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Abstract: Optical resonators are structures that utilize
wave interference and feedback to con!ne light in all
threedimensions.Dependingon the feedbackmechanism,
resonators can support either standing- or traveling-wave
modes. Over the years, the distinction between these two
di"erent types of modes has become so prevalent that
nowadays it is one of the main characteristics for classify-
ing optical resonators. Here, we show that an intermediate
link between these two rather di"erent groups exists. In
particular,we introduce anewclass of photonic resonators
that supports a hybrid optical mode, i.e. at one location
along the resonator the electromagnetic !elds associated
with the mode feature a purely standing-wave pattern,
while at a di"erent location, the !elds of the same mode
represent a pure traveling wave. The proposed concept
is general and can be implemented using chip-scale
photonics as well as free-space optics. Moreover, it can be
extended to other wave phenomena such as microwaves
and acoustics.
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1 Introduction
Light is a very peculiar form of energy that constantly
travels from one point to another, which makes it di#cult
to store or “freeze” it in one place. This, however, can
be e"ectively overcome by using optical resonators that
utilize feedback mechanisms together with wave inter-
ference e"ects to recycle light along periodic trajectories.
Depending on the resonator’s geometry, these trajectories
may intercept each other in opposite directions forming
standing-wave patterns with a vanishing Poynting vector.
Alternatively, they may form closed loops that support
degenerate circulating traveling-wave modes (clockwise
(CW) or counterclockwise (CCW)) with a non-vanishing
Poynting vector along the loop direction. This ability to
con!ne and trap light has enabled several scienti!c break-
throughs over the past few decades. Importantly, recent
technological progress in micro- and nano-fabrication
has enabled the realization of on-chip optical resonators
with spatial dimensions comparable to the wavelength
of the trapped light, or even smaller [1] with a wide
range of applications including microlasers [2–8] and
sensing [9–14], just to mention few examples. Despite
the large variety in their designs (microrings, microdisks,
photonic crystals, Bragg structures, etc.), sizes, and mate-
rial systems, optical resonators are typically classi!ed
into one of the aforementioned categories, i.e. standing-
or traveling-wave devices [15–17]. This classi!cation is
generally accepted as complete. Thus, research in the !eld
of optical resonators has focused on applications of these
resonators and implementations of novel designs with
unique features. In particular, standing-wave resonators
can be engineered to support small mode volumes and
high quality factors, which makes them perfect choice for
engineering quantum light–matter interactions [18–26].
On the other hand, traveling-wave resonators are the
preferred platform for (classical and quantum) nonlinear
optics due to the ability to engineer the interaction
betweendi"erentwavecomponentsand theunidirectional
propagation properties of these modes which facilitates
the input and output coupling [27, 28]. In addition, it was
shown previously that the interaction between an atom
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and a standing-wave pattern of light depends on whether
the latter is generated in a standing-wave resonator or as a
result of interference between counter-propagating waves
in a traveling-wave resonator [29].

In this work, we show that this classi!cation scheme
for optical resonators (as standing- or traveling-wave
resonators) is not complete. Instead, we reveal a new
type of optical modes supported by certain resonator
structures that represents a missing link between these
two categories. Speci!cally, we propose a new resonator
concept that supports an optical mode exhibiting hybrid
standing- and traveling-wave patterns simultaneously.

This article is organized as follows. First, we introduce
a general concept outlining the behavior of the proposed
resonator without a reference to a particular structure.
Afterwards, we discuss an implementation based on
standard chip-scale photonics technology. To gain insight
into the modal structure of the proposed resonator, we
present a detailed analysis of its modal features using a
scattering matrix approach. Next, we con!rm our results
by using full-wave !nite element simulations. Finally, we
investigate the e"ect of local perturbation due to a small
scatterer on the eigenmodes of the proposed hybrid-wave
resonator.

2 General concept
We start by considering a generic concept of optical
resonators that supports modes overlapping only partially
with the physical structure of the resonator. For simplicity,

assume that such a resonator can be divided into three
domains (extension to more domains is straightforward):
D0, D1 and D2 (the exact de!nition of the domain
boundaries is not important). Furthermore, assume that it
supports two degenerate standing-wave modes M1,2 such
that the !eld distribution ofM1 mainly resides in D0 ∪ D1,
and similarly the !eld associated with mode M2 resides
in D0 ∪ D2 as shown schematically in Figure 1A and B,
respectively. The continuity conditions for the electro-
magnetic !eld across domain boundaries dictate that the
!eld distributions associated with modes M1,2 must be
di"erent across domain D0. Let us now consider a general
superposition of these two modes. It may be anticipated
that, a new set of basis (owing to the degeneracy, there
are in!nitely many bases) can be constructed such that
the standing-wave nature of modes M1,2 in domains D1,2
remain unaltered and yet the !eld distribution in D0
forms a traveling-wave pattern due to a particular linear
superpositionofmodesM1,2 (Figure 1C), akin to the relation
cos(kz)+ i sin(kz) = exp(ikz). Such a “mutant” resonator,
if it exists, will support a “mutant” optical mode that, in
some properly chosen basis, exhibits purely standing- and
traveling-wave patterns at the same time—a feature that,
to the best of our knowledge, has never been discussed
before. We will refer to such a resonator as a hybrid-wave
resonator. So far, we have kept the discussion abstract.
In what follows, we show that this abstract concept can
be implemented in realistic optical resonator designs. In
the main text, we focus on chip-scale devices but we
note that it is straightforward to extend the discussion to
implementations using free-space optics.

Figure 1: The concept of a hybrid-wave resonator. A resonator structure that supports two degenerate standing-wave modes such that (A)
modeM1 resides in domain D0 ∪ D1, and (B) modeM2 resides in domain D0 ∪ D2. (C) It is possible that a proper linear superposition between
M1 andM2 can result in new modes that preserve the standing-wave character in domains D1,2 while at the same time form a traveling wave
in domain D0. In the figure, standing and traveling waves are schematically represented by interference fringes and uniform field
distributions respectively.
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3 Integrated photonics
implementation

To demonstrate that the concept discussed above can be
realized by standard optical components, here we con-
sider an implementation based on integrated photonics
as shown in Figure 2A (possible realizations based on
free-spaceopticsarediscussed inSupplementaryMaterials
A). The structure consists of three open ring sections
connected by two beam splitters (labeled as BS1,2). The
outer rings here act as Sagnac loop re%ectors [30]. We
note that even though variants of this geometry have
beenconsideredbefore for buildingvariousoptical devices
for di"erent applications such as sensing, lasing, and
information processing [31–35], the peculiar feature that
we highlight in this work has escaped attention.

To investigate the modal structure of this resonator,
we will employ a scattering matrix analysis along the
junctions indicated in Figure 2A. Away from the beam
splitter junctions, the !eld amplitudes can be decomposed

into two traveling waves in opposite directions as shown
in Figure 2A. Within the context of scattering matrix for-
malism [17, 36, 37], the relations between these amplitudes
are given by:

[a1, b1]T = Sc[a4, b2]T,

[a4, b2]T = Sc[a3, b3]T,

[a3, b3]T = Sc[a2, b4]T,

[a2, b4]T = Sc[a1, b1]T,

(1)

where Sc = exp(i!∕4)Sb and Sb =
[
" i#
i# "

]
is the scat-

tering matrix of each beam splitter. Here, " and # are
the !eld transmission and coupling coe#cient of each
beam splitter, and in the absence of any loss, they satisfy
"2 + #2 = 1. For the special case of a 50/50 beam splitter,
which is relevant to our discussion later, " = # = 1∕

√
2.

The phase term ! is de!ned as ! = 2$ne"Lf∕c, where
ne" is the e"ective guiding index, L is total length across
the perimeter of the resonator, f is the frequency and c is
the speed of light in vacuum. The numerical factor 1∕4 in

Figure 2: An implementation of a hybrid-wave resonator in integrated photonic platforms. (A) A hybrid-wave resonator can be constructed by
deforming a ring resonator to introduce two 50/50 beam splitters, BS1,2. The resonator can be divided into three domains: D0 = D′

0 ∪ D′′
0 is

the union of the left and right side rings, and domains D1 and D2 represent the top and bottom middle sections, respectively. The field
amplitudes at each location and their traveling directions are indicated on the figure and labeled as ai and bi, i = 1, 2, 3,4. (B) Resonant
frequencies (horizontal axis) as a function of the beam splitter coupling coefficient # (vertical axis). Note that each # value represents an
independent resonator structure. Horizontal dashed lines indicate values of # for which the spectrum is doubly degenerate. The limit # = 0
corresponds to conventional microring resonator with two degenerate traveling-wave modes in clockwise and counterclockwise direction
while the limit # = 1 corresponds to degenerate ‘‘knotted’’ modes. Hybrid-wave modes exist for # = 1∕

√
2 as discussed in detail in the main

text.
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the expression of Sc arises because each wave component
travels one quarter the length structure between any two
consecutive junctions. In the absence of dispersion, ! is a
linear function of f and thus can be used directly to deter-
mine the resonant frequencies (the e"ect of dispersion is
considered later in the full-wave simulations).

By successive substitution of the right side of each line
in Eq. (1) from the expression in the next line, we !nd:

[a1, b1]T = S4c [a1, b1]T = ei!S4b[a1, b1]
T. (2)

The resonant modes can then be obtained by imposing
a consistency condition requiring the operator exp(i!)S4b
to have an eigenvalue equal to unity [38]. In order to
!nd the values of ! that satisfy the consistency condition
and hence obtain the eigenfrequencies, we !rst note
that the eigenvalues of Sb are given by %1,2 = exp(±i&)
and the corresponding eigenvectors are v1,2 = [1,±1]T.
Here, & = arcsin(#) ∈ [0,$∕2] since " and # take only
positive values. The consistency condition then reduces
to exp(i!) exp(±i4&) = 1, which has two solutions given
by !±

m = ±4& + 2m$, where m is an integer. In order to
better understand this result, we recall that in the absence
of beam splitters (# = 0) the eigenfrequencies are doubly
degenerate (for each resonant frequency there are two
modes, one propagating in the CW and the other in the
CCW direction) and are given by !m = 2m$. Introducing
the beam splitters results in coupling between CW and
CCW modes and thus lifts the degeneracy. As a result,
each degenerate pair described by !m splits into two
modes: blue-shifted !+

m and red-shifted !−
m. Interestingly,

for identical 50/50 beam splitters, i.e. when # = 1∕
√
2

corresponding to & = $∕4, the eigenmodes associated
with S4b become degenerate (this is not the case for the
eigenvectors of Sb) and hence the eigenmodes of the
resonators form degenerate pairs satisfying the resonant

conditions !+
m = !−

m+1 = (2m+ 1)$ ≡ !m, as shown in
Figure 2B. Before we proceed, we emphasize that the
above-predicted degeneracy is not a result of a particular
geometric symmetry. For instance, the length of any of the
curved sections in the four domains (D′

0,D′′
0 ,D1 andD2) can

be increased by a multiple of the operation wavelength
without a"ecting the degeneracy despite the fact that
it will break part of the geometric symmetries of the
structure.

We now investigate the eigenmode structure asso-
ciated with these newly formed degenerate modes. In
principle, these eigenmodes can be expressed in any basis
of the eigenvectors of S4b. Choosing a particular basis !xes
the vector [a1, b1]T which can be then used to obtain all
other!eldcomponents throughEq. (1). Table 1 lists the!eld
values for three di"erent bases given by: (1) B1 = {v1,2},
v1,2 = [1,±1]T; (2) B2 = {v3,4}, v3,4 = [1,∓i]T; and (3) B3 =
{v5,6}, v5 = [2,0]T, v6 = [0, 2]T. These bases are related via
the linear transformations: v3,4 =

[
(1∓ i)v1 + (1± i)v2

]
∕2

and v5,6 = v1 ± v2. Expressed di"erently, v5,6 can be also
written as v5 = v3 + v4 and v6 = i(v3 − v4).

Table 1 lists the !eld components associated with
the degenerate eigenmodes of the structure shown in
Figure 2 as expressed in the three di"erent bases
B1,2,3. The modes are expressed by the vector M( j)

i ≡
[a1, b1, a2, b2, a3, b3, a4, b4] in eachbasis,where i represents
the mode number and j denote the basis number. Note
that there is a pure standing wave whenever the !eld
components belonging to any domain have the same
amplitude. On the other hand, if one of the !eld com-
ponents vanishes, the wave is traveling. Evidently, in
basis B3 the eigenmodes exhibit a hybrid-wave character
with both standing and traveling waves coexisting as
part of the same mode. Obviously, modes M(1)

1,2 represent
a standing wave that extends all over the structure. On

Table 1: Field components associated with the degenerate eigenmodes of the structure shown in Figure 2 as expressed in the three different
bases B1,2,3.

Domains D′
0 D1 D′′

0 D2

Field components a1 b1 a2 b2 a3 b3 a4 b4
B1 M(1)

1 1 1 ei
!m+$

4 iei
3!m+$

4 iei
!m
2 iei

!m
2 iei

3!m+$
4 ei

!m+$
4

M(1)
2 1 −1 ei

!m−$
4 ei

3!m+$
4 −iei

!m
2 iei

!m
2 −ei

3!m+$
4 −ei

!m−$
4

B2 M(2)
1 1 −i

√
2ei

!m
4 i

√
2ei

3!m
4 ei

!m
2 iei

!m
2 0 0

M(2)
2 1 i 0 0 −ei

!m
2 iei

!m
2 −

√
2ei

3!m
4 i

√
2ei

!m
4

B3 M(3)
1 2 0

√
2ei

!m
4 i

√
2ei

3!m
4 0 2iei

!m
2 −

√
2ei

3!m
4 i

√
2ei

!m
4

M(3)
2 0 2 i

√
2ei

!m
4 −

√
2ei

3!m
4 2iei

!m
2 0 i

√
2ei

3!m
4

√
2ei

!m
4

In this table, pink cells indicate the regions with traveling waves while uncolored cells denote standing waves, and blue cells indicate the
regions where the field vanishes. And !m = (2m+ 1)$, wherem is an integer.
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the other hand, modes M(2)
1,2 represent a standing wave

that covers only part of the structure. Thus modes M(3)
1,2

representpotential candidates for satisfying theconditions
necessary for generating hybrid-wave modes. Indeed, this
is con!rmed by the !eld distribution of modesM(3)

1,2 which
exhibits the dual character of traveling and standing
waves covering di"erent domains of the resonators at the
same time.

An important observation here is that for the perfectly
closed resonator with no loss, the hybrid-wave modes
occur only when the beam splitter is 50∕50. A slight
deviation from this condition removes the degeneracy
and destroys the hybrid nature of the modes. This may
seem to pose a challenge for experimentally observing
thesemodes.However, realistic resonatorsarenotperfectly
closed but rather have losses due to optical absorption,

Figure 3: Eigenmodes of the hybrid-wave resonator presented in Figure 2. (A) and (B) are plots of electric field component perpendicular to
the resonator’s plane (|Ez|) associated with the two degenerate standing-wave modesM(2)

1,2 which resides in domain D0 ∪ D1 and D0 ∪ D2,
respectively, where D0 = D′

0 ∪ D′′
0 . These correspond to basis B2. On the other hand, (C) and (D) depict the field distribution corresponding to

M(3)
1 = M(2)

1 +M(2)
2 andM(3)

2 = M(2)
1 −M(2)

2 , which feature a hybrid standing- and traveling-wave character. The white arrows in (C) and (D)
indicate the traveling direction of traveling wave. The Poynting vectors (black arrows in inset of (C)) circulate around the loop in domain D0
and vanish in domain D1,2. The details of the geometry and material parameters used in these simulations are presented in
Supplementary Materials C.
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radiation to free space, or due to the coupling to input
and output channels. In turn, this will introduce an upper
limit on the resonator’s quality factor and result in a !nite
bandwidth of operation, which relaxes the above con-
straint as discussed in detail in Supplementary Materials
B and C.

In order to verify the above predictions, we perform a
!nite element method (FEM) full-wave simulation (using
COMSOL software package) of a realistic implementation
for the structure shown inFigure 3. Thedetails of the geom-
etry and material parameters used in our simulations are
presented in Supplementary Materials C. The eigenmodes
generated by COMSOL package are in the basis B1 and
are shown in Supplementary Materials C. Figure 3A and B
shows the electric !eld distributions associated with the
modes as represented in basis B2 which are generated via
linear superpositionof thedegeneratemodesM(1)

1 andM(1)
2 .

On the other hand, the !eld distributions in basis B3 are
depicted in Figure 3C and D. The nature of the waves can
be deduced from the !eld distribution. Standing waves
are visible through their interference pattern while trav-
eling waves are characterized by uniform !elds without
interference. These plots are in agreement with the !eld
distributions expected from Table 1 and indeed con!rm
the results obtained using the scattering matrix analysis
above. The !eld distribution of modes M(3)

1,2 deserves more
attention. At the center of the middle sections (domains
D1,2), the !eld features a standing wave while at the center
of domains D′

0 and D′′
0 , they feature traveling waves. At

the beam splitter junction, however, the !eld is neither a
pure standing nor traveling wave. These regions represent
transition domains where the wave gradually changes its
character. From the Poynting vector point of view, this
remarkable mode structure is enabled by the beam splitter
junctions acting as interferometricmirrors for domainsD1,2
while at the same time recirculating the power incident
on them from domains D0 in a closed loop. Importantly,
the standing-traveling wave nature observed in Figure 3C
and D are characteristic of the eigenmodes of a single
resonator structure and not associated with a particular
steady state solution under certain engineered excitation
[39]. Equally important is the fact that the traveling waves
in the presented structure are part of the quasi-bound
state within the resonator’s boundaries and not part of
the leaked radiation waves outside the resonator as in the
case of a !nite Fabry–Perot or photonic crystal geometry
for example. From a practical point of view, mapping
these !eld distributions experimentally can be done only
by using near-!eld probes, which is possible, but not an
easy task. In Supplementary Materials E, we discuss a

more practical scheme for accessing these modes by using
input/output waveguides ports evanescently coupled to
the various sections of the resonator.

4 Local perturbations and sensing
applications

In this section, we investigate the e"ect of local pertur-
bation due to a small scatterer on the eigenmodes of the
proposed hybrid-wave resonator—a problem relevant to
sensing applications [9]. Given that the modes of the res-
onator shown in Figure 2A can be written in various bases,
onlyoneofwhichdemonstrates thehybrid-wavecharacter,
onemaywonder if this featurewill have any consequences
under more general conditions where the particular mode
is not selectively excited. This section demonstrates that
this is indeed the case. To illustrate this, we consider
the situation where a scatterer (nanoparticle or a !ber
tip for instance) is located within the evanescent !eld of
the hybrid-wave resonator. In particular, we investigate
the two scenarios where the scatterer is located either
in the traveling- or standing-wave domains, as shown in
Figure 4A.

Before we proceed, it is useful to review the situation
for purely traveling-wave resonators (such as micror-
ing and microdisk arrangements) and purely standing-
wave resonators (such as Bragg and photonic crystal
arrangements). In the former, the scatterer breaks the
rotational symmetry of the geometry and introduces cou-
pling between the clockwise and counterclockwisemodes,
leading to a splitting of the eigenfrequency [40–42].
Importantly, this behavior is independent of the location
of the scatterer. In the latter case, however, the situation
is quite di"erent. An optical mode that has an electric
!eld node at the scatterer location along the resonator
direction will not be a"ected by its presence. On the other
hand, a mode that exhibits an antinode at the location of
the scatterer will experience a shift in its eigenfrequency
[43, 44].

To this end, we consider a small perturbation caused
by a scatterer having a scattering matrix (Supplemen-
tary Materials F):

Sp = ei!p

[
t ir
ir t

]
, (3)

where r and t are re%ection and transmission coe#cients
which are taken to be real numbers satisfying r2 + t2 = 1
(i.e. no loss); and !p = arcsin(r) is an overall additional
phase.
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Figure 4: Effect of local perturbation. (A) A schematic of the resonator structure with nanoparticles scatterers added in the traveling wave
(case 1) or standing waves (case 2) regions. In case 1, the presence of the scatterer generates two new optical modes that exhibit either a
node (B) or an antinode (C) at the location of the particle with corresponding frequency shifts as shown in (D). In this case, the frequency
shifts are independent of the particle location as long as it resides in the traveling wave domain. In case 2, the scatter leaves one of the
modes intact with zero frequency shift (E) while at the same time introduces a perturbation to the second mode (F) with a frequency shift that
varies with the location of the particle as expected (G). In both cases, ' = 2$ corresponds to a distance of 0.5 μm along the perimeter. A
rigorous derivation of these results as well as their intuitive explanations are discussed in the main text. In the figure,Δf j = f j,m − fm with
j = 1, 2. The scatterers in panels (B), (C), (E) and (F) are indicated by small white circles.

4.1 Scatterer located along the
traveling-wave domain

Here, we assume a scatterer located along the traveling-
wavedomain, sayD′′

0 , at a!xeddistance fromthe resonator
waveguide edge, as shown case 1 in Figure 4A. The angular
position of the scatterer is de!ned by distance l (Figure 4A)
and the corresponding phase shift ' ≡ 2$ne" lf∕c. By
following the same approach used in deriving Eq. (1), we
!nd that the resonant frequencies (see Supplementary
Materials G):

{
!1,m = !m,
!2,m = !m − 2!p.

(4)

where!j,mwith j = 1, 2 indicates the neweigenfrequencies
(due to the perturbation introduced by the scatterer)
branched from the unperturbed eigenfrequency !m. In
other words, the perturbation shifts the frequency of only
one mode while leaving that of the other unchanged. This
can be explained by the fact that the new modes, arising
because of the perturbation, both exhibit a standing-wave
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pattern, with the node of one mode and the antinode of
the other located at the position of the scatterer. Moreover,
Eq. (4) does not depend on the location of the scatterer
along the perimeter of the resonator, as long as it lies in the
traveling-wave domain. This behavior is exactly identical
to the case of a scatterer introduced in the vicinity of
traveling-wave resonator such as a microring or microdisk
geometry [44, 45].

These predictions are con!rmed by performing full-
wave simulations, where the scatteringwas introduced via
ananoparticle. Figure4BandCdepict the!elddistribution
of the perturbed modes around the particle. Note that,
as expected, the particle modi!es the !eld distribution
and creates a standing-wave pattern. Moreover, the node
of the !rst mode and the antinode of the second mode
coincide with the particle location along the perimeter
of the resonator, which is consistent with our theoretical
predictions. As a result, the eigenfrequency of the !rst
mode remains unchanged while that of the second mode
experiences a constant shift that does not depend on the
particle location, as shown in Figure 4D. As a side note,
we remark that the blue dots representing the simulation
data in Figure 4D do not exactly coincidewith the zero axis
as predicted by our scattering matrix analysis but rather
exhibit a small shift. This can be explained by recalling
that, in our analysis, we treat the particle as a Rayleigh
scatterer, whereas in reality higher-order multipole terms
must be considered in order to obtain more accurate
results. To con!rm this, we have performed additional
numerical simulations for di"erent particle sizes and
indeed observed that this frequency shift decreases as the
particle size is reduced (in fact we could not resolve the
frequency shift for particles with radii less than 30 nm).

4.2 Scatterer located along the
standing-wave domain

Next, we consider the case when the scatterer is located
in the standing-wave region, for instance in domain D2, as
shownby case 2 in Figure 4A. The resonant frequencies are
given by (see Supplementary Materials G):

{
!1,m = !m,
!2,m = !m − 2!p[1+ (−1)m+1 cos( 2 ')]. (5)

The mode corresponding to the eigenfrequency !1,m
(Figure 4E) is associated with M(2)

1 in Figure 3A, in which
the electric !eld is zero at domain D2, leading to an
unperturbed resonant frequency after adding the particle
at domain D2. On the other hand, the eigenfrequency !2,m
corresponds to a perturbation of mode M(2)

2 in Figure 3A.

Since mode M(2)
2 is a pure standing wave at domain D2,

the eigenfrequency !2,m varies with the angular position
of the scatterer (Figure 4F and G). In Eq. (5), whenm is an
odd number, it is an antinode at the middle of D2 domain
(' = 0), !2,m experiences the maximum frequency shift
−4!p from !m; when m is an even number, it is a node
at the middle of D2 domain, the scatterer will not alter
the !eld much and the resonant frequency will stay the
same, i.e. !2,m = !m at ' = 0. In both scenarios, !2,m will
oscillate between !m an !m − 4!p as a function of '. In
our simulation, the fact that m is an odd number can be
determined from Figure 3, and it is also veri!ed by the
electric !eld around the particle are shown in Figure 4F.
The two eigenfrequencies varying with ' are shown in
Figure 4G, consistent with Eq. (5).

From the above analysis, it is clear that a resonator
exhibitinghybrid-wavemodeswill respondverydi"erently
to perturbations a"ecting the standing- or traveling-wave
zones. In terms of applications, this can be useful in a
number of ways. For instance, the larger splitting in the
location of the !eld maxima in the standing-wave zone
can be utilized for selective sensing by functionalizing
[46] this exact location with receptors that can bind only
to a particular molecule while at the same time use the
traveling-wave zone for excitation and collection. On the
other hand, one can instead use both zones for detecting
the presence of more than one molecule (but only one at a
time). This canbeachievedbyattachingdi"erent receptors
to each zone and inferring the presence of a particular
substance bymeasuring the degree of splitting. We plan to
investigate these possibility in future works.

5 Conclusions
In conclusion, we have proposed a new concept for
optical resonators that exhibit simultaneously co-existing
standing and traveling waves as part of the !eld distri-
bution of the same optical mode but occupying di"erent
locations along the resonator geometry. In addition, we
have presented a speci!c example of a structure that
implements this concept and veri!ed its standing and
traveling wave nature by using scattering matrix analysis
and FEM full-wave simulations. We have investigated the
robustness of the hybrid-wave feature and shown that the
openness of the system allows for a larger bandwidth of
operation and thus facilitates experimental observation.
In addition, we have described a practical experiential
scheme for probing the hybrid-wave nature by using
several waveguide channels attached to various sections
of the resonator geometry. Furthermore,wehavediscussed
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the implication of the hybrid-wave nature for sensing
applications by investigating how the eigenmodes of such
hybrid-wave resonator interact with a small scatterer
locatedatdi"erentsectionsof thestructure,demonstrating
that the system’s response can be very di"erent depending
on the location of the scatterer along the standing- or
traveling-wave sections. Another arenawhere hybrid-wave
modes may prove useful is optical manipulation and
trapping of particles. For instance, it is expected that
a nanoparticle located in the traveling-wave zone will
experience radiation pressure and lateral force acting in
thedirection towards the resonator,while a similar particle
located in the standing-wave zone will in addition be
subject to a trapping force along the perimeter of the
resonator. Furthermore, actively tuning the beam-splitting
values may allow for controlling the behavior of the
resonator in real time and thus controlling its interaction
with nanoparticles.

In addition, the existence of the hybrid-wave modes
identi!ed above, which to the best of our knowledge
has not been known before, raises several fundamental
questions in photonics, nonlinear and quantum optics
applications. For instance, it is not a priori clear how such
a resonator will behave under nonlinear conditions. Does
it exhibit di"erent nonlinear bistability responses than
those observed in conventional ring resonators [47]? Does
it provide any new features in terms of frequency comb
generation? Can soliton crystals [48] form in the presence
of hybrid-wave modes? Along similar lines, it is not clear
to what extent the presence of the hybrid-wave modes
will impact the dynamics and instability features of laser
devices made of such resonators. In the quantum domain,
it would be interesting to explore how quantum emitters
located inside or in the vicinity of such resonators will
behave. How would spontaneous emission and superra-
diance scale in di"erent sections of the resonators? It has
been shownpreviously that the interaction between atoms
and electromagnetic waves featuring a standing !eld
pattern depends on the type of resonator [29] (standing or
traveling wave resonator). What makes these exploratory
questions particularly interesting is that the proposed res-
onator exhibit transition regions (the beam splitter regions
in Figure 2A that interpolates between the traveling- and
standing-wave domains). Light–matter interaction in this
region is expected todi"er from its typical behavior in stan-
dard traveling- and standing-wave resonators, which may
lead to interesting new e"ects. At the engineering level,
our work also raises interesting questions. For instance,
is there a fundamental size limit on building hybrid-
wave resonators? Can one implement a small volume

hybrid-wave mode? What would be the modes of these
structures when implemented in material platforms that
support plasmonic resonances? We plan to investigate
these open questions as well as implementations in other
platforms such as acoustics [49] and microwave [50] in
future works.
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