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Abstract: Optical resonators are structures that utilize
wave interference and feedback to confine light in all
three dimensions. Depending on the feedback mechanism,
resonators can support either standing- or traveling-wave
modes. Over the years, the distinction between these two
different types of modes has become so prevalent that
nowadays it is one of the main characteristics for classify-
ing optical resonators. Here, we show that an intermediate
link between these two rather different groups exists. In
particular, we introduce a new class of photonic resonators
that supports a hybrid optical mode, i.e.at one location
along the resonator the electromagnetic fields associated
with the mode feature a purely standing-wave pattern,
while at a different location, the fields of the same mode
represent a pure traveling wave. The proposed concept
is general and can be implemented using chip-scale
photonics as well as free-space optics. Moreover, it can be
extended to other wave phenomena such as microwaves
and acoustics.
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1 Introduction

Light is a very peculiar form of energy that constantly
travels from one point to another, which makes it difficult
to store or “freeze” it in one place. This, however, can
be effectively overcome by using optical resonators that
utilize feedback mechanisms together with wave inter-
ference effects to recycle light along periodic trajectories.
Depending on the resonator’s geometry, these trajectories
may intercept each other in opposite directions forming
standing-wave patterns with a vanishing Poynting vector.
Alternatively, they may form closed loops that support
degenerate circulating traveling-wave modes (clockwise
(CW) or counterclockwise (CCW)) with a non-vanishing
Poynting vector along the loop direction. This ability to
confine and trap light has enabled several scientific break-
throughs over the past few decades. Importantly, recent
technological progress in micro- and nano-fabrication
has enabled the realization of on-chip optical resonators
with spatial dimensions comparable to the wavelength
of the trapped light, or even smaller [1] with a wide
range of applications including microlasers [2-8] and
sensing [9-14], just to mention few examples. Despite
the large variety in their designs (microrings, microdisks,
photonic crystals, Bragg structures, etc.), sizes, and mate-
rial systems, optical resonators are typically classified
into one of the aforementioned categories, i.e. standing-
or traveling-wave devices [15-17]. This classification is
generally accepted as complete. Thus, research in the field
of optical resonators has focused on applications of these
resonators and implementations of novel designs with
unique features. In particular, standing-wave resonators
can be engineered to support small mode volumes and
high quality factors, which makes them perfect choice for
engineering quantum light—matter interactions [18-26].
On the other hand, traveling-wave resonators are the
preferred platform for (classical and quantum) nonlinear
optics due to the ability to engineer the interaction
between different wave components and the unidirectional
propagation properties of these modes which facilitates
the input and output coupling [27, 28]. In addition, it was
shown previously that the interaction between an atom

aOpen Access. © 2022 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International

License.


https://doi.org/10.1515/nanoph-2022-0304
mailto:qizhong@mtu.edu
https://orcid.org/0000-0002-6772-4850
https://orcid.org/0000-0002-6772-4850
mailto:ganainy@mtu.edu

4428 =— Q. Zhong et al.: Hybrid-wave resonators

and a standing-wave pattern of light depends on whether
the latter is generated in a standing-wave resonator or as a
result of interference between counter-propagating waves
in a traveling-wave resonator [29].

In this work, we show that this classification scheme
for optical resonators (as standing- or traveling-wave
resonators) is not complete. Instead, we reveal a new
type of optical modes supported by certain resonator
structures that represents a missing link between these
two categories. Specifically, we propose a new resonator
concept that supports an optical mode exhibiting hybrid
standing- and traveling-wave patterns simultaneously.

This article is organized as follows. First, we introduce
a general concept outlining the behavior of the proposed
resonator without a reference to a particular structure.
Afterwards, we discuss an implementation based on
standard chip-scale photonics technology. To gain insight
into the modal structure of the proposed resonator, we
present a detailed analysis of its modal features using a
scattering matrix approach. Next, we confirm our results
by using full-wave finite element simulations. Finally, we
investigate the effect of local perturbation due to a small
scatterer on the eigenmodes of the proposed hybrid-wave
resonator.

2 General concept

We start by considering a generic concept of optical
resonators that supports modes overlapping only partially
with the physical structure of the resonator. For simplicity,

(A) (B)
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Mode M, Mode M,

DE GRUYTER

assume that such a resonator can be divided into three
domains (extension to more domains is straightforward):
Dy, D; and D, (the exact definition of the domain
boundaries is not important). Furthermore, assume that it
supports two degenerate standing-wave modes M, , such
that the field distribution of M; mainly resides in D, U D,
and similarly the field associated with mode M, resides
in Dy U D, as shown schematically in Figure 1A and B,
respectively. The continuity conditions for the electro-
magnetic field across domain boundaries dictate that the
field distributions associated with modes M,, must be
different across domain D,,. Let us now consider a general
superposition of these two modes. It may be anticipated
that, a new set of basis (owing to the degeneracy, there
are infinitely many bases) can be constructed such that
the standing-wave nature of modes M, , in domains D, ,
remain unaltered and yet the field distribution in D,
forms a traveling-wave pattern due to a particular linear
superposition of modes M, , (Figure 1C), akin to the relation
cos(kz) + isin(kz) = exp(ikz). Such a “mutant” resonator,
if it exists, will support a “mutant” optical mode that, in
some properly chosen basis, exhibits purely standing- and
traveling-wave patterns at the same time—a feature that,
to the best of our knowledge, has never been discussed
before. We will refer to such a resonator as a hybrid-wave
resonator. So far, we have kept the discussion abstract.
In what follows, we show that this abstract concept can
be implemented in realistic optical resonator designs. In
the main text, we focus on chip-scale devices but we
note that it is straightforward to extend the discussion to
implementations using free-space optics.

(C)

Do

D;

b

Mode ¢iM; +c,M,

Figure 1: The concept of a hybrid-wave resonator. A resonator structure that supports two degenerate standing-wave modes such that (A)
mode M, resides in domain D, U D,, and (B) mode M, resides in domain D, U D,. (C) It is possible that a proper linear superposition between
M, and M, can result in new modes that preserve the standing-wave character in domains D, , while at the same time form a traveling wave
in domain D,,. In the figure, standing and traveling waves are schematically represented by interference fringes and uniform field

distributions respectively.
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3 Integrated photonics
implementation

To demonstrate that the concept discussed above can be
realized by standard optical components, here we con-
sider an implementation based on integrated photonics
as shown in Figure 2A (possible realizations based on
free-space optics are discussed in Supplementary Materials
A). The structure consists of three open ring sections
connected by two beam splitters (labeled as BS,,). The
outer rings here act as Sagnac loop reflectors [30]. We
note that even though variants of this geometry have
been considered before for building various optical devices
for different applications such as sensing, lasing, and
information processing [31-35], the peculiar feature that
we highlight in this work has escaped attention.

To investigate the modal structure of this resonator,
we will employ a scattering matrix analysis along the
junctions indicated in Figure 2A. Away from the beam
splitter junctions, the field amplitudes can be decomposed

(A) b, as

Q. Zhong et al.: Hybrid-wave resonators =— 4429

into two traveling waves in opposite directions as shown
in Figure 2A. Within the context of scattering matrix for-
malism [17, 36, 37], the relations between these amplitudes
are given by:

[a1, b1]T = Sc[am bz]T»

[a47 bz]T = Sc[aBs b3]T,

T T @
[a3’ b3] = Sc[azs b4] )
[aza b4]T = S(;[alv bl]T7
where S, = exp(i¢p/4)S, and S, = T s the scat-

tering matrix of each beam splitter. Here, 7 and « are
the field transmission and coupling coefficient of each
beam splitter, and in the absence of any loss, they satisfy
72 + k2 = 1. For the special case of a 50/50 beam splitter,
which is relevant to our discussion later, 7 =k =1/ \/5
The phase term ¢ is defined as ¢ = 2zn.zLf/c, where
n.g is the effective guiding index, L is total length across
the perimeter of the resonator, f is the frequency and c is
the speed of light in vacuum. The numerical factor 1/4 in

< Hybrid-wave resonator

2mn

¢

2(m-1)n

2(m+1)n

Figure 2: An implementation of a hybrid-wave resonator in integrated photonic platforms. (A) A hybrid-wave resonator can be constructed by
deforming a ring resonator to introduce two 50/50 beam splitters, BS, ,. The resonator can be divided into three domains: D, = Dj U Dy is
the union of the left and right side rings, and domains D, and D, represent the top and bottom middle sections, respectively. The field
amplitudes at each location and their traveling directions are indicated on the figure and labeled as a; and b;, i = 1, 2, 3, 4. (B) Resonant
frequencies (horizontal axis) as a function of the beam splitter coupling coefficient k (vertical axis). Note that each k value represents an
independent resonator structure. Horizontal dashed lines indicate values of x for which the spectrum is doubly degenerate. The limit k = 0
corresponds to conventional microring resonator with two degenerate traveling-wave modes in clockwise and counterclockwise direction
while the limit k = 1 corresponds to degenerate “knotted” modes. Hybrid-wave modes exist for k = 1/\/5 as discussed in detail in the main

text.
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the expression of S, arises because each wave component
travels one quarter the length structure between any two
consecutive junctions. In the absence of dispersion, ¢ is a
linear function of f and thus can be used directly to deter-
mine the resonant frequencies (the effect of dispersion is
considered later in the full-wave simulations).
By successive substitution of the right side of each line
in Eq. (1) from the expression in the next line, we find:
[a,, by]" = Silay, b,]" = €S} [ay, b,]". 0)
The resonant modes can then be obtained by imposing
a consistency condition requiring the operator exp(i¢)82
to have an eigenvalue equal to unity [38]. In order to
find the values of ¢ that satisfy the consistency condition
and hence obtain the eigenfrequencies, we first note
that the eigenvalues of S, are given by A, = exp(+if)
and the corresponding eigenvectors are v,, = [1,+1]".
Here, 6 = arcsin(x) € [0, /2] since 7 and k take only
positive values. The consistency condition then reduces
to exp(i¢h) exp(+i46) = 1, which has two solutions given
by @i = +46 + 2mn, where m is an integer. In order to
better understand this result, we recall that in the absence
of beam splitters (x = 0) the eigenfrequencies are doubly
degenerate (for each resonant frequency there are two
modes, one propagating in the CW and the other in the
CCW direction) and are given by ¢,, = 2mz. Introducing
the beam splitters results in coupling between CW and
CCW modes and thus lifts the degeneracy. As a result,
each degenerate pair described by ¢, splits into two
modes: blue-shifted ¢ and red-shifted ¢, . Interestingly,
for identical 50/50 beam splitters, i.e. when x =1/ \/5
corresponding to 6 = z /4, the eigenmodes associated
with S‘g become degenerate (this is not the case for the
eigenvectors of S;) and hence the eigenmodes of the
resonators form degenerate pairs satisfying the resonant
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conditions ¢} = ¢, =Q@m+1r = ¢, as shown in
Figure 2B. Before we proceed, we emphasize that the
above-predicted degeneracy is not a result of a particular
geometric symmetry. For instance, the length of any of the
curved sections in the four domains (D’., Dg ,D,and D) can
be increased by a multiple of the operation wavelength
without affecting the degeneracy despite the fact that
it will break part of the geometric symmetries of the
structure.

We now investigate the eigenmode structure asso-
ciated with these newly formed degenerate modes. In
principle, these eigenmodes can be expressed in any basis
of the eigenvectors of 52. Choosing a particular basis fixes
the vector [a;, b;]T which can be then used to obtain all
other field components through Eq. (1). Table 1lists the field
values for three different bases given by: (1) B, = {v;,},
Vip = (1, 1] (2 B, = {V3,4}’ V3, = [1,Fi]"; and (3) B; =
{Vs¢}, Vs =[2,0]7, vg = [0,2]". These bases are related via
the linear transformations: v;, = [(1 F ))v; + (1 £ )v,| /2
and v; ¢ = Vv, + V,. Expressed differently, v ¢ can be also
written as v; = v; + v, and vy = i(v; — V,,).

Table 1 lists the field components associated with
the degenerate eigenmodes of the structure shown in
Figure 2 as expressed in the three different bases
Bi,3. The modes are expressed by the vector Ml.(j) =
la;, by, ay, by, a5, bs, a,, b,] in each basis, where i represents
the mode number and j denote the basis number. Note
that there is a pure standing wave whenever the field
components belonging to any domain have the same
amplitude. On the other hand, if one of the field com-
ponents vanishes, the wave is traveling. Evidently, in
basis B; the eigenmodes exhibit a hybrid-wave character
with both standing and traveling waves coexisting as
part of the same mode. Obviously, modes MB represent
a standing wave that extends all over the structure. On

Table 1: Field components associated with the degenerate eigenmodes of the structure shown in Figure 2 as expressed in the three different

bases B, , 3.
H / 44
Domains D, D, D, D,
Field components a, b, a, b, a, b, a, b,
e st jom o st e
B, m® 1 1 e e ie'? ie'7 ie’™% e
J— 3 tr L idm L idm 3 tr -
mP 1 -1 e e —ie' 7 ie'7 —e' i -
. jm e o it
B, M2 1 —i V2% iv2e' e ie'? 0 0
. b j30m =it
My 1 i 0 0 —e' ie's —\/2e7% iv/2e'"
o R . idm 30m = itm
B, M?) 2 0 V2e' T iv/2e " 0 2ie'> —\2e7 iv2e"
Mo 0 2 iv/2e'"% —V2e'™ 2ie’ 2 0 iv/2e' % V2e'"

In this table, pink cells indicate the regions with traveling waves while uncolored cells denote standing waves, and blue cells indicate the
regions where the field vanishes. And ¢, = (2m + 1)z, where m is an integer.
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the other hand, modes Mizz) represent a standing wave

that covers only part of the structure. Thus modes Mg
represent potential candidates for satisfying the conditions
necessary for generating hybrid-wave modes. Indeed, this
is confirmed by the field distribution of modes Mg) which
exhibits the dual character of traveling and standing
waves covering different domains of the resonators at the
same time.

o
N
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%, W
2009000000008

(0000000000057,
D;
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An important observation here is that for the perfectly
closed resonator with no loss, the hybrid-wave modes
occur only when the beam splitter is 50/50. A slight
deviation from this condition removes the degeneracy
and destroys the hybrid nature of the modes. This may
seem to pose a challenge for experimentally observing
these modes. However, realistic resonators are not perfectly
closed but rather have losses due to optical absorption,

000000009,
00 00y
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%,
% %,
) Y,

N
Q“““

Figure 3: Eigenmodes of the hybrid-wave resonator presented in Figure 2. (A) and (B) are plots of electric field component perpendicular to
the resonator’s plane (|E,|) associated with the two degenerate standing-wave modes Mg which resides in domain D, U D, and D, U D,,
respectively, where D, = D U Dj/. These correspond to basis B,. On the other hand, (C) and (D) depict the field distribution corresponding to
M2 = MP + MP and MY = MP — M?, which feature a hybrid standing- and traveling-wave character. The white arrows in (C) and (D)
indicate the traveling direction of traveling wave. The Poynting vectors (black arrows in inset of (C)) circulate around the loop in domain D,
and vanish in domain D, ,. The details of the geometry and material parameters used in these simulations are presented in

Supplementary Materials C.
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radiation to free space, or due to the coupling to input
and output channels. In turn, this will introduce an upper
limit on the resonator’s quality factor and result in a finite
bandwidth of operation, which relaxes the above con-
straint as discussed in detail in Supplementary Materials
B and C.

In order to verify the above predictions, we perform a
finite element method (FEM) full-wave simulation (using
COMSOL software package) of a realistic implementation
for the structure shown in Figure 3. The details of the geom-
etry and material parameters used in our simulations are
presented in Supplementary Materials C. The eigenmodes
generated by COMSOL package are in the basis B; and
are shown in Supplementary Materials C. Figure 3A and B
shows the electric field distributions associated with the
modes as represented in basis B, which are generated via
linear superposition of the degenerate modes M" and M'".
On the other hand, the field distributions in basis B; are
depicted in Figure 3C and D. The nature of the waves can
be deduced from the field distribution. Standing waves
are visible through their interference pattern while trav-
eling waves are characterized by uniform fields without
interference. These plots are in agreement with the field
distributions expected from Table 1 and indeed confirm
the results obtained using the scattering matrix analysis
above. The field distribution of modes M?z) deserves more
attention. At the center of the middle sections (domains
D, ,), the field features a standing wave while at the center
of domains Dj, and D/, they feature traveling waves. At
the beam splitter junction, however, the field is neither a
pure standing nor traveling wave. These regions represent
transition domains where the wave gradually changes its
character. From the Poynting vector point of view, this
remarkable mode structure is enabled by the beam splitter
junctions acting as interferometric mirrors for domains D ,
while at the same time recirculating the power incident
on them from domains D, in a closed loop. Importantly,
the standing-traveling wave nature observed in Figure 3C
and D are characteristic of the eigenmodes of a single
resonator structure and not associated with a particular
steady state solution under certain engineered excitation
[39]. Equally important is the fact that the traveling waves
in the presented structure are part of the quasi-bound
state within the resonator’s boundaries and not part of
the leaked radiation waves outside the resonator as in the
case of a finite Fabry—Perot or photonic crystal geometry
for example. From a practical point of view, mapping
these field distributions experimentally can be done only
by using near-field probes, which is possible, but not an
easy task. In Supplementary Materials E, we discuss a
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more practical scheme for accessing these modes by using
input/output waveguides ports evanescently coupled to
the various sections of the resonator.

4 Local perturbations and sensing
applications

In this section, we investigate the effect of local pertur-
bation due to a small scatterer on the eigenmodes of the
proposed hybrid-wave resonator—a problem relevant to
sensing applications [9]. Given that the modes of the res-
onator shown in Figure 2A can be written in various bases,
only one of which demonstrates the hybrid-wave character,
one may wonder if this feature will have any consequences
under more general conditions where the particular mode
is not selectively excited. This section demonstrates that
this is indeed the case. To illustrate this, we consider
the situation where a scatterer (nanoparticle or a fiber
tip for instance) is located within the evanescent field of
the hybrid-wave resonator. In particular, we investigate
the two scenarios where the scatterer is located either
in the traveling- or standing-wave domains, as shown in
Figure 4A.

Before we proceed, it is useful to review the situation
for purely traveling-wave resonators (such as micror-
ing and microdisk arrangements) and purely standing-
wave resonators (such as Bragg and photonic crystal
arrangements). In the former, the scatterer breaks the
rotational symmetry of the geometry and introduces cou-
pling between the clockwise and counterclockwise modes,
leading to a splitting of the eigenfrequency [40-42].
Importantly, this behavior is independent of the location
of the scatterer. In the latter case, however, the situation
is quite different. An optical mode that has an electric
field node at the scatterer location along the resonator
direction will not be affected by its presence. On the other
hand, a mode that exhibits an antinode at the location of
the scatterer will experience a shift in its eigenfrequency
[43, 44].

To this end, we consider a small perturbation caused
by a scatterer having a scattering matrix (Supplemen-
tary Materials F):

: t ir
N 1))
Sp=et [ir t]’ G)

where r and t are reflection and transmission coefficients
which are taken to be real numbers satisfying r> + > = 1
(i.e. no loss); and ¢, = arcsin(r) is an overall additional
phase.
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Figure 4: Effect of local perturbation. (A) A schematic of the resonator structure with nanoparticles scatterers added in the traveling wave
(case 1) or standing waves (case 2) regions. In case 1, the presence of the scatterer generates two new optical modes that exhibit either a
node (B) or an antinode (C) at the location of the particle with corresponding frequency shifts as shown in (D). In this case, the frequency
shifts are independent of the particle location as long as it resides in the traveling wave domain. In case 2, the scatter leaves one of the
modes intact with zero frequency shift (E) while at the same time introduces a perturbation to the second mode (F) with a frequency shift that
varies with the location of the particle as expected (G). In both cases, 6 = 2z corresponds to a distance of 0.5 pm along the perimeter. A
rigorous derivation of these results as well as their intuitive explanations are discussed in the main text. In the figure, Af; = f;,, — f,, with

j =1,2. The scatterers in panels (B), (C), (E) and (F) are indicated by small white circles.

4.1 Scatterer located along the
traveling-wave domain

Here, we assume a scatterer located along the traveling-
wave domain, say Dg , ata fixed distance from the resonator
waveguide edge, as shown case 1in Figure 4A. The angular
position of the scatterer is defined by distance I (Figure 4A)
and the corresponding phase shift § = 2zxnlf/c. By
following the same approach used in deriving Eq. (1), we
find that the resonant frequencies (see Supplementary
Materials G):

{d’l,m i ¢m’ ( 4)
¢2,m - ¢m - Zd)p.

where ¢; ,, with j = 1,2 indicates the new eigenfrequencies
(due to the perturbation introduced by the scatterer)
branched from the unperturbed eigenfrequency ¢,,. In
other words, the perturbation shifts the frequency of only
one mode while leaving that of the other unchanged. This
can be explained by the fact that the new modes, arising
because of the perturbation, both exhibit a standing-wave
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pattern, with the node of one mode and the antinode of
the other located at the position of the scatterer. Moreover,
Eq. (4) does not depend on the location of the scatterer
along the perimeter of the resonator, as long as it lies in the
traveling-wave domain. This behavior is exactly identical
to the case of a scatterer introduced in the vicinity of
traveling-wave resonator such as a microring or microdisk
geometry [44, 45].

These predictions are confirmed by performing full-
wave simulations, where the scattering was introduced via
ananoparticle. Figure 4B and C depict the field distribution
of the perturbed modes around the particle. Note that,
as expected, the particle modifies the field distribution
and creates a standing-wave pattern. Moreover, the node
of the first mode and the antinode of the second mode
coincide with the particle location along the perimeter
of the resonator, which is consistent with our theoretical
predictions. As a result, the eigenfrequency of the first
mode remains unchanged while that of the second mode
experiences a constant shift that does not depend on the
particle location, as shown in Figure 4D. As a side note,
we remark that the blue dots representing the simulation
data in Figure 4D do not exactly coincide with the zero axis
as predicted by our scattering matrix analysis but rather
exhibit a small shift. This can be explained by recalling
that, in our analysis, we treat the particle as a Rayleigh
scatterer, whereas in reality higher-order multipole terms
must be considered in order to obtain more accurate
results. To confirm this, we have performed additional
numerical simulations for different particle sizes and
indeed observed that this frequency shift decreases as the
particle size is reduced (in fact we could not resolve the
frequency shift for particles with radii less than 30 nm).

4.2 Scatterer located along the
standing-wave domain

Next, we consider the case when the scatterer is located
in the standing-wave region, for instance in domain D,, as
shown by case 2 in Figure 4A. The resonant frequencies are
given by (see Supplementary Materials G):

¢l,m = d)mv (5)
Gom = G — 20, [1 4+ (=1)"* cos(26)].

The mode corresponding to the eigenfrequency ¢, ,,
(Figure 4E) is associated with MEZ) in Figure 3A, in which
the electric field is zero at domain D,, leading to an
unperturbed resonant frequency after adding the particle
at domain D,. On the other hand, the eigenfrequency ¢, ,,
corresponds to a perturbation of mode Mf) in Figure 3A.
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Since mode Mgz) is a pure standing wave at domain D,,
the eigenfrequency ¢, ,, varies with the angular position
of the scatterer (Figure 4F and G). In Eq. (5), when m is an
odd number, it is an antinode at the middle of D, domain
(6 =0), ¢,,, experiences the maximum frequency shift
—4¢p from ¢,,; when m is an even number, it is a node
at the middle of D, domain, the scatterer will not alter
the field much and the resonant frequency will stay the
same, i.e. ¢, ,, = ¢, at 6 = 0. In both scenarios, ¢, ,, will
oscillate between ¢,, an ¢,, — 4¢, as a function of 6. In
our simulation, the fact that m is an odd number can be
determined from Figure 3, and it is also verified by the
electric field around the particle are shown in Figure 4F.
The two eigenfrequencies varying with 6 are shown in
Figure 4G, consistent with Eq. (5).

From the above analysis, it is clear that a resonator
exhibiting hybrid-wave modes will respond very differently
to perturbations affecting the standing- or traveling-wave
zones. In terms of applications, this can be useful in a
number of ways. For instance, the larger splitting in the
location of the field maxima in the standing-wave zone
can be utilized for selective sensing by functionalizing
[46] this exact location with receptors that can bind only
to a particular molecule while at the same time use the
traveling-wave zone for excitation and collection. On the
other hand, one can instead use both zones for detecting
the presence of more than one molecule (but only one at a
time). This can be achieved by attaching different receptors
to each zone and inferring the presence of a particular
substance by measuring the degree of splitting. We plan to
investigate these possibility in future works.

5 Conclusions

In conclusion, we have proposed a new concept for
optical resonators that exhibit simultaneously co-existing
standing and traveling waves as part of the field distri-
bution of the same optical mode but occupying different
locations along the resonator geometry. In addition, we
have presented a specific example of a structure that
implements this concept and verified its standing and
traveling wave nature by using scattering matrix analysis
and FEM full-wave simulations. We have investigated the
robustness of the hybrid-wave feature and shown that the
openness of the system allows for a larger bandwidth of
operation and thus facilitates experimental observation.
In addition, we have described a practical experiential
scheme for probing the hybrid-wave nature by using
several waveguide channels attached to various sections
of the resonator geometry. Furthermore, we have discussed
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the implication of the hybrid-wave nature for sensing
applications by investigating how the eigenmodes of such
hybrid-wave resonator interact with a small scatterer
located at different sections of the structure, demonstrating
that the system’s response can be very different depending
on the location of the scatterer along the standing- or
traveling-wave sections. Another arena where hybrid-wave
modes may prove useful is optical manipulation and
trapping of particles. For instance, it is expected that
a nanoparticle located in the traveling-wave zone will
experience radiation pressure and lateral force acting in
the direction towards the resonator, while a similar particle
located in the standing-wave zone will in addition be
subject to a trapping force along the perimeter of the
resonator. Furthermore, actively tuning the beam-splitting
values may allow for controlling the behavior of the
resonator in real time and thus controlling its interaction
with nanoparticles.

In addition, the existence of the hybrid-wave modes
identified above, which to the best of our knowledge
has not been known before, raises several fundamental
questions in photonics, nonlinear and quantum optics
applications. For instance, it is not a priori clear how such
a resonator will behave under nonlinear conditions. Does
it exhibit different nonlinear bistability responses than
those observed in conventional ring resonators [47]? Does
it provide any new features in terms of frequency comb
generation? Can soliton crystals [48] form in the presence
of hybrid-wave modes? Along similar lines, it is not clear
to what extent the presence of the hybrid-wave modes
will impact the dynamics and instability features of laser
devices made of such resonators. In the quantum domain,
it would be interesting to explore how quantum emitters
located inside or in the vicinity of such resonators will
behave. How would spontaneous emission and superra-
diance scale in different sections of the resonators? It has
been shown previously that the interaction between atoms
and electromagnetic waves featuring a standing field
pattern depends on the type of resonator [29] (standing or
traveling wave resonator). What makes these exploratory
questions particularly interesting is that the proposed res-
onator exhibit transition regions (the beam splitter regions
in Figure 2A that interpolates between the traveling- and
standing-wave domains). Light—matter interaction in this
region is expected to differ from its typical behavior in stan-
dard traveling- and standing-wave resonators, which may
lead to interesting new effects. At the engineering level,
our work also raises interesting questions. For instance,
is there a fundamental size limit on building hybrid-
wave resonators? Can one implement a small volume
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hybrid-wave mode? What would be the modes of these
structures when implemented in material platforms that
support plasmonic resonances? We plan to investigate
these open questions as well as implementations in other
platforms such as acoustics [49] and microwave [50] in
future works.
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