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ABSTRACT. We consider the Nernst-Planck-Navier-Stokes system in a bounded domain of Rd, d = 2, 3 with

general nonequilibrium Dirichlet boundary conditions for the ionic concentrations. We prove the existence

of smooth steady state solutions and present a sufficient condition in terms of only the boundary data that

guarantees that these solutions have nonzero fluid velocity. We show that all time dependent solutions of

the Nernst-Planck-Stokes system in three spatial dimensions, after a finite transient time, become bounded

uniformly, independently of their initial size. In addition, we consider one dimensional steady states with

steady nonzero currents and show that they are globally nonlinearly stable as solutions in a three dimensional

periodic strip, if the currents are sufficiently weak.

1. Introduction

We consider the Nernst-Planck-Navier-Stokes (NPNS) system in a connected, but not necessarily simply

connected bounded domain Ω ⊂ R
d (d = 2, 3) with smooth boundary. The system models electrodiffusion

of ions in a fluid in the presence of an applied electrical potential on the boundary [22, 24]. In this paper,

we study the case where there are two oppositely charged ionic species with valences ±1 (e.g. sodium and

chloride ions). In this case, the system is given by the Nernst-Planck equations

∂tc1 + u · ∇c1 =D1div (∇c1 + c1∇Φ)

∂tc2 + u · ∇c2 =D2div (∇c2 − c2∇Φ)
(1)

coupled to the Poisson equation

− ε∆Φ = c1 − c2 = ρ (2)

and to the Navier-Stokes system

∂tu+ u · ∇u− ν∆u+∇p = −Kρ∇Φ, divu = 0. (3)

Above c1 and c2 are the local ionic concentrations of the cation and anion, respectively, ρ is a rescaled local

charge density, u is the fluid velocity, and Φ is a rescaled electrical potential. The constant K > 0 is a

coupling constant given by the product of Boltzmann’s constant kB and the absolute temperature TK . The

constants Di are the ionic diffusivities, ε > 0 is a rescaled dielectric permittivity of the solvent proportional

to the square of the Debye length, and ν > 0 is the kinematic viscosity of the fluid. The dimensional

counterparts of Φ and ρ are given by (kBTk/e)Φ and eρ, respectively, where e is elementary charge.

It is well known that for certain equilibrium boundary conditions, (see (5) and (7) below) the NPNS

system (1)-(3) admits a unique steady solution, with vanishing velocity u∗ = 0, and with concentrations c∗i
related to Φ∗ which uniquely solves a nonlinear Poisson-Boltzmann equation

−ε∆Φ∗ = c∗1 − c∗2

c∗1 = Z−1
1 e−Φ∗

c∗2 = Z−1
2 eΦ

∗

(4)

with Zi > 0 constant for i = 1, 2. The equilibria of the Nernst-Planck-Navier-Stokes system are unique

minimizers of a total energy that is nonincreasing in time on time dependent solutions [6]. For equilibrium

boundary conditions it is known that for d = 2 the unique steady states are globally stable [3, 6] and for
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d = 3 locally stable [8, 28]. The equilibrium boundary conditions include the cases where ci obey blocking

boundary conditions

(∂nc1 + c1∂nΦ)|∂Ω = (∂nc2 − c2∂nΦ)|∂Ω = 0 (5)

(here, ∂n is the normal derivative) and Φ obeys Dirichlet, Neumann, or Robin boundary conditions. Also in-

cluded is the case where ci obey a mix of blocking and Dirichlet boundary conditions and Φ obeys Dirichlet

boundary conditions in such a way that the electrochemical potentials

µ1 = log c1 +Φ, µ2 = log c2 − Φ (6)

are each constant on the boundary portions where ci obey Dirichlet boundary conditions. That is, if ci satisfy

Dirichlet boundary conditions on Si ⊂ ∂Ω (possibly Si = ∂Ω), then boundary conditions such that

µ1|S1
= constant, µ2|S2

= constant (7)

yield an equilibrium boundary condition. In general, arbitrary deviations from such situations can produce

instabilities and even chaotic behavior for time dependent solutions to NPNS [10, 16, 21, 25, 26, 27, 32].

Furthermore, steady states in nonequilibrium configurations are not known in general, and not known to

always be unique [18, 19].

The various boundary conditions for ci and Φ all have physical interpretations, and we refer the reader

to [3, 6, 9, 10, 18, 29] for relevant discussions. In this paper, we consider only Dirichlet boundary conditions

for both ci and Φ, together with no-slip boundary conditions for u,

ci|∂Ω = γi > 0, 1 ≤ i ≤ 2

Φ|∂Ω =W

u|∂Ω = 0.

(8)

For simplicity, we assume γi,W ∈ C∞(∂Ω), but we do not restrict their size, nor do we require them to

be constant. For ci, the Dirichlet boundary conditions model, for example, ion-selectivity at an ion-selective

membrane or some fixed concentration of ions at the boundary layer-bulk interface. Dirichlet boundary

conditions for Φ model an applied electric potential on the boundary.

There is a large literature on the well-posedness of the time dependent NPNS system [3, 6, 8, 9, 12,

17, 20, 28, 29], as well as the uncoupled Nernst-Planck [1, 2, 4, 13, 15, 18] and Navier-Stokes systems

[5, 30]. Some of the aforementioned studies, in addition to [7, 14, 19], study several aspects of the steady

state Nernst-Planck equations including existence, uniqueness, stability, and asymptotic behavior.

Thus far, in the context of NPNS, steady states have mostly been studied in the case of equilibrium

boundary conditions. In these cases, the corresponding steady states are the unique Nernst-Planck steady

states, together with zero fluid flow u∗ ≡ 0. In this paper in Section 2, Theorem 1, we prove the existence of

smooth steady state solutions to the NPNS system (1)-(3) subject to arbitrary (large data) Dirichlet boundary

conditions (8). In addition, we derive a sufficient condition, depending solely on the boundary data such

that the steady state solution has nonzero fluid flow u∗ 6≡ 0 (Theorem 2). Thus the two main results of

Section 2 give the existence of steady states for NPNS that are not obtained by existing theory for Nernst-

Planck equations, and include in particular the steady solutions with nonzero flow for which instability and

chaos have been observed experimentally and numerically.

In Section 3 we consider the time dependent solutions of the Nernst-Planck-Stokes system in 3D and

show, using a maximum principle that solutions obey long time bounds that are independent of the size of

the initial data. This result is also valid for the NPNS system in 2D and the NPNS system in 3D under the

assumption of globally bounded smooth velocities. The maximum principle is for a two-by-two parabolic

system with unequal diffusivities. The bound applies for situations far away from equilibrium, when the

solutions have nontrivial dynamics, and establishes the existence of an absorbing ball. This is a first step in

proving the existence and finite dimensionality of the global attractor, a task that will be pursued elsewhere.

In Section 4, we consider the Nernst-Planck-Stokes (NPS) system in the periodic channel Ω = (0, L)×
T
2 with piecewise constant (i.e. constant at x = 0 and x = L, respectively) boundary conditions. In

this case, we derive sufficient conditions, depending only on boundary data and parameters, such that NPS
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admits a one dimensional, globally stable steady state solution that corresponds to a steady (nonzero) current

solution with the fluid at rest. These are non-Boltzmann states (whose currents identically vanish). The

stability condition can be thought of as a smallness condition on the magnitude of the ionic currents or,

equivalently, as a small perturbation from equilibrium condition. The main result of Section 4, Theorem 4,

is preceded by an analysis of one dimensional steady currents.

1.1. Notation. Unless otherwise stated, we denote by C a positive constant that depends only on the

parameters of the system, the domain, and the initial and boundary conditions. The value of C may differ

from line to line.

We denote by Lp = Lp(Ω) the Lebesgue spaces and by W s,p = W s,p(Ω), Hs = Hs(Ω) = W s,2 the

Sobolev spaces. We denote by 〈·, ·〉 the L2(Ω) inner product, and we write dV = dx dy dz for the volume

element in three dimensions, and dx in one dimension. We write dS for the surface element.

We denote by ∂x, ∂y, ∂z, ∂t the partial derivaties with respect to x, y, z, t, respectively, and also use ∂x
to mean d

dx
in a one dimensional setting.

We denote z1 = 1, z2 = −1 for the valences of the ionic species.

2. Steady State Nernst-Planck-Navier-Stokes

We consider the steady state Nernst-Planck-Navier-Stokes sytem

u · ∇c1 = div (∇c1 + c1∇Φ) (9)

u · ∇c2 = div (∇c2 − c2∇Φ) (10)

−∆Φ = c1 − c2 = ρ (11)

u · ∇u−∆u+∇p = −ρ∇Φ (12)

divu = 0 (13)

on a smooth, connected, bounded domain Ω ⊂ R
d (d = 2, 3) together with boundary conditions

ci|∂Ω = γi > 0, 1 ≤ i ≤ 2 (14)

Φ|∂Ω =W (15)

u|∂Ω = 0 (16)

with γi,W ∈ C∞(∂Ω) not necessarily constant. In the above system, we have taken Di = ε = ν = K = 1,

as the values of these parameters do not play a significant role in the results of this section. In this section

we first prove the existence of a smooth solution to (9)-(13) with boundary conditions (14)-(16). Then, we

derive a sufficient condition depending on just γi andW and their derivatives that guarantees that any steady

state solution (c∗i ,Φ
∗, u∗) of (9)-13) with (14)-(16) has nonzero fluid flow i.e. u∗ 6≡ 0.

THEOREM 1. For arbitrary boundary conditions (14)-(16) on a smooth, connected, bounded domain

Ω ⊂ R (d = 2, 3), there exists a smooth solution (ci,Φ, u) of the steady state Nernst-Planck-Navier-Stokes

system (9)-(13) such that ci ≥ 0.

REMARK 1. For the steady state Nernst-Planck system, any regular enough solution is necessarily

nonnegative (i.e. ci ≥ 0) if we assume γi ≥ 0. This follows from the fact that the quantities c1e
Φ, c2e

−Φ

each satisfy a maximum principle (see Section 4.1). However, in the case of steady state NPNS, where such

a maximum principle does not hold, the nonnegativity of ci must be built into the construction.

REMARK 2. In general, it is unknown whether steady state solutions of the two or three dimensional

NPNS system, with Dirichlet boundary conditions for ci, are unique. Given the available nonuniqueness

results for the Navier-Stokes equations in some special cases [23, 30, 31], it is reasonable to expect that

uniqueness for NPNS does not hold in full generality. Nonetheless, uniqueness holds in some perturbative

regimes, see for example Theorem 5, where the argument is given for the Nernst-Planck-Stokes system.
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PROOF. Throughout the proof, we assume d = 3. Some steps are streamlined if we assume d = 2, but

the proof for d = 3 nonetheless works for d = 2.

The proof consists of two main steps. We first show the existence of a solution to a parameterized

approximate NPNS system. Then, we extract a convergent subsequence and show that the limit satisfies the

original system.

Step 1. The approximate system. The approximate system is given by:

0 = div (∇cδ1 + χδ(c
δ
1)∇Φδ − uδχδ(c

δ
1)) (17)

0 = div (∇cδ2 − χδ(c
δ
2)∇Φδ − uδχδ(c

δ
2)) (18)

−∆Φδ = χδ(c
δ
1)− χδ(c

δ
2) = ρδ (19)

uδ · ∇uδ −∆uδ +∇pδ = −ρδ∇Φδ (20)

divuδ = 0 (21)

with boundary conditions

cδi |∂Ω = γi > 0, 1 ≤ i ≤ 2 (22)

Φδ
|∂Ω =W (23)

uδ |∂Ω = 0. (24)

Here, χδ is a smooth cutoff function, which converges pointwise to the following function as δ → 0,

l : y 7→
{

y, y ≥ 0

0, y ≤ 0.
(25)

We define χδ by first fixing a smooth, nondecreasing function χ : R → R
+ such that

χ : y 7→
{

y, y ≥ 1

0, y ≤ 0.
(26)

Then, we set χδ(y) = δχ(y
δ
). We state below some elementary properties of χδ:

1) χδ ≥ 0
2) χδ(y) = y for y ≥ δ, χδ(y) = 0 for y ≤ 0
3) χδ is nondecreasing

4) |χ′
δ(y)| ≤ a where a = supχ′ and so χδ(y) ≤ a|y|, |χδ(x)− χδ(y)| ≤ a|x− y|.

The existence of a solution to (17)-(24) follows as an application of Schaefer’s fixed point theorem [11],

which we state below:

PROPOSITION 1. Suppose X is a Banach space and E : X → X is continuous and compact. If the set

{v ∈ X | v = λE(v) for some 0 ≤ λ ≤ 1} (27)

is bounded in X , then E has a fixed point.

Step 2. Fixed point reformulation. In order to apply this fixed point theorem, we first reformulate the

problem (17)-(24). Letting Γi be the unique harmonic function on Ω satisfying Γi|∂Ω = γi, and introducing

qδi = cδi − Γi, 1 ≤ i ≤ 2 (28)

we rewrite (17)-(19),

−∆qδ1 = div (−uδχδ(c
δ
1) + χδ(c

δ
1)∇(−∆W )−1ρδ) = Rδ

1(q
δ
1, q

δ
2, u

δ) (29)

−∆qδ2 = div (−uδχδ(c
δ
2)− χδ(c

δ
2)∇(−∆W )−1ρδ) = Rδ

2(q
δ
1, q

δ
2, u

δ) (30)

where (−∆W )−1 maps g to the unique solution f of

−∆f = g in Ω, f|∂Ω =W. (31)
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Above we viewRδ
i as functions of qδi and uδ, with cδi and ρδ related to qδi via (28) and ρδ = χδ(c

δ
1)−χδ(c

δ
2).

Thus we write (29)-(30) as

qδi = (−∆D)
−1Rδ

i (q
δ
1, q

δ
2, u

δ), 1 ≤ i ≤ 2 (32)

where −∆D is the Laplace operator on Ω associated with homogeneous Dirichlet boundary conditions. As

for the Navier-Stokes subsystem, we first project the equations onto the space of divergence free vector

fields using the Leray projection [5]

P : (L2(Ω))3 → H (33)

where H is the closure of

V = {f ∈ (C∞
0 (Ω))3 | div f = 0} (34)

in (L2(Ω))3 and is a Hilbert space endowed with the L2 inner product. Then (20), (21) is given by

Auδ +B(uδ, uδ) = −P(ρδ∇Φδ) (35)

where

A = P(−∆) : D(A) = (H2(Ω))3 ∩ V → H (36)

V = closure of V in (H1
0 (Ω))

3 = {f ∈ (H1
0 (Ω))

3 | div f = 0}. (37)

As it is well known, the Stokes operator A is invertible and A−1 : H → D(A) is bounded and self-adjoint

on H and compact as a mapping from H into V . The space V is a Hilbert space endowed with the Dirichlet

inner product

〈f, g〉V =

∫

∇f : ∇g dV. (38)

For f, g ∈ V , B(f, g) = P(f · ∇g) and B may be viewed as a continuous, bilinear mapping such that

B : (f, g) ∈ V × V 7→
(

h ∈ V 7→
∫

Ω
(f · ∇g) · h dV

)

∈ V ′ (39)

where V ′ is the dual space of V . We note that we may also view A as an invertible mapping A : V → V ′.
It is with this viewpoint that we write (35) as

uδ = A−1Rδ
u(q

δ
1, q

δ
2, u

δ) (40)

Rδ
u(q

δ
1, q

δ
2, u

δ) = −(B(uδ, uδ) + P(ρδ∇(−∆W )−1ρδ)). (41)

Thus, setting

X = H1
0 (Ω)×H1

0 (Ω)× V (42)

and

E = E1 × E2 × Eu : (f, g, h) ∈ X 7→ ((−∆D)
−1Rδ

1(f, g, h), (−∆D)
−1Rδ

2(f, g, h), A
−1Rδ

u(f, g, h))
(43)

we seek to show the existence of a weak solution (q̃1, q̃2, ũ) = (q̃δ1, q̃
δ
2, ũ

δ) ∈ X to (29), (30), (35) by

verifying the hypotheses of Proposition 1 for the operator E and showing that E has a fixed point in X .

Step 3. Continuity and compactness of E. First we prove that E indeed maps X into X and does so

continuously and compactly.

LEMMA 1. The operator E = E1 × E2 × Eu : X → X is continuous and compact.

PROOF. We start with compactness. Since (−∆D)
−1 (and A−1) maps L

3

2 (resp. (L
3

2 )3) continuously

into W 2, 3
2 ∩ H1

0 (resp. (W 2, 3
2 )3 ∩ V ), by Rellich’s theorem, the maps (−∆D)

−1 : L
3

2 → H1
0 and A−1 :

(L
3

2 )3 → V are compact. Thus for compactness of E, it suffices to show that

(f, g, h) ∈ X 7→ Rδ
i (f, g, h) ∈ L

3

2 , 1 ≤ i ≤ 2

(f, g, h) ∈ X 7→ Rδ
u(f, g, h) ∈ (L

3

2 )3
(44)
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are bounded. To this end, we compute

‖Rδ
1(f, g, h)‖L 3

2

≤‖h‖L6‖∇χδ(f + Γ1)‖L2

+ ‖∇χδ(f + Γ)‖L2‖∇(−∆W )−1(χδ(f + Γ1)− χδ(g + Γ2))‖L6

+ ‖χδ(f + Γ)‖L6‖(χδ(f + Γ1)− χδ(g + Γ2))‖L2

≤C(‖h‖V + ‖f‖H1 + ‖g‖H1 + 1)(‖f‖H1 + 1).

(45)

In the last inequality we used the continuous embeddings H1 ↪→ L6 and the fact that |χ′
δ| ≤ a. Entirely

similar estimates give

‖Rδ
2(f, g, h)‖L 3

2

≤ C(‖h‖V + ‖f‖H1 + ‖g‖H1 + 1)(‖g‖H1 + 1). (46)

Lastly we estimate Rδ
u,

‖Rδ
u(f, g, h)‖L 3

2

≤‖B(h, h)‖
L

3
2

+ ‖(χδ(f + Γ1)− χδ(g + Γ2))∇(−∆W )−1(χδ(f + Γ1)− χδ(g + Γ2))‖
L

3
2

≤‖h‖L6‖h‖V
+ ‖(χδ(f + Γ1)− χδ(g + Γ2))‖L2‖∇(−∆W )−1(χδ(f + Γ1)− χδ(g + Γ2))‖L6

≤C(1 + ‖h‖2V + ‖f‖2L2 + ‖g‖2L2).
(47)

The bounds (45)-(47) show that the operators from (44) are indeed bounded, and thus E is compact.

Continuity of E follows from the fact that the components of E are sums of compositions of the follow-

ing continuous operations

f ∈ H1 7→ f + Γi ∈ H1

f ∈ H1 7→ χδ(f) ∈ L4

f ∈ L2 7→ ∇(−∆W )−1f ∈ (H1)3 ⊂ (L4)3

(f, g) ∈ L4 × L4 7→ fg ∈ L2

f ∈ (L2)d 7→ (−∆D)
−1div f ∈ H1

0

(f, g) ∈ V × V 7→ B(f, g) ∈ V ′

f ∈ (L2)d 7→ Pf ∈ H

f ∈ V ′ 7→ A−1f ∈ V.

(48)

This completes the proof of the lemma. �

Step 4. Uniform a priori H1 bounds. Now it remains to establish uniform a priori bounds (c.f. (27)).

We fix λ ∈ [0, 1] and assume that for some (q̃1, q̃2, ũ) ∈ X we have

(q̃1, q̃2, ũ) = λE(q̃1, q̃2, ũ). (49)

That is, for all ψ1, ψ2 ∈ H1
0 (Ω) and ψu ∈ V we assume we have
∫

Ω
∇q̃i · ∇ψi dV = λ

∫

Ω
Rδ

i (q̃1, q̃2, ũ)ψi dV, 1 ≤ i ≤ 2 (50)

∫

Ω
∇ũ : ∇ψu dV = λ

∫

Ω
Rδ

u(q̃1, q̃2, ũ) · ψu dV. (51)

We make the choice of test functions ψi = q̃i and first estimate the resulting integral on the right hand side

of (50) for i = 1, omitting for now the factor λ. Introducing the following primitive of χδ

Qδ(y) =

∫ y

0
χδ(s) ds (52)
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we have, integrating by parts,
∫

Ω
Rδ

1(q̃1, q̃2, ũ)q̃1 dV =

∫

Ω
ũ · ∇Qδ(c̃1) dV −

∫

Ω
(ũ · ∇Γ1)χδ(c̃1) dV

−
∫

Ω
χδ(c̃1)∇(−∆W )−1ρ̃ · ∇q̃1 dV

=I
(1)
1 + I

(1)
2 + I

(1)
3

(53)

where q̃i = c̃i − Γi, 1 ≤ i ≤ 2 and ρ̃ = χδ(c̃1) − χδ(c̃2). Because ũ is divergence-free, it follows after an

integration by parts that

I
(1)
1 = 0. (54)

Next, estimating I
(1)
2 we have, using the Poincaré inequality twice,

|I(1)2 | =
∣

∣

∣

∣

∫

Ω
(ũ · ∇Γ1)χδ(c̃1) dV

∣

∣

∣

∣

≤ C‖ũ‖H‖c̃1‖L2 ≤ 1

2
‖∇q̃1‖2L2 + C‖ũ‖2V + C. (55)

Lastly we estimate I
(1)
3 ,

I
(1)
3 =−

∫

Ω
χδ(c̃1)∇(−∆W )−1ρ̃ · ∇c̃1 dV +

∫

Ω
χδ(c̃1)∇(−∆W )−1ρ̃ · ∇Γ1 dV

=−
∫

Ω
∇Qδ(c̃1) · ∇(−∆W )−1ρ̃ dV +

∫

Ω
χδ(c̃1)∇(−∆W )−1ρ̃ · ∇Γ1 dV

=−
∫

Ω
∇(Qδ(c̃1)−Qδ(Γ1)) · ∇(−∆W )−1ρ̃ dV −

∫

Ω
∇Qδ(Γ1) · ∇(−∆W )−1ρ̃ dV

+

∫

Ω
χδ(c̃1)∇(−∆W )−1ρ̃ · ∇Γ1 dV

=−
∫

Ω
(Qδ(c̃1)−Qδ(Γ1))ρ̃ dV −

∫

Ω
∇Qδ(Γ1) · ∇(−∆W )−1ρ̃ dV

+

∫

Ω
χδ(c̃1)∇(−∆W )−1ρ̃ · ∇Γ1 dV.

(56)

Analogous computations for i = 2 in (50) yield on the right hand side
∫

Ω
Rδ

2(q̃1, q̃2, ũ)q̃2 dV = I
(2)
1 + I

(2)
2 + I

(2)
3 (57)

where I
(2)
j , j = 1, 2, 3 satisfy

I
(2)
1 =0

|I(2)2 | ≤1

2
‖∇q̃2‖2L2 + C‖ũ‖2V + C

I
(2)
3 =

∫

Ω
(Qδ(c̃2)−Qδ(Γ2))ρ̃ dV +

∫

Ω
∇Qδ(Γ2) · ∇(−∆W )−1ρ̃ dV

−
∫

Ω
χδ(c̃2)∇(−∆W )−1ρ̃ · ∇Γ2 dV.

(58)

Thus, summing (50) in i we obtain

1

2

∑

i

‖∇q̃i‖2L2 + λ

∫

Ω
(Qδ(c̃1)−Qδ(c̃2))ρ̃ dV ≤Cλ(1 + ‖ρ̃‖L1 + ‖∇(−∆W )−1ρ̃‖L1

+ ‖ũ‖2V +
∑

i

‖c̃i‖L2‖∇(−∆W )−1ρ̃‖L2).
(59)
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Next, using the bounds

‖c̃i‖L2 ≤ ‖q̃i‖L2 + C ≤ C‖∇q̃i‖L2 + C, 1 ≤ i ≤ 2

‖ρ̃‖L1 ≤ C‖ρ̃‖L3

‖∇(−∆W )−1ρ̃‖L1 ≤ C‖∇(−∆W )−1ρ̃‖L2 ≤ C‖ρ̃‖L3 + C

(60)

we obtain from (59), using Young’s inequalities

1

4

∑

i

‖∇q̃i‖L2 + λ

∫

Ω
(Qδ(c̃1)−Qδ(c̃2))ρ̃ dV ≤ C + θλ‖ρ̃‖3L3 + Cλ‖ũ‖2V (61)

where θ is a small constant to be chosen later. Next we prove the following bound,
∫

Ω
(Qδ(c̃1)−Qδ(c̃2))ρ̃ dV ≥ 1

4
‖ρ̃‖3L3 − C. (62)

Prior to establishing this lower bound, we prove the following lemma, which shows that Qδ ≈ χ2

δ

2 .

LEMMA 2. |Qδ(y)− χ2

δ

2 (y)| ≤ δ2

2 for all y ∈ R.

PROOF. For y ≤ 0, we have Qδ(y) = χδ(y) = 0 so we may assume y > 0. Suppose y ≥ δ. Then

Qδ(y) =

∫ δ

0
χδ(s) ds+

∫ y

δ

s ds ≤ δ2 +
1

2
(y2 − δ2) =

δ2

2
+
χ2
δ(y)

2
(63)

and similarly

Qδ(y) =

∫ δ

0
χδ(s) ds+

∫ y

δ

s ds ≥ 1

2
(y2 − δ2) = −δ

2

2
+
χ2
δ(y)

2
. (64)

Thus the lemma holds for y ≥ δ. Lastly, suppose y ∈ (0, δ). Then, using the monotonicity of χδ,

Qδ(y) =

∫ y

0
χδ(s) ds ≤ yχδ(y) ≤ δχδ(y) ≤

δ2

2
+
χ2
δ(y)

2
. (65)

On the other hand, we have

Qδ(y) ≥ 0 ≥ −δ
2

2
+
χ2
δ(y)

2
. (66)

This completes the proof of the lemma. �

Now we proceed with the proof of (62). We split Ω = {ρ̃ ≥ 0} ∪ {ρ̃ < 0}. Restricted to {ρ̃ ≥ 0}, we

have, using Lemma 2,

Qδ(c̃1)−Qδ(c̃2) ≥
χ2
δ(c̃1)

2
− χ2

δ(c̃2)

2
− δ2 =

1

2
(χδ(c̃1) + χδ(c̃2))ρ̃− δ2 (67)

and, restricted to {ρ̃ < 0}, again using the lemma, we have

Qδ(c̃1)−Qδ(c̃2) ≤
χ2
δ(c̃1)

2
− χ2

δ(c̃2)

2
+ δ2 =

1

2
(χδ(c̃1) + χδ(c̃2))ρ̃+ δ2. (68)

It follows that
∫

Ω
(Qδ(c̃1)−Qδ(c̃2))ρ̃ dV ≥ 1

2

∫

Ω
ρ̃2(χδ(c̃1) + χδ(c̃2)) dV − δ2‖ρ̃‖L1

≥ 1

2

∫

Ω
|ρ̃|3 dV − C‖ρ̃‖L3

≥ 1

4
‖ρ̃‖3L3 − C

(69)
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where in the second inequality we used the fact that, because χδ ≥ 0, we have |ρ̃| ≤ χδ(c̃1) + χδ(c̃2).
Thus we have established (62). Now we return to (61) and select θ = 1/8. Then using the bound (62), we

ultimately have

1

4

∑

i

‖∇q̃i‖2L2 +
λ

8
‖ρ̃‖3L3 ≤ C + C̃λ‖ũ‖2V (70)

with C̃ depending only on data and parameters. Next, we proceed to (51). Choosing ψu = ũ, we have on

the right hand side, omitting for now the prefactor λ,

∫

Ω
Rδ

u(q̃1, q̃2, ũ) · ũ dV = −
∫

Ω
B(ũ, ũ) · ũ dV −

∫

Ω
P(ρ̃∇(−∆W )−1ρ̃) · ũ dV. (71)

On one hand, using the self-adjointness of the projection P and the fact that ũ is divergence-free we have

∫

Ω
B(ũ, ũ) · ũ dV =

∫

Ω
(ũ · ∇ũ) · ũ dV =

1

2

∫

Ω
ũ · ∇|ũ|2 dV = 0. (72)

On the other hand, again using the self-adjointness of P, we have

∫

Ω
P(ρ̃∇(−∆W )−1ρ) · ũ dV =

∫

Ω
ρ̃∇(−∆W )−1ρ̃ · ũ dV. (73)

Thus far, from (51) we have

‖ũ‖2V = −λ
∫

Ω
ρ̃∇(−∆W )−1ρ̃ · ũ dV. (74)

To control the integral on the right hand side, we return to (50), taking this time the test functions ψ1 =
−ψ2 = φ0 = (−∆D)

−1ρ̃. Then, on the right hand side, we have, summing in i, integrating by parts, and

omitting for now the prefactor λ
∫

Ω
[Rδ

1(q̃1, q̃2, ũ)−Rδ
2(q̃1, q̃2, ũ)]φ0 dV =

∫

Ω
ũρ̃ · ∇φ0 dV

−
∑

i

∫

Ω
χδ(c̃i)|∇φ0|2 dV −

∑

i

∫

Ω
χδ(c̃i)∇φW · ∇φ0 dV

≤
∫

Ω
ρ̃∇(−∆W )−1ρ̃ · ũ dV −

∫

Ω
ρ̃∇φW · ũ dV

− 1

2

∑

i

∫

Ω
χδ(c̃i)|∇φ0|2 dV +

1

2

∫

Ω
χδ(c̃i)|∇φW |2 dV

≤C +

∫

Ω
ρ̃∇(−∆W )−1ρ̃ · ũ dV +

1

2
‖ũ‖2V + θ‖ρ̃‖3L3

− 1

2

∑

i

∫

Ω
χδ(c̃i)|∇φ0|2 dV + θ

∑

i

‖∇q̃i‖2L2

(75)

where θ is a constant to be chosen. Above, we have denoted φW = (−∆W )−1ρ̃− φ0 i.e. φW is the unique

harmonic function on Ω whose values on the boundary are given by W .

On the other hand, we bound the left hand side of (50) in two different ways depending on whether

0 ≤ λ ≤ Λ or Λ < λ ≤ 1, where Λ is determined below (see (80)). We first consider the case 0 ≤ λ ≤ Λ.

Then, we bound the left hand side of (50) as follows,

∑

i

∣

∣

∣

∣

∫

Ω
∇q̃i · ∇φ0 dV

∣

∣

∣

∣

≤ C + Cq

∑

i

‖∇q̃i‖2L2 (76)
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where Cq > 0 depends only on data and parameters. Collecting the estimates (75), (76), we have from (50),

0 ≤ λ

2

∑

i

∫

Ω
χδ(c̃i)|∇φ0|2 dV ≤C + λ

∫

Ω
ρ̃∇(−∆W )−1ρ̃ · ũ dV

+
1

2
‖ũ‖2V + λθ‖ρ̃‖3L3 + (Cq + θ)

∑

i

‖∇q̃i‖2L2 .

(77)

Above, we keep track of the prefactor λ only where needed and bound λ ≤ 1 if this suffices. Then, adding

(77) to (74), we obtain
1

2
‖ũ‖2V ≤ C + λθ‖ρ̃‖3L3 + (Cq + θ)

∑

i

‖∇q̃i‖2L2 . (78)

Choosing θ = 1 and multiplying this last inequality by 1
8(Cq+1) and adding it to (70), we obtain

1

8

∑

i

‖∇q̃i‖2L2 +
1

32(Cq + 1)
‖ũ‖2V ≤ R̃ (79)

for some R̃ depending on data and parameters, but not on λ or δ, provided (c.f. (70))

λ ≤ Λ =
1

32C̃(Cq + 1)
. (80)

Now we consider the case Λ < λ ≤ 1. In this case, we estimate the left hand side of (50) as follows,

∑

i

∣

∣

∣

∣

∫

Ω
∇q̃i · ∇φ0 dV

∣

∣

∣

∣

≤C + θ
∑

i

‖∇q̃i‖2L2 + Λθ‖ρ̃‖3L3

≤C + θ
∑

i

‖∇q̃i‖2L2 + λθ‖ρ̃‖3L3 .
(81)

Then, combining (75), (81), we have

0 ≤ λ

2

∑

i

∫

Ω
χδ(c̃i)|∇φ0|2 dV ≤C + λ

∫

Ω
ρ̃∇(−∆W )−1ρ̃ · ũ dV

+
1

2
‖ũ‖2V + 2λθ‖ρ̃‖3L3 + 2θ

∑

i

‖∇q̃i‖2L2 .

(82)

Then adding (82) to (74), we obtain

1

2
‖ũ‖2V ≤ C + 2λθ‖ρ̃‖3L3 + 2θ

∑

i

‖∇q̃i‖2L2 . (83)

Now we multiply (83) by 2(1 + C̃) (c.f. (70)) and choose θ small enough so that

4(1 + C̃)θ ≤ 1

8
. (84)

Adding the resulting inequality to (70), we obtain

1

8

∑

i

‖∇q̃i‖2L2 + ‖ũ‖2V ≤ R (85)

for some R depending on data and parameters, but not on λ or δ.

Step 5. Existence of solutions to approximate system. The two estimates (79) and (85) verify the

hypotheses of Proposition 1, and thus it follows that there exists a weak solution (qδ1, q
δ
2, u

δ) ∈ X to (29),

(30), (35) satisfying
∑

i

‖qδi ‖H1 + ‖uδ‖V ≤ R (86)

for some R > 0 independent of δ.
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Step 6. Smoothness of approximate solutions. We establish that in fact (qδ1, q
δ
2, u

δ) is smooth and

satisfies uniform H2 estimates.

LEMMA 3. If (qδ1, q
δ
2, u

δ) ∈ X is a weak solution to (29), (30), (35), then (qδ1, q
δ
2, u

δ) is smooth, that is,

(qδ1, q
δ
2, u

δ) ∈ Xk = Hk(Ω)×Hk(Ω)× (Hk(Ω))3 for all k > 0. (87)

Furthermore, there exists CR > 0 independent of δ so that

‖qδ1‖H2 + ‖qδ2‖H2 + ‖uδ‖H2 ≤ CR. (88)

PROOF. First we verify (88). From the estimates (45), (46), (47) (taking (f, g, h) = (qδ1, q
δ
2, u

δ)) and

the uniform bound (86) it follows that

∑

i

‖qδi ‖W 2, 3
2

+ ‖uδ‖
W 2, 3

2

≤C
(

∑

i

‖∆qδi ‖L 3
2

+ ‖Auδ‖
L

3
2

)

=C

(

∑

i

‖Rδ
i (q

δ
1, q

δ
2, u

δ)‖
L

3
2

+ ‖Rδ
u(q

δ
1, q

δ
2, u

δ)‖
L

3
2

)

≤C
(

1 +
∑

i

‖qδi ‖2H1 + ‖uδ‖2V

)

≤C̄R

(89)

where C̄R is independent of δ. Then, due to the embedding W 2, 3
2 ↪→W 1,3, it follows that

∑

i

‖qδi ‖W 1,3 + ‖uδ‖W 1,3 ≤ C̃R (90)

for C̃R independent of δ. Now we estimate Rδ
i , R

δ
u in L2,

‖Rδ
i (q

δ
1, q

δ
2, u

δ)‖L2 ≤C(‖uδ‖L6‖∇cδi ‖L3 + ‖∇cδi ‖L3‖∇(−∆W )−1ρδ‖L6 + ‖cδi ‖L3‖ρδ‖L6), 1 ≤ i ≤ 2

‖Rδ
u(q

δ
1, q

δ
2, u

δ)‖L2 ≤C(‖uδ‖L6‖∇u‖L3 + ‖ρδ‖L3‖∇(−∆W )−1ρδ‖L6)
(91)

and since all the terms on the right hand sides are bounded independently of δ due to (90), we find that ∆qδi ,

Auδ are bounded in L2 independently of δ, and (88) follows.

Higher regularity follows by induction. Indeed, suppose

(qδ1, q
δ
2, u

δ) ∈ Xk for some integer k ≥ 3. (92)

We show that (qδ1, q
δ
2, u

δ) ∈ Xk+1 follows. By elliptic regularity, it suffices to show that Rδ
i (q

δ
1, q

δ
2, u

δ) and

Rδ
u(q

δ
1, q

δ
2, u

δ) are in Hk−1, and so we compute

‖Rδ
i (q

δ
1, q

δ
2, u

δ)‖Hk−1 ≤C(‖uδ · ∇cδi ‖Hk−1 + ‖∇cδi · ∇(−∆W )−1ρδ‖Hk−1 + ‖cδiρδ‖Hk−1)

≤C(‖uδ‖Hk−1‖∇cδi ‖Hk−1 + ‖∇cδi ‖Hk−1‖∇(−∆W )−1ρδ‖Hk−1

+ ‖cδi ‖Hk−1‖ρδ‖Hk−1)

≤C(‖uδ‖Hk−1‖cδi ‖Hk + ‖cδi ‖Hk(1 + ‖ρδ‖Hk−2) + ‖cδi ‖Hk−1‖ρδ‖Hk−1)

<∞ by (92)

(93)

where in the second inequality, we used the fact that Hs is an algebra for s > 3
2 ; that is,

‖fg‖Hs ≤ C‖f‖Hs‖g‖Hs .
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Similarly, we estimate

‖Rδ
u(q

δ
1, q

δ
2, u

δ)‖Hk−1 ≤C(‖uδ · ∇uδ‖Hk−1 + ‖ρδ∇(−∆W )−1ρδ‖Hk−1)

≤C‖uδ‖Hk−1‖uδ‖Hk + ‖ρδ‖Hk−1(1 + ‖ρδ‖Hk−2)

<∞ by (92)

(94)

where in the first inequality, we used the fact that P is continuous as a mapping P : Hk−1 → Hk−1 [30].

The proof of the smoothness of (qδ1, q
δ
2, u

δ) is thus complete once we verify the base case of k = 3. It

suffices to show that Rδ
i (q

δ
1, q

δ
2, u

δ) and Rδ
u(q

δ
1, q

δ
2, u

δ) are in H1:

‖Rδ
i (q

δ
1, q

δ
2, u

δ)‖H1 ≤C(‖uδ · ∇cδi ‖H1 + ‖div (χδ(c
δ
i )∇(−∆W )−1ρδ)‖H1)

≤C(‖uδ · ∇cδi ‖L2 + ‖∇(uδ · ∇cδi )‖L2 + ‖χδ(c
δ
i )∇(−∆W )−1ρδ‖H2)

≤C(‖uδ‖L∞‖∇cδi ‖L2 + ‖∇uδ‖L4‖∇cδi ‖L4 + ‖uδ‖L∞‖∇∇cδi ‖L2

+ ‖χδ(c
δ
i )‖H2‖∇(−∆W )−1ρδ‖H2)

<∞, 1 ≤ i ≤ 2 by (88)

‖Rδ
u(q

δ
1, q

δ
2, u

δ)‖H1 ≤C‖uδ · ∇uδ‖H1 + ‖ρδ∇(−∆W )−1ρδ‖H1)

≤C(‖uδ · ∇uδ‖L2 + ‖∇(uδ · ∇uδ)‖L2

+ ‖ρδ∇(−∆W )−1ρδ‖L2 + ‖∇(ρδ∇(−∆W )−1ρδ‖L2)

≤C(‖uδ‖L∞‖uδ‖V + ‖∇uδ‖2L4 + ‖uδ‖L∞‖∇∇uδ‖L2

+ ‖ρδ‖L4‖∇(−∆W )−1ρδ‖L4 + ‖∇ρδ‖L2‖∇(−∆W )−1ρδ‖L∞

+ ‖ρδ‖L4‖∇∇(−∆W )−1ρδ‖L4)

<∞ by (88)

(95)

where again, we used the fact that P : H1 → H1 is continuous. Thus the proof of the lemma is complete.

�

Now we finish off the proof of Theorem 1

Step 7. Nonnegativity of concetrations and passing to the limit.. First, we establish the nonnegativity

of cδi . We recall that cδi satisfies

−∆cδi = −(uδ · ∇cδi )χ′
δ(c

δ
i ) + zi(∇cδi · ∇Φδ)χ′

δ(c
δ
i )− χδ(c

δ
i )ρ

δ, 1 ≤ i ≤ 2 (96)

where z1 = 1 = −z2. Suppose cδi attains a negative value in Ω, and suppose that at x0 ∈ Ω we have

cδi (x0) = infΩ c
δ
i < 0. Then consider the largest ball B centered at x0 so that cδi |B ≤ 0. Since cδi |∂Ω = γi >

0, we necessarily have B̄ ⊂ Ω and for some y ∈ ∂B we have cδi (y) = 0. Furthermore, cδi satisfies

−∆cδi = −(uδ · ∇cδi )χ′
δ(c

δ
i ) + zi(∇cδi · ∇Φδ)χ′

δ(c
δ
i ). (97)

in B. However, since cδi |B attains its global minimum in B, the strong maximum principle implies that

cδi |B ≡ infΩ c
δ
i < 0; however this contradicts the fact that cδi (y) = 0 for y ∈ ∂B. Therefore cδi ≥ 0.

Now, due to (88), there is a sequence δj → 0 as j → ∞ and (c1, c2, u) ∈ X2 so that (c
δj
1 , c

δj
2 , u

δj ) →
(c1, c2, u) strongly in X1, pointwise almost everywhere, and weakly in X2 as j → ∞. And, we take

Φ = (−∆W )−1ρ. (98)

Since ci is the pointwise almost everywhere limit of nonnegative functions, we have ci ≥ 0 almost every-

where, and after redefining ci on a set of measure zero, we assume henceforth that ci ≥ 0 everywhere.

Now we verify that (c1, c2, u) together with (98) is a weak solution of (9)-(16). Since the trace operator

is continuous from H1(Ω) into H
1

2 (∂Ω) and (c1, c2, u) is the strong X1 limit of (c
δj
1 , c

δj
2 , u

δj ), we have that
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the boundary conditions (14)-(16) are satisfied in the sense of traces. Next, we verify that (c1, c2, u) satisfies

(9)-(13) in the weak sense: for any (ψ1, ψ2, ψu) ∈ X , we have
∫

Ω
∇ci · ∇ψi dV = −

∫

Ω
(−uci + ci∇(−∆W )−1ρ) · ∇ψi dV, 1 ≤ i ≤ 2

∫

Ω
∇u : ∇ψu dV = −

∫

Ω
(B(u, u) + P(ρ∇(−∆W )−1ρ)) · ψu dV.

(99)

Prior to establishing these equalities, we show that

‖χδj (c
δj
i )− ci‖L6 → 0 as j → ∞, 1 ≤ i ≤ 2. (100)

Indeed, we have
∫

Ω
|χδj (c

δj
i )− ci|6 dV ≤C

(
∫

Ω
|χδj (c

δj
i )− χδj (ci)|6 dV +

∫

Ω
|χδj (ci)− ci|6 dV

)

. (101)

The first integral on the right hand side converges to 0 because

‖χδj (c
δj
i )− χδj (ci)‖L6 ≤ a‖cδji − ci‖L6 ≤ C‖cδji − ci‖H1 → 0. (102)

The second integral also converges to 0 due to the dominated convergence theorem and the fact that for each

x ∈ Ω, we have χδj (ci(x)) = ci(x) for all j sufficiently large since χδ(y) = y for all δ ≤ y if y > 0 and for

all δ if y = 0. Thus, we can now compute
∣

∣

∣

∣

∫

Ω
∇ci · ∇ψi dV −

∫

Ω
∇cδji · ∇ψi dV

∣

∣

∣

∣

≤‖ψi‖H1‖ci − c
δj
i ‖H1 → 0, 1 ≤ i ≤ 2

∣

∣

∣

∣

∫

Ω
uci · ∇ψi dV −

∫

Ω
uδjχδj (c

δj
i ) · ∇ψi dV

∣

∣

∣

∣

≤‖ψi‖H1(‖u‖L3‖ci − χδj (c
δj
i )‖L6

+ ‖χδj (c
δj
i )‖L3‖u− uδj‖L6) → 0, 1 ≤ i ≤ 2

∣

∣

∣

∣

∫

Ω
ci∇(−∆W )−1ρ · ∇ψi dV −

∫

Ω
χδj (c

δj
i )∇(−∆W )−1ρδj · ∇ψi dV

∣

∣

∣

∣

≤‖ψi‖H1(‖∇(−∆W )−1ρ‖L3‖ci − χδj (c
δj
i )‖L6

+ ‖∇(−∆D)
−1(ρ− ρδj )‖L6‖χδj (c

δj
i )‖L3) → 0, 1 ≤ i ≤ 2

∣

∣

∣

∣

∫

Ω
∇u : ∇ψu dV −

∫

Ω
∇uδj : ∇ψu dV

∣

∣

∣

∣

≤ ‖ψu‖V ‖u− uδj‖V → 0

∣

∣

∣

∣

∫

Ω
B(u, u) · ψu dV −

∫

Ω
B(uδj , uδj ) · ψu

∣

∣

∣

∣

≤ ‖ψu‖L6(‖u− uδj‖L3‖u‖V + ‖uδj‖L3‖u− uδj‖V ) → 0

∣

∣

∣

∣

∫

Ω
ρ∇(−∆W )−1ρ · ψu dV −

∫

Ω
ρδj∇(−∆W )−1ρδj · ψu

∣

∣

∣

∣

≤‖ψ‖L6(‖ρ− ρδj‖L2‖∇(−∆W )−1ρ‖L3 + ‖ρδj‖L2‖∇(−∆D)
−1(ρ− ρδj )‖L3) → 0.

The above computations, together with the fact that (cδ1, c
δ
2, u

δ) satisfy (17)-(21), imply (99).

Finally, the smoothness of (c1, c2, u) follows from the same bootstrapping scheme as in the proof of

Lemma 3. The proof of Theorem 1 is now complete. �
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The equilibria of the Nernst-Planck-Navier-Stokes system are unique minimizers of a total energy that is

nonincreasing in time on solutions [6] and they arise when certain equilibrium boundary conditions (5), (7)

are supplied. The potential then obeys Poisson-Boltzmann equations (4) which provide the unique steady

state solution (c∗1, c
∗
2) of the Nernst-Planck equations (1) with zero fluid velocity u∗ ≡ 0. However, in

many cases of physical interest, the boundary conditions are not suitable for equilibrium, and an electrical

potential gradient generates (experimentally [25] or numerically [10, 21]) nontrivial fluid flow which is

responsible for the instability. Thus, it is relevant to derive rigorous conditions under which the steady state

whose existence is guaranteed by Theorem 1 has nonzero fluid velocity u∗ 6≡ 0. We derive below one such

condition.

THEOREM 2. Suppose (c∗1, c
∗
2, u

∗) is a solution to (9)-(13) with boundary conditions (14)-(16). Suppose

in addition that the boundary conditions satisfy

∫

∂Ω
(γ1 − γ2)(ni∂j − nj∂i)W dS 6= 0 or

∫

∂Ω
W (ni∂j − nj∂i)(γ1 − γ2) dS 6= 0. (103)

for some i, j ∈ {x, y, z}, i 6= j, where ni are the components of the unit normal vector along ∂Ω. Then

u∗ 6≡ 0.

REMARK 3. We note that if i, j ∈ {x, y, z} with i 6= j, then ni∂j − nj∂i is a vector field tangent to

∂Ω, so that the integrals in (103) are well defined. Indeed, the characteristic directions of ni∂j − nj∂i are

niej − njei (with ek the canonical basis of Rd) and n · (niej − njei) = 0 shows that these are tangent to

∂Ω. Thus, the condition (103) can be checked with just knowledge of the values of ci and Φ on ∂Ω.

PROOF. If (c∗1, c
∗
2, u

∗ ≡ 0) is a solution to (9)-(13), then ρ∗∇Φ must be a gradient force i.e.

ρ∗∇Φ∗ = ∇F (104)

for some smooth F . Thus a sufficient condition for u∗ 6≡ 0 is

∇× (ρ∗∇Φ∗) 6≡ 0. (105)

In turn, a sufficient condition for (105) is

∫

Ω
∇ρ∗ ×∇Φ∗ dV 6= 0. (106)

Integrating the above integral by parts, moving the derivative off ρ∗, we obtain the following equivalent

condition
∫

∂Ω
ρ∗(ni∂j − nj∂i)Φ dS 6= 0 for some i, j ∈ {x, y, z}, i 6= j. (107)

And by the remark following the statement of Theorem 2, this is equivalent to the condition

∫

∂Ω
(γ1 − γ2)(ni∂j − nj∂i)W dS 6= 0 for some i, j ∈ {x, y, z}, i 6= j. (108)

Similarly, by moving the derivative off Φ∗ in (106), we obtain the equivalent condition

∫

∂Ω
W (ni∂j − nj∂i)(γ1 − γ2) dS 6= 0 for some i, j ∈ {x, y, z}, i 6= j. (109)

This completes the proof. �
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3. Maximum principle and long time behavior of solutions

In this section we investigate the long time behavior of the system

∂tc1 + u · ∇c1 =D1div (∇c1 + c1∇Φ) (110)

∂tc2 + u · ∇c2 =D2div (∇c2 − c2∇Φ) (111)

−ε∆Φ = ρ = c1 − c2 (112)

∂tu− ν∆u+∇p = −Kρ∇Φ (113)

divu = 0. (114)

The global existence and uniqueness of smooth solutions of this system with Dirichlet boundary condi-

tions is proved in [9]. Here we prove a maximum/minimum principle for the ionic concentrations ci, which

in particular gives us time independent L∞ bounds (see also [7]). In addition, we show that the Dirich-

let boundary data of ci are attracting in the sense that max{supΩ c1, supΩ c2} and min{supΩ c1, supΩ c2}
converge monotonically to the extremal values of the boundary values in the limit of t→ ∞.

The restriction to the Stokes subsystem is due to lack of information on global regularity for Navier-

Stokes solutions in 3D, thus limiting the analysis of long time behavior. The results below do extend to

2D NPNS and apply to 3D NPNS under the assumption of regularity of velocity. The modifications to the

proofs required in these cases are straightforward but will not be pursued here.

We consider a general smooth, bounded, connected domain Ω ⊂ R
3 with boundary conditions

ci|∂Ω = γi > 0, 1 ≤ i ≤ 2

Φ|∂Ω =W

u|∂Ω = 0

(115)

where γi and W are smooth and not necessarily constant.

THEOREM 3. Suppose (c1 ≥ 0, c2 ≥ 0, u) is the unique, global smooth solution to (110)-(114) on Ω
with smooth initial conditions (c1(0) ≥ 0, c2(0) ≥ 0, u(0)) (with divu(0) = 0) and boundary conditions

(115). Then,

(I) For i = 1, 2 and all t ≥ 0

min{inf
Ω
c1(0), inf

Ω
c2(0), γ} ≤ ci(t, x) ≤ max{sup

Ω
c1(0), sup

Ω
c2(0), γ} (116)

where γ = mini inf∂Ω γi and γ = maxi sup∂Ω γi. In particular

M(t) = max
i

sup
Ω
ci(t, x), M(t) = min

i
inf
Ω
ci(t, x) (117)

are nonincreasing and nondecreasing on (0,∞), respectively.

(II) For all δ > 0, there exists T depending on δ, Ω and initial and boundary conditions such that for all

t ≥ T we have

γ − δ ≤M(t) ≤M(t) ≤ γ + δ.

The theorem is a consequence of the following proposition.

PROPOSITION 2. Suppose vi : [0,∞)× Ω̄ → R, i = 1, 2 is a nonnegative, smooth solution to

∂tv1 = d1∆v1 + b1 · ∇v1 − p1(v1 − v2)

∂tv2 = d2∆v2 + b2 · ∇v2 + p2(v1 − v2)
(118)

with time independent, smooth Dirichlet boundary conditions

vi|∂Ω = gi > 0, 1 ≤ i ≤ 2 (119)

where di > 0 are constants, bi = bi(t, x) are smooth vector fields, and pi = pi(t, x) ≥ 0. Then
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(I’) For both i and all t ≥ 0

min{inf
Ω
v1(0), inf

Ω
v2(0), g} ≤ vi(t, x) ≤ max{sup

Ω
v1(0), sup

Ω
v2(0), g} (120)

where g = mini inf∂Ω gi and g = maxi sup∂Ω gi. In particular

V (t) = max
i

sup
Ω
vi(t, x), V (t) = min

i
inf
Ω
vi(t, x) (121)

are nonincreasing and nondecreasing on (0,∞), respectively.

(II’) Suppose, in addition to the preceding hypotheses, that bi is uniformly bounded in time. Then for all

δ > 0, there exists 0 < T ∗ = T ∗(δ, di, supt ‖bi(t)‖L∞ , gi, vi(t = 0),Ω) such that for all t ≥ T ∗ we

have

g − δ ≤ V (t) ≤ V (t) ≤ g + δ.

PROOF. We prove just the lower bound in (I’) as the upper bound can be established analogously. If

either infΩ v1(t = 0) = 0 or infΩ v2(t = 0) = 0 then the lower bound holds trivially as we are assuming

that vi ≥ 0. So we assume v1(t = 0), v2(t = 0) > 0.

We define

V (t) = min
0≤s≤t

V (s).

We show that V and V are both locally Lipschitz (i.e. Lipschitz continuous on every interval [0, T ]). Indeed,

assigning to each t ≥ 0 a point xi(t) ∈ Ω̄ such that vi(t, xi(t)) = V i(t) = infΩ vi(t, x), we have for

s < t ≤ T
vi(t, xi(t))− vi(s, xi(t))

t− s
≤ V i(t)− V i(s)

t− s
≤ vi(t, xi(s))− vi(s, xi(s))

t− s
(122)

and so
∣

∣

∣

∣

V i(t)− V i(s)

t− s

∣

∣

∣

∣

≤ sup
[0,T ]×Ω̄

|∂tvi(t, x)| = LT
i , 1 ≤ i ≤ 2 (123)

implying that V i(t) is locally Lipschitz. Next, assigning to each t ≥ 0 an i(t) ∈ {1, 2} such that V i(t)(t) =

V (t) we have for s < t ≤ T

V i(t)(t)− V i(t)(s)

t− s
≤ V (t)− V (s)

t− s
≤
V i(s)(t)− V i(s)(s)

t− s
(124)

and thus
∣

∣

∣

∣

V (t)− V (s)

t− s

∣

∣

∣

∣

≤ max
i
LT
i = LT . (125)

Thus V i is locally Lipschitz. Lastly consider V . Fixing s < t ≤ T , we assume without loss of generality

that V (t) 6= V (s). In particular since V is nonincreasing, this implies V (t) < V (s). Then consider

t∗ = inf{t′ ∈ [s, t]|V (t′) = V (t)}. (126)

Since V (s) ≥ V (s) > V (t), we necessarily have t∗ > s. Thus,
∣

∣

∣

∣

V (t)− V (s)

t− s

∣

∣

∣

∣

=
V (s)− V (t)

t− s
≤ V (s)− V (t∗)

t− s
≤ V (s)− V (t∗)

t∗ − s
≤ LT (127)

and local Lipschitz continuity of V follows.

Due to the Lipschitz continuity, we have in particular that V i, V , V are differentiable almost everywhere

and the set AT = {t ∈ (0, T )|V ′
1(t), V

′
2(t), V

′(t), V ′(t) exist} has full measure, |AT | = T . To complete

the proof of the lower bound in (I’), we prove the following lemma.

LEMMA 4. For all t ∈ AT we have

(i) For each i and for all x ∈ Ω̄ such that vi(t, x) = V i(t), we have V ′
i(t) = ∂tvi(t, x)

(ii) V ′(t) = V ′
i(t) for all i such that V (t) = V i(t)

(iii) if V ′(t) < 0, then V (t) = V (t) and V ′(t) = V ′(t).
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PROOF. We fix t ∈ AT . To see (i), we fix i and x ∈ Ω̄ such that vi(t, x) = V i(t) and compute for

0 < s < t < T
V i(t)− V i(s)

t− s
≥ vi(t, x)− vi(s, x)

t− s
(128)

and taking the limit s→ t− we see that V ′
i(t) ≥ ∂tvi(t, x). Similarly for 0 < t < s < T we have

V i(s)− V i(t)

s− t
≤ vi(s, x)− vi(t, x)

s− t
(129)

and we obtain V ′
i(t) ≤ ∂tvi(t, x) upon taking the limit s→ t+. An analogous argument gives us (ii).

Now we show (iii). Assume V ′(t) < 0, then for all s < t we have V (s) > V (t) for otherwise, since

V is nonincreasing we have V (s) = V (t) for some s < t. But then, again since V is nonincreasing we

have V (r) = V (t) for all r ∈ [s, t]. However, it then follows that the left sided derivative of V at t is zero,

which contradicts our assumption V ′(t) < 0. By the same argument we see that for all s > t we have

V (s) < V (t).
It now follows that V (t) = V (t). Indeed, otherwise, there exists s < t such that V (s) = V (t). But by

the argument in the previous paragraph, we have V (s) ≥ V (s) > V (t), which gives us a contradiction.

Now to prove that V ′(t) = V ′(t), we compute for s < t, using V (t) = V (t)

V (t)− V (s)

t− s
≥ V (t)− V (s)

t− s
(130)

which gives us V ′(t) ≥ V ′(t) upon taking the limit s → t−. Similarly, considering s > t we obtain the

opposite inequality, thus completing the proof of (iii). �

Now we complete the proof of the lower bound in (I’). Suppose for the sake of contradiction that

there exists T > 0 such that V (T ) < min{infΩ v1(0), infΩ v2(0), g}. Then since V is locally Lipschitz

and hence satisfies the fundamental theorem of calculus, there exists t ∈ AT such that V ′(t) < 0 and

V (t) < min{infΩ v1(0), infΩ v2(0), g}. Then it follows from Lemma 4 that for some i and some x ∈ Ω̄,

we have vi(t, x) = V (t) and ∂tvi(t, x) < 0. Also, since V (t) < g we have that x ∈ Ω. We assume without

loss of generality that i = 1. Then evaluating (110) at (t, x) and using the fact that v2(t, x) ≥ V (t) we find

that
0 > ∂tv1 =d1∆v1 + b1 · ∇v1 − p1(v1 − v2)

≥− p1(V (t)− V (t))

=0

(131)

which gives us a contradiction. Therefore V (t) ≥ V (t) ≥ min{infΩ v1(0), infΩ v2(0), g} for all t. The

monotonicity of V follows from the same argument by replacing the initial time 0 by some arbitrary time

s > 0. Then we obtain for all t > s

V (t) ≥ V (t) ≥ min{inf
Ω
v1(s), inf

Ω
v2(s)} = V (s). (132)

Above we removed the γ from the minimum, as this is redundant for s > 0.

Now we prove the lower bound statement of (II’). The upper bound statement is proved similarly.

We assume without loss of generality that 0 6∈ Ω̄ so that there exists α, α > 0 such that α ≤ |x| ≤ α for

all x ∈ Ω̄. Then we define

wi = vi − ε|x|λ, 1 ≤ i ≤ 2 (133)

where λ > 0 is chosen large enough so that for each i we have

di
2
(λ+ 1) ≥ sup

t≥0, x∈Ω
|bi(t, x) · x|. (134)

and ε > 0 is chosen small enough that

εαλ ≤ δ. (135)
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The functions wi satisfy the equations

∂twi = di∆wi + bi · ∇wi + εdiλ(λ+ 1)|x|λ−2 + ελ|x|λ−2bi · x− zipi(w1 − w2), 1 ≤ i ≤ 2 (136)

where z1 = 1 = −z2.

By the same proof as in Lemma 4 and the discussion leading up to it, we know that the functions

W i(t) = inf
Ω
wi(t, x), 1 ≤ i ≤ 2, W (t) = min

i
W i(t) (137)

are locally Lipschitz and thus differentiable almost everywhere. In addition, for each t > 0 where W ′(t),
W ′

1(t), W
′
2(t) all exist, we have that for each i and x ∈ Ω̄ such that wi(x, t) = W (t), the time derivatives

coincide, ∂twi(x, t) =W ′(t).
Now, if initially, at time t = 0, we have g − ε sup∂Ω |x|λ ≤ W (0), then since W ≤ V we have, using

(135),

g − δ ≤ g − εαλ ≤ V (0). (138)

Then, since V is monotone nondecreasing, the lower bound in (II’) follows.

Now suppose W (0) < g − ε sup∂Ω |x|λ. Then in particular, we have

W (0) < min
i

inf
∂Ω
wi = min

i
inf
∂Ω

(gi − ε|x|λ). (139)

Thus by continuity, we have that

W (t) < min
i

inf
∂Ω

(gi − ε|x|λ) (140)

holds on some interval [0, T ∗) where T ∗ ∈ (0,∞] can be chosen to be maximal so that if T ∗ is finite, we

have W (T ∗) = mini inf∂Ω(gi − ε|x|λ).
We claim that indeed T ∗ <∞. The lower bound of (II’) follows from this claim since

W (T ∗) = min
i

inf
∂Ω

(gi − ε|x|λ) ⇒min
i

inf
Ω
(vi(T

∗)− ε|x|λ) ≥ g − ε sup
∂Ω

|x|λ ≥ g − δ

⇒V (T ∗) ≥ g − δ
(141)

and the lower bound continues to hold for all t ≥ T ∗ due to the monotonicity of V .

It remains to prove the claim that T ∗ < ∞. Indeed, let us fix a time t such that (140) holds. Then at

time t, the value W (t) is attained by wi, for some i, at some interior point x ∈ Ω. This point is a global

minimum of wi at time t. We assume without loss of generality that i = 1. Thus evaluating (136) at (t, x)
and using (134) and the fact that w2(t, x) ≥ w1(t, x) we have

∂tw1 =d1∆w1 + b1 · ∇w1 + εd1λ(λ+ 1)|x|λ−2 + ελ|x|λ−2b1 · x− p1(w1 − w2)

≥εd1λ(λ+ 1)|x|λ−2 − ελ|x|λ−2 sup
y∈Ω

|b1(t, y) · y|

≥1

2
εd1λ(λ+ 1)|x|λ−2

≥1

2
εd1λ(λ+ 1)αλ−2.

(142)

If t ∈ AT ∗ = {t ∈ (0, T ∗)|W ′(t),W ′
1(t),W

′
2(t) exist}, then by the same argument as in Lemma 4, we have

W ′(t) = ∂tw1(t, x) and thus

W ′(t) ≥ 1

2
εd1λ(λ+ 1)αλ−2. (143)

In general, the relation

W ′(t) ≥ min
i

1

2
εdiλ(λ+ 1)αλ−2 = β̃. (144)
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holds for every time t ∈ AT ∗ . SinceW,W 1,W 2 are each locally Lipschitz (and hence differentiable almost

everwhere and satisfy the fundamental theorem of calculus), if (140) holds on [0,∞) (i.e. if T ∗ = ∞), then

we obtain

∞ > lim inf
t→∞

W (t) =W (0) + lim inf
t→∞

∫ t

0
W ′(s) ds ≥W (0) + lim inf

t→∞
(tβ̃) = ∞ (145)

which gives us a contradiction. Thus T ∗ <∞, and in fact since, by (I’),

max{sup
Ω
v1(0), sup

Ω
v2(0), g} − εαλ ≥ V (T ∗)− εαλ ≥W (T ∗) =W (0) +

∫ T ∗

0
W ′(s) ds

≥W (0) + T ∗β̃,

(146)

we have that T ∗ is bounded above by a constant depending ultimately on δ, di, supt ‖bi(t)‖L∞ , the intitial

and boundary conditions, and the domain,

T ∗ ≤ 1

β̃
(max{sup

Ω
v1(0), sup

Ω
v2(0), g} −W (0)− εαλ). (147)

This completes the proof of the lower bound of (II’) and thus of the proposition. �

REMARK 4. We note that the preceding proof, which relies on a maximum principle argument, does not

depend on the spatial dimension d. Thus, Proposition 2 holds for smooth, bounded, connected domains in

any spatial dimension.

We now prove Theorem 3 using Proposition 2.

PROOF. We take vi = ci, di = Di, gi = γi, pi = ci/ε, and

bi = −u+Dizi∇Φ, 1 ≤ i ≤ 2 (148)

in the proposition, and thus (I) follows. In order to show (II), it suffices to verify that bi is uniformly bounded

in time for each i. By (I) and (112), we have that supt ‖∇Φ(t)‖L∞ < ∞. Thus it only remains to establish

a uniform bound on ‖u‖L∞ . To this end, we prove below that ‖Au‖L2 is uniformly bounded in time, from

which the desired result follows due to the embedding H2 ↪→ L∞.
Step 1. Uniform L∞

t H
1
x bound on u. Applying the Leray projection to (113), we obtain

∂tu+ νAu = −KP(ρ∇Φ). (149)

Multiplying (149) by Au and integrating by parts, we obtain, using (I),

1

2

d

dt
‖u‖2V +

ν

2
‖Au‖2H ≤ C ′‖P(ρ∇Φ)‖2H ≤ C, (150)

Then using the Stokes regularity estimate

‖u‖V ≤ C‖Au‖H (151)

we have
d

dt
‖u|2V ≤ −C‖u|2V + C (152)

from which it follows that

sup
t

‖u(t)‖V <∞. (153)

Step 2. Local uniform L2
tH

1
x bounds on ci. Multiplying (110) by c1 and integrating by parts we obtain

1

2

d

dt
‖c1‖2L2 −D1

∫

Ω
c1∆c1 dV = D1

∫

Ω
c1∇c1 · ∇Φ− c21ρ

ε
dV (154)

and writing ∆c1 = ∆(c1 − Γ1) where Γ1 is the unique harmonic function on Ω satisfying Γ1|∂Ω = γ1, we

obtain after integrations by parts, Young’s inequalities, and the uniform bounds on ci,

1

2

d

dt
‖c1‖2L2 +

D1

2
‖∇c1‖2L2 ≤ C. (155)



20 PETER CONSTANTIN, MIHAELA IGNATOVA, AND FIZAY-NOAH LEE

Then, integrating in time and again using the uniform bound on c1, we obtain for all t ≥ 0 and τ > 0,
∫ t+τ

t

‖∇c1(s)‖2L2 ds ≤ C(1 + τ) (156)

where C is independent of t and τ . Similar estimates for i = 2 give us
∫ t+τ

t

‖∇ci(s)‖2L2 ds ≤ C̄(1 + τ), 1 ≤ i ≤ 2 (157)

with C̄ independent of t and τ .

Step 3. Uniform L∞
t H

1
x bounds on ci Multiplying (110) by −∆c1, integrating by parts, and using

uniform bounds on ci, we obtain

d

dt
‖∇c1‖2L2 + ‖∆c1‖2L2 ≤ C + C‖∇c1‖2L2 . (158)

Now fix any t > 1. By (157), there exists t0 ∈ (btc− 1, btc) such that ‖∇c1(t0)‖2L2 ≤ 2C̄ (here btc denotes

the largest integer not exceeding t). Then from (158) and (157), we have

‖∇c1(t)‖2L2 ≤‖∇c1(t0)‖2L2 + C(t− t0) + C

∫ t

t0

‖∇c1(s)‖2L2 ds

≤2C̄ + 2C + 3CC̄

(159)

where the final term does not depend on t. After similar estimates for ∇c2, we obtain

sup
t

‖∇ci(t)‖L2 <∞, 1 ≤ i ≤ 2. (160)

Step 4. Local uniform L2
tH

2
x bounds on ci Integrating (158) and using (160), we obtain
∫ t+τ

t

‖∆c1(s)‖2L2 ds ≤ C(1 + τ) (161)

for C independent of t and τ . The same method yields the corresponding estimate for i = 2, and thus we

have for C independent of t and τ
∫ t+τ

t

‖∆ci(s)‖2L2 ds ≤ C(1 + τ), 1 ≤ i ≤ 2. (162)

Step 5. Local uniform L2
tL

2
x bounds on ∂tci. Multiplying (110) by ∂tc1 and integrating by parts, we

obtain, using the uniform bounds on u, ci and ∇ci,
D1

2

d

dt
‖∇c1‖2L2 +

1

2
‖∂tc1‖2L2 ≤ C(‖u‖2V ‖∇c1‖2L3 + ‖∇c1‖2L2‖∇Φ‖2L∞ + ‖c1ρ‖2L2)

≤ C(1 + ‖∆c1‖2L2)
(163)

and integrating in time and using (160), (162), we obtain
∫ t+τ

t

‖∂sc1(s)‖2L2 ds ≤ C(1 + τ). (164)

Similar estimates for i = 2 give us
∫ t+τ

t

‖∂sci(s)‖2L2 ds ≤ C̃(1 + τ), 1 ≤ i ≤ 2 (165)

for C̃ independent t and τ .

Step 6. Local uniform L2
tL

2
x bounds on ∂tu. Multiplying (149) by ∂tu and integrating by parts, we

have
ν

2

d

dt
‖u‖2V +

1

2
‖∂tu‖2H ≤ ‖ρ∇Φ‖2L2 ≤ C (166)
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and thus integrating in time, it follows from (153) that
∫ t+τ

t

‖∂su(s)‖2H ds ≤ C ′(1 + τ) (167)

where C ′ is independent of t and τ .

Step 7. Uniform L∞
t L

2
x bounds on ∂tci and ∂tu. Differentiating (110) in time, multiplying by ∂tc1

and integrating by parts, we obtain

1

2

d

dt
‖∂tc1‖2L2 +D1‖∇∂tc1‖2L2 =−

∫

Ω
(u · ∇∂tc1)∂tc1 dV −

∫

Ω
(∂tu · ∇c1)∂tc1 dV

−D1

∫

Ω
∂tc1∇Φ · ∇∂tc1 dV −D1

∫

Ω
c1∇∂tΦ · ∇∂tc1 dV.

(168)

The first integral on the right hand side vanishes because divu = 0. We integrate the second integral by

parts once more, and using Young’s inequalities and uniform bounds on ci we obtain

1

2

d

dt
‖∂tc1‖2L2 +

D1

2
‖∇∂tc1‖2L2 ≤ C(‖∂tu‖2H + ‖∂tc1‖2L2 + ‖∂tc2‖2L2). (169)

Similarly for i = 2 we obtain

1

2

d

dt
‖∂tc2‖2L2 +

D2

2
‖∇∂tc2‖2L2 ≤ C(‖∂tu‖2H + ‖∂tc1‖2L2 + ‖∂tc2‖2L2). (170)

Next differentiating (149) by time, multiplying by ∂tu and integrating by parts, we obtain

1

2

d

dt
‖∂tu‖2H +

ν

2
‖∂tu‖2V ≤ C(‖∂tρ‖2L2‖∇Φ‖2L∞ +‖ρ‖2L∞‖∇∂tΦ‖2L2) ≤ C(‖∂tc1‖2L2 +‖∂tc2‖2L2). (171)

Now adding (169)-(171), we obtain

d

dt
(‖∂tc1‖2L2 + ‖∂tc2‖2L2 + ‖∂tu‖2H) ≤ C(‖∂tc1‖2L2 + ‖∂tc2‖2L2 + ‖∂tu‖2H). (172)

Finally, using the same method as in Step 3, we use (165), (167) and (172) to obtain

sup
t
(‖∂tc1(t)‖L2 + ‖∂tc2(t)‖L2 + ‖∂tu(t)‖H) <∞. (173)

Step 8. Uniform L∞
t H

2
x bounds on u. From (149), we have

‖Au‖H ≤ C(‖∂tu‖H + ‖ρ∇Φ‖L2) (174)

and it follows from the preceding estimates that

sup
t

‖Au(t)‖H <∞. (175)

With this bound, the proof of the uniform boundededness of bi = −u+Dizi∇Φ is complete, and thus (II)

of the theorem follows from (II’) of Proposition 2. �

REMARK 5. In the proof of Theorem 3 only the following properties of the velocity u are used. For

part (I), we only make use of the fact that x 7→ u(t, x) is a smooth vector field for each t, without need of

quantitative information, and for part (II), we additionally make use of the fact that ‖u(t)‖L∞ is uniformly

bounded in time. These conditions must be satisfied in order to apply Proposition 2. Then, it follows from

Remark 4 that Theorem 3 holds also for the two dimensional NPNS system. Indeed, in two dimensions,

the nonlinear term u · ∇u does not change the properties that u remains smooth and ‖u(t)‖L∞ remains

uniformly bounded for all time. The proof of these statements follow from similar steps as in Steps 1-8 in

the preceding proof of Theorem 3, taking into account the nonlinear term u · ∇u and using Gagliardo-

Nirenberg interpolation inequalities that hold specifically in two dimensions. Further details are omitted.

The preceding comments also apply to the three dimensional NPNS system, but due to the lack of control of

u, the smoothness of the vector field and the boundedness of its maximum modulus must be assumed, as they

are not known to hold a priori .
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4. Global Stability of Weak Steady Currents

In this section we consider the long time behavior of solutions to the time dependent Nernst-Planck-

Stokes (NPS) system 110)-(114). In this section we take the domain to be the three dimensional periodic

strip Ω = (0, L)× T× T where T has period 1, and boundary conditions

ci(t, 0, y, z) = αi, ci(t, L, y, z) = βi, 1 ≤ i ≤ 2 (176)

Φ(t, 0, y, z) = −V, Φ(t, L, y, z) = 0 (177)

u(t, 0, y, z) = u(t, L, y, z) = 0. (178)

Here, we take αi, βi, V > 0 to be constants.

In the first subsection of this section, we analyze one dimensional solutions to NPS with boundary

conditions (176)-(178) and establish uniform bounds. In the second subsection, we show that weak current

one dimensional solutions are globally stable. This latter result yields as a corollary the uniqueness of steady

state solutions in the setting of small perturbations from equilibrium.

4.1. One Dimensional Steady States. We consider the one dimensional steady state Nernst-Planck

system for x ∈ (0, L)

0 = ∂x(∂xc
∗
1 + c∗1∂xΦ

∗) (179)

0 = ∂x(∂xc
∗
2 − c∗2∂xΦ

∗) (180)

−ε∂xxΦ∗ = ρ∗ = c∗1 − c∗2 (181)

with boundary conditions corresponding to (176), (177)

c∗i (0) = αi > 0, c∗i (L) = βi > 0, 1 ≤ i ≤ 2 (182)

Φ∗(0) = −V < 0, Φ∗(L) = 0. (183)

As we will see in Section 4.2, one dimensional Nernst-Planck steady states, with zero fluid flow u∗ ≡ 0,

are also steady state solutions to the full three dimensional NPNS system in our current setting of a three

dimensional periodic strip with boundary conditions (176)-(178). This is the motivation for the study of

these one dimensional solutions.

While the computations of the previous section could be significantly simplified for this one dimen-

sional, no fluid setting, nonetheless the existence of a smooth solution to (179)-(183), with c∗i ≥ 0, follows

from a streamlined version of the proof of Theorem 1 (see also [18]).

In this subsection, we establish uniform bounds on c∗i and Φ∗ that depend exclusively on boundary data.

To this end, we recall the electrochemical potentials

µ∗i = log c∗i + ziΦ
∗, 1 ≤ i ≤ 2 (184)

and the related variables (a.k.a. Slotboom variables in the semiconductor literature)

η∗i = expµ∗i = c∗i e
ziΦ

∗

, 1 ≤ i ≤ 2 (185)

where z1 = 1 = −z2. We refer the reader to [19] for a more complete study on the one dimensional steady

state Nernst-Planck system.

PROPOSITION 3. Suppose (c∗1, c
∗
2,Φ

∗) is a smooth solution to (179)-(183). Then, the solution satisfies

the following uniform bounds:

(I) min{αie
−ziV , βi} = λi ≤ η∗i ≤ Λi = max{αie

−ziV , βi}
(II) min{−V, log(λ1/Λ2)

1

2 } = −v ≤ Φ∗ ≤ V = max{0, log(Λ1/λ2)
1

2 }
(III) min{α1, α2, β1, β2} = γ ≤ c∗i ≤ γ = max{α1, α2, β1, β2} for 1 ≤ i ≤ 2.

PROOF. Writing (179), (180) in terms of η∗i we have

0 = ∂x(e
−ziΦ

∗

∂xη
∗
i ) = e−ziΦ

∗

(−zi∂xΦ∗∂xη
∗
i + ∂xxη

∗
i ), 1 ≤ i ≤ 2. (186)
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And thus (I) follows from the weak maximum principle and the fact that

η∗i (0) = αie
−ziV , η∗i (L) = βi 1 ≤ i ≤ 2. (187)

To show (II), we rewrite (181) as

− ε∂xxΦ
∗ = η∗1e

−Φ∗ − η∗2e
Φ∗

. (188)

So if Φ∗ attains its global maximum at an interior point x0 ∈ (0, L), then

0 ≤ −ε∂xxΦ∗(x0) = η∗1(x0)e
−Φ∗(x0) − η∗2(x0)e

Φ∗(x0)

⇒Φ∗(x0) ≤ log

(

η∗1(x0)
η∗2(x0)

)
1

2

≤ log(Λ1/λ2)
1

2

(189)

and the upper bound in (II) follows. Similarly, if Φ∗ attains its global minimum at an interior point x0 ∈
(0, L), then

0 ≥ η∗1(x0)e
−Φ∗(x0) − η∗2(x0)e

Φ∗(x0)

⇒− Φ∗(x0) ≤ log

(

η∗2(x0)
η∗1(x0)

)
1

2

≤ log(Λ2/λ1)
1

2

(190)

and the lower bound in (II) follows.

Lastly, prior to proving (III), we note that by combining (I) and (II) and using the definition of η∗i , it is

possible to obtain upper and lower bounds on c∗i that depend on boundary data for ci and Φ∗. Here, instead

we establish the bounds in (III), which in particular does not depend on boundary data for Φ∗. We prove

only the upper bound as the lower bound can be shown analogously. To do so, we introduce the rescaling

X = x/ε
1

2 so that we can rewrite (179), (180) as

−∂XXc
∗
1 =∂Xc

∗
1∂XΦ∗ − c∗1(c

∗
1 − c∗2) (191)

−∂XXc
∗
2 =− ∂Xc

∗
2∂XΦ∗ + c∗2(c

∗
1 − c∗2). (192)

Suppose that max{c∗1, c∗2} attains a global maximal value, c > γ, at an interior point X0 ∈ (0, L/ε
1

2 ).
Assume without loss of generality that this maximum is attained by c∗1. Then we have

0 ≤ −∂XXc
∗
1(X0) =∂Xc

∗
1(X0)∂XΦ∗(x0)− c∗1(X0)(c

∗
1(X0)− c∗2(X0))

=− c(c− c∗2(X0)).
(193)

Then since by assumption we have c ≥ c∗2(X0), we necessarily have that c = c∗2(X0), for otherwise, the

right hand side of (193) becomes strictly negative. Furthermore, the inequality in (193) is an equality, and

we conclude that ∂XXc
∗
1(X0) = 0. And since we have shown that c∗2 also attains its global maximum at X0,

by evaluating (192) at X0 we conclude that ∂Xc
∗
2(X0) = ∂XXc

∗
2(X0) = 0.

It follows by induction that for i = 1, 2 we have

∂kXc
∗
i (X0) = 0 for all k ≥ 1. (194)

Indeed, assume, for the sake of induction, that this is true for all 1 ≤ k′ ≤ k where k ≥ 2. Then differenti-

ating (191),

− ∂k+1
X c∗1 =

k−1
∑

j=0

(

k − 1

j

)

(

∂j+1
X c∗1∂

k−j
X Φ∗ − ∂jXc

∗
1∂

k−1−j
X (c∗1 − c∗2)

)

(195)

and evaluating (195) at X0 and using the induction hypothesis together with the fact that c∗1(X0) = c∗2(X0),

we conclude ∂k+1
X c∗1(X0) = 0 as desired. Similarly by differentiating (192) we obtain ∂k+1

X c∗2(X0) = 0.

Now if c∗1, c
∗
2 are real analytic, then (194) implies that in fact c∗1 ≡ c∗2 ≡ c, but we assumed that c > γ,

so this contradiction implies the upper bound max{c∗1, c∗2} ≤ γ.
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So to complete the proof of (III) it suffices to establish the real analyticity of c∗1, c
∗
2. To this end, we

prove that there exists C > 0 such that for all integers k ≥ 0

A−1 = sup
X

|∂XΦ∗| ≤ 1

4
C

Ak = sup
X

|∂kXc∗1|+ sup
X

|∂kXc∗2| ≤
1

4
(k + 1)!Ck+2.

(196)

We choose C so that (196) holds for Ak, k = −1, 0, 1. Now we prove the implication

(196) holds for all k′ less than or equal to k ≥ 1 ⇒ (196) holds for k + 1. (197)

To show this, we see from (195) that

|∂k+1
X c∗i | ≤

k−1
∑

j=0

(

k − 1

j

)

(Aj+1Ak−j−2 +AjAk−1−j)

≤ 1

16

k−1
∑

j=0

(k − 1)!

j!(k − 1− j)!
((j + 2)!(k − j − 1)!Ck+3 + (j + 1)!(k − j)!Ck+3)

=
Ck+3

16
(k − 1)!

k−1
∑

j=0

((j + 2)(j + 1) + (j + 1)(k − j))

≤C
k+3

16
(k − 1)!k((k + 1)k + k2)

≤1

8
(k + 2)!Ck+3

(198)

and summing in i we obtain

Ak+1 ≤ 1

4
(k + 2)!Ck+3 (199)

as desired. Thus c∗i is real analytic and the proof of the upper bound in (III) and of the proposition is

complete. �

REMARK 6. Proposition 3 (I), (II) directly extend to higher dimensional settings, for arbitrary bounded,

connected domains with sufficiently smooth boundary, when no fluid is involved (see also [18] for further

generalizations). (III) also extends to higher dimensions, where now, γ = mini inf∂Ω ci, γ = maxi sup∂Ω ci.
The proof requires appealing to the nonstationary Nernst-Planck system. Indeed, we note that by Theorem

3, for all δ > 0, the set Bδ = {f ∈ L∞ | γ − δ ≤ f ≤ γ + δ} is an absorbing ball for each ci in the sense

that, for any initial conditions, solutions to NPNS with boundary conditions 8 satisfy ci(t) ∈ Bδ for both i,
for all large enough times t. In particular, any stationary solution to NPNS with boundary conditions (8)

must lie inBδ, and since this is true for any δ > 0, stationary solutions in fact lie inB0. The same reasoning

(i.e. using the corresponding version of Theorem 3 for the Nernst-Planck system) and the same conclusion

hold for stationary solutions of Nernst-Planck equations.

4.2. Global Stability. In this last subsection, we study the problem of stability of one dimensional

steady currents on the domain Ω = (0, L)× T
2.

DEFINITION 1. We say that (c∗1, c
∗
2, u

∗ ≡ 0) is a (one dimensional) steady current solution to (110)-

(114) with boundary conditions (176)-(178) on the three dimensional periodic strip Ω = (0, L)×T
2 if c∗i is

independent of the spatial variables y and z, independent of time, and solves the one dimensional problem

(179)-(183).

REMARK 7. A solution c∗i (x) to the one dimensional system (179)-(183), seen as a three dimensional

function on Ω, independent of y, z, together with u∗ ≡ 0, is indeed a solution to the three dimensional steady
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state NPNS system because

∂xc
∗
1 + c∗1∂xΦ

∗ = j1

∂xc
∗
2 − c∗2∂xΦ

∗ = j2
(200)

for constants ji. It follows from this that

ρ∗∇Φ∗ = −∇(c∗1 + c∗2) + (j1 + j2, 0, 0) = −∇(c∗1 + c∗2 − (j1 + j2)x), (201)

and thus u∗(x, y, z) ≡ 0 and p∗(x, y, z) = K(c∗1(x) + c∗2(x) − (j1 + j2)x) solve the Stokes equations

(113)-(114).

In general, it is not known whether solutions to the one dimensional system (179)-(183) are unique, and

therefore it is also unknown whether any given one dimensional steady current solution (c∗1, c
∗
2, u

∗ ≡ 0)
to the three dimensional NPNS system is unique (in general one cannot rule out the existence of other one

dimensional steady current solutions nor the existence of solutions that depend also on y and/or z).

For the remainder of this subsection, we study the stability of a fixed one dimensional steady current

solution. However, using the a priori estimates of Section 4.1 and under a weak current or small perturbation

from equilibrium assumption, c.f. (216), we obtain the global stability of the fixed steady current solution

(Theorem 4). As a consequence of stability it follows that the fixed steady current solution is the unique

steady state solution of the full three dimensional system (110)-(114) with boundary conditions (176)-(178)

(Theorem 5).

The main tool in proving global stability is the following log-Sobolev type inequality, which is also used

in [14] in an equilibrium setting.

LEMMA 5. Suppose fi, gi, i = 1, 2 and pf , pg are smooth real valued functions on a bounded domain

Ω ⊂ R
3 satisfying the bounds

0 < f1, f2 ≤Mf , 0 < g1, g2 ≤Mg. (202)

and the relations
f1|∂Ω = g1|∂Ω
f2|∂Ω = g2|∂Ω

pf |∂Ω = pg |∂Ω

−ε∆pf = f1 − f2

−ε∆pg = g1 − g2, 1 ≤ i ≤ 2.

(203)

Then the functions

πfi = log fi + zip
f , πgi = log gi + zip

g, 1 ≤ i ≤ 2 (204)

where z1 = 1 = −z2, satisfy the bound

ω

l2

(

2
∑

i=1

1

2

∫

Ω
giψ

(

fi
gi

)

dV + ε

∫

Ω
|∇(pf − pg)|2 dV

)

≤
2
∑

i=1

∫

Ω
|∇(πfi − πgi )|2 dV (205)

where

ψ(s) = s log s− s+ 1, s > 0 (206)

ω =
2

max{Mf ,Mg}
(207)

and l can be chosen to be the height of any infinite slab in R
3 that contains Ω (i.e. Ω ⊂ {x0+ s1e1+ s2e2+

s3e3 | s1 ∈ (0, l), s2, s3 ∈ (−∞,∞)} for some x0 ∈ R
3 and orthonormal basis {ei} of R3).

Prior to proving Lemma 5, we first establish an interpolation inequality that interpolates L2 between

L logL and L∞.
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LEMMA 6. For positive, real valued, bounded, measurable functions f, g defined on Ω, we have
∫

Ω
(f − g)2 dV ≤ max{‖f‖L∞ , ‖g‖L∞}

∫

Ω
gψ

(

f

g

)

dV (208)

with ψ defined in (206).

PROOF. Taylor expanding ψ(s) around s = 1, we have

ψ(s) ≥ min{1, s−1}(s− 1)2 ⇒ (s− 1)2 ≤ max{1, s}ψ(s), (209)

so taking s = f/g we have
(

f

g
− 1

)2

≤ max

{

1,
f

g

}

ψ

(

f

g

)

⇒(f − g)2 ≤ max{f, g}gψ
(

f

g

)
(210)

and thus the lemma follows after integrating over Ω. �

Now we prove Lemma 5.

PROOF. We consider the following expression

2
∑

i=1

〈

fi − gi, π
f
i − πgi

〉

. (211)

On one hand we have, using the Poisson equation (203),

∑

i

〈

fi − gi, π
f
i − πgi

〉

=
∑

i

〈

fi − gi, log
fi
gi

+ zi(p
f − pg)

〉

=
∑

i

∫

Ω
gi

(

fi
gi

− 1

)

log
fi
gi
dV + ε

∫

Ω
|∇(pf − pg)|2 dV

≥
∑

i

∫

Ω
giψ

(

fi
gi

)

dV + ε

∫

Ω
|∇(pf − pg)|2 dV

(212)

where in the last inequality we used the inequality

(s− 1) log s ≥ ψ(s), s > 0. (213)

On the other hand, we have due to Young’s inequality, Poincaré’s inequality, and Lemma 6,

∑

i

〈

fi − gi, π
f
i − πgi

〉

≤
∑

i

ω

4
‖fi − gi‖2L2 +

∑

i

1

ω
‖πfi − πgi ‖2L2

≤
∑

i

ωmax{Mf ,Mg}
4

∫

Ω
giψ

(

fi
gi

)

dV +
∑

i

l2

ω
‖∇(πfi − πgi )‖2L2 .

(214)

Therefore, choosing ω > 0 as in (207), we have, combining (212) and (214),

ω

l2

(

∑

i

1

2

∫

Ω
giψ

(

fi
gi

)

dV + ε

∫

Ω
|∇(pf − pg)|2 dV

)

≤
∑

i

∫

Ω
|∇(πfi − πgi )|2 dV. (215)

�

We now state the global stability theorem.
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THEOREM 4. Suppose (c∗1, c
∗
2, u

∗ ≡ 0) is a one dimensional steady current solution to the NPS system

(110)-(114) with boundary conditions (176)-(178). Suppose furthermore that the corresponding p-current

j1 and n-current j2 (c.f. (200)) satisfy

max
i

|ji|LGi <
1√
2

(216)

where

Gi =

√

1

D

(

Diγ2

2γ4
+
KL2γ2

νγ3

)

(217)

and D = miniDi. Then (c∗1, c
∗
2, u

∗ ≡ 0) is globally asymptotically stable. That is, for any smooth initial

conditions c1(0) ≥ 0, c2(0) ≥ 0, u(0) (with divu(0) = 0), the corresponding solution (c1, c2, u) to (110)-

(114) satisfies

2
∑

i=1

∫

Ω
c∗iψ

(

ci(t)

c∗i

)

dV +

∫

Ω
|∇(Φ− Φ∗)|2 dV +

∫

Ω
|u(t)|2 dV → 0 as t→ ∞. (218)

Furthermore, there exists T ∗ > 0, depending on initial and boundary data and the parameters of the system,

such that after time t = T ∗, the rate of convergence in (218) is exponential in time.

A consequence of Theorem 4 is the following uniqueness theorem.

THEOREM 5. Under the same hypotheses as in Theorem 4, the one dimensional steady current solution

(c∗1, c
∗
2, u

∗ ≡ 0) is the unique steady state solution to the NPS system (110)-(114) with boundary conditions

(176)-(178).

REMARK 8. We note that the currents ji are solution dependent constants and the condition (216) is

not explicitly written solely in terms of the boundary data. Writing (200) in terms of the electrochemical

potentials and the Slotboom variables (c.f. (184), (185)) we have

c∗i ∂xµ
∗
i = ji, e−ziΦ

∗

∂xη
∗
i = ji, 1 ≤ i ≤ 2 (219)

and thus

ji =
µ∗i (L)− µ∗i (0)
∫ L

0
1
c∗i
dx

=
η∗i (L)− η∗i (0)
∫ L

0 eziΦ∗ dx
, 1 ≤ i ≤ 2. (220)

Then, using the uniform bounds from Proposition 3, we see that explicit sufficient conditions in terms of the

boundary data which imply the smallness conditions (216) are given by






∣

∣

∣
log α1

β1
+ V

∣

∣

∣
γG1 <

1√
2

∣

∣

∣
log α2

β2
− V

∣

∣

∣
γG2 <

1√
2

(221)

or
{∣

∣α1 − β1e
−V
∣

∣ evG1 <
1√
2

∣

∣α2 − β2e
V
∣

∣ eVG2 <
1√
2

(222)

where v,V are defined in Proposition 3.

Now we prove Theorem 4.

PROOF. First suppose that the initial conditions satisfy

0 < γ
δ
≤ ci(0) ≤ γδ, 1 ≤ i ≤ 2 (223)

where

γ
δ
= γ − δ, γδ = γ + δ (224)
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for some small δ > 0, to be determined below (c.f. (240)). Then by Proposition 3 and Theorem 3 (I),

the time dependent solution (c1, c2, u) and the one dimensional steady current (c∗1, c
∗
2, u

∗ ≡ 0) satisfy the

bounds

γ
δ
≤ ci(t) ≤ γδ, γ ≤ c∗i ≤ γ, 1 ≤ i ≤ 2. (225)

Next, writing (110), (111) in terms of the electrochemical potentials

µi = log ci + ziΦ, 1 ≤ i ≤ 2 (226)

and in terms of the differences ci − c∗i , µi − µ∗i , we have

∂t(c1 − c∗1) = −u · ∇c1 +D1div (c1∇(µ1 − µ∗1) + (c1 − c∗1)∇µ∗1)
∂t(c2 − c∗2) = −u · ∇c2 +D2div (c2∇(µ2 − µ∗2) + (c2 − c∗2)∇µ∗2).

(227)

We multiply the above equations by µ1 − µ∗1 and µ2 − µ∗2, respectively, and integrate by parts. On the left

hand side, we obtain, after summing in i,

∑

i

〈∂t(ci − c∗i ), µi − µ∗i 〉 =
∑

i

(

d

dt

∫

Ω
c∗iψ

(

ci
c∗i

)

dV + zi 〈∂t(ci − c∗i ),Φ− Φ∗〉
)

=
∑

i

d

dt

∫

Ω
c∗iψ

(

ci
c∗i

)

dV + 〈∂t(ρ− ρ∗),Φ− Φ∗〉

=
∑

i

d

dt

∫

Ω
c∗iψ

(

ci
c∗i

)

dV +
ε

2

d

dt
‖∇(Φ− Φ∗)‖2L2 .

(228)

On the right hand side, for i = 1, we have, using Lemma 6, (225), and (219),

〈−u · ∇c1 +D1div (c1∇(µ1 − µ∗1) + (c1 − c∗1)∇µ∗1), µ1 − µ∗1〉

=− 〈u · ∇c1, µ1 − µ∗1〉 −D1

∫

Ω
c1|∇(µ1 − µ∗1)|2 dV −D1 〈(c1 − c∗1)∇µ∗1,∇(µ1 − µ∗1)〉

≤ − D1

2

∫

Ω
c1|∇(µ1 − µ∗1)|2 dV − 〈u · ∇c1, µ1 − µ∗1〉+

D1

2

∫

Ω

(c1 − c∗1)
2

c1
(∂xµ

∗
1)

2 dV

≤− D1

2

∫

Ω
c1|∇(µ1 − µ∗1)|2 dV − 〈u · ∇c1, µ1 − µ∗1〉+

D1γδ
2γ

δ
γ2
j21

∫

Ω
c∗1ψ

(

c1
c∗1

)

dV.

(229)
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We take a closer look at the term involving u, integrating by parts and using divu = 0,

−〈u · ∇c1, µ1 − µ∗1〉 =− 〈u · ∇c1, log c1 +Φ〉+ 〈u · ∇c1, µ∗1〉

=− 〈u,∇(c1 log c1 − c1)〉+
∫

Ω
uc1 · ∇Φ dV

+ 〈u · ∇(c1 − c∗1), µ
∗
1〉+ 〈u · ∇c∗1, µ∗1〉

=

∫

Ω
uc1 · ∇Φ dV − 〈u(c1 − c∗1),∇µ∗1〉

+ 〈u,∇(c∗1 log c
∗
1 − c∗1)〉 −

∫

Ω
uc∗1 · ∇Φ∗ dV

≤
∫

Ω
uc1 · ∇Φ dV −

∫

Ω
uc∗1 · ∇Φ∗ dV

+
ν

4KL2
‖u‖2H +

KL2

ν

∫

Ω
|c∗1∂xµ∗1|2

(c1 − c∗1)
2

(c∗1)
2

dV

≤
∫

Ω
uc1 · ∇Φ dV −

∫

Ω
uc∗1 · ∇Φ∗ dV

+
ν

4K
‖u‖2V +

KL2γδ
νγ2

j21

∫

Ω
c∗1ψ

(

c1
c∗1

)

dV

(230)

and thus returning to (229), we have

〈−u · ∇c1 +D1div (c1∇(µ1 − µ∗1) + (c1 − c∗1)∇µ∗1), µ1 − µ∗1〉

≤ − D1

2

∫

Ω
c1|∇(µ1 − µ∗1)|2 dV +

(

D1γδ
2γ

δ
γ2

+
KL2γδ
νγ2

)

j21

∫

Ω
c∗1ψ

(

c1
c∗1

)

dV

+
ν

4K
‖u‖2V +

∫

Ω
uc1 · ∇Φ dV −

∫

Ω
uc∗1 · ∇Φ∗ dV.

(231)

Similarly for i = 2 we obtain

〈−u · ∇c2 +D2div (c2∇(µ2 − µ∗2) + (c2 − c∗2)∇µ∗2), µ2 − µ∗2〉

≤ − D2

2

∫

Ω
c2|∇(µ2 − µ∗2)|2 dV +

(

D2γδ
2γ

δ
γ2

+
KL2γδ
νγ2

)

j22

∫

Ω
c∗2ψ

(

c2
c∗2

)

dV

+
ν

4K
‖u‖2V −

∫

Ω
uc2 · ∇Φ dV +

∫

Ω
uc∗2 · ∇Φ∗ dV.

(232)

Collecting our estimates thus far and using the fact that ρ∗∇Φ∗ = −∇(c∗1 + c∗2 − (j1 + j2)x) is a gradient,

we have

d

dt
E +

∑

i

Di

2

∫

Ω
ci|∇(µi − µ∗i )|2 dV

≤
∑

i

M δ
i j

2
i

∫

Ω
c∗iψ

(

ci
c∗i

)

dV +

∫

Ω
uρ · ∇Φ dV −

∫

Ω
uρ∗ · ∇Φ∗ dV +

ν

2K
‖u‖2V

=
∑

i

M δ
i j

2
i

∫

Ω
c∗iψ

(

ci
c∗i

)

dV +

∫

Ω
uρ · ∇Φ dV +

ν

2K
‖u‖2V

(233)
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where (see [6])

E =
∑

i

∫

Ω
c∗iψ

(

ci
c∗i

)

dV +
ε

2
‖∇(Φ− Φ∗)‖2L2

M δ
i =

Diγδ
2γ

δ
γ2

+
KL2γδ
νγ2

, 1 ≤ i ≤ 2.

(234)

Now we take a look at the Stokes equations,

∂tu+ νAu = −KP(ρ∇Φ). (235)

Multiplying by u
K

and integrating by parts, we obtain using the self-adjointness of P,

1

2K

d

dt
‖u‖2H +

ν

K
‖u‖2V =−

∫

Ω
u · P(ρ∇Φ) dV = −

∫

Ω
uρ · ∇Φ dV. (236)

Now we combine the estimates (233) and (236) to obtain

d

dt

(

E +
1

2K
‖u‖2H

)

+
∑

i

Di

2

∫

Ω
ci|∇(µi − µ∗i )|2 dV +

ν

2K
‖u‖2V ≤

∑

i

M δ
i j

2
i

∫

Ω
c∗iψ

(

ci
c∗i

)

dV.

(237)

Now applying Lemma 5 to the dissipation term

D =
∑

i

Di

2

∫

Ω
ci|∇(µi − µ∗i )|2 dV (238)

we obtain

D ≥
Dγ

δ

γδL
2

(

∑

i

1

2

∫

Ω
c∗iψ

(

ci
c∗i

)

dV + ε‖∇(Φ− Φ∗)‖2L2

)

≥
Dγ

δ

2γδL
2
E (239)

where D = miniDi. Next, defining

κδi =
Dγ

δ

2γδL
2
−M δ

i j
2
i , 1 ≤ i ≤ 2 (240)

we have, due to (216), κδi > 0 for each i for small enough δ > 0. Therefore, after an application of

Poincaré’s inequality to ‖u‖2V in (237), we obtain, for small enough δ,

d

dt
F ≤ −κδF (241)

for

F = E +
1

K
‖u‖2H (242)

and

κδ = min{κδ1, κδ2, ν/(2L2)} > 0. (243)

It follows that

F(t) ≤ F(0)e−κδt. (244)

Now, for general initial conditions, it suffices to observe that due to Theorem 3 (II), there exists some

time T ∗ > 0 such that γ
δ
≤ c1(T

∗), c2(T ∗) ≤ γδ, and then the convergence result follows from the

preceding analysis by taking ci(T
∗) to be the initial conditions. This completes the proof of the theorem. �

Lastly we prove Theorem 5.

PROOF. Suppose (c∗1, c
∗
2, u

∗) 6= (c∗1, c
∗
2, 0) is a steady state solution of the NPS system (110)-(114) with

boundary conditions (176)-(178). Then by taking initial conditions ci(0) = c∗i , u(0) = u∗, we find that

the corresponding energy F(t), defined in (242), is constant in time and positive, F(t) = F(0) > 0. On

the other hand, Theorem 4 implies that F(t) → 0 as t → ∞, and thus we have a contradiction. This

contradiction completes the proof. �
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REMARK 9. For the proof of Theorem 5 above, uniqueness is shown by contradiction by considering

the time dependent system. Alternatively, we can use an energy estimates argument directly to the difference

(c̄∗1−c∗1, c̄∗2−c∗2, ū∗) using the a priori L∞ bounds for steady state solutions to NPNS/NPS (Remark 6). This

yields computations in the spirit of (229) and obtains the same result. In a sense, such an approach seems

more natural as it appears to not use any analysis of the time dependent system. However, as remarked

in Remark 6, the a priori L∞ bounds for steady states are themselves obtained from analysis of the time

dependent system, thus the two approaches are not very different.
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