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stochastic Hamiltonian dynamical systems. Conventional structure-preserving integrators,
while being successful for generic systems, have limited tolerance to time step size due to
stability and accuracy constraints. We propose to use data to innovate classical integrators
so that they can be adaptive to large time-stepping and are tailored to each specific system.
In particular, we introduce NySALT, Nystrom-type inference-based schemes adaptive to
large time-stepping. The NySALT has optimal parameters for each time step learnt from
data by minimizing the one-step prediction error. Thus, it is tailored for each time step size
and the specific system to achieve optimal performance and tolerate large time-stepping in
an adaptive fashion. We prove and numerically verify the convergence of the estimators
as data size increases. Furthermore, analysis and numerical tests on the deterministic
and stochastic Fermi-Pasta-Ulam (FPU) models show that NySALT enlarges the maximal
admissible step size of linear stability, and quadruples the time step size of the Stormer—
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1. Introduction

Efficient simulations of Hamiltonian dynamical systems and their stochastic generalizations play an essential role in
many applications where the goal is to capture and predict both short time and long time dynamics. Conventional
structure-preserving integrators have achieved tremendous success in preserving structures such as symplecticity, re-
versibility, manifold structure, other physical constraints, and even statistical properties in long-time simulations (see
[6,12,13,16,23,28-30,41-43,54,59,63,64,69-73] and the references therein). Due to their remarkable suitability for Hamil-
tonian systems, this article will focus on symplectic integrators.

Meanwhile, the time step of generic (symplectic) integrators is often limited by the stiffness of these systems, making
the simulation computationally costly. Also, the conventional integrators aim for generic systems, not taking into account
each specific Hamiltonian. We aim at using data to construct large time-stepping integrators that can tolerate large time
steps while maintaining symplecticity, stability, and accuracy, and more importantly, tailored to each specific Hamiltonian in
an automatic fashion.

It is a fast growing research area to leverage information from data and combine statistical tools with traditional scientific
computing methodology. This work is under this umbrella as we utilize statistical learning tools to approximate a discrete-
time flow map and then construct large time-stepping integrators.

In this paper, we propose to construct large time-stepping integrators by inferring optimal parameters of classical
structure-preserving integrators in a flow map approximation framework. The inferred schemes are adaptive to the time-
step size, thus they can have large time-stepping while maintaining stability and accuracy. Furthermore, the parameters are
low-dimensional and can be learned from limited data consisting of short trajectories, and the estimator converges as the
data size increases under suitable conditions. Consequently, the inferred integrators are robust and generalizable beyond
the training set (see Section 3). A few works of similar spirit can be found in [17,48,80], where neural network based ap-
proximations lead to large time-stepping integrators. However, the neural networks are computationally expensive to train
and their parameters are often sensitive to training data, making it difficult to systematically investigate its properties such
as the maximal admissible time step size of stability. Besides, most designs of neural networks are disconnected from the
classical numerical integrators.

For benchmark application, we focus on parametric integrators in the Nystrom family (see descriptions from e.g., [28]),
which includes the popularly used Stérmer-Verlet method. From observed data, we then construct the NySALT scheme:
Nystrom-type inference-based scheme adaptive to large time-stepping (NySALT). The NySALT ensures optimal parameters
for each time step by minimizing the one-step prediction error learnt from data. Linear stability analysis is also established
to verify our premise, namely that the optimal parameters indeed should be different from those of the Stérmer-Verlet,
and the resulting NySALT has a larger maximal admissible step size for linear stability (see Section 4). We examine the
performance of NySALT on the widely-used benchmark stiff nonlinear systems: a deterministic Fermi-Pasta-Ulam (FPU)
model, as well as its stochastic (Langevin) generalization. Numerical results show that the inference of NySALT is robust:
the estimators are independent of the fine data generators, they converge as the number of trajectories (size of observed
data) increases, and they stabilize very fast (within dozens of short trajectories). It also shows the NySALT is accurate: it is
adaptive to large time step size, and improves the accuracy of trajectories in multiple time scales and statistics in long time
scale. Lastly, the NySALT is efficient: it enlarges the admissible time step size of stability of the classical schemes such as
the Stormer-Verlet and the BAOAB methods [28,41,42] (see Section 5) and significantly reduces the simulation time.

Our main contributions are threefold.

e We propose to infer the large time-stepping and structure-preserving integrator from data in a flow-map approximation
framework, in which we select optimal parameters in a family of classical geometric numerical integrators by minimizing
the flow map approximation error. If we choose the Nystrém family, it is NySALT scheme.

e The inference procedure of NySALT is robust and the scheme is generalizable beyond the training set.

e Analysis and numerical tests show that NySALT scheme is efficient and accurate with large time step size.

Meanwhile, many work that employs data-driven approaches in the past has tackled parts of our goal, but not all of them.
These related works are usually categorized based on their models or methods and we summarize them here:
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e Learning large time-stepping integrators. It is an emerging research direction to learn large time-stepping integrators
from data. When the system is known, MDNet based on graph neural network in [80] enables the simulation of mi-
crocanonical (i.e. Hamiltonian) molecular dynamics with large steps; a stochastic collocation method in [48] and a
parametric inference in [45] have lead to large time-stepping integrators for SDEs. This study extends the parametric
inference approach in [45] to Hamiltonian systems. When the system is unknown, generating function neural network
(GFNN) in [17] learns symplectic maps and proves a significant benefit of doing so, namely a linearly growing bound of
long time prediction error.

o Learning the Hamiltonian or the system. A very active research area is to recover the dynamics that generate observed,
discrete time-series data, and then use the learned dynamics to predict further evolutions. Examples of existing work for
Hamiltonian systems include [10,17,18,26,32,51,76,78,79,81], and while early seminal work learned Hamiltonian vector
fields without truly preserving symplecticity, later results leveraged various tools including symplectic integrator [18],
composition of triangular maps [32], and generating function [17] to fix this imperfection. The setup of all these research,
however, assumes that the governing dynamics is unknown (i.e. ‘latent’ in machine learning terminology), which is
different from our setup as we instead seek a good numerical integrator for given Hamiltonian.

o Integrators of multiscale Hamiltonian systems. There have been remarkable progress in generic upscaled integration of
stiff and multiscale ODE systems (e.g., [1,4,15,22,33,34,73]) and despite that fewer results exist when it comes to generic
multiscale symplectic integrators (e.g., [73]), multiscale symplectic integrators for specific classes of problems have also
been constructed (e.g., [21,25,27,38,66,74,77]). While each of these integrators is tremendously useful for a specific class
of systems, a complete re-design is likely necessary when a system is outside of the class. Our integrator, in contrast, is
tailored to each specific Hamiltonian automatically as the outcome of the inference procedure.

e Model reduction and time series modeling. Large time-stepping schemes can also be viewed as a model reduction in
time for the differential equations (DEs). A more challenging task is model reduction in both space-time, i.e., reducing the
spatial dimension and integrating with large time-steps, for high-dimensional DEs or PDEs. This is an extremely active
research area (see e.g., [19,22,31,35,39,40,46,50,53,68] and the references therein for a small sample of the important
works). While it is impossible to review all important works, we mention the proper symplectic decomposition with
Galerkin projection methods for Hamiltonian systems [3,14,61]; the time series approaches (see e.g., [36,47,49]) and the
deep learning methods that solve PDEs (see e.g., [7,52]).

2. Hamiltonian systems and parametric symplectic integrators

We briefly review a few preliminary concepts of Hamiltonian systems and symplectic integrators. The classical symplectic
integrators are designed as universal methods for all systems and they require a small time-step size to be accurate. To
tolerate large time-step sizes, we will infer adaptive symplectic integrators from data, thus, we focus on symplectic schemes
with parameters, which can be optimized by statistical inference from data.

2.1. Hamiltonian systems and symplectic maps

Let H(p, q) be a Hamiltonian function on R? x R9, where p is the momentum and q denotes the position. Consider the
Hamiltonian ODE system

dH
[dq(t) = o,

dp(t) = —tdt. 1)

Let X=(q,p) and let J = (_OI 5) be a 2d x 2d matrix with 0 and I being d x d block matrices. We can write the
Hamiltonian system as X(t) = JVxHdt. A symplectic map is a differentiable map ¢ : R?¢ — R24 whose Jacobian matrix V¢
satisfies Vo (X)T JVo(X) =], VX e R,

Hamiltonian systems have a characteristic property: the flow of a Hamiltonian system is a symplectic map. More pre-
cisely, let f: U — R be a continuous differential function from an open set U C R24, Then, dy = f(y)dt is locally
Hamiltonian if and only if its flow ¢:(y) is symplectic for all y € U and for all sufficiently small t ([28, Theorem 2.6,
page 185]). Furthermore, the flow is symplectic for any t if the ODE is Hamiltonian as long as the flow is well posed (see
e.g., [2,5]).

This property is the starting point of our data-driven construction of numerical flows: we seek flows that are symplectic
and are described by parameters to be estimated from data. There are various parametric families of symplectic integrators
(see [28]). We consider in this study the Nystrom family, which provides an explicit time integrator with two parameters.
In particular, the widely-used Stérmer-Verlet method is a member in this family.

In this study, we focus on the systems with separable Hamiltonian H = K(p) + V(q) with K(p) = %||p||2 and V(q)
satisfying g(q) = —VV(q), i.e., systems in the form

dq(t) = pdt,

(2.2)
dp(t) = g(q)dt.
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We will also consider damped stochastic Hamiltonian systems, which is also called Langevin dynamics:

dq(t) = pdt,
dp(t) = (g(q@) — yp)dt + odW¢,

where y represents the friction coefficient, and W; is a standard (multi-dim.) Wiener process.
2.2. Deterministic symplectic Nystrom scheme

Firstly, let us recall the s-step Nystrom method for the second order differential equation (2.2) following the notations
from [28]. The Nystréom method advances the dynamics from tg to t; with step size h as

6 =g(gn+cihp,+h? Y5 a5e)), i=1....s,
Qo1 =qn+hp,+h* Y5 Bit, (2.4)
Phi1 = DPn +h Z?:] bizia
where {aij}f, =t {ci¥i_q, {Bi}i_, and {b;};_, are parameters to be specified. To have an explicit scheme, it requires that ¢;
only depends on £; with j <i, hence a;; =0 when j >1i.
We focus on the explicit 2-step Nystrom methods, which includes the widely-used Stérmer-Verlet method [28]. We
denote it by S¥

1,/31:
In1 | _ gh ( n > _[an+hpy+h2(Bits + 2t2), (2.5)
Pni1 bibi\ | pn Pn +h(b1é1 +balz) ’ )
where
¢1=g(q, +hcip,) and £, =g(q, + hcap, + h2azx141). (2.6)

Meanwhile, by applying Taylor expansion to q,, and p, in the second and third equations in (2.4) at tp, we get consistency
constraints on parameters {g;} and {b;}:

2 1 2
;‘,3,-:5 and ;bizl. (2.7)
1= 1=

Notice that the general Nystrém is not necessarily a structure-preserving scheme, so we need additional constraints on
parameters to possess the symplectic property. From [Theorem 2.5 in Chapter IV [28]], a sufficient condition is:

Bi=bi(1—c¢;) for i=1,2,
bi(Bj —ajj) =bj(Bi —aj) for i,j=1,2.

Combining the constraints a;; =0 for j > 1i, (2.7)-(2.8), we have the following conditions on parameters to have an explicit
and symplectic 2-step Nystréom scheme:

(2.8)

free parameters: 0<by <1, 0< 1 <

)

N =

‘l .
b1 +by=1, ﬁ1+,32=§, ci=1—% for i=1,2,

i

(2.9)

aj1 =aip =axp =0, az =bi(cz —cy).

Notice that the well-known Stérmer-Verlet method belongs to this category with by =1/2 and g1 = 1/2. The above explicit
and symplectic 2-step Nystrém integrator is of second order accuracy O(h2). Our NySALT scheme is the symplectic 2-
step Nystrém integrator with the optimal parameters b} and g}, which are learnt from data by minimizing the one-step
prediction error (details see Section 3.1).

Limited time step size of a classical numerical integrator A major efficiency bottleneck of the majority of explicit numerical
integrators is the limited time step size when the system is stiff. As an illustration, we consider the Stérmer-Verlet method
and our benchmark example, the FPU model (5.1). By only considering the quadratic terms (i.e., the stiff harmonic oscilla-
tors) in the Hamiltonian, we obtain a linear stability condition on h of this numerical integrator: |h7‘”| < 1, or equivalently
h <2/w. Here w represents the stiffness of the system. Importantly, the accuracy of the integrator deteriorates quickly as h
increases, even when it is just half of the stability constraint. Fig. 1 demonstrates this issue of the Stormer-Verlet method,
using the FPU model with m =3 and w =50 in the time interval [0, 500]. It shows the trajectories of the stiff energies
(Ij,j=1,...,3) and the total stiff energy I defined in (5.4) from the Stérmer-Verlet integrator with two time step sizes,

4
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Fig. 1. Trajectories of each energy I; as well as the total stiff energy I (5.4) of the deterministic FPU (5.1) with m =3 and w = 50, computed by the
Stormer-Verlet scheme with time step sizes h =1e—4 in (a) and § = 0.02 in (b), and by the NySALT scheme with § =0.02 in (c). (For interpretation of the
colors in the figure(s), the reader is referred to the web version of this article.)

fine time step size h = 1e—4 and coarse time step size § = 0.02, which is 200 times of fine time step size. Clearly, the
method becomes inaccurate when § = 0.02, which is still within the linear stability region § < 2/w = 0.04. In comparison,
our NySALT scheme with the coarse time step size still performs as accurate as the one with fine step size. Particularly, the
total stiff energy I is well conserved over long time interval. More detailed analysis is shown in Section 5.2.

2.3. Stochastic symplectic Nystrom scheme

To have a parametric scheme for the Langevin dynamics, we introduce a new splitting scheme by combining the Nystrém
integrator with an Ornstein-Uhlenbeck process, and we call it a stochastic Symplectic Nystrom scheme. This scheme is the
splitting methods (e.g. [13,56]) and similar to the BAOAB and ABOBA schemes (e.g., [42,67]). The BAOAB integrator is based
on splitting the vector field in the Langevin equation of motion into parts labeled A, B and O, and integrating these parts
separately. We break the Langevin dynamics into two pieces, the Hamiltonian part and the Ornstein-Uhlenbeck (OU) process
part.

dq(t) | _ 0
[dp(t)] B [g(q) }d“r [—ypdtJrade] (2.10)

Each of them are solved separately as follows: it combines the symplectic Nystrém approximation of the Hamiltonian
contribution and an Ornstein-Uhlenbeck (OU) integrator approximation of the friction and thermal diffusion of the system.
Given a time step h, this scheme reads

Deterministic Symplectic Nystrom scheme: [q"“ } SZ P ([ n ])
Pnt1 A Pn

Ornstein-Uhlenbeck integrator: p, 1 = exp(—yh) P11 + &n.

(211)

where {&,} is a sequence of independent identically distributed Gaussian vectors with distribution A/(0, %(1 —e 2.

The symplectic integrator Sb A is the 2-step Nystrom integrator in (2.5), thus it preserves the Hamiltonian contribution
in the stochastic system and enhances the numerical stability. The second part for the stochastic force is based on the
exact solution of the OU process and it leads to the local error of order O(h!) in q. Similar to the deterministic case,
this stochastic Symplectic Nystrom scheme is a family of numerical schemes and our NySALT scheme is the one with
the optimal parameters b} and B}, which are learnt from data by minimizing the one-step prediction error (details see
Section 3.2). Thus, the NySALT scheme is of local strong order h'-> (see Remark 4.5 for a derivation for the linear system
and we refer to for instance [75] for a thorough study on the strong order of splitting schemes for Langevin dynamics).

Limited time step size of a classical numerical integrator Similar to the deterministic systems, numerical integrators for stochas-
tic systems can tolerate limited time step size. To demonstrate it, we consider Langevin dynamics with FPU potential and we
choose the friction coefficient y = 0.01 and diffusion coefficient o = 0.05. The total energy I in this example is stochastic,
so we calculate its time auto-covariance function (ACF). Fig. 2 shows the ACF computed by BAOAB scheme [42], one of the
state-of-the-art symplectic integrator, in comparison with our NySALT scheme, both using the coarse step size § = 0.02. The
reference is computed by BAOAB with fine step sizes h = 1e—4. As can be seen, the BAOAB scheme produces inaccurate
ACF, while the NySALT scheme remains very reliable. More detailed analysis is in Section 5.3.
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Fig. 2. Comparison between the NySALT scheme with BAOAB scheme when the coarse step size is § = 0.02, with the reference being the BAOAB scheme
with a fine step size h = 1e—4. Left: Trajectories of total stiff energy I by both schemes. Right: Time auto-covariance function (ACF) (5.10) of total stiff
energy I by both schemes.

3. A flow map approximation framework for learning integrators

Many classical numerical integrators are derived from (It6-) Taylor expansion for small time-stepping. Thus, they are
universal and accurate when the time step size is small. However, they are not designed for integration with large time-
stepping.

We introduce a flow map approximation framework to learn numerical integrators that are adaptive to large time step
size from data. The fundamental idea is to approximate the discrete-time flow map by a function with parameters inferred
from data. This approach takes advantage of the information from data, which consists of multiple trajectories generated
by an accurate numerical integrator. It consists of three steps: data generation, parametric form derivation, and parameter
estimation.

The framework applies to both deterministic and stochastic dynamical systems, in which we treat the stochastic forcing
as an input. In the following, we first introduce this approach, then we analyze the convergence of the parametric estimator
and the error bounds of the learnt integrator.

3.1. Flow map approximation for Hamiltonian systems

Let X; = |:;I,‘ :| denote the state of a Hamiltonian system that satisfies
¢

dxt—b(X)—]V H
dt_ t) = X1,

where J = (? _OI ) The exact discrete-time flow map of X; on coarse grids {t; = ia}ﬁo satisfies

xt,ur] - xl’,‘ = SF(XI, ) 8)’

where F is a function preserving the symplectic structure (i.e., the phase-space volume of a closed surface is preserved).
Since the coarse step § is relatively large, a classical numerical integrator becomes inaccurate (see Fig. 1).

To obtain a numerical integrator with coarse step size §, we infer from multiple-trajectory data a symplectic function
Fo(X¢;, ) that approximates the flow map F(Xy;, §):

Xl’pr] - Xl’,‘ ~ SFQ(Xti, 8)

Here {Fo(Xy;,8),6 € ©} is a family of parametric functions, whose parametric form comes from classical numerical integra-
tors (see discussions below). The inference procedure consists of three steps: data generation, parametric form derivation,
and parameter estimation.

Data generation We generate data consisting of multiple trajectories with random initial conditions, utilizing an accurate
classical numerical scheme with a fine step size h, which is much smaller than §, i.e., § = Gap - h. The initial conditions

{Xg)") ,’1‘:':1 are sampled from a given distribution ;2 on R24, so that the trajectories explore the flow map sufficiently. Then,
N¢

we down-sample these trajectories to obtain training data on coarse grids {t; = i};,, which we denote as
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g™ M
Data: {Xg"),i=0,...,Nf}nAf:1 = ”: t(m)] '_0»~~-»Nt]

ptz m=1

Parametric form from the Nystrém family The major difficulty in our inference-based approach is the derivation of the para-
metric symplectic maps. The symplectic structure is crucial for the flow maps of Hamiltonian systems. We propose to utilize
the family of classical numerical integrators, particularly those come with parameters. As discussed in the introduction, there
is a rich class of structure-preserving numerical integrators that are dedicated to long-time simulation of Hamiltonian sys-
tems. For simplicity as well as flexibility, we consider the family of the explicit 2-step Nystom method for the parametric
function Fo(Xy;, 8).

Specifically, for the system (2.2), we consider the parametric function Fy from the 2-step Nystdm method in (2.5):

1 _ (P +8(Brta + Batla)
Fo(Xe,.8) = (Sh, 5, Xt ) = Xe) = ( bie: s b ) (31)
where the terms ¢1 and ¢; are defined as
i =g(q, +1dp,) and €= g(qy, + c28p,, + 82az1t1), (3.2)
with parameters {81, B2, b1, b2, c1, C2, az1} satisfying (2.9). The free parameters to be estimated from data are
1
0=(b1,ﬁ1)€®=(0,1)X[0,§]- (3.3)
Parameter estimation We estimate 6 by minimizing the 1-step prediction error:
Oy = argmin Ey (9), (34)
6e®
where the loss function &y (0) is the 1-step prediction error and is computed from data:
1 M N )
— (m) (m)
U=, 2 [Focxi™ &) Fx™ )|
M Ne— )
(m) (m) (m)
MNt 3 Z [Focxi™ ) — X, = x(Mys| (3.5)
m=1 i=0

with ||Y||§:_1 as the notation of trace norm of Y271y, ie., ||Y||22_1 =YY |, =Tr(YT=~Y). Here T is a diagonal
weight matrix aiming to normalize the contributions of the entries. We set X to be a diagonal matrix with diagonal entries
being the mean of entrywise square of (X(m) (m)) /8.

Notice that the optimization problem is nonlmear because of the nonlinear function g in (2.2). Since the parameter is in
a 2D rectangle and the loss function is smooth, we solved it by constrained nonlinear optimization with the interior point
algorithm.

As to be shown in Section 3.3, the estimator 6y, converges almost surely regarding M under suitable conditions on the
uniqueness of the minimizer. We select a stabilized estimator (when the sample size is sufficiently large) as 6™ for our
NySALT scheme

Xty — Xp; = Fo=(X;, 8). (3.6)
3.2. Flow map approximation for Langevin systems

To simplify the notations, we write the equation (2.3) of Langevin dynamics as

dXt = b(Xt)dt + adW[, (37)
where b(X¢) = [g(q)q_ yp] and a = [2] In integral form, the solution X; on a time grid {t;} is
tit1
Xty — Xg; = / bXs)ds +a(W¢, , — W) =8FXe;, Wit 1,41, 6)- (3.8)

ti

Here the discrete-time flow map F(X¢, Wy ¢,,1.6) is an infinite-dimensional functional that depends on the path of
the Brownian motion Wi, ). In general, a numerical scheme approximates the discrete-time flow map by a func-
tion depending on X and a low-dimensional approximation of the Brownian path Wy, (either in distribution in

7



X. Li, E. Lu, M. Tao et al. Journal of Computational Physics 477 (2023) 111952

the weak sense or trajectory-wisely in the strong sense). For example, the Euler-Maruyama scheme gives the function
F(X;,&i,8) =b(Xy;) +ak;/8 with & =W, — Wy ~ N(0, §). Due to their reliance on the Ito-Taylor expansion, these clas-
sical schemes require a small time step for accuracy.

In order to allow a large time-stepping &, from data we infer a parametric function Fg (Xy;, &, 8) to approximate the flow
map F(X¢;, Wi, t;,11, 6), where & depends on the path Wff:’)tm ) Similar to the deterministic case, the inference consists of
three steps: data generation, parametric form derivation, and parameter estimation.

Data generation The data consists of both the process X; and the stochastic force &;.

g™ M
Data: {Xgn),a,&t(im),z'=0,...,Nt},"é’:1 = ”: i i|,§t(,-m),i=0,---,Nt]
ti

m=1
The initial conditions {X;Om)}n";’:] are sampled from a distribution & on R24, so that the short trajectories can explore the

flow map sufficiently. Suppose that the system is resolved accurately by an integrator with a fine time step size h. Then
similar to deterministic systems, a data trajectory X, is obtained by down-sampling the fine solution with coarse grid
{ti=is),.

However, the stochastic force cannot be down-sampled directly since one has to follow the desired distribution in (2.11).
Here we use the one-step increment of OU process to approximate &, which takes into account the friction and the noise.
Consider the OU process dY; = —y Y.dt + odW,, the solution of this OU process with coarse step § is expressed by using
noise with fine time step h,

) Gap Jjh
Ys=e"Yo+o f e VOIW =Yg+ Y | e VO dw
J=ljn_n

0
Gap 1

~e " Yo+o )y E(1 —exp=2rhye v ©aP=Dhw  — W ) /v,
j=1

where in the last step we used the fact that fab e 7V E=)dw, ~ N(0, %(6*27“ — e~2rb)). Then the one-step increment at
time instants t; can be approximated by

1 Gap )
&, =0 ,E(l —exp—2vh) Ze_VJhR,',j, (3.9)
j=1

where R; j = (W (i—1)Gap+j)h — W((i_1>cap+j_1)h)/\/ﬁ is the scaled increment of the Brownian motion. Consequently, one
can show that &; ~N(0, %(1 — exp*ZVS)).

Parametric form from the Nystrom family We approximate the flow map by the parametric function Fo(Xy;, &;,6) in the
stochastic symplectic Nystrom scheme introduced in (2.11). Note that it consists of the symplectic integrator Sﬁ] B and the
Ornstein-Uhlenbeck integrator,

Py, +3 (Brér + Bata) )
: (3.10)

Fo(Xei.£4,8) = | (expi=yi .
o Xy, 9) ((e"p( 1) i, + exp(—yh) b1y +bata) + 5

where ¢ and ¢, are defined in (3.2). Thus, it has the same parametric form as the symplectic integrator Sg1 g S the
deterministic case, and the range for the parameter keeps the same as in (3.3).

Parameter estimation The parameter 6 € ® is estimated by minimizing the 1-step prediction error

Oy = ar@gmoin Em(H), with (3.11)
o
1 M N )
¢ ) )
em®) = e D2 D [ (X7 + Rk 6™ 0)) ~X(T [ (312)
m=1 i=0

where {Xg"), éi(m) }ﬂﬂ are down-sampled fine scale data consisting of M trajectories of the state and the coarsened incre-
ments of stochastic force. ¥ is the diagonal weight matrix to normalize the contribution of p and q. We set ¥ to be a
diagonal matrix with diagonal entries being the mean of the square of (X;Z)l — Xg”)). We note that the loss function is not

8
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the log-likelihood of the data, which is not available because the transition density of the stochastic symplectic Nystrom
scheme is nonlinear and non-Gaussian without an explicit form.

With the gradient of the 1-step prediction error explicitly calculated in Appendix A, we solve this constrained nonlin-
ear optimization with the interior point algorithm. Since the estimator 6y converges almost surely as M increases (see
Section 3.3), we select a stabilized estimator as 6* for our inferred scheme,

Xt — Xe; =0Fg+(Xy;, &, 8), (3.13)

where &; is sampled from N (0, 33 1- exp*2V5)), the same distribution as the coarsened increments of the OU process.

3.3. Convergence of the parameter estimator

We show that the parameter estimator converges as the number of independent data trajectories increases, under suit-
able conditions on the loss function. These conditions require the parametric function Fy to be continuously differentiable
in 6, along with integrability conditions that generally hold true for Hamiltonian systems and symplectic integrators.

For simplicity of notation, we denote the loss for each data trajectory by

LN [ Fo (X, 8) — F(X,s (S)||22,1, for deterministic (3.5),

L) = ”f 2 .
Nt Nt ol 18 (Fo(Xy;. &;.8) — FXe;, Wi t,11.8)) |51 for stochastic (3.12).

(3.14)

Then, Em(9) = % S M_ LM (), where L™ (6) is the loss of the m-th data trajectory X™ (and £™ when the system is
stochastic).

Hereafter, we denote P the probability measure that characterizes the randomness coming from initial conditions and
the stochastic driving force. We denote [E the corresponding expectation.

Assumption 3.1. We make the following assumptions:

(@) E[L®)] € C2(®), E[|VL(®)|?] < 0o and E[|V2L()|] < oo for any 6 € @, the interior of ©.
(b) 6* € ®° is the unique minimizer of E[L(#)] in ©.
(c) There exists C >0, p>1 and q > 1 such that E[|L(61) — L(62)|2P] < C|6; — 6,]9 for any 6,6, € ©.

The third condition is about uniform continuity of the loss function, and it is often satisfied. The first two conditions are
about the uniqueness of the loss function in the large sample limit in a hypothesis set. In general, there is no guarantee that
the loss function would have a unique global minimizer since it is highly nonlinear for nonlinear systems. However, if one
properly chooses the hypothesis set ® based on domain knowledge, such as the parameter range in the Nystrém methods,
these conditions can hold locally, as we have observed in our numerical tests.

Theorem 3.2. Under Assumption 3.1, the estimator 6y in either (3.4) or (3.11) converges to 6* in probability and ~'M 0y — 6*) is
asymptotically normal as M — oc.

Proof. First, we show that 6, converges to 6* in probability, i.e., for any v > 0, limpy_ oo P (|0 — 6*| > v) =0, where P (A)
is the probability of an event A.
Note that for any (61,...,6¢) C ®, as M — oo, we have the convergence in probability of the vectors

EmO1, ..., EmO)) = (E[LED], ..., E[L6O)D

by the law of large numbers. Together with Assumption 3.1 (c), they imply that the measure induced by Ey(-) on (C(®), B),
the space of continuous functions on ® with uniform metric and with B being the o -algebra of Borel subsets, converges to
the measure induced by E[L(-)] (see [37, Lemma 1.33, page 61] and [11, Theorem 13.2]). Then, any continuous functional
of the process £y (-) converges in probability as M — oo. In particular, we have for any v > 0

P sup &y > sup Ey|—P sup E[L@O)]> sup E[L®)]]=
|0—0%|>v |0—6%|<v |0—0%|>v |0—0%|<v
where the equality follows from Assumption 3.1 (b). Meanwhile, note that by the definition of 6y, in (3.12), we have
P(10m —60*| >v)=P| sup Ew> sup Eum].
10—6%|>v |0—6%|<v

Combining the above two equations, we obtain the convergence in probability of 0, to 6*.

9
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Next, we show that /M6y — 6*) is asymptotically normal. Since 6y is a minimizer of £y, we have

0= VEn(OM) = VEMO*) 4+ VEEm©OM) Om — 6%),

where Oy = 0* + s(Op — 6*) for some s € [0, 1].

Note first that V2Ey©@n) converges in probability to E[V2L(6*)]. It follows by the law of large numbers, Assump-
tion 3.1(a), and the consistency of 8y, which implies that 5)\/1 converges to 6*. Thus, the inverse of the matrix V2£M(§M)
exists when M is large, because E[V2L(9*)] is strictly positive definite. Thus,

Op — 0% = V2EM On) " VEMO®).

Note also that VEy (6*) = ﬁ an/’:1 VL™ (6*) and E[VEY (6*)] = E[VL(6*)] = 0 because 6* is the unique minimizer by
Assumption 3.1(b). Thus, by the central limit theorem, we have the convergence in distribution:

VMVEM©O*) — N(0, Z1),

where X; is the covariance of VL(6*).
Combining the above, we obtain the asymptotic normality of v M@y —6*). R

3.4. Statistical error at arbitrary time

Hamiltonian systems Since the learned integrator is a symplectic partitioned Runge-Kutta method, by [28, Theorem [X.3.3],
any trajectory it generates exactly corresponds to time-discretized stroboscopic samples of a continuous solution of some
fixed modified Hamiltonian H, at least formally. If the learned integrator has local truncation error of order p + 1, then
we have H = H + O(hP) at least formally speaking. Assume the original Hamiltonian system is integrable, analytic, and
the initial condition corresponds to frequency vector that are in a sufficiently small neighborhood of some Diophantine
frequency vector, then by [28, Theorem X.3.1], the learned integrator has a linearly growing long time error bound. More
precisely,

IX¢, — X))l < ChPH,

for at least i < Ch=P~!, where X¢; is the numerical solution given by the learned integrator and X(t;) is the exact solution
of the original Hamiltonian. Moreover, for any action variable I(X), it is nearly conserved over long time, i.e.,

[T(Xe;) — I(Xeo)| < ChP.

In Section 5.1, we test the numerical accuracy with respect to step size § over different time periods, that is Tiest = 0.5
and Tt = 100. Note it is difficult to quantitatively put these values in the context of the above discussion, because the
validity timespan of i < Ch—P~! may not be the longest possible (see e.g., [9] for possible exponential results), and constants
such as C may not be explicit.

Langevin dynamics If the Langevin dynamics (3.7) is contractive in the sense that there exists a constant matrix A, and
constants to > 0 & B > 0, s.t. for any two solutions X(t), Y(t) driven by the same stochastic forcing (i.e. synchronous
coupling),

(E1AxO -YO)1?)" < (EIAX©O = YO) )" e, Vo<t <o,

then the framework of mean-square analysis for sampling described in [44] can help obtain a bound of the statistical
error of the learned integrator at any t € [0, tg) (which also means for any number of steps k as t = kh). In particular, the
kinetic Langevin equation (2.3) is known to be contractive when y is large enough (e.g., [20]) and when the potential V is
strongly-convex and admitting a Lipschitz gradient.

In addition, because our NySALT scheme is a Lie-Trotter composition of a consistent Hamiltonian integrator (due to being
Nystrom) and an exact OU process, the local weak error is at least of order 1 and the local strong error is at least of order
1/2, (see e.g., [58]). Therefore, conditions of [44, Theorem 3.3] are satisfied with p; =1 and p, = 1/2. Consequently, [44,
Theorem 3.4] gives

W (Law(Xy,), ) < e P W, (Law(Xyy), w) + ChY2, W0 <h < hy

for some explicitly obtainable constant C and hi, where u is the ergodic measure associated with the original SDE (i.e.,
(2.3)), X, is the numerical solution produced by the NySALT, and W;(-) is the 2-Wasserstein distance Wj(u1, u2) =

. 1/2
(infox ) ~r121. ) EIIX = Y1) .

10
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4. Optimal parameters for linear systems

To demonstrate the discrete-time flow map, we first consider linear systems and show the estimation of optimal pa-
rameters. For simplicity of notation, we consider only 1D systems and the extension to higher dimensional systems is
straightforward.

4.1. Linear Hamiltonian systems
We first consider a one-dimensional linear Hamiltonian system

q=p,

! (4.1)
p=-9q,

with Q= w? and q=q(t): [0, T]— R.
Proposition4.1. Let {X;,,i=1,..., Nt},’;ﬁ’:1 be M independent solution trajectories to (4.1) with time step § = tj11 —t; for all i. Then,
the loss function (3.5) becomes

M Nt

1 m
Embr i) = s D)l — By, g X (4.2)

m=1i=1

1 0. 0!
where ¥ = <0 Q2> is the mean of square of AX/5, A = [—Q, 0] an

B — 382Q+ 8402 Boaz1, 8 — 83Q(Brc1 + Bac2) + 85Q% Baaaicy (4.3)
bp T —8Q 4 83Q2hoan, 1—182Q+84Q%baaz1c4 ‘
withay; = (81— g—;ﬂz), c1=1-— ﬂ—l ,Cp=1— — b2 =1-byand B, =1 —ﬂ1 In particular, when the span{X(m) i=1,...,N,m=
1,...,M}=R?2, then the costfunctlon has the same minimizer as ||(e4? b1 ﬂl)” , does.

Proof. Denote the discrete Nystrom solution by (q, p). At tj+1, the Nystrom method gives

1= _Q(qt,- + C18pt'.), and {; = —Q(qti + C23pti + 52(121Z1),
Q. =4 +6p; + 82(B1t1 + B2t2), and P, =Py, + (161 +bata),

where the parameters {{ﬂk}izl, {bk},%:r {Ck}]%:p a21} satisfy the constraints (2.9). Simplifying the expressions of g, and
P, by the constraints, we get

1
Qi =i, + 5P, — 56700y — BQUB1C1 + B2y, +6°Q*Paan @y + 672 rancipy,,

(4.4)
_ _ _ 1 2 3 2b 4 Zb
Pt =Py — 6824y, 23 Qpy, +6°Q°brax1qy, + 87 Q7baazxic1py,-
With the notation X, = (qy,, Py,), we can write the above Nystrom algorithm as
Xg\xlﬂ 821 B Xy;- (4.5)

Comparing with the exact solution: Xy, , = eA‘SXt,.. We can write the 1-step prediction error as

Xti+‘l XN (eA5

Liv1

b1 B )X;-

Then, with the data, we obtain the cost function (4.2). B

Remark 4.2 (Optimal parameter for the linear Hamiltonian system). The minimizers of £%(bq, 1) in (4.2) are close to b7 =05
and B} ~ 0.40, as shown in Fig. 3. They appear to have weak dependence of § because the loss function depends on § are
in high-orders, which can be seen from a Taylor expansion of ||B,J B AS ||22,1 up to third order as follows. Note that
0 —Q

AS _ 252 83 4
=L +A5+A 7+|:QZ 0 i|§+0(3)al'ld

11
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[~ Gap=10_—7 Gap=20 Gap=100 = = ref line=M "]

4 8 16 32 64 128 256

Gap=100 — — ref line=M " ")‘

[-6— Gap=10 —7 Gap=20

4 8 16 32 64 128 256
w Number of traj, M

Fig. 3. Robustness of the inference. Left: Optimal parameters verse various stiffness values w. Right: Convergence of estimators (b}, 87) in numbers of
sample trajectories M.

52 0 —6(%—‘5—‘—5—22)9 53

B) ﬁ1_12+A5+A27+ roh E+O(54)'
6b2 (B1 — 1) 0
Thus, the trace norm of the discrepancy matrix is
2
B B
0 Q—G(%—b—‘—b—2>§2 §3
IBy, 5, — X5 = . \ ) rob 5 +oeh
— 2
Q2 +6b; (81 — pLB2) @ 0 .
2
56 682 6p2
= ﬁszz ( b]1 + b—zz —2) +(6b2B1 —6b1B — 1% | + 0.

2
The minimum of the function f(bq, 81) = (Gﬂl + 3 Gﬂz - 2) + (6b281 — 6b182 — 1) is reached at b} =0.5 and B ~ 0.40.

Note also that this estimator is independent of €2, because of the weight matrix X.

Remark 4.3 (Maximal admissible step size of linear stability). The largest time step size of linear stability for the Nystrom
integrator (4.5) is determined by B e It is the largest & such that the real parts of the eigenvalues of B Lpy are less than
or equal 1. For the Nystrém mtegrator with optimal parameters (b}, g7) = (0.5,0.40) estimated in Remark 4.2, we have
. (1 —0.52+0.0322 §(1 —0.16z + 0.00622)

bi.Af — | 2(-140.152) 1—0.5z40.037%
and its eigenvalues are A1 =a =+ /a2 —1 with a=1— 0.5z + 0.03z2. Thus, to have Real(A12) < 1, we need |a| < 1, which
implies either 0 < z < ? or 10<z< 50 . Therefore, to ensure the linear stability as well as consistency, the largest time

) with z = §2Q. Thus, it can be verified directly that det(B?, p) =1
1°F1

step of linear stability is §* < ¥== 20/ Wthh is [ times the Verlet method’s linear stablhty = Therefore, the linear stability
of NySALT scheme is improved.

4.2. Linear Langevin systems

We can estimate the optimal parameters from the analytical solutions of one-dimensional linear Langevin systems. Recall
that for the governing equations

0
ClXt = Ath +0o <th)

with A, = [ _(22 —1)/ ] the exact solution is
ti+§
Xi, = eAV‘SXq + Wfi, Wg =0 / ey (titd=s) (dl(/)Vg) . (4.6)

ti

12
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The Stochastic Symplectic Nystrom scheme for this linear system gives,

0
B
Xtys = Bhy .y Xe + <gt5> ’ (4.7)

1 0
bipry |0 e Vs
nian motion. Then, the 1-step prediction error gives us the cost function

where B} ]321 p, and =0 ftﬂS “Y =)W comes from (3.9) that uses the increments of the Brow-

M Nt

Embr, p1) = —— ZZ le?r® — By 5 X +80 —wi L, (48)

m i=1

Remark 4.4 (Optimal parameter for the linear Langevin system). The minimizer of this cost function depends on y and the data,
unlike the case of deterministic linear system. Fortunately, the noise term gé — W‘fi is centered Gaussian and is independent

of X(m) thus, the minimizer is still mainly determined by the discrepancy matrix ( Bg B y) The following compu-
2
tation shows that the minimizer of HBb By e"‘l"SHY1 is about by = 0.5 and B} ~ 0.40 — %. when y is sufficiently

small. Thus, the optimal parameters depend on y and §.

The computation is based on the Taylor expansion of e”¥% and BZ By Expand B! up to the order of 83,

bi.p1.y
. 1-36°Q 5 —83QBrc1 + P2c2) owh
bfy T | (=82 + 83Q%baaz1) (1 -8y + 182y (1-182Q) (1 — sy + 18%y? - 183 3)
5 0 y]8? 0 —6Q(B1c1 + /3262) 4
=L+ A+ Ay [ysz 0]2 6Q2%byax —3r2Q  3yQ—y3 5+O(5)
Similarly, expand exp(A 8) up to the order of 53,
82 Q —Q+
_ 29 14 )’ 4
exp(Ayd) = I2 + Ayd + Ay = +[92—y29 270y } +0(8Y.
Then the discrepancy matrix is approximately,
5 2
185,51 — ey 9)]
2 2
(& 0 y],3 -yQ Q1 —6(Bic1 + f2c2) — V2
2 yQ 0 92(6132(121 -1 -2y%Q yQ oot

_56 2 6/31 Gﬂz 3y 3y 2
—%Q (( by +E— +ﬁ ((szﬁl —6b152—1)+ﬁ)

88 6(B1—3b1)? 1 3y 37\?
O gz (XA 27 6(81 — —b —1+ 22
36 ( b(A—by) 2 9% ( (B 2 +sza>

Assuming that << 1, which holds for the underdamping Langevin dynamics when the damping term is small, we can find
that the optlmal parameter is b} =0.5 and B ~0.40 — %.

Remark 4.5 (Order of NySALT for the linear Langevin system). The local strong order of the NySALT in (4.7) is 0(8!). In fact,
letting X{V =X in (4.6)-(4.7) and set t =0, we have
N 1/2
EOX — XY <El|e” — 8, . [1E0XoIZ1" + (E[‘W‘é - <§3> ]) .
0

The first term is of order O(s2), which follows from the above expansions. The second term is of order O(5!°) because

) . 0 0 0 1
with the notation F_[O _y]and A—[_Q 0]‘

5 P
s (0 _ [ Ay(3—s) _ r(a—s)] A(s ) _ ] erG-9 0
Wy <53 =0 e’r e =0 daw, )
0 0

13
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Fig. 4. Robustness of the inference regarding the system size m as defined in (5.1). Optimal parameters (b}, 87) for system size m =3 verse m = 100, the
relative discrepancies are within 3%.

whose dominating component is o f(f AseTSdW, a term with order 0 (81%). Therefore, the local order of the NySALT scheme
for the linear system is O (8!).

5. The benchmark problems: Fermi-Pasta-Ulam (FPU) model

In this section, we examine the performance of NySALT scheme on two benchmark nonlinear systems: Hamiltonian sys-
tems with the FPU potential (the deterministic FPU) and Langevin dynamics with the FPU potential (the stochastic FPU).
Numerical results show that the inference is robust: the estimators are independent of the fine data generators, they con-
verge as the number of trajectories increases, and they stabilize fast (within dozens of trajectories). NySALT scheme is
efficient and accurate: it provides integrators adaptive to large time step size, improving the accuracy of solutions and en-
larging the admissible time step size of stability, often quadruples those of the classical schemes, with minimum cost of
training.

5.1. The FPU system

The FPU (Fermi-Pasta-Ulam) system [24] presents highly oscillatory nonlinear dynamics. It consists of a chain of 2(m +1)
mass points, connected with alternating soft nonlinear and stiff linear springs, and fixed at the end points [28]. The variables
q1, --->q2m (With go = g2m+1 = 0) denote the displacements of the moving mass points, and p; denote their velocities. The
motion is described by a Hamiltonian system with the Hamiltonian H given by

1 m a)z m m
Hp.@)=K@)+ V@)= X;(pii_1 +p3)+ % _X;(qzi —qai-1)? + ;(QZI+1 — gt (5.1)
1= 1= 1=

Here w represents the stiffness of the system. We consider the system with m =3 and w =50 in most numerical tests, as
the optimal parameters for a larger system with m = 100 are close to those of m = 3, see Fig. 4.

This nonlinear system is a benchmark problem for symplectic or quasi-symplectic integrators, which aim to produce
stable and qualitatively correct simulations [28]. As discussed in Section 2.2 and in Fig. 1, the popular Strémer-Verlet
method can only tolerate a limited time step size when the system is stiff, otherwise it leads to qualitatively incorrect
energies. Here the quantities of interest are the energy of each stiff spring and their total stiff energy. More specifically,
with a change of variables fori=1,...,m,

q2i +q2i—1 Q2i — q2i—1
X0,i * ﬁ , X1,i ﬁ s (5.2)

. b2i +DP2i1 . b2i — Pai—1
Yo,i - /2 » Y —ﬁ )

where xp; represents a scaled displacement of the ith stiff spring, x; ; a scaled expansion (or compression) of the ith stiff
spring, and yo, ¥1,; their velocities. The total stiff energy and the energy of the jth stiff spring are

(5.3)

m
1 .
L= Y"1y where L .y i= 5 (v + 0% ). j=1....m. (54)
j=1
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Properties of the deterministic FPU For a large w, the deterministic FPU model analytically exhibits behavior dependent on
initial data and time scales [28].

Depending on the initial condition, the system can present either close to linear or highly nonlinear dynamics. It behaves
close to a linear system when the initial state is dominated by the stiff springs, that is when the total energy of stiff springs
is of order O(1) and the total energy of soft springs is less or of the same order. The system behaves nonlinearly when the
initial state is mixed with both stiff and soft springs, which happens when the total energy of stiff springs is of order O (1)
and the total energy of soft springs is of order O (w?) or bigger. Numerical tests show that even trained only from one type
of these initial conditions, the NySALT scheme can predict the dynamics of the other type of initial conditions.

The FPU system shows dynamics varying with time scales as well. When the system starts from the nearly harmonic
state (i.e., the first case of initial conditions), it will behave differently as the time evolves [28]:

o short time scale w~!. The vibration of the stiff linear springs is nearly harmonic.
o median time scale »°. This is the time scale of the motion of the soft nonlinear springs.
o long time scale w'. Slow energy exchange among the stiff springs takes place on this time scale.

We will test the NySALT scheme (3.1) in these three time scales.

Properties of the stochastic FPU Stochastic perturbations can help simulate qualitatively the long time chaotic effect of the
deterministic nonlinear model. Thus, Stochastic FPU models have been used to study the thermal conductivity and transport
[8,62,82], asymptotic properties [65] and the stochastic resonance [57]. We consider a stochastic FPU with an additive white
noise on the velocity and with a fraction. The noise injects energy while the friction dissipates energy, introducing random
fluctuations to the energies. When they are relative small compared to the Hamiltonian, the stochastic FPU has dynamical
properties similar to those of the deterministic system in terms of dependence on the initial data and the time scales.
However, the total energy can fluctuate significantly larger than the total energy of the deterministic system, as we show
in Fig. 2. The stochastic FPU model is ergodic (see e.g., [55] and [60, Proposition 6.1]). Thus, we will examine the NySALT
and BAOAB schemes on producing the statistics of the energies, such as the time auto-covariance functions (ACF) and the
empirical distributions (PDF).

5.2. NySALT for the deterministic FPU

We examine two aspects of the NySALT: the robustness of the inference and its numerical performance as an integrator
for large time-stepping.

Numerical settings Unless otherwise specified, the numerical setting is as follows. We estimate the parameter (b}, g7) from
M = 100 short trajectories on the training time interval [0, Ty;] with Ty = 1/2 as described in Section 3.1. Therefore, Ty, is
in the time scale »°. The initial conditions are sampled according to

soft spring: xo.;(0) =1, y0,i(0) =1,

o (5.5)
stiff spring: %1 ;(0) = 1/w + &, y1.i(0)=1+n;,

where ¢; and n; are independent Gaussian random variables with distribution %N(O, 1). This initial distribution covers
the regions that the entire system is nearly harmonic at the beginning of evolution. The data trajectories, recorded as time
instants t, = né, are generated by the Stérmer-Verlet with a fine time step h = 1e—4, except when testing the dependence
on the symplectic integrator. The step size § = Gap x h is much larger than h, and we will test Gap in several ranges. The

optimal parameter is computed by constrained optimization with the interior point method with the loss function in (3.5).

Robustness of the inference The NySALT depends on data by design. Thus, it will depend on the system generating data and
its parameters converge as the data size increases. Importantly, it does not depend on the numerical integrator generating
the accurate fine data for training. We examine them numerically below.

e Robustness to data generator. We show first that NySALT is robust to the data generator. That is, the inferred parameter
does not depend on the integrator generating the training data, as long as the integrator is accurate, which is realized by
utilizing a sufficiently small time step h and by using only short trajectories so that the accumulated numerical error is
small.

Table 1 shows that the estimated parameter is the same for three integrators, indicating the robustness of NySALT
to the data generator. The three integrators are from the two-step Nystrom family and one of them is the Stérmer—
Verlet method. To ensure that numerical error in data is negligible, we use h = 1e—6. Since these integrators are second
order O (h?) methods, their numerical error in the training interval [0, T;] of order 0(10~'2). The NySALT has time step
8 = Gap x h with Gap = {1000; 5000; 10, 000}, that is § = {0.001; 0.005; 0.01}.

e Optimal parameters verse stiffness parameter w for different sizes of system. We examine next the dependence of the
parameters on w, which determines the stiffness of the system. Here we test w € {2,4,8, (10:10: 100)} with number
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Table 1

Inferred parameters from data sets generated by three Nystrom integrators
with parameter (bf, ﬂf). The fine step size is h = 1le—6 and the training
time is Ty = 1/2. The coarse step size is § = {0.001; 0.005; 0.01}, which
corresponds to Gap = {1000; 5000; 10000}.

Parameter of data generator Opt g7 Opt b}

Gap = 1,000 b =2/3; g =1/3 0.403 0.499

Gap =5, 000 0.403 0.500

Gap =10, 000 0.402 0.499

Gap = 1,000 bF=1/3; g =1/3 0.403 0.499

Gap =5, 000 0.403 0.500

Gap =10, 000 0.402 0.499

Gap = 1,000 bF=1/2; g =1/2 0.403 0.499

Gap =5, 000 0.403 0.500

Gap =10, 000 0.402 0.499

0 Ttest=°'5
% 10 £ [-©-NySALT —&—Verlet — — refline = Gap"2 ' 0.01F
T 1 .
B0 s T Y 27 5
—_ R . o)
€ - 1 20005
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> r i = ——Opt
< 10~ \ i i —6—Near Opt
08 . . T
20 T _71%0 300 0 50 100 150 200 250 300
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ugJ " : —1— ref line = Gap”2 ‘ 0.01 - AA
4 S
TRl S W < -+ ]
x 0.005 +
2103 e —e—Opt
g | P
<10 b & | |[eNewom
20 50 200 0 50 100 150 200 250 300
Gap Time

Fig. 5. Improving the accuracy. Left: Averaged relative Root-Mean-Square-Error (Avg rel RMSE (5.6) and (5.7)) over total length Tiest between NySALT and
Stormer-Verlet schemes. Right: L; errors of the energies (5.8) and phase angles (5.9) between NySALT and suboptimal Nystrom schemes.

of trajectories M = 100. Since the linear stability of the Stérmer—Verlet requires At < % the coarse step is set to be
8 = 1/w, which is half of the critical step size of linear stability. In comparison, we estimate the parameters of linear
Hamiltonian systems (4.1) with the same @ by minimizing [e4? — Bgl,ﬁl I%._, in Proposition 4.1. For a system of size
m = 3, as defined in (5.1), Fig. 3 (left) shows that inferred parameters for FPU are close to those of the linear Hamiltonian
system when > 30.

We also compute the optimal parameters of a large system with m = 100 and compare the values with those of
m = 3. As shown in Fig. 4, the optimal values for m = 100 are very close to those for m =3 with at most 3% relative
discrepancies. This validates the reliability of generalization error of NySALT in terms of the system size.

e Convergence in numbers of sample trajectories M. We examine next the convergence of the parameter estimator 6y; when
the sample size M increases with w = 50. Fig. 3 (right) shows the error of the estimators with M = 2118} in comparison
to the reference estimator with M = 22, As it can be seen, the estimator with M = 2 is already close the reference values,
with errors less than 1073, and the error decays at a rate about M~%4>, close to the theoretical rate in Theorem 3.2.

Numerical performance as an integrator for large stepping The NySALT provides an integrator adaptive to large time step size.
Since it utilizes the optimal parameters adaptive to each step size, it improves the accuracy of the solution and enlarges the
admissible time step size of accuracy, as the following numerical test demonstrates.

e Improving the accuracy. Fig. 5 (right) shows that the NySALT provides the most accurate solution for all time step sizes
ranging from § = Gap x h with Gap ranging in Gap € {(10: 10 : 100), (150 : 50 : 350), 390}, when comparing with the
Stormer-Verlet scheme. It presents the averaged relative Root-Mean-Square-Error (RMSE), which is averaged out over
multiple trajectories,

M
1
Avg rel RMSE := - > " rel RMSE™, (5.6)

m=1
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where the relative RMSE in the m-th trajectory is defined as

Ne ([F.m) gy — [C.m) (£:))2
1 I t) —1I t
rel RMSE™ = | — () 2(‘)) (5.7)
Nei3 (IR0 (£))

Here IF(™(t;) denotes the total energy of the reference solution with fine time step size h = le—4 at time ¢; in the
m-th trajectory, and similarly, IS (¢;) denotes the total energy of NySALT with coarse time step 8 = Gap x h. The number
of sample trajectories is M = 400.

We consider two time intervals [0, Tiest] With Test = 0.5 and Tiese = 100, representing the median and long time
scale O(w?®) and O (w"), respectively. At Tiest = 0.5, as shown in top left of Fig. 5, both integrators have errors increasing
linearly in § = Gap x h. The relative error by NySALT is two magnitudes smaller than that by Verlet until around Gap =
300. The linear dependence with slope 2 comes from the order 0(82) of the Nystrdm methods. At Test = 100, as shown
in bottom left of Fig. 5, the NySALT keeps the linear dependence of the relative error on § = Gap x h up to Gap = 50,
doubling the reach of the Verlet method. Furthermore, up to the Gap = 390, the relative error of NySALT scheme is
consistently smaller than that of the Verlet scheme. As a result and as we show next, NySALT can tolerate a larger time
step size beyond the limitation of Verlet.

We further validate the accuracy of NySALT with a large time step by examining the transitions of energies in the long
time scale O(w!). We consider sample M = 400 trajectories with the time interval [0, 300]. The right of Fig. 5 shows that
NySALT preserves the energy transition well, with errors significantly smaller than the suboptimal Nystrom integrator
with parameters b; = 0.45 and 81 = 0.43. The Stérmer-Verlet is not presented here because its errors are too large. Here
we use the Li errors of the energies and phase angles to quantify the accuracy. The L errors of the energies at time ¢t;
are computed as

3

1
Errpq () ::mE INGEIHOIRE (5.8)
i j=1

and the L; error of phase angles at time t;
N -— |9C +. Fot. Cet. Fot.
AngErryi () := |[0€(6) — 07 ()| - 8 + |0 (t) — @™ (t)] - 8. (5.9)

where the phase angles 9 (t;) and ¢€(t;) (and similarly #F and ¢F) are defined by

VIS @) JIS @)
VIt VIS

The fine data for reference is generated by the Stormer-Verlet with h = 1e—4. The coarse data are generated with § =1/w
(i.e., with Gap =200) by using the optimal and suboptimal parameters of Nystrom methods.

e Enlarging the maximal admissible time step size. In Fig. 5 (top left) with the timescale of O (w?), if we take threshold of
1% average relative RMSE for I, the maximum gap in Stormer Verlet scheme allowed is 70, however, the maximum gap
in NySALT scheme can reach at Gap = 300. Similarly in Fig. 5 (bottom left) with the timescale of O (w!), the maximum
gaps allowed with 1% average relative RMSE for both methods are 50 and 200. So NySALT scheme can enlarge at least
four times of the maximal admissible step size of the Stormer-Verlet scheme without loosing any accuracy.

We demonstrate next that when § =2/w (i.e., with Gap = 400), the linear stability limit of Stérmer-Verlet, NySLAT
can remain stable while Verlet blows up. Fig. 6 shows that the Stérmer-Verlet with coarse step size § blows up almost
immediately (within total time of 1), while the NySALT scheme remains stable and accurate and can capture the main
patterns of the energy transfer up to total time of 150. Notice that the maximal admissible time step size of stability of
the Stormer-Verlet method is less than 2/w, whereas NySALT can reach beyond it, reaching close (in additional tests) to
+/20/3/w, which agrees the maximal admissible step size of linear stability in Remark 4.3.

z?c(ti) 1= arccos (pc(ti)) ;= arctan

5.3. NySALT for the stochastic FPU

Similar to the deterministic example, we examine the stochastic NySALT scheme in terms of the robustness of its infer-
ence and its numerical performance as an integrator.

Numerical settings We consider the Langevin dynamics with the same FPU potential and the friction coefficient is = 0.01,
which is the underdamping case. The diffusion coefficient is o = 0.05. The optimal parameter (b7, 8}) is estimated by
minimizing the loss function (3.12) from M = 512 short trajectories on the training time interval [0, T¢;] with T =1 as
described in Section 3.2. In particular, the data trajectories consist of both the state X; and the stochastic force W and they
are generated by the BAOAB scheme with the fine time step size h = 1le—4. We downsample the state trajectories at time
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Fig. 6. Large time-stepping near the linear stability limit. Left, Middle and Right show the trajectories of scaled expansion of stiff springs x;; (5.2) and
stiff energies I; (5.3) generated by Stormer-Verlet scheme with the fine step size h, NySALT scheme with the coarse step size § =400h and Stérmer-Verlet
scheme with the coarse step size § = 400h.
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Fig. 7. Robustness of estimators. Left: Convergence of parameters as number of trajectories M increases. Right: Mean and errorbar of estimators at different
gaps in 10 independent simulations.

instants t, =ng, and approximate the one-step stochastic increment at time instants t, by (3.9). The coarse time step size
8 = Gap x h is much larger than h, with Gap ranging from 10 to 450. The initial conditions are uniformly sampled from a
single long simulated trajectory of total time of T = 25000.

Robustness of the inference The optimal estimators of NySALT scheme still stabilize very fast with small variations between
different datasets. Fig. 7 (Left) presents the absolute errors of the estimators with M = 2{29}, where the reference estimator
is computed from M = 1024 trajectories. From the figure, both estimators with M = 512 are close to the reference values,
with absolute errors less than 1072, and the error decays at rate about M~%44 which are close to theoretical rate in
Theorem 3.2 as well. Fig. 7 (Right) further shows the mean and errorbar of the estimators at different time gaps. Both
estimators are estimated with M = 512 trajectories. The runtime analysis shows it takes about 854 s on average to learn the
estimators at each gap. We repeat the inference procedure independently 10 times to assess the variability over the random
generated data. The mean of both estimators is close to optimal parameters in the linear Langevin system in sec. 4.2. Due
to the small variance, the errorbar is barely noticeable.

Numerical performance as an integrator The NySALT scheme has parameters adaptive to the time step size. Thus, like the
deterministic FPU, it can tolerate relatively large time step when compared to a classical integrator, as verified by Fig. 8.
Here we compare the NySALT scheme with BAOAB scheme, the state-of-the-art symplectic integrator in twofold: average
relative RMSE in short time scale and statistics in long time scale. In the current setting, we only compare the results
in terms of the total stiff energy I. All the parameters at various coarse time steps are estimated with M = 512 sample
trajectories.

o Average relative RMSE in short time scale. We consider the time interval [0, Ttest] With Tese = 1 and the number of sample
trajectories M = 10000. Both the NySALT and the BAOAB schemes integrate at the coarse time step § = Gap x h for Gap

18



X. Li, E. Lu, M. Tao et al. Journal of Computational Physics 477 (2023) 111952

Avg Rel RMSE of |

) %1073
) o oS — Fine with BAOAB 2
[ Co-NySALT / \ —— Gap=330 with BAOAB ,\ A F\ /\ /\ (\
t y w M- Gap=330 with NySALT W \ A l\ /\
‘| +-BAOAB 51/ 21’)”” NA

10 |- - ref line = Gap™

Gap=190 with NySALT

T T
| i

r|= = refline = Gap”*2 : :
i i
i i
i i
i i
i

e~ Fine with BAOAR
= —— Gap=190 with BAOAB
5 0 0.25 0.5
Time
e

.5 [-NySALT
i < —-BAOAB
e
Je]
L
%]
=
o £ . N
10 50 100 190 150
Gap

Fig. 8. Performance of the NySALT scheme, in comparison with the BAOAB scheme. Left: Average relative RMSE (in (5.6) and (5.7)) of the total stiff energy I
over total length Tiest = 1. Middle: The empirical distributions (PDF) and their total variation distances of both schemes at various coarse time steps. Right:
The time auto-covariance functions (ACF) and their RMSE of both schemes at various coarse time steps.

ranging from 10 to 450, with the same coarse grained stochastic force &; generated by (3.9) from W,. Their solutions
are compared with the reference solution generated by the BAOAB scheme with fine time step h = 10—, with the same
stochastic force W;. Fig. 8 (Left) shows the average relative RMSE of the total stiff energy in both schemes, where average
relative RMSE is defined in (5.6) and (5.7). In log scale, the error of BAOBA scheme keeps the linear dependence until
Gap = 200 with the slope 2, thereafter grows superlinearly. However, NySALT scheme stretches the linear dependence
to Gap =450 with the slope 1. The error of NySALT scheme is consistently smaller than that of BAOAB after Gap = 70,
which corroborates our goal of large time-stepping. If we take threshold of 10% average relative RMSE, the maximum gap
of BAOAB allowed is 70, while the maximum gap in NySALT can reach at Gap = 190.

Statistics in long time scale. Since the system is stochastic, we focus on statistics of long time trajectories, such as,
empirical distributions (PDF) and auto-covariance functions (ACF). We consider the time interval [0, Ttest] With Tiese = 40
and the number of sample trajectories M = 10000. Similar to previous simulation, we integrate both schemes with the
coarse time steps, whose gap ranging from 10 to 450. But the stochastic force in both schemes is not the same. We
estimate the PDF and ACF of the total stiff energy I for different gaps. The empirical distribution is sampled with the 100
equal width bins in [0, 1] and ACF at time t is defined

ACF(t) =E[llt47]1 — E[JE[It1-] (5.10)

with 7 € [0, 1]. Similarly, these PDF and ACF are compared with the reference solutions generated by BAOAB scheme
with fine step size. We use the total variance distance (TVD) as the metric to quantify the deviation from the reference
empirical measure. The total variance distance (TVD) between the empirical measure P at coarse step size and the
empirical measure Q at fine step size is defined as

1
TVD(P. Q) = ZlIP = Q. (5.11)

On the other hand, we use the RMSE as the metric to measure the error of ACF.

Fig. 8 (Middle top) shows that at Gap = 330, NySALT scheme accurately reproduces the empirical distribution, whereas
BAOAB scheme deviates largely from the reference due to the large time step. Fig. 8 (Middle bottom) shows that the
NySALT scheme has consistently smaller TVD than the BAOAB scheme after Gap > 200, remaining almost unchanged
(around 1072) even at Gap = 450. In particular, the TVD of BAOAB scheme at Gap = 330 is 10~!, which is one magnitude
larger than that of NySALT.

Fig. 8 (Right) shows the comparisons of the ACFs, where the top figure shows the ACFs when Gap = 190 and the
bottom figure shows the RMSEs of the ACFs for both schemes with ranges of gaps. The right top figure shows that at
medium gap Gap = 190, NySALT scheme produces an ACF almost exactly as the reference generated by BAOAB with fine
time step, in comparison, BAOAB scheme with the same step size produces an ACF with significantly larger oscillations.
Furthermore, the right bottom figure shows that the error of BAOAB scheme grows exponentially when Gap > 100, while
NySALT scheme remains accurate until about Gap = 400. So the maximum admissible time step size of NySALT scheme
almost quadruples that of BAOAB scheme.

In addition, NySALT scheme significantly reduces the computational cost. For example, to compute the ACF by M =
10000 sample trajectories, the run-time of the BAOAB scheme with fine step size is about 2078 s, whereas the NySALT
with medium step size Gap = 190 only takes 18 s. It is almost 115 times faster. Even we take into account of the training
time (which is about 854 s), it is still significantly better to use NySALT scheme.
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6. Conclusion

We have proposed and investigated a parametric inference approach to innovate classical numerical integrators to obtain
a new integrator which is tailored for each time step size and the specific system. In particular, we introduce NySALT,
a Nystrom-type inference-based schemes adaptive to large time-stepping. The framework of constructing inference-based
schemes from data has the major advantages:

e Compared to the generic classical numerical integrators, the inferred scheme with optimal parameters enlarges the max-
imal admissible while maintaining similar levels of accuracy.

e The parametric inference is robust regardless data generation and is immune to curse-of-dimensionality or overfitting.
Moreover, the scheme is generalizable beyond the training set for autonomous systems.

e The convergence of the estimators can be rigorously proved as data size increases.

We demonstrate the performance of the NySALT on both Hamiltonian and Langevin system via the Fermi-Pasta-Ulam
(FPU) potential. Numerical results verify the convergence of the estimators. Furthermore, they show that NySALT quadruples
the time step size for the Hamiltonian system and quadruples that for the Langevin system when comparing with the
Stormer-Verlet and the BAOAB to maintain the average relative RMSE within certain level.

Meanwhile, NySALT scheme still has a limited maximal time step size, which is inherited from the classical integrator.
The whole idea of NySALT can be easily extended to other family of the integrators. In the future work, we will investigate
improved approximation of the flow map by using new parametric forms or non-parametric learning to further extend time
step size.
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Appendix A. Derivative of the cost function

We provide here the detailed computation of the derivative of the cost function in (3.12). Recall that with a given time
step h, the Stochastic Symplectic Nystrém scheme consists of two components: a symplectic 2-step Nystréom scheme that
integrates the Hamiltonian part:

Xn1="Sp, 5 Xn),

and an exact integration of the Ornsterin-Uhlenbeck process:
S 0
XN, =0"Xni1 + [Sn]

no | I 0
where O _[0 exp(—yh)I |
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The cost function is rewritten trajectory-wise as

1 M
En®) = ) Em
m=1

where each summand function (superscript m is omitted) is
Ne—1
2
En(0) =5 Z |8(Fo(Xey. &, 8) — FXey, W 1,11: 00 | 51

Ne—1

=N Z ” tit1 th'H

Then, to compute the derivative of the cost function, it suffices to compute the derivative of each summand function, which
is

1

Ne—1

vgsm(m:Nlt > (Ve D1TE (XY, Xess )

n=0

| Mo T
3 z((oh o1 py) (XY, - Xfm))'
n=0

Here J(bq, B1) is the Jacobian of the symplectic integrator with respect to the parameters. It is computed directly as (recall
the definition of 521 P in (2.6) and [; in (2.5))

aﬁn+1 aﬁn+1

_ abq 9B
J(bl’ ’31) 0Pni1 apn-H

b op
ol 9L 14 14
| weEsR) w(a-arsieiz)
h(6r—t2+bi 35 +by52) h (b1 25 +by 32
where % =V ﬂlh"” 3;;‘ = Vﬁhbﬂ, and
1 1 1
1% B2 | 2 B1ba — b1y 344 2, B2
2 _ vy (=h L2727 P O g2, P2
ob, 2\ T2 by by b2
by —b h
=V, [ —hp ﬁz hzwﬁ12 I pn—hzﬁﬂ; ,
2 b, b2 b2
1% 2 B1b2 —b1B2 344 5, 1
2 _ v, (h L2727 R h2e; —
0B <””b b, 9p " 'h

:sz,< 1 hzﬂlbz b1B2 h

h — Vi - p, +h%e
Pni— b b2 b] pn 1 b2>
Here V1 and V¢, are

V€1 - Vg(qn + hC1 pn)

Vi, =Vg(qy, + heap, + h2az 1),
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