFH'‹}2 “ op1q ` pH'‹qJpFJpPZ2 ´ PZ1qpFpH'‹q
“ op1q ` pH'‹qJpFJpI ´ PZ1qpFpH'‹q
— pH'‹qJpFJpI ´ pFpBJppBpFJpFpBJ ` pUJ pUq´1pBpFJqpFpH'‹q
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— pH'‹qJpFJpI ` pFpBJppUJ pUq´1pBpFJq´1pFpH'‹q

• }pFpH'‹q}2
1 ` �maxppFpBJppUJ pUq´1pBpFJq

• �minppFJpFq}'‹}2

1 ` �maxppBJ pBq�maxppFpFJq
�minppUJ pUq

.

The remaining proof steps follow the same procedure of Lemma F.2.
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