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A non-Hermitian Weyl equation indispensably requires a three-dimensional (3D)
real/synthetic space, and it is thereby perceived that a Weyl exceptional ring (WER)
will not be present in thermal diffusion given its purely dissipative nature. Here, we
report a recipe for establishing a 3D parameter space to imitate thermal spinor field.
Two orthogonal pairs of spatiotemporally modulated advections are employed to
serve as two synthetic parameter dimensions, in addition to the inherent dimension
corresponding to heat exchanges. We first predict the existence of WER in our
hybrid conduction–advection system and experimentally observe the WER thermal
signatures verifying our theoretical prediction. When coupling two WERs of oppo-
site topological charges, the system further exhibits surface-like and bulk topological
states, manifested as stationary and continuously changing thermal processes, respec-
tively, with good robustness. Our findings reveal the long-ignored topological nature
in thermal diffusion and may empower distinct paradigms for general diffusion and
dissipation controls.

Weyl exceptional ring j spinor field j non-Hermitian topology j thermal diffusion

The observation of Weyl points in Hermitian systems has generated tremendous inter-
est in condensed matter physics (1), photonics (2–5), and acoustics (6, 7). As the coun-
terpart of a magnetic monopole in momentum space (8), a Weyl point possesses a
quantized Chern number and serves as the source of topologically nontrivial band cur-
vatures in three-dimensional (3D) momentum space. It leads to a wide variety of novel
phenomena, including Weyl nodal rings (9), Fermi arc states (6, 10), and chiral anom-
alies (11). Unlike the ideal lossless systems, gain and loss (12) in natural systems could
break hermiticity, and exhibit the exclusive property of exceptional points (EPs) in
non-Hermitian systems. The EPs contribute to the degeneracies at the coalescence of
two or more eigenvectors (13) and further induce exotic phenomena of unconventional
reflection and transmission (14), single-mode lasers (15, 16), light steering (17), and
reversed pump dependence of lasers (18).
The recent discoveries in non-Hermitian photonics (19–23) and cold atomic sys-

tems (24) indicate that, in the presence of gain and/or loss, a Weyl point could
expand into a ring of EPs (25), that is, a Weyl exceptional ring (WER) described by
a non-Hermitian Weyl Hamiltonian H kð Þ ¼ vxkxσx þ vykyσy þ vzkzσz þ iτ % σ,
where τ ¼ τx , τy , τz

! "
, and its elements τx ,y,z are real numbers that parameterize the

nonhermicity added to the system. σ ¼ σx ,σy ,σz
! "

, while σx ,y,z denote the Pauli
matrices. Such a WER serves as the source of Berry flux and preserves the Chern
number, suggesting unexplored properties and exotic non-Hermitian topological
transitions. As a typical dissipative system, thermal diffusion naturally corresponds
to the non-Hermitian component of a Hamiltonian, thus hinting at the possible
existence of WER in thermal systems. However, from a mathematical point of view,
the thermal diffusion could only provide the non-Hermitian term (iτ % σ) in the
non-Hermitian Weyl Hamiltonian, without any real parameter dimensions
(vxkxσx ≈ vzkzσz ). Although the recently demonstrated antiparity time symmetry
heat transfer (26, 27) indicates a connection between non-Hermitian property and
classical thermal diffusion, the inherent absence of a spinor field, requiring anticom-
mutation associated with all three dimensions, fundamentally makes the WER elu-
sive in thermal transport.

Results

One of the preferred experimental means of demonstrating the WER in photonics is to
create helical waveguides (20) possessing helicoidal properties. As shown in Fig. 1A,
each spinor field could effectively decouple into two periodic projections in two
orthogonal spaces. Conversely, the effective spinor field could also be established via
assembly of components in the corresponding orthogonal spaces with a π/2 relative
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phase retardation. Thus, the effective helicities can be subse-
quently realized with these spinor fields. We consider a system
consisting of a static medium strip of finite length surrounded
by four spatiotemporally modulated counter advections along
the periodic heat flux in orthogonal spaces (Fig. 1B). Here, the
advections on the upper and bottom surfaces (green arrows) are
regarded as the horizontal advections, while the others (purple
arrows) on the lateral sides are defined as the vertical advec-
tions. Although the advections illustrated in Fig. 1B are
imposed on orthogonal spaces, their propagative directions are
all along the ±x axis, that is, the direction of periodic heat flux.
That is, the periodic heat flux is simultaneously affected by the
four advective projections of spinor fields in the orthogonal x–y
and x–z spaces. Therefore, we can further divide the systematic
thermal process into two subparts: 1) the heat transfer in the
x–y space (affected by green arrows) and 2) the heat transfer in
the x–z space (affected by purple arrows). The coupled thermal
system, considering the hybrid thermal effects, leads to the fol-
lowing thermal processes:

Thermal process in the x&y space :

ρc
∂Thor

∂t
¼

κ
∂2T1,hor

∂x2
þ ρcv1,hor

∂T1,hor

∂x
þ h1,hor
b1,hor

T2,hor & T1,horð Þ

2

4

3

5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Parallel thermal process in þx direction

þ
κ
∂2T2,hor

∂x2
þ ρcv2,hor

∂T2,hor

∂x
þ h2,hor
b2,hor

T1,hor & T2,horð Þ

2

4

3

5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Parallel thermal process in &x direction

,

Thermal process in the x&z space :

ρc
∂Tver

∂t
¼

κ
∂2T1,ver

∂x2
þ ρcv1;ver

∂T1,ver

∂x
þ h1,ver
b1,ver

T2,ver & T1,verð Þ

2

4

3

5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Orthogonal thermal process in þx direction

þ
κ
∂2T2,ver

∂x2
þ ρcv2;ver

∂T2,ver

∂x
þ h2,ver
b2,ver

T1,ver & T2,verð Þ

2

4

3

5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Orthogonal thermal process in &x direction

,

[1]

where Thor and Tver indicate the temperature fields of the two
subparts respectively affected by the green and purple advective
arrows shown in Fig. 1B, while ρ, c, and κ denote the density,
specific heat, and thermal conductivity of the employed strip.
As illustrated in Fig. 1B, each temperature field Thor or Tver can
be effectively described with the thermal couplings affected by
the corresponding horizontal advections in the x–y space or

Fig. 1. Non-Hermitian diffusive system and corresponding band structure supporting a WER. (A) Schematic of the helicities in periodic thermal diffusion
around the existing heat flux. The light green and light purple regions respectively denote the orthogonal surfaces holding the projections of the red and
blue advective spinor fields, while the red and blue curves on these surfaces denote the orthogonal projections of corresponding spinor fields. (B) An under-
lying model supporting a WER in non-Hermitian diffusive system coupled with four counter advections in orthogonal surfaces. The periodic heat flux colored
in rainbow inside the central medium indicates the initial thermal distributions. (C and D) The band structures in the dy–dz plane under the condition of mver

= 0 possessing a WER (marked in red). (E and F) The band structures in the i%mhor–dz plane exhibiting two EPs for kvervver = 0, (mver is also vanished due to
the lack of orthogonal advection). The correspondents of these two EPs can be found in the WER shown in C and D, while the i%mhor–dz plane also intersects
the dy–dz plane twice through the pair of EPs.
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vertical advections in the x–z space. Thus, we further employ
T1,hor (T1,ver) and T2,hor (T2,ver) to indicate the partial tempera-
ture fields affected by corresponding advections (Fig. 1B).
While h1,hor (h1,ver) and h2,hor (h2,ver) are the horizontal (verti-
cal) advection heat transfer coefficients in x–y (x–z) space,
b1,hor, b2,hor, v1,hor and v2,hor (b1,ver, b2,ver, v1,ver and v2,ver) are
the thicknesses and velocities of advective components impos-
ing on the green (purple) surfaces in x–y (x–z) space. For sim-
plification under small conductivity, we make b1 = b2 = b, and
v1 = &v2 = v in these advective components.
The effectively advective helicities are obtained along the

periodic heat flux, owing to the two counter advection pairs
respectively on the orthogonal x–y and x–z spaces. Such an
orthogonal advective field would further contribute to the field
couplings between the two subparts, thus leading to the non-
uniform distributions relative to the initial heat flux inside the
central strip under a small enough thermal conductivity κ.
To describe such couplings, we employ the multiplication of
“i” on the hybrid thermal process in the x–z space, in analog
to the well-established description of orthogonal electric and
magnetic fields in electromagnetics. Thus, the direction of the
vertical thermal process in x–z space can be mathematically

indicated, that is, i % κ ∂2T1,ver
∂x2 þ ρcv1,ver

∂T1,ver
∂x þ h1,ver

b1,ver
%ΔTver

$ %
þ i %

κ ∂2T2,ver
∂x2 þ

$
ρcv2,ver

∂T2,ver
∂x þ h2,ver

b2,ver
%ΔTverÞ. Then, the judiciously

counter advections lead to effective “oscillations” on the orthogo-
nal surfaces of the two subparts, while the inherent conduction
acts as the systemic dissipation. The partial thermal process in Eq.
1 can be rewritten with the following effective Hamiltonian H:

where D = κ/ρc is the diffusivity, while mhor and mver respec-
tively denote the endothermic or exothermic thermal exchanges
in the x–y and x–z spaces that can be defined as hhor/ρcbhor and
hver/ρcbver; khor and kver are the effective wavenumbers of the
horizontal and vertical components relative to the imposed
advections. For generality, we make the central strip length L as
the characteristic motion lengths along x direction in one
period, that is, the effective wavelengths, for the oscillatory
advections respectively in the x–y and x–z spaces. Thus, the
effective wavenumbers can be expressed as khor = kver = 1/L,
and the first mode of the periodic temperature field can be
observed on the central strip. It is worth noting that multiple
modes with more than one periodic temperature field can be
realized when we make the wavenumber khor = kver = n/L (n is
an integer). Considering their consistent physics and experi-
mental conveniences, we take the first mode as the representa-
tion in this work. Such an implementation effectively produces
three synthetic dimensions (28–30), including two parameter
dimensions of the spatiotemporally modulated horizontal
(kvervver) and vertical (khorvhor) advections for achieving the hel-
icities, and one arising from the vertical heat exchange (mver)
for matching the non-Hermitian Weyl Hamiltonian. Then,
Eq. 2 can be written as H = (i%mhor & mver)σx & kvervverσy +
khorvhorσz & i%(Dkhor2 + i%Dkver2 + mhor + i%mver)I2 × 2, and
the eigenvalues are

E±¼&i
&

D% k2horþik2ver
! "

þmhorþimver
! "

±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mhorð Þ2& khorvhorð Þ2& kvervverð Þ2& mverð Þ2þ2i %mhor%mver

q (
,

[3]

where the real space vectors can be indicated as dx = &mver, dy =
&kvervver, and dz = khorvhor. This eigenvalue would lead to a WER
with a constant non-Hermitian horizontal heat exchange (mhor)
shown in Fig. 1 C and D. Besides, there exists a nearly flat real
band within the WER (Fig. 1C), corresponding to the domains
between the EP pair with small advective velocities in the complex
plane of i%mhor – khorvhor (dz) as illustrated in Fig. 1 E and F.

The topological charge γ defined by the integral of Berry
curvature across a closed surface can be used to describe the quan-
tized invariant of such diffusion. It could possess different values
when all or part of the WER is enclosed by the sphere integration
surface (20) in the three synthetic dimensions (mver, kvervver,
khorvhor) (SI Appendix, Eq. S9). As illustrated in Fig. 2A, the topo-
logical charge γ of such a diffusion system can be ±1 if the syn-
thetic surface of integration encloses the entire WER, and γ is
zero if the whole integration surface is within or outside the WER
(SI Appendix, Supplementary Note 1). Then, we study the non-
Hermitian topological transitions based on the observed WER in
diffusion under the three spatiotemporally modulated parameters
of mver, kvervver, and khorvhor. The representative scheme and setups
are presented in Fig. 2B. The sample consists of three parts as
illustrated in Fig. 2 B, Lower Inset, that is, the conductive compo-

nent of the central white strip, the horizontal advection compo-
nents including two green counter motional hollow strips on the
upper and bottom surfaces, and the vertical advection components
consisting of another two red counter motional solid strips on the
lateral surfaces. Here, we elaborate the topological transitions via
two typical cases with different spatiotemporally modulated veloci-
ties (Materials and Methods). Both the nontrivial and trivial behav-
iors can be indicated by tracking the trajectories of the maximum
temperature locations Tmax in the measured surfaces as illustrated
in Fig. 2 B, Upper Inset.

The experimental temperature profiles and the locations
Tmax of the measured surfaces are illustrated in Fig. 2 B–F,
while the experimental thermal profiles at specific moments are
shown in Fig. 2 B, Insets and SI Appendix, Fig. S1. When the
surface of integration encircles the whole WER in case 1, the
temperature profiles almost remain stationary in all directions
as shown in Fig. 2 C and D. Such stationary temperature pro-
files during the encircling process indicate a constant Berry
phase (24) of ±π, thus further verifying the quantized topologi-
cal charges of ±1 and the corresponding nontrivial topological
transitions in this 3D non-Hermitian diffusion system (SI
Appendix, Eqs. S6–S8). It is worth noting that the integration
surface is outside the WER in case 2, and only zero Berry
phases and quantized zero topological charge can be observed
in SI Appendix, Eqs. S6 and S8 revealing trivial behaviors.

H =
&i

$
D % k2hor + ik2ver

! "
+ mhor + imver

%
+ khorvhor i mhor + imver + kvervverð Þ

i mhor + imver & kvervverð Þ &i
$
D % k2hor + ik2hor

! "
+ mhor + imver

%
& kvervver

2

4

3

5, [2]
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Thus, the continuously changing thermal profiles and Tmax
locations along all directions can be observed in case 2 as shown
in Fig. 2 E and F, and the advective terms play the dominant
roles in the thermal process. Note that we take the changing
advective amplitudes as the synthetic dimensions to create the
enclosing loop. Thus, the modulated frequencies of velocities
have no effect on the size of the adopted enclosing loops (SI
Appendix, Supplementary Note 2, Supplementary Note 3,
Supplementary Note 4, and Supplementary Note 5).
One intriguing consequence relating to the WER is the surface-

like state connecting the projections of two WERs with opposite
topological charges in the synthetic surface of mver & kvervver
related to the vertical advections (Fig. 3A). Here, we theoretically
calculate the effective spectra of a non-Hermitian thermal system
coupled with opposite WERs along the changing vertical velocities
(kvervver) and plot the real and imaginary parts of the spectra in
Fig. 3 A, Bottom. As a representation, we make jkhorvhorj =
jkvervverj in this calculation. It is interesting that we can also theo-
retically observe the surface-like states in such a thermal system.
These surface-like states connect the adjacent bands possessing
opposite topological charges of ±1. To further confirm such

unique surface-like state in thermal diffusion, we propose a cou-
pled advective configuration in Fig. 3 B and C by positioning an
additional conduction–advection setup side by side with the initial
one in Fig. 2B. Such an implementation spontaneously provides a
counter configuration of the vertical advection pair to the initial
one and an opposite integral direction in SI Appendix, Eq. S8, thus
further contributing to an opposite topological charge in the insert
system (Materials and Methods). Then, we trace the experimental
Tmax locations and their projections onto the two measured surfa-
ces (Fig. 3 D–G). These characteristic positions almost remain sta-
tionary with a robust thermal process between these central strips,
as if they directly connect without surrounding advections. Such a
robust heat transfer can be regarded as the distinct surface-like state
in thermal diffusion, which exists on the synthetic plane of mver &
kvervver and connects the two WERs with opposite topological
charges. Such a surface-like state can be indentified by the energy
balance between the two coupling systems through the heat
exchanges around the shared vertical advection, while the oscillated
mver indicates the exothermic or endothermic exchanges of the two
coupling subsystems. We further remove the pairs of WERs from
the surface of integration. In this case, the analog of the bulk state

Fig. 2. Structure of the proposed cases and their phase transitions under time evolution advections. (A) The sphere evaluation surfaces of cases (Upper) 1 and
(Lower) 2. (B) A representative scheme of observing topological behaviors around a WER. The heating and cooling sources are periodically and alternatively con-
figured on the entire system for observing the initial thermal profile. (Upper Inset) The central strip and (Lower Inset) its decompositions. The horizontal and ver-
tical temporal evaluation advections are imposed by the green and red strips through conveyor belts after the heating and cooling process, while the arrows
indicate the initial motion directions of these strips. (C and D) The topologically nontrivial transitions of case 1 with unchanged profiles and (E and F) the trivial
transitions of case 2 with continuously changing profiles. Among them, the normalized experimental phase trajectories of Tmax on these measured surfaces
are indicated by the colored balls according to the time, while their projections along specific directions are also presented on their lateral surfaces.
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(SI Appendix, Supplementary Note 8) possessing zero topological
charges with moving locations of Tmax in the two central strips can
be obtained as shown in Fig. 4. The temperature profiles of the
surface-like and bulk states at specific moments are respectively pre-
sented in SI Appendix, Figs. S7 and S9. They indicate that both the
initial and inserted central strips maintain the similarly stationary
distributions in all directions for the surface-like state, revealing the
robust heat transfer between the two strips. On the contrary, dur-
ing the entire heat transfer process of the bulk state, the tempera-
ture profiles of the initial and inserted central strips keep moving,
thus indicating the continuous phase changes in the thermal distri-
butions and the absence of robustness in heat transfer between the
two central strips. It is worth noting that all the nontrivial and triv-
ial states shown in Figs. 2–4 are related to the robustness of the
thermal profiles, that is, the relative locations of the temperature
distributions. Due to the strong dissipative nature of thermal diffu-
sion, their temperature magnitudes could relax to the average of
the highest and lowest temperatures of the initial inputs without
external sources, when the systems reach steady states.

Discussion

This work reveals that a hybrid conduction–advection thermal
system with two sets of orthogonally spatiotemporally modulated

advections could support a WER. These spatiotemporally modu-
lated advections provide two artificial parameter dimensions and
create the critical spinor fields in thermal diffusion. The con-
comitant heat exchanges further offer an additional synthetic
dimension to match the non-Hermitian Weyl Hamiltonian.
Observations of non-Hermitian thermal transitions around the
WERs enable unexpected topological studies in macroscopic
heat transfer. Such a platform holds the possibility of discover-
ing more exotic behaviors in heat transfer, such as the chiral
anomaly and nontrivial transitions. It might provide a distinct
avenue for manipulating generally diffusive systems (31–34).

Materials and Methods

Fabricated Sample and General Setups for Observing the WER. The
fabricated samples are illustrated in SI Appendix, Figs. S1A and S5A. The entire
sample is held by four conveyor belts, which are fabricated by rubber with a con-
ductivity of 0.4 W%m%K&1. All the motional strips are made of polycaprolactam
(PA6) with a thermal conductivity of 1.2 W%m&1%K&1, while the green strips are
fabricated to a hollow structure to maintain 0.2 times the effective density of the
red strips. For the central white strip, the horizontal and vertical thicknesses are,
respectively, dhor = 5 mm and dver = 10 mm, while the length L is 100 mm
(Fig. 2B). To create the effective periodic thermal process, the advective strips
should be much longer than the central one (Lhor = Lver > L). Hence, we

Fig. 3. Surface-like state and its topological transition in a thermal diffusion. (A) (Top) Surface-like state (pink line) connecting the projections of the opposite-
charge WERs on the synthetic surface of mver-kvervver, while the red and blue arrows are the Berry fluxes. (Bottom) Illustrations of the real and imaginary parts
of the effective spectra with respect to kvervver for jkhorvhorj = jkvervverj and mhor = 0.3 s&1. The red lines indicate the surface-like state. (B) The modified structure
with an inserted system. (C) The cross-sectional views of the advective configurations in the y–z space. The nontrivial transitions around the surface-like state
on the (D and E) horizontal and (F and G) vertical measured surfaces as indicated in C (light green and light red). D and F denote the experimental trajectories
of Tmax of the initial system (black borders), while E and G present the experimental trajectories of Tmax of the inserted system (red borders).
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representatively make the structural parameters of the horizontal and vertical
advection components bhor = bver = 5 mm, and Lhor = Lver = 3L (SI Appendix,
Fig. S5). The material properties are ρ = 1,150 kg%m&3, c= 1,400 J%kg&1%m&3,
and κ = 1.2 W%m&1%K&1 for the central strip, and ρ = 1,140 kg%m&3, c =
1,640 J%kg&1%m&3, and κ = 1.2 W%m&1%K&1 for PA6 used in the red advective
strips (ρeff = 228 kg%m&3, ceff = 1,128 J%kg&1%m&3, and κeff = 0.26
W%m&1%K&1 for the green hollow advective strips). Each motional strip is con-
nected to a conveyor belt, which is controlled by a correspondingly independent
motor. The motors are driven by their actuators, and two motion controllers are
employed to respectively manipulate the velocities of horizontal and vertical
advections. Furthermore, grease with a conductivity of 1.2 W/m%K (ρ = 1,150
kg%m&3, c = 1,400 J%kg&1%m&3) is also added in the interspace between the
central and advective strips. The initial temperature field is imposed by periodi-
cally and alternatively configuring the heating and cooling strips on the com-
bined sample of Figs. 2B and 3B as shown in SI Appendix, Fig. S5. The periodic
distributions of multiple heating strips with a fixed temperature of 353 K provide
the heating sources, while the interval of two adjacent heating strips is 100 mm.
The other parts are cooled by cooling strips with a fixed temperature of 273 K.
The entire heating processes for each case last for 30 min to observe the stably
initial thermal profiles. All the thermal profiles are captured by a Flir infrared (IR)
camera with the setting emissivity of 0.97, while the Tmax locations are measured
by fine-wire thermocouples embedded in the central strip. After achieving the
steady and periodic thermal distributions, the motional strips are activated to
study the transitions (SI Appendix, Supplementary Note 6).

Experimental Demonstrations for Surface-Like and Bulk States. Except
for the previous system, another three motional strips and one central strip
should be employed to construct the inserted system shown in Fig. 3 B and C
and SI Appendix, Fig. S6, while seven belts are employed to support the initial
and inserted advections. The strategy for realizing two opposite-charge WERs
with the initial and inserted system can be found in SI Appendix, Supplementary
Note 7. The same/opposite motional strategies of the horizontal/vertical advec-
tions of cases 1 and 2 are employed in the inserted systems. The parameters of

the additional advective and central strips are same as the ones in the initial sys-
tem, and grease with a conductivity of 1.2 W/m%K (ρ = 1,150 kg%m&3, c =
1,400 J%kg&1%m&3) is also added within their intervals. The same heating strat-
egy and boundary conditions are also employed. We first assemble the inserted
system onto the previous one, and then heat the entire system (both the initial
and inserted systems) for 30 min together. After the heating process, we
implement motion functions in each strip via the motion controllers and
motors. For the measurements, all the temperature profiles in the contents are
measured by a Flir IR camera at specific moments. Since the changing trends
of the surface and interface temperature profiles of the central strip are similar
during the processes, we indirectly measure surface temperatures of the cen-
tral strip using the IR camera to qualitatively indicate the transitions. For
directly and accurately capturing Tmax on the interfaces, we employ multiple
fine-wire thermocouples which are embedded inside the central strip. For
presenting the Tmax locations at specific moments with respect to the initial
locations at 0 s on these measured surfaces, we adopt normalized spatial
dimensions to demonstrate the behaviors. Since the initial Tmax locations (0 s)
are at the centers of the horizontal and vertical surfaces, we take these centers
as the origins and create local coordinates for normalizations on these two
measured surfaces. Then, the normalized spatial dimensions can be obtained
via dividing the collected positions (centered on the initial Tmax locations) by
half of the length/width/height of the measured surfaces, that is, x' ¼ x

L=2,
y' ¼ y

dver=2
, and z' ¼ z

dhor=2
, where L, dver , and dhor are the length, width, and

height of the central strip. SI Appendix, Fig. S8 C and D provides the graphical
illustrations of the normalizations on each surface.

Data Availability. All study data are included in the article and/or SI Appendix.
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Fig. 4. Trivial transitions of the Bulk state under temporal evolution advections. The trivial transitions of the bulk states on the (A and B) horizontal and (C
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