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Abstract: Emotions significantly impact human physical and mental health, and, therefore, emotion
recognition has been a popular research area in neuroscience, psychology, and medicine. In this paper,
we preprocess the raw signals acquired by millimeter-wave radar to obtain high-quality heartbeat
and respiration signals. Then, we propose a deep learning model incorporating a convolutional
neural network and gated recurrent unit neural network in combination with human face expression
images. The model achieves a recognition accuracy of 84.5% in person-dependent experiments and
74.25% in person-independent experiments. The experiments show that it outperforms a single deep
learning model compared to traditional machine learning algorithms.

Keywords: emotion recognition; convolutional neural network; gated recurrent unit; frequency
modulated continuous wave; multimodal

1. Introduction

Emotions significantly impact people’s health that cannot be ignored. Studies have
shown that malfunctions in mood and emotion regulation are the cause of many mental
illnesses [1], and people who maintain negative moods for long periods not only have
low immunity [2] but also perform worse in terms of memory [3]. Especially in recent
years, traditional lifestyles have undergone a dramatic shift influenced by COVID-19, and
online learning and working have become a common way of being adopted. The lack
of communication and outdoor activities for a long time has affected people’s mood and
emotion regulation to a greater extent. Therefore, emotion recognition in human-computer
interaction has become a task that cannot be ignored.

Wireless sensing technology realizes the target’s sensing task by analyzing the target’s
influence on the surrounding wireless signals. Compared to traditional sensing techniques,
its features of not requiring the target to wear any sensor, non-line of sight propagation,
and privacy protection have made it an ideal solution for sensing tasks in many fields, such
as intrusion detection [4], gesture recognition [5], physiological detection [6] and indoor
positioning [7]. As wireless sensing tasks expand from coarse-grained to fine-grained,
traditional technologies such as ZigBee, CSI, and CW signals can no longer meet the
current sensing needs, and millimetre-wave radar has received widespread attention due
to its larger bandwidth, more sensitive distance resolution, and higher Doppler frequency.
Millimeter wave radar has achieved remarkable results in theoretical research [8] and
practical application of fine-grained perception [9,10], which also provides ideas for us to
realize the task of contactless emotion recognition.

The study of wireless sensing technology to achieve emotion recognition involves
several disciplines, such as neurology, psychology, and computer science. Emotion theory
is the basis for wireless sensing technology to achieve emotion recognition, which is an
extremely complex mental state [11]. Many emotion theories have been proposed in psy-
chology to explain human emotions. The models of emotion theories used in past studies
are divided into two main categories: one is the basic emotions applicable to different
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cultures and ages, the most classic being the six basic emotions proposed by Ekman in the
1970s: happy, sad, surprise, fear, anger, and disgust [8]. Another class of emotion models
that quantify emotions, such as the three-dimensional emotion classification system de-
signed and proposed by Wilhelm Wundt, is the ring model [12]. The three axes describe the
potency, arousal, and intensity of emotions. Moreover, the more used in many past studies
is a two-dimensional model based on the ring model, where validity describes the range of
emotions from negative to positive, and arousal describes the range of emotions from posi-
tive to negative. In this paper, we use Russell’s validity-arousal two-dimensional emotion
model, which can quantify all emotions in a two-dimensional emotion system [13,14].

Current approaches to emotion recognition fall into two broad categories. The first
category is traditional machine learning (ML) methods, which are based on using a specific
model and require elaborate and manual extraction of relevant features as input to the
classification model. The second category is the more commonly used deep learning (DL)
methods, which do not have a specific model and can automatically learn the internal
principles of the collected data and automatically complete the extraction of features [15,16].
Moreover, the reasons for the rise of deep learning methods are multifaceted. First, as men-
tioned earlier, since the extracted features are crucial for the classification performance
of ML models, manually extracting features is time-consuming and laborious. Second,
the features obtained with difficulty usually only solve problems in a particular domain
and are difficult to reuse.

This paper’s proposed overall emotion recognition framework is shown in Figure 1.
Millimeter wave radar is used to monitor the subject’s physiological information while a
computer camera records the facial expressions. Subsequently, the Moving Target Inidcation
(MTI) method is used in the signal pre-processing stage to eliminate the background
noise and the effect caused by the measurement instrument. Then the Variational Modal
Decomposition (VMD) method extracts and separates the signals to obtain the heartbeat
and respiration signals. Furthermore, for the obtained signals, this paper is designed using
1D-CNN, 2D-CNN and GRU stacked deep learning models, which have good performance
in subject-related and subject-independent experiments, and later the method of this paper
is referred to as ER-MiCG. The contributions of this paper are as follows:

* In this paper, we use millimeter-wave radar to capture heartbeat and respiration
signals in different emotional states while combining three modal data of facial expres-
sion images, and then perform parallel fusion after feature extraction by respective
CNN deep learning models and use the fused features as the input of GRU deep
learning model, and then achieve the classification task of four emotions.

¢  Considering that the breathing and heartbeat signals are non-stationary signals and
the noise problem of the experiment scene, the method of combining MTI and VMD is
proposed, and the comparison experiment with an MI5 smartwatch proves that it can
get high-quality signals.

*  To prove the effectiveness and superiority of the proposed method, this paper not only
sets up comparison tests with traditional machine learning methods and single deep
learning models but also a comprehensive comparison from robustness and other
advanced methods. The model is proven to have a more excellent classification ability
through many experiments.
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Figure 1. The overall frame diagram of the ER-MiCG method.

2. Relate Work

In recent years, considering the great influence of emotions on people’s physical and
mental health, the work on emotion recognition has a broad application prospect, which
is one of the reasons why this field has received close attention from the industry [17-21].
Since emotional fluctuations cause changes in the external expressive reflections of the
human body, researchers have extracted emotion-related features through facial expres-
sions [22], body movements [23,24], and voice intonation [25]. It also causes changes in
human physiological signals, so researchers often capture a certain physiological signal
with the help of unique equipment, such as EEG signals [15,16], ECG signals [20], and skin
electrical activity [26]. Usually, the methods using physiological signals perform better in
robustness and recognition accuracy because physiological signals cannot be artificially
hidden or altered.

Research related to emotion recognition consists of the following steps: emotion stimu-
lation, data acquisition, data preprocessing, feature extraction, and finally, recognition and
classification. In the emotional stimulation phase, pictures, and videos evoke a particular
emotion in the subject. The data acquisition phase is even more diverse. In psychology,
most use more complex, expensive, and highly invasive specialized equipment, so this
paper aims to reduce the deployment cost, system complexity, and invasiveness of the
emotion recognition task using wireless sensing technology. The preprocessing phase
usually results in the time domain, frequency domain, time-frequency, or spatial domain
signals, and feature extraction from a single source or a combination of multiple sources
is a common approach [27]. The final stage of identification is usually done by ML or
DL methods.

To date, traditional ML methods have proposed many well-performing classification
algorithms such as support vector machine (SVM), random forest (RF), linear discriminant
analysis (LDA), and Bayesian [28], and these algorithms are being improved as they are
continuously studied in depth in various fields. Mansour Sheikhan et al. [29] innovatively
proposed a modular neural-SVM classifier that inputs a total of 55 features with MFCCs, ve-
locity, acceleration, and logarithmic energy as basic features and achieves the recognition of
three emotional states. Tiwari et al. [30] designed and proposed a novel algorithm of Shifted
Delta Acceleration Linear Discriminant Analysis (SDA-LDA) algorithm to extract the most
adjudicative and robust features in speech sequences and video sequences. The method is
shown to have high recognition accuracy on all four public datasets.

Researchers have gradually focused their attention on DL techniques to address the
many challenges encountered in traditional machine learning and its limitations [31]. Con-
volutional neural networks (CNN), deep confidence networks (DBN), recurrent neural net-
works, hybrid networks, and other classification models have been proposed successively
to handle various classification tasks [32]. Similarly, these models have been improved as
the complexity of classification tasks continues to increase and the real-time and recogni-
tion accuracy requirements improve. Mustageem and Soon-il Kwonwei [33] proposed a
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one-dimensional dilated convolutional neural network (DCNN) to solve the problem of
lack of real-time processing in speech emotion recognition. Velagapudi Sreenivas et al. [34]
used not only wrapper-based feature selection techniques to reduce the complexity of the
recognition framework but also optimized the weight parameters of the DBN network
by the Harris Hawk optimization algorithm and demonstrated that the proposed method
outperformed not only existing methods on three datasets but also outperformed existing
methods on six emotional states. The proposed method not only proves to be superior to
existing methods on three datasets but also has high recognition accuracy in the recognition
of six emotional states.

With the popularity of WIFI and extensive research on wireless sensing technologies
such as millimeter-wave radar in recent years, research on emotion recognition has taken
on a whole new dimension. However, compared to CSI signals emitted by WIFI devices,
millimeter-wave radar emits more directional signals, which means that the multipath effect
is significantly reduced. Moreover, the short wavelength makes it more sensitive to small
movements. There are three types of millimeter wave radars commonly used in current
research: continuous wave radar (CW), ultra-wideband radar (UWB), and frequency-
modulated continuous wave radar (FMCW). The reason for using FMCW radar in this
paper is that CW radar has unsolved problems in acquiring static information about the
target location or the environment. In contrast, UWB radar has a small coverage area due
to the limitation of transmitting power. The FMCW radar has not only good performance
in coarse-grained activity recognition, such as precise indoor positioning [35], dynamic
gesture recognition [36], human activity recognition and fall detection [37] but also excellent
performance in fine-grained activity recognition, such as human vital signs detection and
tracking [38,39].

3. The Proposed Method
3.1. Working Principle of FMICW Radar

Standard FMCW radar signals are divided into frequency shift keyed continuous wave
(FSKCW), stepping frequency continuous wave (SFCW), and linear frequency modulated
continuous wave (LFMCW) according to the frequency waveform. However, the MMW
radar in this paper transmits signals using linear frequency-modulated continuous waves
whose frequency increases linearly within the modulation period. Namely, the waveform
is sawtooth. Then the frequency change of the FMCW signal with time within a single
modulation cycle can be expressed as

B
f:fc+?ct/ (1)

where f. is the starting frequency of the chirp signal, B is the bandwidth of the chirp
signal, and T is the chirp signal duration. The target detection of radar is to obtain the
position, velocity and angle of the target by the amplitude, phase, and frequency of the
reflected signal. When the human body carries out normal breathing and heartbeat, it will
cause changes in different parts of the body’s surface. Because the chest position is close
to the lung and heart, the position of the chest changes most obviously. This is also the
choice of this article through the displacement of the chest to achieve the measurement of
heartbeat and respiration. The millimeter wave transmitted signal and reflected signal can
be expressed as

x7(t) = Arx cos(2mfot + n?ta + ¢(1)), (2)
xr(t) = Agxcos |27tfc(t —ty) + n%(t —tg) +p(t—tg)], 3)

where ¢(t) is phase noise, t; is the propagation time delay generated by radar signal
propagation between radar and target. At this time, the transmitted signal and the echo
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signal are mixed, and then the high-frequency signal is filtered by the low-pass filter to
obtain the IF signal. Then the IF signal can be expressed as

IF(t) = Arx Arx exp(j(27feta + T tat + T ta* + Ag(t)))
~ ArxArx exp(j(27 {-tat + 27 fety))

=ATrxARx exp(j(47t%t + #))

=ArxArx exp(j2rtfirt + @1r)),

)

where n%t{f is negligible, A is the wavelength, R is the distance from the radar to the chest

wall, fir = % is the frequency of the IF signal, and ¢ = % is the phase of the IF signal.

In actual measurement, the chest cavity will be slightly displaced in different degrees along
with respiration and heartbeat, so R = Ad + d(t). Therefore, Ad is the relative distance
between the radar and the detected target, and d(t) is the displacement of the chest wall
over time. Then, the above equation can be rewritten as

IF(t) = Arx Apx exp(j(XHALH0) 4 4 BACLAW) | A (1))

5

=ArxArx exp(j(27firt + @1r)), ©
fir = ZB(Ai;{d(t)), (6)

o 47I(Ad/\+ (). )

For the millimeter wave radar with a center frequency of 77 GHZ used in this pa-
per, chirp signal duration T, is set to 40 us, and frequency slope k is 50 MHZ/ps. When
the measured target is displaced by 0.1 mm along the electromagnetic wave direction of
the radar, it can be obtained that the frequency change is about 33.3 Hz according to the
above formula. Only about 0.001 cycles were changed, making it difficult to recognize the
frequency changes caused by human respiration and heartbeat on the spectrum. The dis-
placement of the human chest can also change the phase of the echo signal. If the above
assumption remains unchanged; it can be concluded from the above equation that when
the measured target is displaced by 0.1 mm along the electromagnetic wave direction of the
radar, the phase change of its signal is about 18 degrees. Compared with identifying the
frequency changes caused by human respiration and heartbeat in the spectrum, it is easier
to identify the phase of the target. Therefore, it is feasible for radar to detect the phase
changes of the received echo signal to obtain the respiratory and heartbeat information of
the target.

3.2. Data Preprocessing
3.2.1. MTI Removes Static Clutter

In the experimental environment of this paper, static objects such as laptops, desks, and
chairs will reflect echo signals with reliable energy, sometimes even causing the detection
target to be submerged, which severely impacts the detection of physiological signals.
Therefore, it is necessary to deal with static clutter. Considering the static object echo signal
will not change over time, and the chest in the ups and downs when motion over time
leads to the echo signal, therefore, adopt the MTI method to deal with the original signal: n
take size for the sliding window, for the same distance average continuous n slow sampling
point of the unit, as the distance unit in a static environment noise component; Then subtract
the mean value from all the slow sampling data in the sliding window. The calculation
result is again averaged as the result of removing the static clutter component at the current
time. Figure 2 shows the original radar echo signal and the echo signal after MTI processing.
It can be seen that the static clutter has been filtered out.
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Figure 2. Radar echo signals before and after MTI processing static clutter: (a) Raw echo signal of
millimeter wave radar. (b) The echo signal after MTI processing.

3.2.2. VMD Algorithm

After the static clutter is processed, a two-dimensional fast Fourier transform (2D-FFT)
is carried out on the signal to extract the phase value of the target. Then phase unwinding
is carried out on the signal. Finally, since the frequency range of breathing and heartbeat is
between 0 and 3.3 HZ. Therefore, a fourth-order Butterworth filter with a cutoff frequency
of 3.3 HZ was used in this paper to filter high-frequency noise. Subsequently, the VMD
algorithm was selected because of its high efficiency and effective suppression of non-
stationarity of vital signs signals [40]. Finally, the signals were decomposed into a series
of IMF components. VMD algorithm is an adaptive and quasi-orthogonal decomposition
method based on cyclic iteration to obtain the optimal solution of the constrained variational
problem, determine different frequency centers and bandwidth, and then decompose the
original vibration signal into a series of eigenmode functions of different frequencies. Its
central core is to construct the variational problem and solve the variational problem, which
is solved based on the classical Wiener filter, frequency mixing, and Hilbert transform.
In this work, we set the IMF of physiological sign signals as the central frequency of IMF
signals and k as the number of IMF components. Then the unconstrained variational
problem of physiological signal decomposition is defined as follows [41]:

k - , 2 k 2
L({uk}, (wk), )\) = Z 0¢ [(5(t) + 7_{1) * Mk(t):| e*]ww/t + f(t) _ Z uk(t)
k=1 2 k=1 2 (8)
k
+ </\(f)rf(t) - kZ uk(f)>
=1
After n iterations, and are calculated as follows:
ity _ £) ~ T () + 4 .
i () 1+ 20(w — wy)? ' ©
A 2

wz«kl( )_ fO W|Mk(ZU)| dw (10)

o l(w)Pdw

On the type of « is the introduction of quadratic penalty factor, A(t) is the introduced
Lagrangian operator, k is after VMD decomposition to get the number of intrinsic mode
function, 6(t) is Dirac function, e 7 is a complex signal in time the rotation of the phasor,
and uZ“, u(w) and f(w) Fourier transform with ﬁZ“, fi(w) and f(w), respectively. Using
VMD, the signal nonlinearity can be decomposed into IMF sets with specific sparsity.
Specifically, VMD divides the original signal acquired by millimeter-wave radar into k

discrete IMF components, and the value of k must minimize the sum of the bandwidths
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of all components. Then Hilbert transform is applied to the decomposed modal function
to obtain the analytic signal and its unilateral spectrum related to each mode. Then,
the analytic signal’s center frequency is estimated, the exponential term is added for
adjustment, and the spectrum is modulated to the corresponding fundamental frequency
band. Finally, the bandwidth is estimated according to the Gaussian smoothness of the
demodulation signal, and the norm of gradient L2 is calculated [41].

When determining the k value, when the central frequency of each IMF component
remains stable at different k values, it indicates that the original physiological data is not
over-decomposed. When the frequency ratio of adjacent centers is greater than 90%, it
indicates that the original physiological data is over-decomposed, and a faulty component
is obtained by over-decomposition in the IMF component. In this paper, all IMF is stable
when k is not less than 6, which also means that signal decomposition is completed when k
is not more than 6. In addition, when k = 7, the central frequency of adjacent IMF is greater
than 90%, the decomposition is excessive, so k = 6 is finally determined. A group of results
obtained by the VMD algorithm is shown in Figure 3.

IMF1

TMF2

TMF3

IMF4

TMF35

IMF6

Time/s

Figure 3. A set of results obtained by the VMD algorithm.

Then, the frequency spectrum of each IMF was analyzed, and the average instanta-
neous frequency was calculated. The respiratory signal could be reconstructed by adding
the IMF components, whose average frequency was in the range of [0.1-0.6 HZ]. In contrast,
the heartbeat signal could be reconstructed by adding the IMF components, whose average
frequency was in the range of [0.8-3.3 HZ]. The reconstructed breathing and heartbeat
signals under different emotions are shown in Figure 4 and Figure 5, respectively.

SIS
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Figure 4. Respiratory signals under different emotional states: (a) relaxed; (b) happy; (c) sad;
(d) anger.
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Figure 5. Heartbeat signals under different emotional states: (a) relaxed; (b) happy; (c) sad; (d) anger.

The obtained heartbeat signal is subjected to Fourier transform to obtain the heartbeat
frequency. We collected two hundred sets of heartbeat data by allowing the subjects to wear
the MI5 smartwatch to participate in the experiment. The heartbeat frequency observation
value of the MI5 smartwatch and the heartbeat frequency obtained by the proposed method
is used for linear regression modeling. Figure 6 shows the proposed method’s overall
fitting degree (R?). The closer the score of R? is to 1, the closer the fitted curve is to the
actual curve. The score of the proposed method is 0.94, which also shows that the accuracy
and reliability of the heartbeat signal obtained in this paper are excellent.

=
3

Heartbeat frequency from our method(bpm)
T O I S |

O
(=}

~
(=]

70 80 90 100
Observed value of heartbeat frequency(bpm)

Figure 6. Linear regression image of heart rate calculated according to the method in this paper and

heart rate monitored by Mi5 smart watch.

3.2.3. Video Signal Preprocessing

In this paper, the acquisition of physiological signals and facial video data are synchro-
nized, and each video sample has the same time. Therefore, the preprocessing of the video
signal starts with selecting key frames from the 60 s video segments. Specifically, first, we
use the LBP-AdaBoost algorithm to detect the face in each frame and crop the frame to the
largest face that can be displayed. Subsequently, in a window of 2i + 1 frames, setito 5
(based on experience) and calculate the histogram of each frame in the window, applying
the cardinality distance to find the difference between the histograms of consecutive frames
and the one with the smallest difference is selected as the keyframe. The window is then
moved by 8 frames to continue selecting keyframes and continues until the end of the video.
Finally, the size of the key image frame is adjusted to match the input size of the subsequent
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recognition model, and the final cropped facial image for each frame is uniformly adjusted
to 227 x 227 x 3.

3.3. Proposed Deep Learning Model

Based on the emotional data of different dimensions obtained by the above method,
this paper proposes a deep learning model, as shown in Figure 7. The data obtained
are passed through four convolution modules with similar structures. The dimension of
the data determines the specific parameters of each module. The data of three channels
with different dimensions can obtain richer feature information. After that, the obtained
feature elements are spliced in parallel as the input of the GRU neural network. Then the
emotion recognition is realized by the dense layer with the softmax activation function as
the classification function.
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Figure 7. The overall structure of ER-MiCG deep learning model.

3.3.1. Construction of 1ID-CNN

In many emotion recognition-related works, 1D-CNN has been proven to perform
well in feature extraction of one-dimensional sequence information [42]. According to the
characteristics of respiratory and heartbeat signals extracted in this paper, the proposed
1D-CNN model is shown in Figure 7. It consists of four convolution blocks, each of which
consists of a convolution layer, a top pooling layer, a batch normalization layer, and an
ELU activation function layer. The batch standardization layer is added to alleviate the
internal covariate shift and improve the feature extraction ability. ELU activation function
is a new activation function that combines the left soft saturation of the sigmoid activation
function and the right non-saturation of the ReLU activation function. The advantage
of using this activation function is that the right linear part makes the ELU alleviate the
gradient disappearance problem, and the left soft saturation performance makes the ELU
more robust to input changes or noise. The specific parameter settings are shown in Table 1.

Table 1. Network parameter settings for 1D-CNN.

Types Kernel Size No. of Filters Stride
1D Full convolution 5 16 1
Max pooling 4 16 4
1D Full convolution 5 32 1
Max pooling 2 32 2
1D Full convolution 5 32 2
Max pooling 2 32 2
1D Full convolution 5 64 2
Max pooling 2 64 2
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3.3.2. Construction of 2D-CNN

Facial expression is an external expression of emotion, and many previous studies
have shown that facial expression is an important measure in emotion recognition, so it
is necessary to combine the features of facial expression to achieve emotion recognition.
The 2D-CNN constructed in this paper has the same structure as the 1D-CNN mentioned
above, which also consists of four convolutional blocks. However, the input is a face image
of size 227 x 227 x 3 obtained from video processing. The convolutional layer serves as the
core to detect local features of the facial image by learning filter banks. The pooling layer
functions to gradually reduce the size of the representation space to reduce the parameters
and computation in the network, thus, controlling overfitting, also using the ELU activation
function. Each layer’s convolution and pooling kernels are two-dimensional, and the
specific parameter settings are shown in Table 2.

Table 2. Network parameter settings for 2D-CNN.

Types Kernel Size No. of Filters Stride
2D Full convolution 3x3 32 1
Max pooling 2x2 32 2
2D Full convolution 3x3 64 1
Max pooling 2x2 64 2
2D Full convolution 3x3 96 1
Max pooling 4 x4 96 4
2D Full convolution 3x3 96 1
Max pooling 4 x4 96 4

3.3.3. Construction of GRU

The use of GRU is for better recurrent neural network hidden layer variable gradient
may appear attenuation or explosion problem, but also to better capture the time series
data interval more extensive dependencies. Compared with the LSTM network structure,
GRU improves the training speed of the model while reducing the training parameters
required for its internal network structure training. In this paper, emotion-related features
are extracted from one-dimensional sequence information on human physiology and image
information of facial expression changes. Then these features of different scales are fused
as input of GRU to mark time-related sequences for enhancing feature representation.
In addition, GRU makes the whole network model fault-tolerant and can predict and erase
the wrong channels of the corresponding feature map at a particular time according to
other features, A GRU layer with 64 neurons is set up.

4. Experiments and Results
4.1. Experimental Design

The Texas Instruments IWR1642 single-chip FMCW millimeter wave radar operating
in the 76-81 GHz band was used in the experiment, along with the DCA1000 in streaming
data mode to collect raw human heartbeat and respiration data, and Table 3 shows the
specific parameter settings of the radar. The experiments were conducted in a relatively
confined and quiet environment, during which 15 volunteers (8 males and 7 females) were
recruited to participate in the experiments, during which the subjects were required to
sit as still as possible in front of the millimeter wave radar to watch a video designated
for inducing specific emotions. All the video clips were taken from a previous study [40],
which included 60 videos (15 for each emotion) that induced four emotions: happy, angry,
relaxed, and sad. In addition, nine videos that put the person in a neutral emotional
state were included, each serving as a baseline signal at the onset of inducing a specific
emotion, thus, eliminating the daily dependence on physiological data. Experimental
labeling continued based on SAM forms that subjects filled out after viewing the videos
and labeled the data according to the two-site emotion model proposed by Russell. Nine
hundred sets of one-dimensional sequential information on heartbeat and respiration and
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corresponding facial videos were collected. Of these, 36 sets of data were discarded for
reasons such as blurred picture quality and the presence of large movements of the subjects.
Of the remaining data, 86 sets were separated and used as the validation set, another 86
sets were separated and used as the test set, and 692 sets were used as the training set.

Table 3. Radar setting parameters.

Parameters Kernel Size
Number of Transmitting Antennas 1
Number of Receiving Antennas 4
Carrier Frequency 77 GHz
Bandwidth 4 GHz
frequency modulation 66.62 MHz/us
Single Chirp Signal Duration 60ms
Period of frame 50 ms
Number of Chirps per Frame 128
Number of Frames 150
Number of Samples per Chirp 256

4.2. Evaluating-Indicator and Cross Validation

To evaluate the classification ability of the proposed method, this paper uses four
evaluation indexes: accuracy, precision, recall rate, and F-score. It can be calculated by
Formulas (11)—(14):

TP+TN o
accuracy = TP+ FP+ TN - EN x 100% (11)
. TP o
precision = TP+ EN X 100% (12)
TP
Il = ——— x100% 1
reca TP+ TN X 100% (13)

2 x recall x precision

F-score = —
recall 4 precision

(14)

Among them, TP was true positive, TN was true negative, FP was false positive,
and FN was false negative. The recognition rate refers to the ratio of the number of
samples correctly classified by the optimal classifier trained by the training data to the total
number of samples for the total test data set. Accuracy refers to the ratio of the number
of real positive samples classified in the test data set to the number of positive samples
classified. Recall rate refers to the ratio of the number of samples classified as true positive
examples to the number of samples of all true positive examples. F-score is an extension
of the recognition rate, combining precision and recall. Based on the above metrics and
considering that the data volume in this paper is not huge, we introduce leave-one-out
cross-validation (LOOCV) to validate the predictive ability of the model further. This
method involves taking out one data at a time as the unique elements of the test set in
a dataset composed of n data, while the other n — 1 data are used as the training set
for training the model and tuning the reference. The result is that we end up training n
models, each time getting a Mean Squared Error (MSE), and calculating the final test MSE
is averaging these n MSEs, so the mathematical expression is:

1 n
CViy) = - ; MSE,; (15)

Since the degree of emotional expression is highly correlated with the level of the
video stimuli, and also each person’s emotion expression for the same video stimuli varies,
the proposed model’s LOOCYV accuracy of 72.83% has reached a high score. In addition,



Sensors 2023, 23, 338

12 of 17

the accuracy, recall, and F1 scores after LOOCV are 0.721, 0.728, and 0.723, respectively,
which proves that the model has a strong prediction and generalization ability.

4.3. Experimental Analysis
4.3.1. Emotion Recognition Accuracy of ER-MiCG

To evaluate the classification accuracy of ER-MiCG, we trained two types of classifiers
using the data of the 15 subjects mentioned above. The first type is a person-related classifier,
i.e., each subject is trained separately under a specific topic. The second type is a person-
independent classifier, i.e., the same classifier is used for all subjects. Moreover, the results
are as expected. The person-dependent classifier has significantly higher recognition
accuracy than the person-independent classifier, which is also consistent with the extensive
previous research literature. The Figure 8 shows that the average recognition accuracy of
the four emotions in the person-related classifier reaches 85.5%. In contrast, the recognition
accuracy of the person-independent classifier reaches 74.25%, which means that ER-MiCG
is more successful in achieving the emotion recognition task by automatically extracting
emotion-related features.

0.9
relaxed . 0.01 0.11 0.03 0.8 relaxed 0.7
0.7 0.6
£ £
£ happy| 0.02 0.03 +[{%¢ E happy 0.5
£ 0.5 £
= -~ = 0.4
= 0.4 =
g sad | 0.13 0.08 g sad 0.3
g R
0.2 02
anger| 0.03 0.07 0.04 01 anger | 0.01  0.03 0.1

relaxed happy sad anger relaxed happy sad anger
Predict Emotion Predict Emotion

(a) (b)

Figure 8. Confusion matrix for two different types of classifiers: (a) Person-dependent. (b) Person-
independent.

4.3.2. Robustness Testing

The expression of emotion in physiological signals is subjective, reflected in the dif-
ferent fluctuations of physiological signals when everyone is in the same emotional state.
At the same time, each person shows different physiological characteristics in the same
emotional state on different days. This is due to each person’s different sleep conditions and
material intake on the day, so it is necessary to evaluate the method proposed in this paper
on different days. We collected the experimental data of six subjects in the experimental
environment of this paper for seven days a week. As shown in the Figure 9, the average
recognition rate of the four emotions is higher than 72%, which shows that our method is
less affected by time factors.

In addition, the distance between the device and the subject is also an essential factor
affecting the recognition accuracy because of the short wavelength of the millimeter wave,
the characteristics of easy attenuation, and the video image taken by the camera will
also decrease as the distance increases. Therefore, we adjusted the distance between the
millimeter wave radar and the subjects in the experiment and collected the experimental
data of 10 subjects at the distance of 40 cm, 50 cm, 60 cm, and 70 cm, respectively. Figure 10
shows the recognition accuracy of four emotions at different distances. It can be seen that
the average recognition accuracy of the four emotions gradually decreases with the increase
in distance.
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Figure 9. ER-MiCG'’s classification performance of four emotion recognition in seven days a week.
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Figure 10. Effect of millimeter wave radar and subject on recognition accuracy at different distances.

4.3.3. Comparison of Different Emotion Recognition Methods

The idea of our work comes from similar previous studies. In this paper, we have
selected studies using wireless signals or facial expression images to achieve emotion
recognition in recent years for comparison. Table 4 shows the differences between the
four methods and ER-MICG in four dimensions, where the average recognition accuracies
are obtained with person-independent classifiers. Among them, facial expression-based
methods have higher recognition accuracy because the research started earlier and the
technology is very mature. The limitation of such methods is that facial expressions can be
deliberately hidden or changed. In contrast, physiological information cannot be deliber-
ately changed. Therefore, combining the two techniques can compensate for the limitations
of single-channel data and make the recognition results more convincing. However, the re-
search in this field is in its initial stage. As the research progresses, combining physiological
information obtained by wireless sensing technology with facial expressions will achieve
higher recognition accuracy. From Table 4, we can see that the recognition accuracy of the
proposed method in this paper is higher than that of using only a single wireless signal
and other similar methods.
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Table 4. Comparison of recognition accuracy of each model.

Project Emotoion Algorithm Feature Average Accuracy
ER-MICG Relax, Happy, Sad, Anger CNN and GRU FMCW and FER 74.25%
EQ-Radio [43] Joy, Pleasure, Sad, Anger SVM EMCW 72.3%
EmoSense [44] Happy, Sad, Anger, Fear KNN CSI 40.86%
. FMCW and Continuous o
Yang Hao et al. [45] Scary, Relax, Joy, Disgust CNN and LSTM ) 71.67%
wavelet images
Jain, N, et al. [46] Fear, Happy, Sad, Anger, CNN and RNN FER 93.49%

Surprise, Disgust, Neutral

4.3.4. Comparison with Traditional Machine Learning Algorithms

ML methods in previous studies have solved many problems, but there is no deny-
ing that their manual feature extraction is time-consuming and laborious. Researchers
have turned their attention to DL because the method can overcome the difficulty of
obtaining valid time series features from time series data. DL alleviates the burden of
extracting manual features for ML models. Instead, it can automatically learn hierarchi-
cal feature representations. This eliminates the need for data pre-processing and feature
space reconstruction in a standard ML pipeline. In this paper, to further demonstrate the
classification ability of the deep learning model proposed in this paper, and traditional
machine learning models, statistical features of emotions are extracted using statistical
feature recognition methods. Person-related classification models are constructed using
support vector machine (SVM) and random forest (RF), commonly used in previous studies.
Experimental data from ten subjects are used for comparison in the recognition accuracy
dimension. The Figure 11 shows the classification of the three classification models for
the four emotions, and MiCG has a higher classification accuracy than SVM and RF for all
four emotions.
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Figure 11. Comparison of ER-MiCG with two machine learning algorithms.

4.3.5. Comparison of Different Deep Learning Models

In this paper, CNN and GRU deep learning models are used in the emotion recog-
nition task according to the characteristics of different modalities. Then the classification
ability of ER-MiCG needs to be validated compared to these two classification models.
In addition, the intensity of a specific emotion induced by audiovisual stimuli is highly
subjective, which increases the difficulty of completing the classification task only under
commonalities. Therefore, it is crucial to validate the classification ability of the proposed
classification model ER-CG in this paper. We compare ER-MiCG with CNN and GRU deep
learning models. The receiver operating characteristic curve (ROC curve) is commonly
used to evaluate the classification ability of the model. The horizontal coordinate X-axis



Sensors 2023, 23, 338

15 of 17

is 1 — specificity, also known as the false positive rate (false alarm rate), and the closer
the X-axis is to zero, the higher the accuracy rate; the vertical coordinate Y-axis is called
sensitivity, also known as the true positive rate, and the larger the Y-axis represents the
better the accuracy rate. According to the curve position, the whole graph was divided into
two parts. The area of the part under the curve is called AUC (Area Under Curve), which is
used to indicate prediction accuracy. The higher the AUC value, the larger the area under
the curve and the higher the prediction accuracy. Figure 12 shows that the AUC scores in
the ROC curves of the three models are in descending order: ER-MiCG > GRU > CNN,
which also indicates that ER-MiCG has a higher classification ability.

ER-MICG : 90.8854 GRU : 82.2917

Sensitivity (%)

20 40 60 80 100
20 40 60 80 100
1
20 40 60 80 100
1

Sensitivity (%)
Sensitivity (%)

T T T T T T T T T T T T T T T T T T
100 80 60 40 20 0 100 80 60 40 20 0 100 80 60 40 20 0

Specificity (%) Specificity (%) Specificity (%)

0
0
0

Figure 12. ROC curve of ER-MiCG with CNN and GRU.

5. Conclusions

In this study, we used wireless sensing technology to acquire physiological signals
from subjects and captured videos of their facial expressions via a camera. The original
signals were then removed from static clutter and separated and reconstructed to obtain
higher quality time domain signals of heartbeat and respiration, cropping, and keyframe
selection of facial expression images. Finally, a deep learning model combining CNN
and GRU is designed based on their respective characteristics to realize the recognition of
four emotional states. The model combines the powerful feature representation capability
of CNN in the face of data with different dimensions and the GRU model’s simplicity,
efficiency, and stronger fault tolerance. Extensive experiments have shown that the heart-
beat breathing signal extraction and processing method proposed in this paper has good
accuracy. In addition, the classification model proposed in this paper performs better than
single deep learning models and traditional machine learning models. The future work is to
improve the method further. The presence of multiple people, people in large movements
or motion, poor lighting conditions, and other complex real-world environments can have
a significant impact on the classification results, so we hope that the work done so far can
lay the foundation for solving the above limitations and even applying them to clinical
routines in the future.
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GRU Gate Recurrent Unit
ML Machine Learning
DL Deep Learning
FMCW Frequency Modulated Continuous Wave
CW Continuous Wave
UWB Ultra-WideBand
ELU Exponential Linear Units
LOOCV  Leave-One-Out Cross-Validation
MSE Mean Squared Error
SVM Support Vector Machine
KNN K-Nearest Neighbor
RF Random Forest
FER Face Emotion Recognition
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