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Abstract

In this work we aim to develop a unified mathematical framework and a reliable computational approach to model the brittle
racture in heterogeneous materials with variability in material microstructures, and to provide statistical metrics for quantities
f interest, such as the fracture toughness. To describe the material responses such as the nucleation and growth of fractures in
uniform setting, we consider the peridynamics model. In particular, a stochastic state-based peridynamic model is developed,
here the micromechanical parameters are modeled by a finite-dimensional random field, e.g., a combination of truncated

andom variables determined by the Karhunen–Loève decomposition or the principal component analysis (PCA). To solve this
tochastic peridynamic problem, probabilistic collocation method (PCM) is employed to sample the random field that represents
he micromechanical parameters. For each sample, the corresponding peridynamic problem is solved by an optimization-based

eshfree quadrature rule. We present rigorous analysis for the proposed scheme and verify the convergence rate with a number
f benchmark problems. The proposed scheme not only possesses the asymptotic compatibility spatially but also achieves an
lgebraic or sub-exponential convergence rate in the parametric random space when the number of collocation points grows.
inally, to validate the applicability of this approach on real-world fracture problems, we consider the problem of crystallization

oughening in glass-ceramic materials, in which the material at the microstructural scale contains both amorphous glass and
rystalline phases. The proposed stochastic peridynamic solver is employed to capture the crack initiation and its growth of
he glass-ceramics with different crystal volume fractions, and the averaged fracture toughness are also calculated accordingly.
he numerical estimates of fracture toughness show good consistency with data from experimental measurements.
2022 Elsevier B.V. All rights reserved.
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1. Introduction

Detection and prediction of heterogeneous material damage are ubiquitous in applications of interest to the broad
cientific and engineering community [1–10]. In disciplines ranging from material design to non-destructive evalu-
tion, heterogeneities in materials and media need to be accurately captured to guarantee reliable and trustworthy
amage predictions that inform decision making. In the past decades, important discoveries and advancements
ave been made toward understanding material microstructures and its relationship with damage observed in the
acroscale. New experimental technologies and test procedures have been designed to observe much smaller
icrostructure patterns and make defects detection much faster [11–18]. On the other hand, novel mathematical
odels and numerical tools have been developed to describe failure initiation and progression, which provide

elatively inexpensive alternatives to the extensive experimental testing [19–23]. However, fundamental challenges
re still present in utilizing multiscale material models, and numerical simulations to provide a comprehensive
hysical and functional description of material damage, mainly due to the following difficulties [24]:

1. High complexity and heterogeneity in material damage problems generally require numerical simulations at
fine scales that are often computationally prohibitive. Bottom-up approaches such as the fine-grained atomistic
models have provided important insights into the fracture process, but they generally do not scale up to
finite-size samples. This limitation raises the need for new mathematical models that act at coarser scales
and capture complex nonlinear modes of failure from the fine scale.

2. Different material microstructures, properties, interfacial conditions, and operating environments all cause
variability within materials, which is tremendously difficult to be fully quantified. Therefore, without complete
detailed measurements for each individual material sample, it is often non-practical, if not impossible, to
provide full quantitative damage characterization. This fact calls for stochastic modeling of the variability
and characterization of material failure for uncertainty quantification.

These two challenges both call for mathematical models that not only capture the material fracture initiation
nd progression, but also account for heterogeneity and variability. To describe crack initiation and evolution
imultaneously from the microscale up, we employ the peridynamic theory, a spatially nonlocal continuum
heory, which provides a description of continuum mechanics in terms of integral operators rather than classical
ifferential operators [25–40]. These nonlocal models are defined in terms of a lengthscale δ, referred to as a

horizon, which denotes the range of nonlocal interaction between particles. The integral operator allows a natural
description of processes requiring reduced regularity in the relevant solution, such as fracture mechanics [41,42].
Therefore in peridynamics the material damage can be captured autonomously as a natural component of the
material deformation. To account for heterogeneity and variability, we propose to develop a stochastic peridynamics
formulation where the heterogeneous material property is modeled by a random field. Currently, most of the state-
of-the-art works on peridynamics consider a homogenized and/or deterministic model. However, a deterministic
and homogenized model may not work well when the material is highly heterogeneous, since the microstructure
may play a critical role in those materials. In a recent study on reinforced concrete modeling, Zhao et al. found
that a fully homogenized peridynamic model fails to capture certain fracture modes/patterns [43] in a correct
manner. Therefore, they have proposed a stochastic bond-based peridynamic model where the material property
is described by random fields. Each bond connecting two material points x and y is modeled by a random variable,
and the discrete probability distribution of this random variable depends on the volume fraction of aggregate and
cement. With this model, fracture patterns match experimental observations. Their findings indicate the importance
of incorporating the spatial variability of material properties in peridynamics. However, in [43] the authors focused
on the crack pattern in individual realizations rather than the solution’s statistics. Their numerical study only provides
a qualitative validation of the fracture patterns and the order in which various cracks develop. To provide quantitative
verification and validation of the model, it calls for an effective stochastic method to provide the statistical metric
on the impact of microstructure variability.

In this work, we propose a stochastic state-based peridynamics model where the heterogeneous material property
varies spatially and is described by a random field. The solution to this stochastic problem describes the statistics
of the material responses, such as the displacement and damage fields. In particular, we employ the linear
peridynamic solid (LPS) model [44] as a prototypical state-based model which is appropriate for brittle fracture,

and propose a heterogeneous LPS formulation where the formulation of two-point function is used to describe
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the heterogeneous material properties. Although such an averaged two-point function formulation was developed
for nonlocal diffusion [45,46] and peridynamics [47–51] models, we have for the first time provided rigorous
mathematical analysis for the well-posedness of this formulation in a heterogeneous LPS model. Furthermore,
an important feature of peridynamics is that when classical continuum models still apply, peridynamics revert to
classical continuum models as its horizon size δ → 0. Numerical discretizations which preserve this limit under
the grid refinement h → 0 are termed as asymptotically compatible (AC) [52], and there have been significant
works in recent years toward establishing such discretizations [33,45,52–61]. In this work, we have also rigorously
shown that our stochastic heterogeneous LPS model guarantees consistency to the corresponding local limit, which
provides a critical ingredient in achieving a convergent simulation in an asymptotic compatible way.

To study the impact of microstructure variability, our second objective is to numerically discretize the proposed
stochastic peridynamics model and compute the first two statistical moments, i.e., the mean and (co)variance. The
mean provides an unbiased estimate of the variables and the variance quantifies the uncertainty associated with
this estimate. Such a development calls for a comprehensive treatment of an AC spatial discretization together
with an effective stochastic approximation method, which can provide fast and convergent simulations for the
heterogeneous peridynamic fractures and offer stochastic modeling for the variability and characterization of material
failure for uncertainty quantification. Generally speaking, AC spatial discretization strategies for peridynamics can be
classified into two categories. The first class involves traditional finite element formulations and carefully performing
geometric calculations to integrate over relevant horizon/element subdomains, while the second type adopts a
strong-form meshfree discretization where particles are associated with an abstract measure, and provides a sharp
representation of the fracture surface by breaking bonds. The former is based on a variational setting and therefore
is more amenable to mathematical analysis, while the latter is simple to implement and is generally faster [62,63].
In this paper, we pursue the meshfree viewpoint. In particular, a meshfree method is developed based on the
optimization-based quadrature rule1 [33,34,45,65]. For the stochastic numerical method, several approaches were
developed for stochastic local (classical) PDE models, including probabilistic Galerkin methods (PGMs) [66–72],
probabilistic collocation methods (PCMs) [73–77], reduced basis methods [46,78–82], etc. Among these methods,
PCM with sparse grids inherits the ease of implementation in the Monte Carlo methods since only solutions at
sample points are needed. At the same time, it also reduces the required number of sample points to achieve a
given numerical accuracy for problems described by a relatively high dimensional random space. Consequently in
this work, we will employ PCM with full tensor products for random dimensions N ≤ 4, and PCM with sparse
grids when the dimension of random space is more than 4, following the suggestion by [77]. To verify and validate
the proposed model as well as the numerical approach, we numerically investigate the convergence to the analytical
local limit for a number of benchmark problems, including manufactured smooth solutions, composite material with
discontinuous material properties, and material fracture problems. In addition, we validate the estimates of fracture
toughness on randomly heterogeneous materials against an experiment of glass-ceramics [83], providing evidence
that the scheme yields accurate predictions for statistic damage metrics in practical engineering applications.

The paper is organized as follows. We firstly describe the deterministic and stochastic heterogeneous LPS
problems in Section 2, and provide mathematical analysis to establish their compatibility with the corresponding
local problems. Next, we pursue a consistent discretization. The numerical approach for stochastic LPS problems
is proposed in Section 3 and is numerically verified in Section 4. When no fracture occurs and the material
properties are sufficiently smooth, the classical continuum theory applies and the formulation preserves the AC limit
for δ-convergence, with an optimal O(δ2) convergence rate. When fracture occurs and/or the material properties
present discontinuity, the spatial discretization formulation is still able to capture the material heterogeneity and
the resulting damage field, with an O(δ) convergence rate to the local limit. Although the linear convergence with
respect to δ was reported in previous literature on deterministic nonlocal diffusion problems with interfaces [84,85],
this work has for the first time provided a systematic study on stochastic and peridynamic problems. When the
nonlocal solution is analytic with respect to the input random variables, this method at least guarantees an algebraic
convergence (for PCM with sparse grids) or exponential convergence (for PCM with full tensor products) with
respect to increasing sample size. Therefore, we have established a unified mathematical framework, which is
able to incorporate all of the necessary ingredients to perform non-trivial simulations of fracture mechanics in

1 For peridynamics one often refines both δ and h at the same rate under so-called δ-convergence [64]. In this setting, banded stiffness
matrix is obtained which allows scalable implementations. Although in the literature a scheme is termed AC if it recovers the solution
whenever δ, h → 0, in this work we adopt a practical setting and only require the δ-convergence for AC.
3
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heterogeneous materials while ensuring a scalable implementation and guaranteed convergence rate. In Section 5,
we further extend the proposed formulation to handle a more engineering-oriented problem, which is a glassy matrix
containing randomly distributed crystal grains. A quasi-static brittle fracture model is considered. The numerical
results provide preliminary quantitative validation when compared with available experimental measurements on
material fracture toughness. Section 6 summarizes our findings and discusses future research. Additional discussions
and detailed proofs are provided in Appendix.

2. Peridynamics for randomly heterogeneous materials

In this section, we introduce the state-based peridynamics formulation, together with the major notations and
efinitions. In particular, we consider the LPS model [44], which is a prototypical state-based model appropriate
or brittle fracture. The LPS model may be interpreted as a nonlocal generalization of the mixed form of linear
lasticity, evolving both displacements and a dilatation. We begin with a review of the deterministic LPS model for
eterogeneous materials [34] in Section 2.1, then extend the formulation to the stochastic LPS problem with random
arameters in Section 2.2. Finally, we discuss the treatment of material fracture, including the damage criteria and
he handling of free surfaces created by the evolving fractures, in Section 2.3.

.1. Deterministic peridynamics problem with heterogeneous material properties

We begin by reviewing the governing equations of deterministic LPS models which provide the foundation for
he stochastic problems of interest. In this section, we consider the material without damage, with fully prescribed
irichlet type boundary conditions, and will further extend the discussions to more general boundary conditions

nd brittle fractures in Section 2.3.
Consider a body occupying a bounded Lipschitz and convex domain Ω ⊂ Rd , d = 2 or 3, with Dirichlet-type

boundary conditions. Let u : Ω → Rd be the displacement field, θ : Ω → R be the nonlocal dilatation, generalizing
the local divergence of displacement, and K : Rd

×Rd
→ R+

∪ {0} is a nonnegative kernel function. In this paper
we further assume that the interacting kernel function K is radially symmetric (which can therefore be denoted as
K (r ) for r ∈ R+

∪ {0}, with a slight abuse of notation), with compactly support on Bδ(0), the δ-ball centered at 0,
and satisfies the following conditions:⎧⎪⎪⎪⎨⎪⎪⎪⎩

K (x, y) = K (|x − y|) = Kδ(|x − y|) =
1

δd+2 K1

(
|x− y|
δ

)
,

where K1 is nonnegative and there exists a positive constant ζ < 1 satisfying

Bζ (0) ⊂ supp(K1) ⊂ B1(0) and
∫

B1(0) K1(|z|)|z|2d z = d.

(2.1)

The above kernel assumptions have implications on the boundary conditions that are prescribed on a collar of
thickness δ near the boundary ∂Ω , that we denote as

IΩ := {x ∈ Ω |dist(x, ∂Ω ) < δ}, BΩ := {x /∈ Ω |dist(x, ∂Ω ) < δ}, BBΩ := {x /∈ Ω |dist(x, ∂Ω ) < 2δ}.

To apply the nonlocal Dirichlet-type boundary condition, we assume that u(x) = uD(x) are provided in BBΩ .
ithout loss of generality, for the analysis, we consider homogeneous Dirichlet boundary conditions uD(x) = 0.
In the original LPS model for materials with homogeneous material properties [44], the momentum balance is

iven by the following

Lδu := −
Cα

d

∫
Bδ (x)

(λ− µ) K (| y − x|) ( y − x) (θ (x) + θ ( y)) d y

−
Cβ

d

∫
Bδ (x)

µK (| y − x|)
( y − x)⊗ ( y − x)

| y − x|
2 (u( y) − u(x)) d y = f (x), for x ∈ Ω ,

(2.2)

here the nonlocal dilatation θ (x) is defined as

θ (x) :=

∫
K (| y − x|)( y − x) · (u( y) − u(x)) d y, for x ∈ Ω ∪ BΩ . (2.3)
Bδ (x)
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Here, f ∈ Rd denotes the external body loading forces, and µ, λ denote the (constant) shear modulus and Lamé
first parameter, respectively. With appropriate choice of scaling parameters Cα > 0, Cβ > 0 and the kernel function
K (r ), it can be shown that the system converges to the Navier equations [86–88] for linear elasticity:

L0u := −∇ · (λtr(E)I + 2µE) = −(λ− µ)∇[tr(E)] − µ∇ · (2E + tr(E)I) = f , (2.4)

where the strain tensor E :=
1
2

(∇u + (∇u)T ) and tr(E) denotes its trace. To recover parameters for 3D linear
lasticity, one should take Cα = 3, Cβ = 30; whereas for 2D problems, Cα = 2, Cβ = 16. In this paper we
onsider 2D problems (d = 2), although the algorithm may be generalized to more general kernels and 3D cases.

In [34], the authors extended the above original LPS model to composite materials constituted of multiple phases,
here the domain was partitioned into disjoint subdomains with piecewise constant material properties such that
(x) and µ(x) may vary for each material point x. In this work, we propose to further extend the original LPS model
2.2) and (2.3) to the general heterogeneous materials, with either continuous or discontinuous material parameters
(x) and µ(x). Specifically, for the deterministic problem where the Lamé moduli λ(x) and µ(x) may vary for each
aterial point x, satisfying

0 < λ0 = inf
x∈Ω∪BBΩ

λ(x) ≤ sup
x∈Ω∪BBΩ

λ(x) = λ∞ < ∞,

0 < µ0 = inf
x∈Ω∪BBΩ

µ(x) ≤ sup
x∈Ω∪BBΩ

µ(x) = µ∞ < ∞,

e employ the following momentum balance and nonlocal dilatation formulations:

LHδu := −

∫
Bδ (x)

(λ(x, y) − µ(x, y)) K (| y − x|) ( y − x) (θ (x) + θ ( y)) d y

− 8
∫

Bδ (x)
µ(x, y)K (| y − x|)

( y − x)⊗ ( y − x)
| y − x|

2 (u( y) − u(x)) d y = f (x),
(2.5)

where θ is defined in (2.3), and the two-point functions µ(·, ·), λ(·, ·) denote averaged material properties.
Specifically, we consider the interaction between x and y as a series of two springs connecting the two points,
and then the equivalent total spring constant will be the harmonic mean of the two spring constants [47,51,89]:

2
µ(x, y)

=
1

µ(x)
+

1
µ( y)

,
2

λ(x, y)
=

1
λ(x)

+
1
λ( y)

. (2.6)

We notice that µ(·, ·) and λ(·, ·) will also satisfy

0 < λ0 = inf
x, y∈Ω∪BBΩ

λ(x, y) ≤ sup
x, y∈Ω∪BBΩ

λ(x, y) = λ∞ < ∞,

0 < µ0 = inf
x, y∈Ω∪BBΩ

µ(x, y) ≤ sup
x, y∈Ω∪BBΩ

µ(x, y) = µ∞ < ∞.

or the proof of the algorithm’s wellposedness, we will also need the following assumptions on λ0, µ0, λ∞ and
∞:

ssumption 1. There exist two constants A0, A1 > 0 such that

(4 − A1)µ0 − A0(λ∞ − λ0) > 0, (2.7)

λ∞ −
λ∞ − λ0

2A0
−
µ∞

2A1
≥ 0. (2.8)

Remark 1. We note that the above assumption generally requires an upper bound of µ∞ and a relatively small
fluctuation of λ(x) and µ(x). When considering homogeneous materials where the Lamé and shear modulus λ(x)
and µ(x) are both constants, we have λ∞ − λ0 = 0 and the two conditions yield 8λ∞ > µ∞. This condition is
suboptimal, since the homogeneous LPS model can be proved to be well-posed given any λ,µ > 0 (see, e.g., [88]).

In Sections 4–5, empirical experiments are performed on cases that do not satisfy Assumption 1. Stable and
converging numerical results are still observed. We will investigate more general and optimal conditions of λ and
µ in future work.
5
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Consider a (quasi) static state-based peridynamic problem with Dirichlet-type boundary conditions:⎧⎪⎪⎨⎪⎪⎩
LHδu(x) = f (x), in Ω

θ (x) =
∫

Bδ (x) K (| y − x|)( y − x) · (u( y) − u(x)) d y, in Ω ∪ BΩ

u(x) = uD(x), in BBΩ

(2.9)

e multiply a test function v(x) satisfying v(x) = 0 in BBΩ to (2.5), integrate it with respect to x ∈ Ω ∪ BBΩ ,
hen we obtain the weak formulation

( f , v)L2(Ω)

= −

∫
Ω∪BBΩ

∫
Ω∪BBΩ

(λ(x, y) − µ(x, y)) K (| y − x|) ( y − x) · v(x) (θ (x) + θ ( y)) d ydx

− 8
∫
Ω∪BBΩ

∫
Ω∪BBΩ

µ(x, y)K (| y − x|)
( y − x)⊗ ( y − x)

| y − x|
2 (u( y) − u(x)) d yv(x)dx

=

∫
Ω∪BBΩ

∫
Ω∪BBΩ

(λ(x, y) − µ(x, y)) K (| y − x|) ( y − x) · (v( y) − v(x)) d y θ (x)dx

+ 4
∫
Ω∪BBΩ

∫
Ω∪BBΩ

µ(x, y)
K (| y − x|)
| y − x|

2 [( y − x) · (u( y) − u(x))][( y − x) · (v( y) − v(x))]d ydx

:=THδ[u, v; λ,µ],

here θ is defined by (2.3) and λ, µ are the two point material property functions defined in (2.6). We also denote
he strain energy density function at material point x as

Wu(x) :=

∫
Ω∪BBΩ

(λ(x, y) − µ(x, y)) K (| y − x|) ( y − x) · (v( y) − v(x)) d y θ (x)

+ 4
∫
Ω∪BBΩ

µ(x, y)
K (| y − x|)
| y − x|

2 [( y − x) · (u( y) − u(x))]2d y.

With the boundedness properties of λ(·, ·) and µ(·, ·), we have the following characterization of the space, with
etailed proof elaborated in Appendix A.1.

emma 1. The nonlocal energy semi-norm is

|u|SHδ (Ω) =

[∫
Ω∪BBΩ

∫
Ω∪BBΩ

K (| y − x|)
| y − x|

2 [( y − x) · (u( y) − u(x))]2d ydx
]1/2

,

nd the nonlocal energy space is

SHδ(Ω ) =

{
u ∈ L2(Ω;Rd ) :

∫
Ω∪BBΩ

∫
Ω∪BBΩ

K (| y − x|)
| y − x|

2 [( y − x) · (u( y) − u(x))]2d ydx < ∞, u|BBΩ = 0
}
.

In the rest of this paper, we will use ||u||L2 to denote the L2(Ω;Rd ) norm of u, and ||u||SHδ to denote the norm
on SHδ(Ω ):

||u||
2
SHδ

= ||u||
2
L2 + |u|

2
SHδ
.

With the equivalence of the total strain energy with the |·|SHδ seminorm proved in Lemma 1, similar as in [88] we
ave the following characterization of the zero energy solution:

emma 2. For all u ∈ SHδ(Ω ),
∫
Ω∪BBΩ Wu(x)dx ≥ 0, and

u = 0 in Ω ∪ BBΩ ⇐⇒ |u|SHδ = 0 ⇐⇒

∫
Ω∪BBΩ

Wu(x)dx = 0.

Following [87, Proposition 5.3] and [88, Proposition 5], we also have the nonlocal Poincare inequality:

emma 3. There exist δ > 0 and a constant C = C(δ) such that for all δ ∈ (0, δ) we have

||u|| ≤ C |u| , ∀u ∈ S (Ω ).
L2 SHδ Hδ

6
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With the above lemmas, we obtain the coercivity and continuity of the bilinear form THδ[u, v; λ,µ]:

Lemma 4. There exist δ > 0 and two constants r = r (δ) > 0 and C > 0 such that for all δ ∈ (0, δ) we have

Coercivity: THδ[u, u; λ,µ] ≥ r ||u||
2
SHδ
, (2.10)

Continuity: THδ[u, v; λ,µ] ≤ C ||u||SHδ
||v||SHδ , (2.11)

for any u, v ∈ SHδ(Ω ).

Proof. The coercivity of THδ is an immediate result of Lemmas 1 and 3. The continuity is obtained by applying
A.1) and (A.2). □

Finally, denoting the dual space of SHδ(Ω ) as SHδ(Ω )∗, the well-posedness result is obtained as an application
f the Lax–Milgram theorem:

heorem 1. For a given body load f ∈ SHδ(Ω )∗, there exists a unique u ∈ SHδ(Ω ) such that

THδ[u, v; λ,µ] = ⟨ f , v⟩, ∀v ∈ SHδ(Ω ).

With the well-posedness proved, we now investigate the consistency of the proposed nonlocal formulation with
he classical linear elastic model as δ → 0. Specifically, the classical linear elastic model with heterogeneous

aterial parameters writes2:{
LH0u(x) := −(λ(x) − µ(x))∇[tr(E(x))] − µ(x)∇ · (2E(x) + tr(E(x))I) = f (x), in Ω ,

u(x) = uD(x), on BBΩ ,
(2.12)

here E(x) :=
1
2

(∇u(x) + (∇u(x))T ). We denote uδ as the solution of the peridynamics problem (2.9) and u0 as
the solution of (2.12), and aim to show that uδ → u0 as δ → 0.

We first study the consistency of operators with the following lemma. Detailed proofs are elaborated in
Appendix A.2.

Lemma 5. Assume that u ∈ C4(Ω ∪ BBΩ ) and λ(·), µ(·) ∈ C2(Ω ∪ BBΩ ), then there exists δ > 0 such that for
ny 0 < δ ≤ δ, |LH0u(x) − LHδu(x)| ≤ Cδ2 for x ∈ Ω . Here the generic constant C is independent of δ but may

depend on the C4 norm of u.

With above regularity assumptions on u0 and λ(·), µ(·), we now further investigate the convergence of
|uδ − u0||L2 , with detailed proof provided in Appendix A.3:

heorem 2. Let uδ be the weak solution to the nonlocal problem and u0 be the weak solution to the local problem.
ssume that λ(·), µ(·) ∈ C(Ω ∪ BBΩ ). Then for any f ∈ (SHδ(Ω ))∗, the dual space of SHδ(Ω ), we have

∥uδ∥SHδ (Ω) ≤
∥ f ∥(SHδ (Ω))∗

r
. (2.13)

n addition, if ∥ f ∥(SHδ (Ω))∗ is uniformly bounded for all δ ∈ (0, δ) for some positive constant δ > 0, then the
onlocal and local problems are compatible as δ → 0:

lim
δ→0

||uδ − u0||L2(Ω;Rd ) = 0.

The next theorem characterizes the rate of convergence of uδ to u0 as δ → 0 when additional regularity is
ssumed for u0.

2 We note that it is generally not necessary to have the local solution u defined in BBΩ . When Ω is a Lipschitz domain, the above
bounds can also be obtained for the general u ∈ C4(Ω ), since one can extend u to a C4 function û in Rd (see, e.g., [90, Section 2.5]).
For further discussions on applying Dirichlet-type boundary conditions as an extended local solution, we refer interested readers to [65].
7



Y. Fan, H. You, X. Tian et al. Computer Methods in Applied Mechanics and Engineering 399 (2022) 115340

I

w

t
t
t

2

λ

t
r
a
b
c
t
i

w
h
d

F

f
h
I

Theorem 3. Let uδ be the weak solution to the nonlocal problem and u0 the weak solution to the local problem.
n addition, we assume that u0 ∈ C4(Ω ∪ BBΩ ) and λ(·), µ(·) ∈ C2(Ω ∪ BBΩ ). Then there exists δ > 0 such that

for any 0 < δ ≤ δ, we have

∥u0 − uδ∥SHδ (Ω) ≤ Cδ2,

here the generic constant C is independent of δ but may depend on the C4 norm of u0.

Proof. Since u0 is defined on Ω ∪ BBΩ , then we can compute −LHδu0(x) for any x ∈ Ω . Let f δ(x) = −LHδu0(x),
hen we have −eδ(x) = −LHδ(uδ − u0)(x) = LHδ(u0)(x) − LH0(u0)(x) = f (x) − f δ(x) for x ∈ Ω . From the
runcation error analysis in Lemma 5, we get ∥ f − f δ∥L∞(Ω,Rd ) = O(δ2). Since uδ − u0 is the weak solution to
he nonlocal problem with load vector f − f δ , we can use (2.13) to get

∥u0 − uδ∥SHδ (Ω) ≤ C∥ f − fδ∥L2(Ω,Rd ) ≤ C∥ f − fδ∥L∞(Ω,Rd ) = O(δ2). □

.2. Parametric peridynamics problem

In this section, we will consider the case where the material properties λ and µ are provided by random fields
(x, ω) and µ(x, ω), where ω ∈ Ωp and Ωp is the sample space of a probability space (Ωp,F ,P). Here, F is

he σ -algebra of subsets of Ωp and P is the probability measure. Following the practice in [45], we represent this
andom field in a “truncated” form using a limited number of random variables, either because they have been
pproximated by a truncated expansion such as the Karhunen–Loeve expansion or through PCA (see Section 5), or
ecause the input itself is defined in terms of a finite number of random variables. Thus, the material parameters
an be rewritten as λ(x, ξ ) and µ(x, ξ ), where ξ = (ξ(1), ξ(2), . . . , ξ(N )), N is a positive integer which denotes
he dimension of the parametric space, and ξ(i) are random variables, and we assume they are independent and
dentically distributed (i.i.d.) random variables. Under this setting, we consider

λ(x, ξ ) : (Ω ∪ BBΩ ) × Γ → R, µ(x, ξ ) : (Ω ∪ BBΩ ) × Γ → R,

here Γ is the space of ξ and it is typically called random space or parametric space. Without loss of generality,
ere we assume that Γ =

∏N
i=1 Γi ⊂ RN where Γi = [−1, 1], and the random variable ξ ∈ Γ has a probability

ensity ρ : Γ → R+. Similar as in the deterministic problem, for each ξ ∈ Γ , we use harmonic means of λ and µ
to model averaged material properties:

2
µ(x, y, ξ )

=
1

µ(x, ξ )
+

1
µ( y, ξ )

,
2

λ(x, y, ξ )
=

1
λ(x, ξ )

+
1

λ( y, ξ )
. (2.14)

We are then interested in solving the family of heterogeneous peridynamic problems given by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

LHδu := −
∫

Bδ (x) (λ(x, y, ξ ) − µ(x, y, ξ )) K (| y − x|) ( y − x) (θ (x, ξ ) + θ ( y, ξ )) d y

− 8
∫

Bδ (x) µ(x, y, ξ )K (| y − x|) ( y−x)⊗( y−x)
| y−x|2

(u( y, ξ ) − u(x, ξ )) d y = f (x), for x ∈ Ω ,

θ (x, ξ ) =
∫

Bδ (x) K (| y − x|)( y − x) · (u( y, ξ ) − u(x, ξ )) d y, for x ∈ Ω ∪ BΩ ,

u(x, ξ ) = uD(x, ξ ), for x ∈ BBΩ .
(2.15)

or each ξ ∈ Γ , we assume the uniform boundedness of the material properties, i.e.,

0 < λ0 = inf
x∈Ω∪BBΩ

λ(x, ξ ) ≤ sup
x∈Ω∪BBΩ

λ(x, ξ ) = λ∞ < ∞,

0 < µ0 = inf
x∈Ω∪BBΩ

µ(x, ξ ) ≤ sup
x∈Ω∪BBΩ

µ(x, ξ ) = µ∞ < ∞,

or ξ ∈ Γ , and λ0, λ∞, µ0, µ∞ satisfy Assumption 1. Therefore, for each ξ ∈ Γ , the conditions for Theorem 1 still
old and therefore the Lax–Milgram theorem ensures the well-posedness of the corresponding peridynamic problem.
n addition, in order to consider the limit δ → 0, we need to assume that for each ξ ∈ Γ and x ∈ Ω ∪ BBΩ ,

Ω ∪ BBΩ ). (2.16)
λ(·, ξ ), µ(·, ξ ) ∈ C(

8
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Then we have the corresponding family of local linear elastic problem for each ξ ∈ Γ :{
LH0u(x, ξ ) := −(λ(x, ξ ) − µ(x, ξ ))∇[tr(E(x, ξ ))] − µ(x, ξ )∇ · (2E(x, ξ ) + tr(E(x, ξ ))I) = f (x), in Ω ,

u(x, ξ ) = uD(x, ξ ), in BBΩ .
(2.17)

For each given parameter ξ ∈ Γ , we denote the solution to the peridynamic problem (2.15) by uδ(x, ξ ) and the
solution to the corresponding local equation (2.17) by u0(x, ξ ). A corollary of Theorem 2 is that uδ(x, ξ ) converges
to u0(x, ξ ) in the space L2(Ω ) ⊗ L2

ρ(Γ ) as δ → 0:

Corollary 1. Let uδ(x, ξ ) be the weak solution to (2.15) and u0(x, ξ ) the weak solution to (2.17). Assume that
λ(·, ξ ), µ(·, ξ ) ∈ C(Ω ∪ BBΩ ), then there exists δ > 0 such that for any 0 < δ < δ, we have

lim
δ→0

∥uδ − u0∥L2(Ω;Rd )⊗L2
ρ (Γ ) = 0.

In addition, if we have u0(·, ξ ) ∈ C4(Ω ∪ BBΩ ) with uniform C4 norm for ξ ∈ Γ and λ(·, ξ ), µ(·, ξ ) ∈
2(Ω ∪ BBΩ ), then

∥uδ − u0∥SHδ (Ω)⊗L2
ρ (Γ ) ≤ Cδ2,

where the generic constant C is independent of δ but may depend on the C4 norm of u0.

Proof. For any ξ ∈ Γ , and, we know from Theorem 2 that ∥uδ(·, ξ )∥SHδ (Ω) ≤ C for all δ ∈ (0, δ) and
∥uδ(·, ξ ) − u0(·, ξ )∥L2(Ω;Rd ) → 0 as δ → 0. Therefore, it is easy to see that ∥uδ(·, ξ ) − u0(·, ξ )∥L2(Ω;Rd ) ≤ C
or all ξ ∈ Γ and δ ∈ (0, δ). Using the dominated convergence theorem, we have

∥uδ − u0∥L2(Ω;Rd )⊗L2
ρ (Γ ) =

∫
Γ

∥uδ(·, ξ ) − u0(·, ξ )∥2
L2(Ω;Rd )ρ(ξ )dξ

δ→0
−→ 0.

he second statement comes from Theorem 3 by noticing that ∥u0(·, ξ )∥C4(Ω∪BBΩ) ≤ C for all ξ ∈ Γ . □

2.3. Peridynamics formulation for brittle fractures

One of the main appeals of peridynamics is to handle fracture problems, where free surfaces are associated with
the evolution of a fracture surface. In this section, we first consider the deterministic LPS model and propose the
handling of free surfaces in heterogeneous materials, then apply it to the treatment of material fractures. Lastly, we
will conclude this section with a stochastic LPS formulation for evolving fractures.

We now consider general mixed boundary conditions: ∂Ω = ∂ΩD
⋃
∂ΩN and (∂ΩD)o ⋂(∂ΩN )o

= ∅. Here ∂ΩD
nd ∂ΩN are both curves. To apply the nonlocal Dirichlet-type boundary condition, we assume that u(x) = uD(x)
re provided in a layer with non-zero volume outside Ω , while the free surface boundary condition is applied on
he sharp interface ∂ΩN . To define a Dirichlet-type constraint, we denote

IΩD := {x ∈ Ω |dist(x, ∂ΩD) < δ}, BΩD := {x /∈ Ω |dist(x, ∂ΩD) < δ}, BBΩD := {x /∈ Ω |dist(x, ∂ΩD) < 2δ},

nd assume that the value of u is given on BBΩD . For notation simplicity, we denote ΩD := Ω ∪BBΩD . Similarly,
o apply the free surface boundary condition, we denote

IΩN := {x ∈ Ω |dist(x, ∂ΩN ) < δ}, BΩN := {x /∈ Ω |dist(x, ∂ΩN ) < δ}, BBΩN := {x /∈ Ω |dist(x, ∂ΩN ) < 2δ}.

nless stated otherwise, in this paper we further assume sufficient regularity in the boundary that we may take δ
ufficiently small so that for any x ∈ IΩ , there exists a unique orthogonal projection3 of x onto ∂Ω , which is
he closest point on ∂Ω to x. We denote this projection as x. Therefore, one has x − x = sx n(x) for x ∈ IΩN ,
here 0 < sx < δ. Here n denotes the normal direction pointing out of the domain for each x ∈ IΩN , and

et p denote the tangential direction. Here, we propose the following formulation for the (partially) free surface

3 Here we notice that it is possible IΩD ∩ IΩN ̸= ∅. In our numerical solver, we treat x with the Dirichlet-type boundary condition if
the projection of x is in ∂Ω . Otherwise, we use the Neumann-type boundary condition at x.
D

9
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problem:

LNδu(x) := −

∫
Bδ (x)∩ΩD

(λ(x, y) − µ(x, y)) K (| y − x|) ( y − x)
(
θ corr (x) + θ corr ( y)

)
d y

− 8
∫

Bδ (x)∩ΩD

µ(x, y)K (| y − x|)
( y − x)⊗ ( y − x)

| y − x|
2 (u( y) − u(x)) d y

− 2θ corr (x)
∫

Bδ (x)\ΩD

(λ(x, y) − µ(x, y)) K (| y − x|) ( y − x) d y

− 4θ corr (x)
∫

Bδ (x)\ΩD

(λ(x, y) + 2µ(x, y))K (| y − x|)
[( y − x) · n][( y − x) · p]2

| y − x|
2 nd y

+ 4θ corr (x)
∫

Bδ (x)\ΩD

λ(x, y)K (| y − x|)
[( y − x) · n]3

| y − x|
2 nd y = f (x), (2.18)

nd

θ corr (x) =

∫
Bδ (x)∩ΩD

K (| y − x|) ( y − x) · M(x) · (u( y) − u(x)) d y, (2.19)

M(x) =

[∫
Bδ (x)∩ΩD

K (| y − x|) ( y − x)⊗ ( y − x) d y
]−1

. (2.20)

ere we notice that for x /∈ IΩN , M(x) coincides with the identity matrix and hence θ corr
= θ . Therefore, the

onlocal operator LNδ in (2.18) is the same as LHδ for x ∈ Ω\IΩN . That means, for material points which are
ufficiently far away from the free surface, we obtain the momentum balance and nonlocal dilatation formulation
2.5). On the other hand, when considering homogeneous materials, i.e., when λ(x) = λ and µ(x) = µ are constants,
e obtain the Neumann-type LPS formulation developed in [34], which as shown to provide an approximation for

he corresponding linear elastic model with free surfaces in the case of linear displacement fields.
With the free surface formulation, we now employ the composite LPS model (2.5) and extend it to model

rittle fracture in the general heterogeneous materials. In peridynamics, material damage is incorporated into the
onstitutive model by allowing the bonds of material points to break irreversibly. To model brittle fracture in the
PS model, we employ the critical stretch criterion where breakage occurs when a bond is extended beyond some
redetermined critical bond deformed length [34,91]. Although a similar idea can be applied for dynamic fracture
roblems [34], in this work we consider quasi-static fracture problems, and use the time instant t to denote the
ndexes for (incrementally increasing) loading in quasi-static problems. For example, the displacement solution at
ime instant t will be denoted as u(x, t). Consider the case where the material properties λ, µ and the fracture
nergy G are provided by random fields λ(x, ξ ), µ(x, ξ ) and G(x, ξ ), where we recall that ξ = (ξ(1), ξ(2), . . . , ξ(N )),
ith N ∈ N being the dimension of the parametric space, and ξ(i) are i.i.d. random variables. We propose the

ollowing formulation for x ∈ Ω

LFδu(x, t, ξ ) := −

∫
Bδ (x)

γ (x, y, t, ξ ) (λ(x, y, ξ ) − µ(x, y, ξ )) K (| y − x|) ( y − x)
(
θcorr (x, t, ξ ) + θcorr ( y, t, ξ )

)
d y

− 8
∫

Bδ (x)
γ (x, y, t, ξ )µ(x, y, ξ )K (| y − x|)

( y − x)⊗ ( y − x)
| y − x|

2 (u( y, t, ξ ) − u(x, t, ξ )) d y

− 2θcorr (x, t, ξ )
∫

Bδ (x)
(1 − γ (x, y, t, ξ )) (λ(x, y, ξ ) − µ(x, y, ξ )) K (| y − x|) ( y − x) d y

− 4θcorr (x, t, ξ )
∫

Bδ (x)
(1 − γ (x, y, t, ξ ))(λ(x, y, ξ ) + 2µ(x, y, ξ ))K (| y − x|)

[( y − x) · n][( y − x) · p]2

| y − x|
2 nd y

+ 4θcorr (x, t, ξ )
∫

Bδ (x)
(1 − γ (x, y, t, ξ ))λ(x, y, ξ )K (| y − x|)

[( y − x) · n]3

| y − x|
2 nd y = f (x, t), (2.21)

nd for x ∈ Ω ∪ BΩD

θ corr (x, t, ξ ) =

∫
Bδ (x)

γ (x, y, t, ξ )K (| y − x|) ( y − x) · M(x, t, ξ ) · (u( y, t, ξ ) − u(x, t, ξ )) d y, (2.22)

M(x, t, ξ ) =

[∫
γ (x, y, t, ξ )K (| y − x|) ( y − x)⊗ ( y − x) d y

]−1

, (2.23)

Bδ (x)

10
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where the averaged two-point functions µ(·, ·, ξ ), λ(·, ·, ξ ) are defined using the harmonic mean, following (2.14).
he boolean state function γ (x, y, t, ξ ) is defined and updated following

γ (x, y, t, ξ ) =

{
1, if s(x, y, τ, ξ ) ≤ s0(x, y, ξ ), ∀τ ≤ t, and y ∈ Bδ(x) ∩ ΩD,

0, otherwise,
(2.24)

ith the associated strain s and the critical bond stretch s0 related to material parameters:

s(x, y, t, ξ ) :=
∥u( y, t, ξ ) − u(x, t, ξ ) + y − x∥ − ∥ y − x∥

∥ y − x∥
,

s0(x, y, ξ ) :=

√
G(x, y)

4(λ(x, y, ξ ) − µ(x, y, ξ ))β ′ + 8µ(x, y, ξ )β
, where β :=

3δ
4π
, β ′

:= 0.23873δ. (2.25)

Here G(x, y, ξ ) is the averaged fracture energy defined via the arithmetic mean:

G(x, y, ξ ) =
1
2

(G(x, ξ ) + G( y, ξ )). (2.26)

o summarize, for each ξ ∈ Γ , we obtain a unified mathematical formulation for a (quasi)-static state-based
eridynamic problem with general mixed boundary conditions for brittle fractures:⎧⎪⎨⎪⎩

LFδu(x, t, ξ ) = f (x, t), in Ω

θcorr (x, t, ξ ) =
∫

Bδ (x) γ (x, y, t, ξ )K (| y − x|)( y − x)T M(x, t, ξ ) (u( y, t, ξ ) − u(x, t, ξ )) d y, in Ω ∪ BΩD

u(x, t, ξ ) = uD(x, t, ξ ), in BBΩD

(2.27)

emark 2. To see the intuition for the averaged material properties definition in (2.14) and the averaged fracture
nergy definition in (2.26), we take the interaction between x and y as an analog of a series of two springs connecting
he two points. Assuming that the two springs are with elongation lengths l1 and l2, respectively, and their spring
onstants are k1 and k2, respectively. We notice that l1 and l2 can be seen as the analog of the bond elongation in
eridynamics, i.e., u( y) − u((x + y)/2) and u((x + y)/2) − u(x), respectively, and k1, k2 can be seen as the analog
f material properties. Then the force balance between x, y yields k1l1 = k2l2 and therefore the equivalent strength

f this bond would be k =
k1l1 + k2l2

l1 + l2
=

2

k−1
1 + k−1

2

, which can be viewed as a simplified version of the harmonic

mean formulation for the averaged material properties definition in (2.14). On the other hand, the total energy of

the spring series writes
1
2

(k1l2
1 + k2l2

2 ), hence we define the averaged fracture energy via the arithmetic mean, as

shown in (2.26).4

3. Spatial and stochastic numerical methods

In this section, we firstly introduce a strong form of meshfree discretization for the stochastic LPS model.
Specifically, the optimization-based quadrature rule [33,34,45] will be employed for spatial discretization, which
is simple to implement and generally faster [62,63], and was shown to be asymptotically compatible with
corresponding local solutions in the absence of fracture [34]. To sample the random field, the probabilistic
collocation method (PCM) is employed, for its high accuracy and ease of implementation by sampling at discrete
points in a random space [73,93,94]. Of course, the main appeal of peridynamic discretizations is to handle
fracture problems. Therefore, we will also demonstrate how the meshfree scheme adapts to the brittle fracture
formulation described in Section 2.3, where free surfaces are associated with the time evolution of a fracture surface.
Finally, the fully-discretized formulation for the heterogeneous LPS model with random microstructure will be

4 We note that in some studies the harmonic mean formulation is employed for the averaged fracture energy (see [47] and references
therein), which would make the interfacial bonds relatively weaker than what we proposed here. However, as studied in [92], in bimaterial
problems the interfacial bond strength depends on the interfacial adhesion strength, which should be provided by experiments. Therefore,
without further measurements from experiments, we employ the arithmetic mean definition here since it provides a better agreement of
fracture toughness with experimental measurements in Section 5.
11
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considered. In absence of fracture and assuming that the solution possesses sufficient continuity, we show that the
proposed formulation sustains the asymptotic compatibility spatially and achieves an algebraic or sub-exponential
convergence rate in the random coefficients space as the number of collocation points grows. When fractures occur,
our formulation automatically provides a sharp representation of the fracture surface by breaking bonds for each
microstructure, and then estimates of quantities of interest in heterogeneous material damage problems, such as the
fracture toughness, can be obtained.

3.1. Spatial: Optimization-based meshfree quadrature rules

Discretizing the whole interaction region Ω ∪ BBΩ by a collection of points χh = {xi }{i=1,2,...,M} ⊂ Ω ∪ BBΩ ,
we aim to solve for the displacement ui ≈ u(xi ) and nonlocal dilatation θi ≈ θ (xi ) on each xi ∈ χh . Recall the

efinitions [95] of fill distance hχh ,Ω = sup
xi ∈Ω∪BBΩ

min
x j ∈χh

∥xi − x j∥2 and separation distance qχh =
1
2 min

i ̸= j
∥xi − x j∥2.

or simplicity we drop subscripts and simply write h and q. In this paper we assume that χh is quasi-uniform, namely
hat there exists cqu > 0 such that qχh ≤ hχh ,Ω ≤ cquqχh . To maintain an easily scalable implementation, we further
ssume δ to be chosen such that the ratio h

δ
is bounded as δ → 0, restricting ourselves to the “δ-convergence”

cenario [64].
Following [34], for materials without fracture we then pursue a discretization in 2D space of the system (2.2)

nd (2.3) through the following one point quadrature rule at χh [96]:

(Lh
Hδu)i :=

∑
x j ∈χh∩Bδ (xi )

(
λi j − µi j

)
Ki j

(
x j − xi

) (
θi + θ j

)
ω j,i (3.1)

+ 8
∑

x j ∈χh∩Bδ (xi )

µi j Ki j

(
x j − xi

)
⊗
(
x j − xi

)⏐⏐x j − xi
⏐⏐2 (

ui − u j
)
ω j,i = f i ,

θi :=

∑
x j ∈χh∩Bδ (xi )

Ki j (x j − xi ) ·
(
u j − ui

)
ω j,i , (3.2)

where we adopt notations qi = q(xi ), qi j = q(xi , x j ) for generic functions q . {ω j,i }x j ∈Bδ (xi ) is a collection of to-be-
determined quadrature weights corresponding to a neighborhood of collocation point xi , which will be constructed
through an optimization-based approach in [45] to ensure consistency guarantees. Specifically, we seek quadrature
weights for integrals supported on balls of the form

I [q] :=

∫
Bδ (xi )

q(xi , y)d y ≈ Ih[q] :=

∑
x j ∈χh∩Bδ (xi )\{xi }

q(xi , x j )ω j,i (3.3)

where the subscript i in
{
ω j,i

}
denotes that we seek a different family of quadrature weights for different subdomains

Bδ(xi ). These weights are then generated from the following optimization problem

argmin
{ω j,i}

∑
x j ∈χh∩Bδ (xi )\{xi }

ω2
j,i such that, Ih[q] = I [q] ∀q ∈ V h,xi , (3.4)

where V h,xi =

{
q( y − xi ) =

p( y−xi )
| y−xi |

3

⏐⏐⏐p ∈ P5(Rd ) such that
∫

Bδ (xi ) q( y − xi )d y < ∞

}
denotes the space of func-

tions which should be integrated exactly. Pm(Rd ) is the space of mth order polynomials. As shown in [34], for
u0 ∈ C4(Ω ∪ BBΩ ) this particular choice of reproducing space guarantees that the truncation error for all nonlocal
operators in (2.2) with respect to the local limit converges with an O(δ2) rate in the limit δ → 0. For further

iscussions and error estimates of this optimization-based quadrature rule, we refer interested readers to [45].

.2. Stochastic: Probabilistic collocation method with sparse grids

In this work, we use the probabilistic collocation method (PCM) in the parametric space to solve the parametric
eridynamics problem [73,93,94]. Consider the stochastic LPS Problem (2.15), PCM can be seen as a Lagrange
nterpolation in the random space. In particular, let ΘN = {ξ k}

Q
k=1 ⊂ Γ be a set of prescribed nodes such that the

Lagrange interpolation in the random space Γ is poised in an interpolation space Γ , where N is the dimension of the
I

12
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parametric space. Then any function v : Γ → R can be approximated using the Lagrange interpolation polynomial
J [v](ξ ) =

∑Q
k=1 v(ξ k)Jk(ξ ), where Jk(ξ ) is the Lagrange polynomial satisfying Jk(ξ ) ∈ ΓI and Jk(ξ j ) = δk j . In

the PCM approach, we first solve Q deterministic nonlocal problems:⎧⎪⎪⎨⎪⎪⎩
LHδu(x, ξ k) = f (x), in Ω

θ (x, ξ k) =
∫

Bδ (x) K (| y − x|)( y − x)T
(
u( y, ξ k) − u(x, ξ k)

)
d y, in Ω ∪ BΩ

u(x, ξ k) = uD(x, ξ k), in BBΩ

(3.5)

or k = 1, . . . , Q, and then define the approximation solution uQ(x, ξ ) :=
∑Q

k=1 u(x, ξ k)Jk(ξ ). Note that in practice
3.5) is solved by the deterministic meshfree solver discussed in Section 3.1. Therefore, the PCM approach can be
mplemented in an embarrassingly parallel way and the total computational cost is the product of the number of
ollocation points and the cost of solving a deterministic problem.

To choose the set of prescribed collocation nodes ΘN , in this work we consider two different strategies: the
ensor products of 1D collocation point sets and a sparse grid strategy for high dimensionality. In the tensor product
trategy, one first constructs a 1D interpolation for each dimension in the random space. For the i th dimension, we
ake ϖ(i) numbers of nodal points Θ

ϖ(i)
1 = {ξ i

1, . . . , ξ
i
ϖ(i)

} ⊂ [−1, 1], a 1D interpolation for a smooth function v on
he i th dimension then writes:

Uϖ(i) [v](ξ(i)) =

ϖ(i)∑
k=1

v(ξ i
k )J i

k (ξ(i)) (3.6)

here J i
k (ξ(i)) is the 1D Lagrange polynomial. Then for the case with high dimensionality in parametric space

: RN
→ R, the tensor product formula is:

J [v] = (Uϖ(1) ⊗ · · · ⊗ Uϖ(N )) [v] =

ϖ(1)∑
k1=1

· · ·

ϖ(N )∑
kN =1

v
(
ξ 1

k1
, . . . , ξ N

kN

) (
J 1

k1
⊗ · · · ⊗ J N

kN

)
. (3.7)

otice here (3.7) requires Q = Π N
i=1ϖ(i) numbers of collocation points in total, which grows exponentially as N

ncreases and makes the simulation non-feasible (see, e.g., [77]). Therefore, the tensor product strategy may be
mployed for problems with a small number of random dimension. For problems with a relatively large random
imension, we employ the sparse grids strategy. In particular, we employ the sparse grids constructed by the Smolyak
lgorithm [97], which is a linear combination of tensor product formulas:

J [v] =

∑
ζ−N+1≤|ϖ |≤ζ

(−1)ζ−|ϖ |l1

(
N − 1

ζ − |ϖ |l1

)
(Uϖ(1) ⊗ · · · ⊗ Uϖ(N )) . (3.8)

Here ζ is the sparseness parameter, ϖ = (ϖ(1), . . . ,ϖ(N )) ∈ NN , |ϖ |l1 =
∑N

i=1ϖ(i), and ϖ(i) represents the number
f collocation points in random dimension i . To compute (3.8), only evaluations on the sparse grids are needed:

ΘN =

⋃
ζ−N+1≤|ϖ |l1 ≤ζ

(
Θ
ϖ(1)
1 × · · · × Θ

ϖ(N )
1

)
. (3.9)

s shown in [98,99], (3.8) is exact for p(ξ ) ∈ Pζ−N (RN ) (all polynomials of degree less than ζ − N ) and the
otal number of nodes Q ∼

2N ζ−N

(ζ−N )! . Therefore, we may see that the sparse grid formulation typically requires a
much smaller number of collocation points Q than the full tensor product set and we will refer η = ζ − N as the
level” of the Smolyak formulation. As suggested in [77], generally the tensor product strategy is employed when
he dimension of parametric space N ≤ 4, and the Smolyak sparse grid is preferred when N > 4.

With a proper choice of ΘN , the statistical moments of each component of the random solution can then be
valuated with the numerical solution of (3.5) on all probabilistic collocation points ξ k ∈ ΘN . To numerically

compute the mean and the standard deviation of any function q(x, ξ ) of interest, we employ the quadrature rule
approximation by choosing the set ΘN as quadrature point set:

E[q](x) ≈

Q∑
q(x, ξ k)µk, (3.10)
k=1

13
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σ [q](x) ≈

√ Q∑
k=1

(q(x, ξ k))2µk −

[ Q∑
l=1

q(x, ξ l)µl

]2

, (3.11)

where {µk}
Q
k=1 is the set of corresponding quadrature weights.

We now investigate the approximation error of PCM in the parametric space. First, by our assumptions, λ(x, y, ξ )
and µ(x, y, ξ ) are continuous in ξ ∈ Γ . Therefore, using similar arguments presented in the last part of Theorem 2,
one can easily see that the map uδ(·, ξ ) : Γ ↦→ SHδ(Ω ) is continuous, i.e., uδ ∈ C(Γ ; SHδ(Ω )). Next, we follow the
rror analysis in [100], which depends on the higher regularity of the solution with respect to the parameter ξ ∈ Γ .
e make the following regularity assumption for the rest of this subsection.

ssumption 2 (Regularity). For each δ, we assume that the map uδ(·, ξ ) : Γ ↦→ SHδ(Ω ) admits an analytic
xtension to the region A(Γ , τ ) := {ξ̂ ∈ CN

: dist(ξ̂ ,Γ ) ≤ τ }. Moreover,

max
ξ̂∈A(Γ ,τ )

∥uδ(·, ξ̂ )∥SHδ (Ω;Cd ) ≤ C

or some C > 0. Note that the space SHδ(Ω;Cd ) is defined by

SHδ(Ω;Cd ) := {u ∈ L2(Ω;Cd ) : |u|
2
SHδ (Ω;Cd ) :=

∫∫
(Ω∪BBΩ)2

K (| y − x|)
| y − x|

2 |( y − x) · (u( y) − u(x))|2 d ydx < ∞}

where |v|
2 is understood as vv for v : Ω → Cd .

In [100, Theorems 3.10–3.11], error analysis of the Smolyak sparse grids is presented for the classical linear
elliptic PDEs, which is based on a fundamental result on the polynomial approximation of analytic functions. Here
we present a similar result of [100, Lemma 3.2] (see also [101, Lemma 4.4]) which is the key lemma for the
convergence theorem. Detailed proof can be found in Appendix A.4.

Lemma 6. Let Γ 1
= [−1, 1] and Pp denote the polynomial space of degree p. Given a function v(x, t) ∈

(Γ 1
; SHδ(Ω )) which admits an analytic extension to the region A(Γ 1, τ ) = {z ∈ C : dist(z,Γ 1) ≤ τ } for some

τ > 0, then

min
w∈Pp⊗SHδ (Ω;Cd )

∥v − w∥C(Γ1;SHδ (Ω)) ≤
2

ϱ − 1
e−p log(ϱ) max

z∈A(Γ1,τ )
∥v(·, z)∥SHδ (Ω;Cd )

here ϱ = 2τ +
√

1 + 4τ 2.

Once we have Lemma 6, which is an analogue of [100, Lemma 3.2], we can conclude with the following
onvergence theorem. The proof is omitted since it follows the arguments in [100, Theorems 3.10–3.11].

heorem 4. Assume that uδ satisfies Assumption 2. Let uQ
δ (x, ξ ) =

∑Q
k=1 uδ(x, ξ k)Jk(ξ ). There exist C1 > 0 and

1 > 0 depending on N and the analytic region A(Γ , τ ) such that

max
ξ∈Γ

∥uδ(·, ξ ) − uQ
δ (·, ξ )∥SHδ (Ω) ≤ C1 Q−β1 . (3.12)

oreover, when η > N
log(2) , there exist C2 > 0, C3 > 0 and β2 > 0 depending on N and the analytic region A(Γ , τ ),

nd β3 > 0 depending only on N such that

max
ξ∈Γ

∥uδ(·, ξ ) − uQ
δ (·, ξ )∥SHδ (Ω) ≤ C2 Qβ2e−C3 Qβ3

. (3.13)

emark 3. The convergence of the sparse grid approximation in the parameter space is presented in Theorem 4
s the number of Q increases. If we instead use the tensor product formula (3.7) with 1D Chebyshev points for
ach dimension in the parameter space (then p(i) = ϖ(i) − 1 for the i th dimension, and the total number of samples

Q = Π N
i=1ϖ(i)), then one can use the one dimensional result presented in Lemma 6 to get a convergence order.

n particular, if we assume ϖ = ϖ(i) for i = 1, 2, . . . , N , then we have a convergence order O(e−ϖ log(ϱ)) =

O(e−Q1/N log(ϱ)) where ϱ depends on the analytic region A(Γ , τ ).
14



Y. Fan, H. You, X. Tian et al. Computer Methods in Applied Mechanics and Engineering 399 (2022) 115340

T
o

M
a

Λ

P
T

w

We now present a result on the estimate of the difference between uQ
δ and u0.

heorem 5. Assume that u0 satisfies Assumption 2 with δ = 0. Then there exist C1 > 0 and β1 > 0 depending
n N and the analytic region A(Γ , τ ) such that

max
ξ∈Γ

∥u0(·, ξ ) − uQ
δ (·, ξ )∥SHδ (Ω) ≤ Λ(η, N ) max

ξ∈Γ
∥u0(·, ξ ) − uδ(·, ξ )∥SHδ (Ω) + C1 Q−β1 . (3.14)

oreover, when η > N
log(2) , there exist C2 > 0, C3 > 0 and β2 > 0 depending on N and the analytic region A(Γ , τ ),

nd β3 > 0 depending only on N such that

max
ξ∈Γ

∥u0(·, ξ ) − uQ
δ (·, ξ )∥SHδ (Ω) ≤ Λ(η, N ) max

ξ∈Γ
∥u0(·, ξ ) − uδ(·, ξ )∥SHδ (Ω) + C2 Qβ2e−C3 Qβ3

. (3.15)

(η, N ) is the Lebesgue constant associated with the sparse grid interpolation, satisfying

Λ(η, N ) ≤

∑
ζ−N+1≤|ϖ |l1 ≤ζ

(
N − 1

ζ − |ϖ |l1

) N∏
j=1

(
2
π

log(ϖ( j) + 1) + 1
)
. (3.16)

roof. Let u0 − uQ
δ = u0 − uQ

0 + uQ
0 − uQ

δ . The term maxξ∈Γ ∥u0(·, ξ ) − uQ
0 (·, ξ )∥SHδ (Ω) can then be estimated by

heorem 4. Notice that Λ(η, N ) is the Lebesgue constant associated with the sparse grid interpolation, i.e.,

Λ(η, N ) := sup
v∈C(Γ )

∥J [v]∥L∞

∥v∥L∞

,

where J [v] is given by (3.8), then we have

max
ξ∈Γ

∥uQ
0 (·, ξ ) − uQ

δ (·, ξ )∥SHδ (Ω) ≤ Λ(η, N ) max
ξ∈Γ

∥u0(·, ξ ) − uδ(·, ξ )∥SHδ (Ω),

which leads to the desired results. □

3.3. Stochastic peridynamics formulation with fracture

We now extend the optimization-based quadrature rule introduced in Section 3.1 to the stochastic LPS model
with fracture.

For a given point xi and the horizon δ, a bond is associated with each neighbor x j ∈ Bδ(xi ), and the weight ω j,i

is associated with this bond. In the meshfree formulation, the fracture surface and the corresponding Neumann-type
boundary ∂ΩN is represented by breaking bonds between xi and x j ∈ Bδ(xi )\ΩD . For x j ∈ Bδ(xi ) ∩ΩD and when
their bond stretch has not exceeded the critical bond stretch described in (2.25), we denote the bond between xi and
x j as “intact” and the change of displacement on material point x j may have an impact on the displacement at xi . On
the other hand, when x j /∈ ΩD and/or when s(x, y, τ, ξ ) > s0(x, y, ξ ) for some time τ < t , we consider the bonds
between xi and x j as “broken”. To discretize the LPS formulation (2.21)–(2.22), the quadrature weights associated

ith intact bonds will be employed in the calculation of integrals inside Bδ(xi ) ∩ ΩD and the weights associated
with broken bonds will be employed for integrals inside Bδ(xi )\ΩD . Particularly, we express the quadrature weights
associated with intact bonds as ω̃ j,i and the quadrature weights associated with broken bonds as ω̂ j,i through the
scalar boolean state function γ . In particular, for each sample ξ k ∈ ΘN , at the nth step we set:

γ n
j,i,k =

⎧⎨⎩1, if x j ∈ Bδ(xi ) ∩ ΩD and s(xi , xi , t l , ξ k) ≤ s0(xi , x j , ξ k), ∀l = 1, . . . , n,

0, otherwise,
(3.17)

ω̃n
j,i,k := ω j,iγ

n
j,i,k, ω̂n

j,i,k := ω j,i (1 − γ n
j,i,k). (3.18)

Notice that the new crack forms new free surfaces, which will be included in ∂ΩN . Therefore, the computational
domain Ω will be updated with the evolution of cracks, we therefore denote the updated domain Ω after the nth

n
step as Ω and all subdomains such as ΩD will also be denoted with a similar fashion. Numerical quadrature of a

15
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given function a(x) over Bδ(xi ) ∩ Ωn
D and Bδ(xi )\Ωn

D may thus be calculated via∫
Bδ (xi )∩Ωn

D

a( y)d y ≈

∑
x j ∈χh∩Bδ (xi )

ω̃n
j,i,ka(x j ),

∫
Bδ (xi )\Ωn

D

a( y)d y ≈

∑
x j ∈χh∩Bδ (xi )

ω̂n
j,i,ka(x j ).

his process is consistent with how damage is typically induced in bond-based peridynamics, such as the prototype
icroelastic brittle model [102].
Applying the above formulation in (2.21)–(2.22), at the nth quasi-static step, we aim to solve for the displacement

n
i,k ≈ u(xi , tn, ξ k) and nonlocal dilatation θn

i,k ≈ θ (xi , tn, ξ k) through the following meshfree scheme:

(Lh
Fδu)n

i,k =

∑
x j ∈χh∩Bδ (xi )

Ki j
[(

−
(
λi j,k − µi j,k

) (
x j − xi

) (
θn

i,k + θn
j,k

)
−8µi j,k

(
x j − xi

)
⊗
(
x j − xi

)⏐⏐x j − xi
⏐⏐2 ·

(
un

j,k − un
i,k

))
ω̃n−1

j,i,k

+

(
−2

(
λi j,k − µi j,k

) (
x j − xi

)
− 4(λi j,k + 2µi j,k)nn−1

i,k

[
(
x j − xi

)
· nn−1

i,k ][
(
x j − xi

)
· pn−1

i,k ]2⏐⏐x j − xi
⏐⏐2

+4λi j,knn
i,k

[
(
x j − xi

)
· nn

i,k]3⏐⏐x j − xi
⏐⏐2

)
θn

i,kω̂
n−1
j,i,k

]
= f (xi ), (3.19)

θn
i,k =

∑
x j ∈χh∩Bδ (xi )

Ki j
(
x j − xi

)
· Mn

i,k ·
(
un

j,k − un
i,k

)
ω̃n−1

j,i,k, (3.20)

where λi j,k := λ(xi , x j , ξ k), µi j,k := µ(xi , x j , ξ k),

Mn
i,k :=

⎡⎣ ∑
x j ∈χh∩Bδ (xi )

Ki j (x j − xi ) ⊗ (x j − xi )ω̃n−1
j,i,k

⎤⎦−1

, (3.21)

the normal vector n(x) on free surfaces is numerically approximated and updated as

nn
i,k = −

∑
x j ∈χh∩Bδ (xi )

(x j − xi )ω̃n−1
j,i,k⏐⏐⏐⏐⏐

⏐⏐⏐⏐⏐ ∑
x j ∈χh∩Bδ (xi )

(x j − xi )ω̃n−1
j,i,k

⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐
, (3.22)

and the tangential vector pn
i,k is calculated as the orthogonal direction to nn

i,k . The correction tensor should be
invertible to ensure that the correction dilatation can be computed. This holds as long as the bonds in the horizon
are non-colinear. For fracture case resulting in bond break, leaving an isolated particle, the matrix inverse may be
replaced with the pseudo-inverse to improve the robustness. To postprocess fracture evolution and identify cracks,
the damage field φn

i,k ≈ φ(xi , tn, ξ k) can then be defined as

φn
i,k =

∑
x j ∈χh∩Bδ (xi )\xi

(1 − γ n
j,i,k)∑

x j ∈χh∩Bδ (xi )\xi

1
, (3.23)

which measures the weakening of material via the percentage of broken bonds in the neighborhood of xi .

4. Numerical verification of convergences

In this section, we will investigate the asymptotic compatibility of the proposed method by testing the
convergence of the numerical solution to its local limit. Three test problems are considered: (1) a material
deformation problem featuring smooth local limit for its displacement, (2) a composite material deformation problem
featuring discontinuous material properties, and (3) an interfacial crack problem with in-plane extension of two
dissimilar materials. In each test we study the L2 errors for the mean and standard deviation of the solution. Let
16
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uh,Q
δ represent the numerical solution with spatial grid size h in meshfree methods and Q samples in PCM, u0

stands for the analytical local limit. We investigate the convergence of numerical solutions to the local limit as Q
increases and δ, h → 0 simultaneously with fixed ratio under the δ-convergence limit. In particular we calculate
the expectation E and standard derivation σ

∥E(uh,Q
δ ) − E(u0)∥L2(Ω), and ∥σ (uh,Q

δ ) − σ (u0)∥L2(Ω). (4.1)

In the stochastic problem, the Young’s modulus E(x, ξ ) is set as a random field to represent the uncertainty in
aterial microstructure, while the Poisson ratio ν is taken as a constant in the whole domain. Moreover, we assume

hat the material model satisfies the plane strain assumption:

λ(x, ξ ) = E(x, ξ )ν/((1 + ν)(1 − 2ν)), µ(x, ξ ) = E(x, ξ )/(2(1 + ν)).

Following the conventions in [34], we adopt the nonlocal Lamé moduli as the harmonic mean of the local ones.
Similarly, for problems with fracture, the local fracture energy G(x, ξ ) is also a random field, with the nonlocal
fracture energy G(x, y, ξ ) defined via the arithmetic mean of the local ones. For all tests in this validation section,
the dimension N of the parametric spaces is less than 4. Therefore, in PCM the tensor product strategy is employed
to generate the collocation point set ΘN . Moreover, in all numerical examples, we adopt the following popular
scaled kernel for K :

K (r ) =

⎧⎨⎩
3

πδ3r
, for r ≤ δ,

0, for r > δ.

(4.2)

4.1. Test 1: An LPS problem with smooth local limit

We first demonstrate the convergence rates on a Dirichlet-type LPS problem without fracture. In particular, we
consider a case with 2D physical domain Ω = [−0.5, 0.5]×[−0.5, 0.5] depending on a random variable ξ following

Gaussian distribution ξ ∼ N (0, 0.12). The analytical local solution of displacement is given by

u0(x, ξ ) = u0(x, y, ξ ) = [sin(x) sin(y)/(2 + sin(5ξ )),− cos(x) cos(y)/(2 + sin(5ξ ))] ,

ith Young’s modulus

E(x, ξ ) = E(x, y, ξ ) = (2 + sin(x) sin(y))(2 + sin(5ξ )),

nd fixed loading f (x) = f (x, y):

f (x, y) =

[
(C1 + C2)(−4 sin(x) sin(y) + 2 cos(2x) sin2(y)) + C2(−4 sin(x) sin(y) + 2 cos(2y) sin2(x))

(C1 + 2C2)(4 cos(x) cos(y) + sin(2x) sin(2y))

]T

,

here C1 := ν/((1 + ν)(1 − 2ν)),C2 := 1/(2(1 + ν)). In this problem we consider full Dirichlet-type boundary
ondition on ∂Ω , and Dirichlet-type boundary conditions are applied on BBΩ as uD(x, y, ξ ) = u0(x, y, ξ ). Two
alues of Poisson ratio, ν = 0.3 and 0.495, are investigated which correspond to compressible (as denoted by
compressible”) and nearly-incompressible (as denoted by “near-inc”) materials, respectively. Here we notice that
hen ν = 0.3, Assumption 1 is satisfied and we therefore have the O(δ2) convergence to the local limit guaranteed
y Theorem 3. However, when the material is nearly-incompressible, Assumption 1 is not satisfied.

Numerical results are provided in Fig. 1. With fixed ratio δ/h = 3.0 and Q = 15 samples, in Fig. 1(a) we show
he error of numerical solution with respect to the analytical local limit for grid sizes h = {1/8, 1/16, 1/32, 1/64,
/128, 1/256}. The optimal second-order convergence O(δ2) is observed, which is consistent with Corollary 1 and
he results in [34]. In Figs. 1(b) and 1(c) we fix h = 1/256 and δ = 3.0h, and show the convergence of solution error
ith increasing number of samples Q ∈ {1, . . . , 5} in the parametric space. In Fig. 1(b), the horizontal axis is taken

s ϖ (notice that we have ϖ = Q, the number of samples, in this 1D case) in the logarithm scale to investigate if
he solution error has algebraic convergence or not, while in Fig. 1(c), the horizontal axis is taken as the polynomial
rder ϖ in the linear scale to investigate the exponential convergence. Almost exponential convergence is observed
mpirically, verifying the analysis of Remark 3. Similar convergence rates are observed in the compressible and
early incompressible cases, which indicates that the conditions in Assumption 1 are sufficient conditions for the

ompatibility property but not a necessity.

17
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Fig. 1. Convergence study of Test 1: a LPS problem with smooth local limit on 2D physical domain and 1D parametric space. Both
ompressible (ν = 0.3, as denoted by “compressible” cases) and nearly incompressible (ν = 0.495, as denoted by “near-inc” case) are

investigated. Results in (a) are generated with 15 samples. The data points in (b) and (c) correspond to 1, 2, . . . , 5 samples, respectively.

4.2. Test 2: Composite material with discontinuous material properties

We now investigate composite materials with discontinuous material properties. A 2D physical domain Ω =

[−π/2, π/2] × [−π/2, π/2] and 2D parametric space ξ = (ξ(1), ξ(2)) are considered, where ξ(1), ξ(2) are i.i.d.
tandard Gaussian random variables, i.e. ξ(k) ∼ N (0, 1), k = 1, 2. Denoting the left half of the physical domain as
Ω1 := [−π

2 , 0]× [−π
2 ,

π
2 ] and the right half as Ω2 := [0, π2 ]× [−π

2 ,
π
2 ], the analytical local solution of displacement

is given by

u0(x, ξ ) =

⎧⎨⎩
[
3x/(3 + sin(ξ(1)) + sin(ξ(2))),−x/(3 + sin(ξ(1))) + sin(ξ(2))

]
, for (x, y) ∈ Ω1[

1.5x/(3 + sin(ξ(1)) + sin(ξ(2))),−0.5x/(3 + sin(ξ(1)) + sin(ξ(2)))
]
, for (x, y) ∈ Ω2

ith Young’s modulus

E(x, ξ ) =

⎧⎨⎩3 + sin(ξ(1)) + sin(ξ(2)), for (x, y) ∈ Ω1

2(3 + sin(ξ(1)) + sin(ξ(2))), for (x, y) ∈ Ω2

nd zero loading forces f . In this example we also consider the LPS formulation with full Dirichlet-type boundary
ondition and without fracture. For x ∈ BBΩ , Dirichlet-type boundary conditions are applied as the analytical
18
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Fig. 2. Convergence study of Test 2: composite material with discontinuous material properties on 2D physical domain and 2D parametric
pace. Both compressible (ν = 0.3, as denoted by “compressible” cases) and nearly incompressible (ν = 0.495, as denoted by “near-inc”

cases) are investigated. Results in (a) are generated with 152
= 225 samples. The data points in (b) and (c) correspond to 12, 22, . . . , 62

amples, respectively.

ocal solution. Similar as in Test 1, two values of Poisson ratio, ν = 0.3 and 0.495, are investigated. Assumption 1
s satisfied when ν = 0.3, but not for ν = 0.495. Here we notice that with discontinuous material properties, the
onditions in our compatibility Theorem 2 are no longer satisfied. Therefore, with this example we aim to investigate
he numerical stability and AC convergence rates that the theoretical analysis in Section 2.1 does not cover. On the
ther hand, with the smoothness of u0 in the parametric space, it satisfies Assumption 2. Therefore, as we increase

in PCM, an exponential convergence is expected from Remark 3.
Numerical results are provided in Fig. 2. With fixed ratio δ/h = 3.0 and Q = 225 samples, in Fig. 2(a) we show

he error of numerical solution with respect to the analytical local limit for grid sizes h = {π/8, π/16, π/32, π/64,
/128}. First-order convergence O(δ) is observed, which is consistent with the numerical observations in [34].

n Figs. 2(b) and 2(c) we fix h = π/256 and δ = 3.0h, and show the convergence of solution error with
ncreasing number of samples Q ∈ {12, . . . , 62

} in the parametric space. Similar as in test 1, in Fig. 2(b), the
orizontal axis is taken as ϖ (notice that we have Q = ϖ 2 in this case, since the tensor product formula is

employed in PCM) in the logarithm scale while in Fig. 2(c), the horizontal axis is taken as ϖ in the linear scale to
investigate the exponential convergence. An exponential convergence is observed empirically, verified the analysis in
Remark 3.
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Fig. 3. Problem setup and analytical solutions in Test 3: material fracture on a bimaterial interface.. (For interpretation of the references to
olor in this figure legend, the reader is referred to the web version of this article.)

.3. Test 3: Material fracture on a bimaterial interface

In this example, we proceed to consider the fracture problem. As shown in Fig. 3, we consider the in-
lane extension of two dissimilar materials with cracks aligning with their interface. A physical domain Ω =

[−π/2, π/2] × [−π/2, π/2] is employed. The material property depends on a two i.i.d. random variables ξ(1) and
ξ(2), where ξ(1) ∼ N (0, 1) satisfies a Gaussian distribution and ξ(2) ∼ U[−1, 1] satisfies a uniform distribution. The

oung’s modulus of the two materials, on the upper half plane and the lower half plane respectively, are denoted as
E1(ξ ) and E2(ξ ). In particular, we take E1(ξ ) = 2+ sin(ξ(1)) and E2(ξ ) = 2+ sin(ξ(2)). Both compressible (ν = 0.3)
nd nearly incompressible (ν = 0.495) will be investigated. Again, Assumption 1 is satisfied when ν = 0.3, but
ot for ν = 0.495. For this problem the Cartesian component of the analytical local displacement field u is given
y [103]:

u0(x, ξ ) =

[
u(x, ξ )

v(x, ξ )

]T

=

√
r (x)
2π

(
Re(r (x)iϵ(ξ ))

[
u I (ψ(x), ξ )

v I (ψ(x), ξ )

]
+ Im(r (x)iϵ(ξ ))

[
u I I (ψ(x), ξ )

v I I (ψ(x), ξ )

])T

(4.3)
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where (r (x), ψ(x)) correspond to the local polar coordinate system of x with origin at the crack tip, Re(·) and Im(·)
denote the real and imaginary parts of a complex number, respectively. Notice that in this example we follow [103]
and take the complex stress intensity factor (SIF) as 1.0. The bimaterial constant ϵ(ξ ) depends on the material
properties of both materials and leads to oscillation of near-tip displacements and stresses:

ϵ(ξ ) =
1

2π
log

µ2(ξ )κ1 + µ1(ξ )
µ1(ξ )κ2 + µ2(ξ )

, µm(ξ ) =
Em(ξ )

2(1 + ν)
, κm = 3 − 4ν, for m = 1, 2. (4.4)

e set the material properties µ(x, ξ ) = µ1(ξ ), κ(x) = κ1 when x is in the upper half-plan, and µ(x, ξ ) =

µ2(ξ ), κ(x) = κ2 when x is in the lower half-plan. (u I , v I ) and (u I I , v I I ) are then functions of the angular ψ(x)
and ξ :

u I (ψ(x), ξ ) := −
1

2µ(x, ξ )(1 + 4ϵ(ξ )2) cosh(πϵ(ξ ))

{
[eϵ(ξ )(Π (x)−ψ(x))

− κ(x)e−ϵ(ξ )(Π (x)−ψ(x))] cos(ψ(x)/2)

− (1 + 4ϵ(ξ )2)e−ϵ(ξ )(Π (x)−ψ(x)) sinψ(x) sin(ψ(x)/2)

+ 2ϵ(ξ )[eϵ(ξ )(Π (x)−ψ(x))
+ κ(x)e−ϵ(ξ )(Π (x)−ψ(x))] sin(ψ(x)/2)

}
,

v I (ψ(x), ξ ) :=
1

2µ(x, ξ )(1 + 4ϵ(ξ )2) cosh(πϵ(ξ ))

{
[eϵ(ξ )(Π (x)−ψ(x))

+ κ(x)e−ϵ(ξ )(Π (x)−ψ(x))] sin (ψ(x)/2)

− (1 + 4ϵ(ξ )2)e−ϵ(ξ )(Π (x)−ψ(x)) sinψ(x) cos(ψ(x)/2)

− 2ϵ(ξ )[eϵ(ξ )(Π (x)−ψ(x))
− κ(x)e−ϵ(ξ )(Π (x)−ψ(x))] cos(ψ(x)/2)

}
,

u I I (ψ(x), ξ ) :=
1

2µ(x, ξ )(1 + 4ϵ(ξ )2) cosh(πϵ(ξ ))

{
[eϵ(ξ )(Π (x)−ψ(x))

+ κ(x)e−ϵ(ξ )(Π (x)−ψ(x))] sin (ψ(x)/2)

+ (1 + 4ϵ(ξ )2)e−ϵ(ξ )(Π (x)−ψ(x)) sinψ(x) cos(ψ(x)/2)

− 2ϵ(ξ )[eϵ(ξ )(Π (x)−ψ(x))
− κ(x)e−ϵ(ξ )(Π (x)−ψ(x))] cos(ψ(x)/2)

}
,

v I I (ψ(x), ξ ) :=
1

2µ(x, ξ )(1 + 4ϵ(ξ )2) cosh(πϵ(ξ ))

{
[eϵ(ξ )(Π (x)−ψ(x))

− κ(x)e−ϵ(ξ )(Π (x)−ψ(x))] cos(ψ(x)/2)

+ (1 + 4ϵ(ξ )2)e−ϵ(ξ )(Π (x)−ψ(x)) sinψ(x) sin(ψ(x)/2)

+ 2ϵ(ξ )[eϵ(ξ )(Π (x)−ψ(x))
+ κ(x)e−ϵ(ξ )(Π (x)−ψ(x))] sin(ψ(x)/2)

}
.

(4.5)

Here the value of Π (x) also depends on the location of x: Π (x) = π for x on the upper half-plane, whereas
(x) = −π for the lower half-plane. In Fig. 3 we plot the analytical local solution for the damage field and the

isplacement fields for illustration. In particular, the crack is represented by breaking the bonds across the segment
etween (−π

2 , 0) and (0, 0). On the crack surface, free surface conditions are imposed, while full Dirichlet-type
boundary conditions are applied on all four sides of the plate. Similar as in Test 2, in this example the Young’s
modulus E(x, ξ ) is (spatially) discontinuous across the interface, and therefore the conditions in our compatibility
Theorem 2 are no longer satisfied.

Numerical results for compressible and nearly incompressible cases are provided in Figs. 4 and 5, respectively.
With fixed ratio δ/h = 3.0 and Q = 400 samples, in Figs. 4(a) and 5(a) we show the error of numerical solution
with respect to the analytical local limit for grid sizes h = {π/8, π/16, π/32, π/64, π/128, π/256}. First-order
convergence O(δ) is observed. In Figs. 4(b), 4(c), 5(b) and 5(c), using fixed grid size h = π/256 and δ = 3.0h,
we demonstrate the convergence of solution errors with increasing number of samples Q = {12, . . . , 92

} in the
arametric space. Similar as in tests 1 and 2, in Figs. 4(b) and 5(b), the error is plotted versus ϖ in the logarithm
cale while in Figs. 4(c) and 5(c) the horizontal axis is taken as ϖ in the linear scale. A roughly algebraic
onvergence rate is observed. We notice that the convergence curve seems more oscillatory comparing with the
revious two tests, possibly due to the solution nonlinearity induced by the spatial discontinuity and the reduced
egularity in the parametric space. In fact, in [104–106], a similar phenomenon of oscillatory convergence curve
as observed, when the solution has discontinuity or reduced regularity in the parametric space (see, e.g., Figure

of [107]). To further demonstrate the sample efficiency of the proposed approach, we also plot the convergence
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Fig. 4. Convergence study of Test 3: material fracture on a bimaterial interface, for compressible materials (ν=0.3). Here we use “PCM”
o denote the cases using our proposed probabilistic collocation method approach, and “MC” to denote the cases using the Monte Carlo

ethod. Results in (a) are generated with 202
= 400 samples. The data points in (b) and (c) are corresponding to 12, . . . , 92 samples.

f numerical solutions obtained from Monte Carlo (MC) simulations. The results indicate that to achieve a similar
evel of accuracy, our proposed approach requires a much smaller number of samples compared to MC.

. Application: Brittle fracture of glass-ceramics

Having illustrated the AC convergence to the analytical local limits and verified the theoretical analysis in
ections 2–3, we now consider a problem of brittle fracture in a glass-ceramic material as a prototypical exemplar,
nd provide validation against experiment results. The main objective of this section is to provide a proof-of-
rinciple demonstration that the framework introduced thus far applies to realistic settings, however overall the
rovided preliminary validation provides good agreement. A glass-ceramic material is the product of controlled
rystallization of a specialized glass composition, which results in the creation of a microstructure composed of one
r more crystalline phases within the residual amorphous glass. Glass-ceramics have received significant attention
ue to their enhanced strength and toughness compared to pure glass [89,108–111]. A wide range of flexural
trength (100 to ≥ 500 MPa) and fracture toughness (1.0 to 5.0 MPa.m0.5) are reported in literature [111], with the
uthors noting that the microstructure and phase assemblage play a vital role in determining strength and toughness.
herefore, it is important to investigate the microstructure of these materials and their relation to damage metrics
f interest to get fundamental insight [83]. In particular, we employ the proposed approach to study the fracture

oughness of a model glass-ceramic material (lithium disilicate) as a function of crystal volume fraction [83].
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Fig. 5. Convergence study of Test 3: material fracture on a bimaterial interface, for nearly incompressible materials (ν=0.495). Here we
use “PCM” to denote the cases using our proposed probabilistic collocation method approach, and “MC” to denote the cases using the
Monte Carlo method. Results in (a) are generated with 202

= 400 samples. The data points in (b) and (c) are corresponding to 12, . . . , 92

samples.

In this example, we consider a pre-notched idealized microstructural realization which is subject to displacement
boundary conditions on its top and bottom boundaries, as demonstrated in Fig. 6. A plate of dimensions 800 µm by
400 µm is considered, which contains an initial crack of length 100 µm. A gradually increasing displacement loading

D is applied on the top and bottom of the sample. All other boundaries, including the new boundaries created
by cracks, are treated as free surfaces. Each realization is composed of randomly distributed crystals embedded in
a glassy matrix, with the mechanical properties of glass and crystalline phases listed in Table 1. In particular, we
follow [83,89] and generate the center location (Cx ,Cy) and rotation angle Cψ of each crystal as random variables
satisfying Cx ∼ U[0, 800], Cy ∼ U[0, 400], and Cψ ∼ U[0, 2π ]. All crystals are identical ellipses with semi-
major and semi-minor axes being 12 µm and 7.5 µm, respectively, with an aspect ratio of 1.6. This material was
studied experimentally in [83] for different crystallized volume fractions, f . Although the crack pattern varies
drastically with different microstructure realizations, for each crystallized volume fraction f the averaged fracture
toughness presents a consistent pattern. In particular, a total of three samples were tested experimentally for each
crystallized volume fraction and the average of these tests was reported in [83]. It was observed that the averaged
fracture toughness grows linearly with f . Therefore, in this example, we aim to reproduce the experimental fracture
toughness in [83] rather than the individual crack pattern with numerical simulations, since the former is more
reproducible and also provides a more direct measure of the material resistance.
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q

Fig. 6. Problem setup of pre-cracked glass-ceramics experiment with randomly distributed material property fields, following [83]. Here light
blue represents the crystalline and dark blue represents the glassy matrix. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Table 1
Material properties used in pre-cracked glass-ceramics experiment [83].

Young’s modulus Poisson ratio Fracture energy Fracture toughness

Glass E1 = 80 GPa 0.25 G1 = 6.59 J/m2 0.75 MPa·m0.5

Crystal E2 = 133 GPa 0.25 G2 = 86.35 J/m2 3.5 MPa·m0.5

To numerically simulate the crack growth in this problem, we consider the plane strain model and employ the
uasi-static LPS model setting as described in Section 3.3. In numerical experiments, we gradually increase UD

from 0 µm to 1 µm, and simulate the propagation of the crack starting from the pre-crack tip till it reaches the
right boundary of the domain. At each quasi-static step, we increase UD by 4e − 3 µm, perform subiterations until
no new broken bonds are detected, then proceed to the next step. For spatial discretization, we employ uniform
grids with grid size h = 2 µm, and the horizon size δ = 3h = 6 µm. Therefore, the whole computational domain
Ω ∪ BBΩ has M = 87969 grid points in total. Four different crystallized volume fraction values are considered:
f ∈ {20%, 40%, 60%, 80%}.

To demonstrate the performance of our deterministic LPS solver, in Fig. 7 we show the crack pattern of two
samples with volume fractions 20% and 80%, respectively. In Fig. 7(a), one can observe that the crack mostly
propagates either inside the glassy matrix or along interfaces after crack deflection and avoids entering the ceramic
particles, on account of the fracture toughness of the ceramic phase being much higher. On the other hand, once
we increase the crystallinity, as shown in Fig. 7(b)(c) where the crystals occupy 80% of the volume, the crack
pattern gets dominated by crystal fracture. In certain cases, where a crack gets penetrated and gets trapped within
a large agglomeration, it results in crack bridging wherein it is favorable for the crack to re-initiate in a nearby
interface rather than fracturing the crystal agglomeration. Such patterns were also observed and reported in [83],
where the authors considered crack deflection, trapping and bridging as the three main toughening mechanisms in
glass-ceramics.

We now proceed to solve the stochastic LPS problem and provide a quantitative validation by comparing the
numerical results on fracture toughness with the experimental measurements in [83]. In this study, the material
microstructure is treated as a random field, and the quantities of interest would be the averaged fracture toughness
of different realizations for each volume fraction f ∈ {20%, 40%, 60%, 80%}. For each realization, we use R(x, ω)
24
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Fig. 7. Crack pattern (represented by the damage field φ) of glass-ceramics on two sample microstructures. Here light blue represents the
rystalline and dark blue represents the glassy matrix. (a) A sample with crystal volume fraction f = 20%. Neither crack bridging nor
rystal fracture is observed. (b)(c) Two samples with crystal volume fraction f = 80%. The crack pattern is dominated by crystal fracture,
nd crack bridging, deflection and trapping are also observed. (For interpretation of the references to color in this figure legend, the reader
s referred to the web version of this article.)

o denote the microstructure, such that for each ω ∈ Ωp,

R(x, ω) =

{
0 if the material point x is glass,

1 if the material point x is crystal.
(5.1)

We then notice that the random fields of Young’s modulus E(x, ω) and fracture energy G(x, ω) can be represented
as linear transformations of R:

E(x, ω) = R(x, ω)(E2 − E1) + E1, G(x, ω) = R(x, ω)(G2 − G1) + G1,

where E1, E2 are the Young’s modulus of glass and crystal, respectively, and G1, G2 are their fracture energy. The
material responses and crack propagation in this sample can then be calculated using the LPS solver (3.19)–(3.20),
and the fracture toughness is determined by the mechanisms through which cracks interact with constituents in
microstructures [112]. Based on the final crack pattern, we first calculate the average energy release rate through

G I C =
G1L1 + G2L2 + G i L i

, (5.2)

W
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where W is the total projected crack length along the x-direction and G i := (G1+G2)/2 denotes the fracture energy
for interface debonding. L1, L2 and L i are the crack length within the glass, within the ceramic and along their
interface, calculated through the number of broken bonds per particle. For brittle materials, one can then obtain the
fracture toughness K I C from the critical energy release rate:

K I C =

√
G I C

Ee f f

1 − ν2 , (5.3)

where Ee f f = (1 − f )E1 + f E2 is approximately the effective Young’s modulus of the heterogeneous material
for the volume fraction f . For further details and discussions on the calculation of fracture toughness for ceramic
composites, we refer interested readers to [112].

Although one can calculate the averaged fracture toughness by sampling R(x, ω) using the Monte Carlo method,
we notice that the sampling space Ωp is of high dimension and therefore would possibly require a large number

f samples. This fact calls for dimensionality reduction for Ωp so as to represent the random fields of E and G
sing a limited number of random variables. In this work, the principal component analysis (PCA) approach is
mployed. In particular, for each crystallized volume fraction value we generate 20,000 discretized microstructure
ealizations R(xi , ω j ), i = 1, . . . ,M , j = 1, . . . , 20000. Equivalently, we represent each realization by a vector,
R j ∈ RM , such that R j [i] = R(xi , ω j ). We then perform PCA to the data matrix formed by R j , j = 1, . . . , 20000,
nd keep the first 20 principal components for dimensionality reduction. To this end, each realization R j can then
e approximated by

R j ≈ R +

20∑
k=1

a j,k V k, i = 1, 2, . . . ,M, (5.4)

where R is the mean of all R j , V k denote the k−th eigenvector in PCA, and a j,k is the kth component of the
j−th realization. Thus, we obtain a truncated representation for the Young’s modulus and fracture energy fields in
glass-ceramics:

E(xi , ξ ) = (R +

20∑
k=1

ξ(k)V k)(E2 − E1) + E1, G(xi , ξ ) = (R +

20∑
k=1

ξ(k)V k)(G2 − G1) + G1. (5.5)

where ξ(k) is the kth component of ξ . We further take ξ(k) as i.i.d. random variables satisfying ξ (k) ∼ N (0, λ2
k),

where λk is the kth eigenvalue in PCA. Noticing that E and G are both affine with respect to ξ , and therefore PCM
can be applied and the parametric space dimension is 20. For this example we employ the Smolyak formulation
with level 2, which consists of 41 samples for each volume fraction value. The results are demonstrated in Fig. 8,
together with the experimental measurements from [83]. We also report the results using the Monte Carlo method
as a baseline method, where the fracture toughness for each volume fraction is generated from 100 realizations
from the original sampling space Ωp. From the results, we can observe that the results from both PCA and MC are
in good agreement with the experiment data. Comparing these two methods, although PCA uses fewer samples, its
predictions are more aligned with the linear fitted line from experimental measurements, and are with a low error
interval estimation. This validates the applicability of our stochastic LPS solver on providing averaged damage
metrics in randomly heterogeneous material fracture problems.

6. Summary and discussion

For heterogeneous material modeling problems, different material microstructure, property, interfacial conditions,
and operating environments all cause variability within materials, which is tremendously difficult to be fully
quantified. Therefore, without complete detailed measurements for each individual material sample, it is often
non-practical, if not impossible, to provide comprehensive quantitative damage characterization for each sample.
This fact calls for stochastic modeling for the variability and characterization of material failure for uncertainty
quantification.

In this work, we propose a state-based peridynamics formulation with spatial variability of material properties,
to capture the high degrees of complexity and heterogeneity in material damage problems. The well-posedness and
convergence to the local problems are studied for the proposed stochastic peridynamics model, which provide a

theoretical foundation for numerical developments. An asymptotically compatible meshfree discretization method
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Fig. 8. Averaged fracture toughness for brittle fracture of glass-ceramics with different crystal volume fractions. Error bars represent standard
erivations. Here we use “PCM” to denote the results using our proposed probabilistic collocation method approach with 41 samples from
he truncated sampling space, “MC” to denote the results using the Monte Carlo method with 100 samples from the original space Ωp , and

“Exp” denotes the experimental results reported in [83].. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

is developed for the peridynamics model. It provides an efficient representation of interfaces and fracture surfaces. A
probabilistic collocation method (PCM) is employed to sample the random field, which guarantees at least algebraic
convergence rate for smooth problems in the parametric space, and therefore ensures the sampling efficiency. This
work has presented a complete workflow demonstrating how quadrature, heterogeneity and fracture can be handled
for linear elastic materials. In this way, variability in microstructures is captured and a limit to the relevant local
problem is preserved as resolution and number of samples are increased. We view this as a major contribution to
the field of peridynamics - while numerous works have demonstrated the flexibility of peridynamics in modeling
a diverse set of physical phenomena in a deterministic setting, very few studies have considered the impact of
uncertainty in material properties and microstructures. Last but not least, we demonstrate an application of the
proposed formulation to estimate the fracture toughness of glass-ceramics, quantitatively validating its applicability
in practical engineering problems.

While the current work has been mainly focused on the physical processes of material damage with uncertainty
from material heterogeneity, an important next step is to incorporate other types of uncertainties, such as the
variability from interfacial conditions and operating environments. We will further consider the generalization of
this approach to other types of damage modes, such as the nonlinear elastoplasticity which governs the ductile
failure. The proposed formulations can be easily extended to 3D problems, though we notice that we were unable
to perform 3D simulations mainly due to memory limitations of our serial LPS solver. The numerical framework
itself is parallelizable and hence highly scalable, as the meshfree quadrature rule involves only the local construction
and inversion of small matrices. For future work, we will investigate how the proposed approach extends to 3D and
demonstrate its application in 3D realistic problems.
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ppendix. Detailed proofs of lemmas and theorems

.1. Proof of Lemma 1

In this section we elaborate the detailed proof for the characterization of the nonlocal energy space, SHδ(Ω ), in
emma 1.

roof. With the Cauchy–Schwarz inequality we have

|θ (x)| =

⏐⏐⏐⏐∫
Ω∪BBΩ

K (| y − x|)( y − x) · (u( y) − u(x)) d y
⏐⏐⏐⏐

≤
√

2
(∫

Ω∪BBΩ

K (| y − x|)
| y − x|

2 [( y − x) · (u( y) − u(x))]2d y
)1/2

, (A.1)

nd ∫
Ω∪BBΩ

∫
Ω∪BBΩ

K (| y − x|)|( y − x) · (u( y) − u(x))|d y θ (x)dx

≤
√

2
∫
Ω∪BBΩ

(∫
Ω∪BBΩ

K (| y − x|)
| y − x|

2 [( y − x) · (u( y) − u(x))]2d y
)1/2

|θ (x)|dx

≤
1

2 Ã

∫
Ω∪BBΩ

(θ (x))2dx + Ã
∫
Ω∪BBΩ

∫
Ω∪BBΩ

K (| y − x|)
| y − x|

2 [( y − x) · (u( y) − u(x))]2d ydx, (A.2)

here the second inequality comes from the Young’s inequality with any positive constant Ã. We then insert (A.1)
nto (A.2) to get∫

Ω∪BBΩ

∫
Ω∪BBΩ

K (| y − x|)|( y − x) · (u( y) − u(x))|d y |θ (x)| dx

≤
1

2 Ã

∫
Ω∪BBΩ

(θ (x))2dx + Ã
∫
Ω∪BBΩ

∫
Ω∪BBΩ

K (| y − x|)
| y − x|

2 [( y − x) · (u( y) − u(x))]2d ydx

≤

(
1

Ã
+ Ã

)∫
Ω∪BBΩ

∫
Ω∪BBΩ

K (| y − x|)
| y − x|

2 [( y − x) · (u( y) − u(x))]2d ydx.

(A.3)

We then prove that any u ∈ SHδ(Ω ) has a bounded total strain energy. Taking Ã = 1, for any u ∈ SHδ(Ω ) its
otal strain energy satisfies∫

Ω∪BBΩ

Wu(x)dx ≤

∫
Ω∪BBΩ

∫
Ω∪BBΩ

(λ(x, y) + µ(x, y))K (| y − x|)|( y − x) · (u( y) − u(x))|d y |θ (x)|dx

+ 4
∫
Ω∪BBΩ

∫
Ω∪BBΩ

µ(x, y)
K (| y − x|)
| y − x|

2 [( y − x) · (u( y) − u(x))]2d ydx

≤(2λ∞ + 6µ∞)
∫ ∫

K (| y − x|)
2 [( y − x) · (u( y) − u(x))]2d ydx < ∞.
Ω∪BBΩ Ω∪BBΩ | y − x|
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Meanwhile, for any u satisfying
∫
Ω∪BBΩ Wu(x)dx ≤ ∞, we aim to show that u ∈ SHδ(Ω ). In particular,∫

Ω∪BBΩ

Wu(x)dx

=

∫
Ω∪BBΩ

∫
Ω∪BBΩ

(λ(x, y) − µ(x, y))K (| y − x|)( y − x) · (u( y) − u(x))d y θ (x)dx

+ 4
∫
Ω∪BBΩ

∫
Ω∪BBΩ

µ(x, y)
K (| y − x|)
| y − x|

2 [( y − x) · (u( y) − u(x))]2d ydx

≥

∫
Ω∪BBΩ

∫
Ω∪BBΩ

λ(x, y)K (| y − x|)( y − x) · (u( y) − u(x))d y θ (x)dx

+ A1

∫
Ω∪BBΩ

∫
Ω∪BBΩ

µ(x, y)K (| y − x|)
[
( y − x) · (u( y) − u(x))

| y − x|
−

1
2A1

| y − x| θ (x)
]2

d ydx

+ (4 − A1)
∫
Ω∪BBΩ

∫
Ω∪BBΩ

µ(x, y)
K (| y − x|)
| y − x|

2 [( y − x) · (u( y) − u(x))]2d ydx

−
1

4A1

∫
Ω∪BBΩ

∫
Ω∪BBΩ

µ(x, y)K (| y − x|) | y − x|
2 d y(θ (x))2dx.

ince for d = 2 and with (2.1) we have

−

∫
Ω∪BBΩ

∫
Ω∪BBΩ

µ(x, y)K (| y − x|) | y − x|
2 d y(θ (x))2dx

≥ −µ∞

∫
Ω∪BBΩ

∫
Ω∪BBΩ

K (| y − x|) | y − x|
2 d y(θ (x))2dx = −2µ∞

∫
Ω∪BBΩ

(θ (x))2dx,

nd by taking Ã = A0(λ∞ − λ0) in (A.2)∫
Ω∪BBΩ

∫
Ω∪BBΩ

λ(x, y)K (| y − x|)[( y − x) · (u( y) − u(x))]d y θ (x)dx

=

∫
Ω∪BBΩ

∫
Ω∪BBΩ

(λ(x, y) − λ∞)K (| y − x|)[( y − x) · (u( y) − u(x))]d y θ (x)dx + λ∞

∫
Ω∪BBΩ

(θ (x))2dx

≥λ∞

∫
Ω∪BBΩ

(θ (x))2dx − (λ∞ − λ0)
∫
Ω∪BBΩ

∫
Ω∪BBΩ

K (| y − x|)|( y − x) · (u( y) − u(x))|d y |θ (x)|dx

≥

(
λ∞ −

(λ∞ − λ0)
2A0

)∫
Ω∪BBΩ

(θ (x))2dx − A0(λ∞ − λ0)

×

∫
Ω∪BBΩ

∫
Ω∪BBΩ

K (| y − x|)
| y − x|

2 [( y − x) · (u( y) − u(x))]2d ydx,

ubstituting the above two inequalities yields:∫
Ω∪BBΩ

Wu(x)dx

≥ A1

∫
Ω∪BBΩ

∫
Ω∪BBΩ

µ(x, y)K (| y − x|)
[
( y − x) · (u( y) − u(x))

| y − x|
−

1
2A1

| y − x| θ (x)
]2

d ydx

+ ((4 − A1)µ0 − A0(λ∞ − λ0))
∫
Ω∪BBΩ

∫
Ω∪BBΩ

K (| y − x|)
| y − x|

2 [( y − x) · (u( y) − u(x))]2d ydx

+

(
λ∞ −

λ∞ − λ0

2A0
−
µ∞

2A1

)∫
Ω∪BBΩ

(θ (x))2dx

≥((4 − A1)µ0 − A0(λ∞ − λ0))
∫
Ω∪BBΩ

∫
Ω∪BBΩ

K (| y − x|)
| y − x|

2 [( y − x) · (u( y) − u(x))]2d ydx.

herefore,
∫
Ω∪BBΩ

∫
Ω∪BBΩ

K (| y − x|)
2 [( y − x) · (u( y) − u(x))]2d ydx < ∞ and u ∈ SHδ(Ω ). □
| y − x|

29
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Remark 4. Note that the above derivation also holds for the local extremes of λ(·, ·) and µ(·, ·). Therefore an
alternative (local) form of Assumption 1 writes:

(4 − A1)µ0(x) − A0(λ∞(x) − λ0(x)) > 0, (A.4)

λ∞(x) −
λ∞(x) − λ0(x)

2A0
−
µ∞(x)

2A1
≥ 0, (A.5)

for any x ∈ Ω ∪ BBΩ , where

λ∞(x) := sup
y∈Bδ (x)∩(Ω∪BBΩ)

λ(x, y), λ0(x) := inf
y∈Bδ (x)∩(Ω∪BBΩ)

λ(x, y),

µ∞(x) := sup
y∈Bδ (x)∩(Ω∪BBΩ)

µ(x, y), µ0(x) := inf
y∈Bδ (x)∩(Ω∪BBΩ)

µ(x, y).

f further assuming that λ(·), µ(·) ∈ C(Ω ∪ BBΩ ), we will have

sup
x∈Ω∪BBΩ

sup
y,z∈Bδ (x)∩(Ω∪BBΩ)

|λ(x, y) − λ(x, z)| ≤ C1δ,

sup
x∈Ω∪BBΩ

sup
y,z∈Bδ (x)∩(Ω∪BBΩ)

|µ(x, y) − µ(x, z)| ≤ C2δ,

or generic constant C1 and C2 which are independent of δ. Then Assumption 1 can be relaxed to:

(4 − A1)µ0(x) > A0C1δ, λ∞(x) −
µ∞(x)

2A1
≥

C2δ

2A0
. (A.6)

A.2. Proof of Lemma 5

In this section we provide detailed truncation estimates for the proposed LPS formulations. We consider the
heterogeneous LPS formulation with full Dirichlet-type boundary conditions, proposed in (2.3) and (2.5). In
particular, before showing the proof of Lemma 5, we first show that the nonlocal dilatation θ is consistent with the
local dilatation with the following lemma.

Lemma 7. Assume that u ∈ C4(Ω ∪ BBΩ ), then there exists δ > 0 such that for any 0 < δ ≤ δ,

θ (x) − ∇ · u(x) = D1

(
∂3u1

∂x3
1

(x) +
∂3u2

∂x3
2

(x)
)

+ 3D2

(
∂3u1

∂x1∂x2
2

(x) +
∂3u2

∂x2
1∂x2

(x)
)

+ O(δ3) = O(δ2),

or all x ∈ Ω ∪ BΩ . Here

D1 :=

∫
Bδ (x)

K (| y − x|)(y1 − x1)4d y = O(δ2), D2 :=

∫
Bδ (x)

K (| y − x|)(y1 − x1)2(y2 − x2)2d y = O(δ2).

roof. Denote x = (x1, x2) where x1 and x2 are the coordinate components along the horizontal and vertical axes,
espectively, and u1, u2 as the displacement components along the x1 and x2 directions, respectively. For simplicity,
n the following we use K to represent K (| y − x|) when there is no confusion. For u ∈ C4 and x ∈ Ω ∪BΩ , with
he symmetry of Bδ(x) we have

θ (x) − ∇ · u(x)

=O(δ3) +

∫
Bδ (x)

K (y1 − x1)2
(
∂u1

∂x1
(x) + (y1 − x1)2 ∂

3u1

∂x3
1

(x) + 3(y2 − x2)2 ∂3u1

∂x1∂x2
2

(x)
)

d y

+

∫
Bδ (x)

K (y2 − x2)2
(
∂u2

∂x2
(x) + (y2 − x2)2 ∂

3u2

∂x3
2

(x) + 3(y1 − x1)2 ∂3u2

∂x2
1∂x2

(x)
)

d y −
∂u1

∂x1
(x) −

∂u2

∂x2
(x)

=O(δ3) + D1

(
∂3u1

∂x3
1

(x) +
∂3u2

∂x2
1

(x)
)

+ 3D2

(
∂3u1

∂x1∂x2
2

(x) +
∂3u2

∂x2
1∂x2

(x)
)
. □
We now proceed to the proof of Lemma 5:

30
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H

Proof. We again adopt the coordinate system as in the proof of Lemma 7 and denote the two components of u as
u1 and u2. We notice that

λ(x, y) − λ(x) =
λ(x)(λ( y) − λ(x))
λ(x) + λ( y)

=
(λ( y) − λ(x))

2

(
1 +

(λ( y) − λ(x))
2λ(x)

+ O
(
(λ( y) − λ(x))

2λ(x)

)2
)

=
(λ( y) − λ(x))

2
+ O

((
λ( y) − λ(x)

))2
=

1
2
∇λ(x) · ( y − x) + O(δ2)

(A.7)

and similarly

µ(x, y) − µ(x) =
1
2
∇µ(x) · ( y − x) + O(δ2). (A.8)

The bound of LH0u−LHδu can then be obtained via Lemma 7, Taylor expansion of u and the symmetry of Bδ(x):

LH0(u)(x) − LHδ(u)(x)

= −
1
2
∇ · [λ(x)tr(∇u(x) + (∇u(x))T )I + 2µ(x)(∇u(x) + (∇u(x))T )]

+

∫
Bδ (x)

(λ(x, y) − µ(x, y)) K ( y − x)
(

∇ · u(x) + ∇ · u( y) + D1

(
∂3u1

∂x3
1

(x) +
∂3u2

∂x3
2

(x)

+
∂3u1

∂x3
1

( y) +
∂3u2

∂x3
2

( y)
)

+ 3D2

(
∂3u1

∂x1∂x2
2

(x) +
∂3u2

∂x2
1∂x2

(x) +
∂3u1

∂x1∂x2
2

( y) +
∂3u2

∂x2
1∂x2

( y)
))

d y

+ 8
∫

Bδ (x)
µ(x, y)K

( y − x)⊗ ( y − x)
| y − x|

2 (u( y) − u(x)) d y + O(δ2)

= −
1
2
∇ · [λ(x)tr(∇u(x) + (∇u(x))T )I + 2µ(x)(∇u(x) + (∇u(x))T )]

+

∫
Bδ (x)

(λ(x, y) − µ(x, y)) K ( y − x) (∇ · u(x) + ∇ · u( y)) d y

+ 8
∫

Bδ (x)
µ(x, y)K

( y − x)⊗ ( y − x)
| y − x|

2 (u( y) − u(x)) d y + O(δ2)

ence, by using (A.7) and (A.8) and their asymptotic orders in terms of δ, and the symmetry of Bδ(x), we have

LH0(u)(x) − LHδ(u)(x)

= −
1
2
λ(x)∇ · (tr (∇u(x) + (∇u(x))T )I − µ(x)∇ · (∇u(x) + (∇u(x))T ))

− (∇ · λ(x)I)∇ · u(x) − ∇µ(x) · (∇u(x) + (∇u(x))T )

+ (λ(x) − µ(x))
∫

Bδ (x)
K ( y − x) (∇ · u(x) + ∇ · u( y)) d y

+
1
2

∫
Bδ (x)

(∇λ(x) − ∇µ(x)) · ( y − x)K ( y − x) (∇ · u(x) + ∇ · u( y)) d y

+ 8µ(x)
∫

Bδ (x)
K
( y − x)⊗ ( y − x)

| y − x|
2 (u( y) − u(x)) d y

+ 4
∫

Bδ (x)

(
∇µ(x) · ( y − x)

)
K

( y − x) ⊗ ( y − x)
| y − x|

2 (u( y) − u(x))d y

= − (∇ · λ(x)I)∇ · u(x) − ∇µ(x) · (∇u(x) + (∇u(x))T )

+ (∇λ(x) − ∇µ(x)) · (∇ · u(x))
∫

Bδ (x)

(
K (y1 − x1)2

K (y2 − x2)2

)
d y

+ 4
∫

Bδ (x)

(
∇µ(x) · ( y − x)

)
K
( y − x)⊗ ( y − x)

| y − x|
2 (u( y) − u(x)) d y + O(δ2) = O(δ2). □
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A.3. Proof of Theorem 2

In this section, we provide the detailed proof for the compatibility results demonstrated in Theorem 2.

Proof. We first show the proof of (2.13). Since uδ is a solution to the nonlocal problem, we have

THδ[uδ, v; λ,µ] = ⟨ f , v⟩ ≤ ∥ f ∥(SHδ (Ω))∗∥v∥SHδ (Ω)

for any test function v ∈ SHδ(Ω ). Now let v = uδ , we get r∥uδ∥2
SHδ (Ω) ≤ THδ[uδ, uδ] ≤ ∥ f ∥(SHδ (Ω))∗∥uδ∥SHδ (Ω).

herefore, we have (2.13).
The proof of the second part involves two steps. In the first step, we assume λ(·), µ(·) ∈ C2(Ω ∪ BBΩ ), then

from Lemma 5, we know that LHδv converges to L0v uniformly on Ω for v ∈ C∞

0 (Ω ) as δ → 0. Notice that from
the assumption on ∥ f ∥(SHδ (Ω))∗ , we have ∥uδ∥SHδ (Ω) being uniformly bounded for all δ ∈ (0, δ). Then using similar
arguments in [52] together with the compactness result [88, Lemma 7], we can show ∥uδ − u0∥L2(Ω;Rd ) → 0 as

→ 0.
For the general case that λ,µ ∈ C(Ω ∪ BBΩ ), we will use the mollification technique. First notice that we can

xtend λ and µ continuously to a larger domain that contains Ω ∪ BBΩ . Then we can take standard mollifiers φϵ ∈
∞(Rd ), and define λϵ = φϵ ∗ λ and µϵ = φϵ ∗µ on Ω ∪ BBΩ for small enough ϵ > 0. We denote the solution to

2.9) associated with coefficient λϵ(x, y) := 2((λϵ(x))−1
+ (λϵ( y))−1)−1 and µϵ(x, y) := 2((µϵ(x))−1

+ (µϵ( y))−1)−1

o be uδ,ϵ . Then we can use the first step to conclude that ∥uδ,ϵ − u0,ϵ∥L2(Ω;Rd )
δ→0
−−→ 0, where u0,ϵ is the solution

o (2.12) associated with coefficient λϵ and µϵ . Now in order to show ∥uδ − u0∥L2(Ω;Rd ) → 0, we notice that

lim
δ→0

∥uδ − u0∥L2(Ω;Rd ) ≤ sup
δ∈(0,δ)

∥uδ,ϵ − uδ∥L2(Ω;Rd ) + lim
δ→0

∥uδ,ϵ − u0,ϵ∥L2(Ω;Rd ) + ∥u0,ϵ − u0∥L2(Ω;Rd ),

or any ϵ > 0. Therefore, we only need to show⎧⎨⎩
lim
ϵ→0

sup
δ∈(0,δ)

∥uδ,ϵ − uδ∥L2(Ω;Rd ) = 0, and

lim
ϵ→0

∥u0,ϵ − u0∥L2(Ω;Rd ) = 0.
(A.9)

Notice that ∥λϵ − λ∥C(Ω∪BBΩ) → 0 and ∥µϵ − µ∥C(Ω∪BBΩ) → 0 as ϵ → 0 since λ and µ are continuous. Then
λϵ(x, y) → λ(x, y) and µϵ(x, y) → µ(x, y) uniformly on (Ω ∪ BBΩ )2 as ϵ → 0. For this, we simply write
∥λϵ − λ∥C((Ω∪BBΩ)2) → 0 and ∥µϵ − µ∥C((Ω∪BBΩ)2) → 0 where the functions λϵ , λ, µϵ and µ are continuous
functions of the two variables x ∈ Ω ∪ BBΩ and y ∈ Ω ∪ BBΩ . Now for the first equation in (A.9), notice that
ince uδ,ϵ and uδ are solutions to (2.9) with different coefficients and the same right-hand side, we have

THδ[uδ,ϵ − uδ, v; λϵ, µϵ] = THδ[uδ, v; λ− λϵ, µ− µϵ] =: ⟨gδ,ϵ, v⟩,

for any v ∈ SHδ(Ω ). We can show ⟨gδ,ϵ, v⟩ → 0 as ϵ → 0 uniformly independent of δ since

⟨gδ,ϵ, v⟩

≤

(
∥λϵ − λ∥C((Ω∪BBΩ)2) + ∥µϵ − µ∥C((Ω∪BBΩ)2)

) ∫∫
(Ω∪BBΩ)2

K (| y − x|)| ( y − x) · (v( y) − v(x)) |d y |θδ(x)|dx

+ 4∥µϵ − µ∥C((Ω∪BBΩ)2)

∫∫
(Ω∪BBΩ)2

K (| y − x|)
| y − x|

2 | ( y − x) · (uδ( y) − uδ(x)) || ( y − x) · (v( y) − v(x)) |d ydx

≤5
(
∥λϵ − λ∥C((Ω∪BBΩ)2) + ∥µϵ − µ∥C((Ω∪BBΩ)2)

)
∥uδ∥SHδ (Ω)∥v∥SHδ (Ω).

ow use the coercivity of THδ and ∥uδ∥SHδ (Ω) ≤ C from (2.13), we have

sup
δ∈(0,δ)

∥uδ,ϵ − uδ∥SHδ (Ω) ≤ C sup
δ∈(0,δ)

∥gδ,ϵ∥(SHδ (Ω))∗

≤C
(
∥λϵ − λ∥C((Ω∪BBΩ)2) + ∥µϵ − µ∥C((Ω∪BBΩ)2)

)
→ 0 as ϵ → 0

and the convergence in L2 is then implied from the Poincaré inequality in Lemma 3. The proof for the second
equation in (A.9) can be similarly done. □
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A.4. Proof of Lemma 6

In this section, we provide the detailed proof for the bound in Lemma 6.

roof. The inequality is shown by taking w to be the truncated Chebyshev expansion of v up to degree p which
ollows the proof of [101, Lemma 4.4]. Since our functions are vector valued, we show the proof of the inequality for
ompleteness. Let {Tk(t)}∞k=1 be the Chebyshev polynomials on [−1, 1], then the expansion of v(x, t) = v(x, cos(t))
n t is given by

v(x, t) =
a0(x)

2
+

∞∑
k=1

ak(x)Tk(t)

where ak ∈ SHδ(Ω ), k = 0, 1, . . ., are given by

ak(x) =
1
π

∫ π

−π

v
(
x, cos(s)

)
cos(ks)ds.

The Chebyshev series has an analytic extension which converges in any open elliptic disk delimited by the ellipse
Eϱ with foci ±1 and the sum of the half-axes ϱ (see e.g. [113]). Let w = a0(x)/2 +

∑p
k=1 ak(x)Tk(t), then

∥v − w∥C(Γ1;SHδ (Ω)) ≤

∞∑
k=q+1

∥ak∥SHδ (Ω) =

∞∑
k=q+1

∥ak∥SHδ (Ω;Cd ).

ow for any ϱ̂ with 1 < ϱ̂ < ϱ, following the arguments of [113, Chapter 7, Theorem 8.1], one can rewrite ak as

ak(x) =
1

2π i

∫
C1

v

(
x,

z + z−1

2

)
zk−1dz +

1
2π i

∫
C2

v

(
x,

z + z−1

2

)
z−k−1dz (A.10)

where C1 := {z ∈ C : |z| = ϱ̂−1
} and C2 := {z ∈ C : |z| = ϱ̂}. Now we do change of variables with z = ϱ̂−1eis for

the first integral in (A.10) and z = ϱ̂eis for the second integral in (A.10), we get

ak(x) =
1

2π

∫ π

−π

v
(
x, ϱ̂−1 cos(s)

)
ϱ̂−keiksds +

1
2π

∫ π

−π

v
(
x, ϱ̂ cos(s)

)
ϱ̂−ke−iksds. (A.11)

sing (A.11), it is then easy to see that

∥ak∥SHδ (Ω;Cd ) ≤ 2ϱ̂−k max
z∈A(Γ1,τ )

∥v(·, z)∥SHδ (Ω;Cd ).

o

∥v − w∥C(Γ1;SHδ (Ω)) ≤

∞∑
k=q+1

∥ak∥SHδ (Ω;Cd ) ≤
2

ϱ̂ − 1
ϱ̂−p max

z∈A(Γ1,τ )
∥v(·, z)∥SHδ (Ω;Cd ).

Taking ϱ̂ → ϱ, we get the desired result. □
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