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Abstract—Vision transformers (ViTs) are emerging with sig-
nificantly improved accuracy in computer vision tasks. However,
their complex architecture and enormous computation/storage
demand impose urgent needs for new hardware accelerator
design methodology. This work proposes an FPGA-aware auto-
matic ViT acceleration framework based on the proposed mixed-
scheme quantization. To the best of our knowledge, this is the
first FPGA-based ViT acceleration framework exploring model
quantization. Compared with state-of-the-art ViT quantization
work (algorithmic approach only without hardware acceleration),
our quantization achieves 0.47% to 1.36 % higher Top-1 accuracy
under the same bit-width. Compared with the 32-bit floating-
point baseline FPGA accelerator, our accelerator achieves around
5.6 x improvement on the frame rate (i.e., 56.8 FPS vs. 10.0 FPS)
with 0.71% accuracy drop on ImageNet dataset for DeiT-base.

I. INTRODUCTION

Transformer, an attention-based encoder-decoder architec-
ture [1], has revolutionized the field of natural language
processing (NLP) in the past five years. Inspired by NLP suc-
cesses, researchers began to adopt transformer-like architecture
to computer vision tasks i.e., vision transformers (ViTs),
achieving better performance compared with state-of-the-art
convolutional neural networks (CNNs) [2]-[4]. However, the
complex model architecture and enormous computation and
storage of ViT make it a challenging task for their deployment
into resource constrained edge devices.

Model quantization, as a crucial technique for DNN inter-
ence acceleration on edge devices, has been broadly explored
for CNNs [5]-[10] with different bit-widths and also differ-
ent quantization schemes, e.g., fixed-point and power-of-two
(PoT). These two types of schemes were mixed in [11] for
FPGA-based implementations to fully utilize the hardware
computation resources. As for quantization of transformer
models, few efforts [12] have been devoted to ViTs, while ma-
jority of work [13]-[15] was still on transformers for NLP with
purely algorithmic approaches. There are two open problems
for ViT quantization: 1. Do existing quantization schemes for
CNNs work well for ViTs? 2. How to systematically determine
the bit-width and mixing ratio in mixed-scheme quantization
for better accuracy and throughput performance for ViTs?

In this paper, we first explore the feasibility of the well-
studied CNN quantization schemes—including fixed-point,
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PoT, and their mix—on ViT and make the following observa-
tions. First, fixed quantization possesses superior accuracy per-
formance, and its computation can be efficiently implemented
with the DSP resources on FPGA. Second, the PoT scheme
offers a highly efficient quantization with still acceptable
accuracy, where multiplications can be replaced by simple shift
operations, and thus suitable for implementation with LUT
resource on FPGA. Finally, combining fixed-point and PoT
has the potential to further improve FPGA resource utilization
for inference acceleration while maintaining accuracy.

Based on the above, we develop an FPGA-aware automatic
ViT acceleration (Auto-ViT-Acc) framework for our mixed-
scheme ViT quantization algorithm. It contains an “FPGA
Resource Utilization Modeling” module to give performance
analysis and estimate the frame rate (FPS) for the FPGA ViT
accelerator under a certain setting of model bit-widths, which
will be reduced until the target FPS is achieved. In this way,
the bit-width and the ratio of fixed-point quantized rows over
PoT quantized rows can be optimized and used as inputs to
guide the quantization algorithm. This framework also designs
a novel FPGA compute engine for ViT multi-head attention
with optimizations for accelerators. We automate the entire
workflow based on a target FPS, to obtain a quantized model
and an FPGA accelerator. The contributions of our work are
summarized as follows:

o An FPGA-aware mixed-scheme ViT quantization al-
gorithm that can fully leverage heterogeneous FPGA
resources while maximally retaining accuracy.

e An automated ViT acceleration framework with
FPGA resource utilization modeling to automatically
find the best combination of quantization bit-widths
and the scheme mixing ratio for a target FPS.

o A novel FPGA computing engine for ViT multi-head
attention and related accelerator optimizations.

« To the best of our knowledge, Auto-ViT-Acc is the first
for ViT acceleration on FPGAs exploring model quan-
tization with significant performance improvements.

II. RELATED WORK

A. Vision Transformer

The ViT architecture was first proposed in [2], which adopts
the self-attention mechanism [1] for image classification tasks.



Different from CNNs, ViT interprets an image as a sequence
of patches and then inputs to standard transformer encoders as
used in NLP. However, it requires pre-training with complex
and massive datasets such as ImageNet-21k and JFT-300M.
To address this, DeiT [3] and T2T-ViT [4] were proposed to
reduce dependency on massive pre-training and achieve better
accuracy than ResNets [16] of comparable size on ImageNet.
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Fig. 1. Transformer encoder block structure.

In ViT, the main model architecture is transformer encoder
blocks with multi-headed self-attention (MSA) and multi-layer
perceptron (MLP) blocks as shown in Fig. 1. The layernorm
(LN) is applied prior to MSA and MLP. The encoder block
operations are:

X', = MSA(LN(X,)) + X,

1
X,41 = MLP(LN(X")) 4+ X/}, )

where X; denotes the input sequence of the [-th encoder block.

These modules involve large matrix multiplications incur-
ring the most computational cost. Therefore, we quantize
all linear layers involved in matrix multiplication, but not
layer normalization, due to their low computational cost and
potential effects on accuracy.

B. DNN Model Quantization

1) Quantization Schemes: Model quantization has been
intensively explored for deep neural networks (DNNs) such
as CNNs and recurrent neural networks (RNNs).

There are schemes using uniform quantization intervals
including binary [5], [6] ternary [17], and low-bit-width
fixed-point [7], [8]. Although binary and ternary quantiza-
tion significantly reduce operations and simplify hardware
implementation, it introduces large accuracy loss. The fixed-
point quantization scheme, on the other hand, applies modest
and flexible quantization rates to preserve accuracy close to
that of 32-bit floating-point models. For instance, 4-bit fixed-
point introduces zero or negligible accuracy loss. Fixed-point

quantization scheme was implemented with different methods
and algorithms, such as DoReFa-Net [7] and PACT [8].

There are also schemes using non-uniform quantization
intervals such as power-of-two (PoT) [9] and additive PoT
[10], by which multiplications can be replaced with bit shifting
operations. Furthermore, PoT presents higher precision around
the mean, and therefore better fits the Gaussian distribution of
DNN weights [18]. But it exhibits rigid resolution issue that
results in moderate accuracy loss, which cannot be mitigated
even with higher bit-width. To overcome it, additive PoT was
proposed by using a sum of multiple PoT numbers.

2) Transformer Quantization: Quantization has also been
applied to transformers, in particular, bidirectional encoder
representations from transformers (BERTs) [1]. Specifi-
cally, [13] finetuned BERT through 8-bit quantization-aware
training. The later TernaryBERT [14] proposed to use an
approximation-based and loss-aware ternarization for BERT,
and distillation to further reduce accuracy drop caused by
lower capacity. BinaryBERT [15] suggested that it is difficult
to train a binary BERT directly due to its complex loss
landscape and proposed a ternary weight splitting strategy to
derive binary BERT with performance as the ternary one. All
the aforementioned work targeted BERT in NLP tasks, not
covering ViT in computer vision tasks.

A recent work [12] evaluated the post-training quantization
on ViT and achieved comparable accuracy as the full-precision
version. However, they only used a low quantization rate
i.e., 4%, which is equivalent to 8-bit quantization precision.
Further, it is a pure algorithmic method and not suitable for
acceleration on hardware like FPGAs.

C. Transformer Accelerators on FPGAs

Recently, weight pruning approaches have also been applied
for transformer acceleration on FPGAs. The study in [19]
leveraged block-circulant matrix-based weight representation
and FFT/IFFT-based processing elements for matrix-vector
multiplication for fully-connected (FC) layers. Block-based
weight pruning was applied in [20] to accelerate transformers
on FPGAs. [21] proposed a structural pruning method with
memory footprint awareness to compress weights to similar
sizes. This method effectively compresses the attention mech-
anism and achieves efficient deployment of data buffers and
computing kernels on FPGAs. Differently, our work explores
model quantization for ViT acceleration on FPGA and is
orthogonal and complementary to pruning-based prior arts.

III. NEW CHALLENGES AND NOVELTY

ViTs leverage the attention mechanism [1] to fulfill various
computer vision tasks. Compared to CNNs that operate on
a fixed-size window with restricted spatial interactions, ViT
allows data at all the positions in an image to interact through
transformer encoder blocks and thus improving accuracy [22].
As mentioned in [3], ViTs can perform better than repre-
sentative CNNs like ResNet [16] and ResNeXt [23]. For
instance, DeiT-small with a comparable number of parameters
and operations as ResNet-50 achieves higher accuracy than



ResNeXt-101, whose size is around 4x as that of ResNet-
50. DeiT-base with comparable size as ResNeXt-101 achieves
much higher accuracy.

Although with significant accuracy improvement, there exist
challenges in hardware acceleration of ViTs, especially on
resource-limited edge devices. First, even the light-weight
DeiT-small model is already a large model for edge de-
vices. Furthermore, the complexity of multi-head self-attention
brings in a new optimization dimension of hardware paral-
lelism. (Detailed discussions are provided in Sec. V-B.) There-
fore, model compression techniques including pruning and
quantization become essential in ViT hardware acceleration.
Unlike most prior arts mentioned in Sec. II-C, this paper
focuses on model quantization for ViT hardware acceleration.

Existing work on ViT quantization [12] adopted the fixed-
point quantization scheme with 8-bit precision. In this paper,
we observe that leveraging PoT quantization, which allows
multiplications to be replaced by simple shift operations, can
achieve better inference performance on FPGAs with the
LUT resources, with negligible accuracy loss. Moroever, when
combining the fixed-point quantization that mainly consumes
the DSP resources on FPGAs, there is more potential to fully
utilize the FPGA resource for even better performance.

Besides various quantization schemes, layer-wise multi-
precision quantization has been well investigated in [24]-
[26] that assign precisions onto weights and activations of
individual layers. However, as pointed out in [11], this type
of quantization is incompatible with layer-by-layer inference
execution on hardware accelerators since it introduces non-
uniformality among layers. In contrast, this paper adopts the
mixed-scheme quantization within each layer, with a mixture
of fixed-point and PoT schemes. Different from [11] that
focuses on CNN acceleration, we use PoT in replacement of
their Sum-of-PoT for improved computation efficiency while
avoiding compromising accuracy. Unlike [24]-[26] which deal
with a large search space for precision assignment, we propose
a practical mixed-scheme ViT quantization algorithm that
closely coordinates with the FPGA-based accelerator design.

For mixed-scheme quantization, we need the co-design of
the quantization algorithm and the FPGA accelerator. We
propose a set of automated mechanism (Sec. V-A) with FPGA
resource utilization modeling to automatically find the best
combination of quantization bit-widths and mixed-scheme
ratio for a targeted FPS. Furthermore, from the hardware
design aspect, we have the following observations: First, to
prevent extra hardware overhead on output shifting among
two schemes i.e., fixed-point and PoT, we propose to align
the outputs from two quantization schemes by deriving the
relation between their precisions i.e., bit-widths. Explanations
are in Sec. V-A. Second, we propose to use the same ratio of
fixed-point to PoT for each head of the MSA module to fully
exploit parallelism of FPGA.

IV. FPGA-AWARE MIXED-SCHEME VIT QUANTIZATION
ALGORITHM

A. Quantization Scheme and Precision

We propose to use a mixture of fixed-point and PoT within
each layer. Note that we apply quantization only to linear lay-
ers of ViT, which involve the most computation-intensive ma-
trix multiplications. We do not quantize for softmax and layer
normalization, due to their low computational cost. Fixed-
point quantization scheme has superior accuracy performance,
and its computation can be implemented efficiently with DSP
resources on FPGA. PoT is a highly efficient quantization
scheme with still acceptable accuracy, where multiplications
can be replaced by bit shifting operations, and thus suitable
for implementation with LUT resource on FPGA. Combining
fixed-point and PoT can increase FPGA resource utilization to
speed up inference, at the same time, retain accuracy.

We use Hf;xzd) and H?Z’Ta) to represent the fixed-point and
PoT quantizers, respectively, where b denotes the bit-width and
« denotes scaling factor. Detailed quantizer functions can be
found in [11]. In general, a quantizer function maps a floating-
point value into a fixed-point or PoT quantized value, equal to
multiplication of the scaling factor with a quantization level
represented by a b-bit number. For both quantization schemes,
b-bit number representation corresponds to 2° — 1 quantization
levels (with 1-bit for sign). As for the selection of precision
or bit-width, to avoid the large search space of scheme and
precision assignment and to preserve hardware uniformity
among layers, we specify the precision candidates as: b-bit
for fixed-point quantized weights, b’-bit for PoT quantized
weights, and b-bit for activations.'

B. Proposed ViT Quantization Algorithm

As shown in Algorithm 1, our proposed FPGA-aware
mixed-scheme ViT quantization algorithm performs quanti-
zation training with given bit-widths i.e., b and ¥/, and the
ratio of PoT quantized rows i.e., ko in each layer (the rest
rows are fixed-point quantized). We use the same ratio kpq;
among different heads of the MSA module to fully exploit
the parallelism of FPGA. b, b/, and k,,; are determined from
our Auto-ViT-Acc framework. The quantization scheme is
assigned down to the row level of a weight matrix based on the
weight distribution. In general, if a row has a smaller variance,
the PoT scheme is assigned; and otherwise, the fixed-point
scheme is assigned.

V. PROPOSED AUTO-VIT-AcC FRAMEWORK

This section first gives an overview of Auto-ViT-Acc, and
then discusses the optimization techniques in the ViT compu-
tation engine (Sec. V-B and V-C), and finally provides FPGA
resource modeling to determine b, &', and ko, for target frame
rate (FPS) (Sec. V-D).

'Even for PoT scheme, only weights are PoT quantized and corresponding
activations are still fixed-point quantized in order to replace multiplication
with bit shifting.



Algorithm 1: FPGA-aware mixed-scheme ViT quan-
tization.
input : 32-bit floating-point pre-trained ViT model M with
weights W ; bit-width for fixed-point b; bit-width for
PoT b'; ratio of PoT quantized rows in each layer
kpor; .
output: Quantized model M.
1 foreach batch do
// forward propagation

2 foreach layer i in M do

// calculate variance for each row
3 foreach row W;; in layer i do
4 | varyj < variance(Wij;) ;

// assign weight quantization scheme
for rows
foreach row W;; in layer i do
if var;; belongs to the bottom kpor group then
% PoT
| Wi I (W)
else
[ Wi < T (Wa);

F-IEC RS

10 A; <—VAV¢~A~;71;
// quantize activations
11 Az < HEIXCd(Ai);

// backward propagation

12 foreach layer i (reverse order) do
OLoss OLoss.

13 W e W,

OLoss OLoss .

14 dinput; A A,

15 Return M — M{W}.

A. Overview and Design Space Exploration

Fig. 2 provides the workflow of our Auto-ViT-Acc frame-
work for automatic generations of ViT accelerators. We start
from “FPGA Resource Utilization Modeling” module to give
performance analysis and estimate the frame rate (FPS) of
FPGA VIiT accelerator with given bit-widths for the Fixed
and PoT schemes i.e., b and b’. We reduce the bit-widths until
fulfilling the target FPS. The details of resource modeling and
performance analysis are discussed in Section V-D, which also
derive the desired ratio for PoT quantized rows kpo¢. Then
our proposed mixed-scheme ViT quantization algorithm uses
b, b/, and kpoy to derive quantized ViT model, which will be
implemented on FPGA by going through “C++ Description
for Accelerator”, “Xilinx Vitis High-Level Synthesis (HLS)”,
and “Accelerator Bitstream”.

About bit-widths, for each layer, we quantize some of
the rows into Fixed with b-bit for weights and b-bit for the
corresponding activations i.e., Fixed W[bJA[b], and quantize
the rest rows into PoT W[b']JA[b] i.e., b'-bit for weights and
b-bit for corresponding activations. To prevent extra hardware
overhead on output shifting among two schemes, we propose
to align the outputs from two schemes by setting 20" =1) < p,
i.e., if b-bit is used for Fixed, then b’ = |log, b| +1 is used for
PoT. For example, the 4-bit Fixed scheme matches the 3-bit
PoT scheme, and 8-bit Fixed scheme matches the 4-bit PoT
scheme. This is because the product of the Fixed W[b]A[b]

multiplication has a bit-width of 2-b, and the same output bit-
width is required in the PoT W[b']A[b] multiplication realized
by left shifting the input activation by b’ bits.

B. Compute Engine for Multi-Head Attention

The notations used in ViT accelerators are listed in Table 1.
The accelerator designs are based on loop tiling shown in
Fig. 3, where the input, weight, and output data for each
ViT layer are split into tiles for FPGA resource-saving. With
pipelining and unrolling of loops, the compute engine can
manage (T + TP°T). p, . T,, multiply-accumulate (MAC)
operations in parallel.

TABLE 1. Notations for ViT Accelerator

Notation | Description

kpoT The ratio of PoT quantized rows for weights

M (N) Number of output (input) channels

F Number of token sequences

Tn Tiling size for data in input channel dimension in each head
TE™> (TPoT) | Tiling size for Fixed (PoT) data in output channel dimension
Ny, Total number of heads

Py, Number of heads for computation in parallel

Number of data packed as one for activations and

Fixed weights (PoT weights)

Ain Number of AXI ports used for data transfer of input
(Aout. Awgt) | (output, weight) tile

Lin (Lwgt, Number of clock cycles for input transfer (weight transfer,
Lout, Lempt) | output transfer, computation) for a group of tiles

Bin

(Bout» ngt)
c

Chur (CRD

D (D)

Number of BRAMs used by input (output, weight) tile

DSP cost for each MAC operation with Fixed weight
LUT cost for each MAC operation with Fixed (PoT) weight

ViT computations mainly comprise matrix multiplications
in multi-layer perceptron (MLP) modules and multi-head self-
attention (MSA) modules. Each MSA can be seen as multiple
parallel matrix multiplications, and therefore the accelerator is
designed to process P, attention heads in parallel, by splitting
the N input channels into N groups. This input channel
splitting is also done for fully connected (FC) layers, each
containing only one matrix multiplication for compatibility,
and the results need to be accumulated from all the input
channels in all the heads.

C. Optimizations in ViT Accelerator

1) Processing of Other Computations: In addition to matrix
multiplications, ViTs contain convolution, scaling, softmax,
activation, normalization (LN), and skip-connection addition
operations. The first layer of a ViT is a convolutional layer
that can be converted to an FC layer because its kernel size
and stride are the same as the patch size, meaning that the input
data are used only once when a weight kernel slides across the
input feature map. The scaling, softmax, and GELU activation
operations are performed on the host CPU of the FPGA, which
introduces a small latency overhead for embedded FPGAs
compared with matrix multiplications.

As illustrated in Fig. 1, LN is applied at the beginning of
each MSA or MLP module. The LN inputs require to be stored
for later additions due to the identity skip-connection linking
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Fig. 3. Tiling in ViT computations.

the input activations of each LN and the output activations of
the subsequent module. Considering that keeping LN opera-
tions unquantized will not incur much computation overhead
but help maintain the model accuracy, the LN parameters and
inputs are represented with 16-bit precision on hardware. Two
data transfer ports are needed respectively for unquantized
LN input and quantized LN outputs (which are also inputs
of the next FC layer) to minimize the input loading time for
subsequent FC computations.

2) DSP Packing: To fully exploit the potential of DSP
resources on FPGAs, we pack multiple low-bit multiplications
within each DSP following [27], [28]. Each DSP (DSP48E2)
on the ZCU102 board could support the computation of
P = (A+ D) x B, where both A and D are 27-bit operands,
B is an 18-bit operand, and P is the 45-bit output. One DSP
can accommodate two 8 x 8-bit multiplications by holding one
weight in A and two input activation values in B, or four 4 x 4-
bit multiplications by holding one weight in A, another weight
in D, and two inputs in B. It is worth noting that the number of
4 x 4-bit multiplications handled by each DSP in this design is
higher than that in [11], resulting in higher resource utilization
efficiency and throughput.

D. ViT Accelerator Design with Resource Modeling and Per-
formance Analysis

An FPGA board contains primarily two types of com-
putation resources, namely DSPs and LUTs. Multiplications
with fixed-point weights are computed with DSPs, and those

with PoT weights can be replaced by shifting operations that
are computed with LUTs. The DSP and LUT cost requires
to be precisely estimated to find the best ratio between the
numbers of fixed-point and PoT weights and thus maximizing
the throughput on FPGAs.

The parameters to be determined for the accelerator include
Tf;ix (T};OT), T,, D (D’), and P,. On a specific FPGA
board, the maximum achievable FPS, denoted by FPS,,.x,
can be estimated according to our analysis of FPGA resource
utilization and performance. Given the target FPS, denoted by
FPS;qt, we first find the precision and scheme combination
satisfying FPSpax > FPSig. Under this precision, we fix
Py, T,, D (D), and Trlzix, and adjust TEOT to meet the target
FPS and obtain the best model accuracy. In detail, P, is set
to a value that can divide N; exactly for full exploitation
of computation resources, i.e., P, = 3 for N, = 6, and
P, =4 for Nj, =8 or N, = 12. D is decided based on the
FPGA AXI port size and the quantization bit-width of Fixed
weights, and is the same for activations in both Fixed and PoT
computations as well as weights in Fixed computations. The
bit-width of PoT weights is lower, corresponding to D’. T,
is set to the same value as D. The computation parallelism
along the output channel dimension is decided by the sum
TEix 4 TPT  and the model accuracy in quantization is

affected by the ratio kp,r = i.e., lower kp,r will

result in higher model accuracy. We therefore reduce 75°7 to
make the actual FPS equal to FPS;y if FPS;ax > FPSgg
under this precision, and the actual kp,r ratio will guide the
quantization process and the hardware implementations with

all these parameters.

1) FPGA Resource Utilization Modeling: In contrast to
DSP usage, LUT consumption for shifting operations and also
for logic is difficult to estimate, and therefore we build a
resource utilization model through several simple experiments
to model the LUT cost as a linear function of computation
parallelism (the number of parallel operations in each clock
cycle). For Fixed W[bJA[b] + PoT W[b']A[b] quantization, the
LUT cost is analyzed for both W[b]A[b] Fixed multiplications
executed on DSPs (denoted by CLX), and W[V']A[b] PoT
multiplications executed on LUTs (denoted by Cf°T). The
LUT cost can then be obtained from the slopes of the fitted



lines. It is worth noting that employing DSPs for multiplica-
tions consumes LUTS as well, resulting from data packing and
accumulation operations, etc.

2) Inference Latency Analysis: The actual FPS is the recip-
rocal of the inference latency, which is analyzed below, with
main variables explained in Table 1. For one layer ¢ in ViTs, the
numbers of clock cycles needed for input tile loading, weight
tile loading, and output tile storage are calculated as

T, F
Lin=PFPy,-|—=| " |-— ;
" ’(D ’VAi“—‘

T,.,I::ix Tn T’I’EOT
we=re ([5] [550][5] [22]) @
‘Trl;;ix + TTIZOT F

Lout—(l—i_ry)' D —‘ : ’VADut—‘ )

where v is N; — 1 if the current layer is a multi-head
attention layer else 0. Additionally, the clock cycle number
of computations for one group of tiles is

F N
Lcmpt = ’75—‘ : ’VP:—‘ ’ (3)

as two input values are fetched in each clock cycle for DSP
packing. The data loading and computation for the tiles are
conducted simultaneously with the double buffering technique
to overlap the data transfer with computations. The clock
cycle number of this process is L1 = max{Lin, Lwgt, Lempt }-
And to obtain the accumulation of output results, this process
is performed multiple times. The clock cycle number for

calculating the whole output tile is Lo = max {Ll- [TNTH—‘ +

of

Lempts Lout } The total number of clock cycles for a ViT layer
1 is therefore described by

i M
Loy = [W—‘ « Lo + Lout. 4
Under a working frequency f, the FPS is calculated as Z%
Lot

With double buffering, the 18k-bit BRAM usage of the
input, weight, and output tiles are given by

T b-F-D
in=2-Pn-|—|- R
sz G| [0

T, b.TFx. D T b . TPT . pr
et = 2+ P - ng | 2lim | Em ),
s =2n- (3] [Si2|+ [B] [ ]) @

TE> 4 T,'?L"T" Fr F- D"

out = 2+ Ny,
Bout 2 h ’V D 18k

The DSP and LUT consumption is proportional to the total
MAC computation parallelism. Specifically, Cgsi;‘ = 0.25
for each multiplication with W4A4 or smaller precision, and
Cgsi;‘ = 0.5 for each multiplication with W5A5 to W8AS
precision. In summary, the FPS and kp,p for the ViT are

decided satisfying
Bin + Bwgt + Bout < Sbram,
Cimp - T Py - Ty < Sasp *Tasp,  (6)
(- TR 4+ O™ - T™) - Py - T < Shut * Thus
where Shram, Sdsp, Stut are the available number of BRAMs,

DSPs, and LUTs on FPGA, and rg4sp, and 71, are the maximum
ratio of DSPs and LUTs to be utilized for MAC operations.

VI. EXPERIMENTS
A. Experimental Setups

Our experiments include model quantization and hardware
implementations for ViTs of different sizes, namely DeiT-
small and DeiT-base, without the distillation tokens [3]. Our
quantization training process takes 100 epochs with a batch
size of 512, on top of the pre-training process with 300 epochs.
The learning rate is set to 5 x 10~ initially and decayed
with a cosine annealing schedule. The AdamW [29] optimizer
is used with the weight decay of 0.05. Training tricks to
improve the accuracy include warmup training of 3 epochs and
label smoothing with a factor of 0.1. The quantization adopts
the same hyper-parameters for all models and is conducted
on 4 NVIDIA Ampere A100 GPUs with CUDA 11.0 and
PyTorch 1.7 frameworks on the Ubuntu operating system. The
quantized models are then evaluated on the Xilinx ZCU102
FPGA platform consisting of 2520 DSPs and 274.1k LUTs. To
maximize the computation efficiency without timing violation,
the working frequency is set to 150 MHz for all the designs
implemented through Xilinx Vitis and Vitis HLS 2020.2. We
use the official DeiT model (W32A32) as our baseline. And the
W32A32 data in baseline unquantized models are represented
in 16-bit format when implemented on FPGA. This conversion
incurs negligible accuracy degradation, which is common for
FPGA implementations.

B. Experimental Results

Comparison of Different Quantization Schemes. The com-
parison results of different quantization schemes in terms of
accuracy after quantization and performance with resource
utilization are listed in Table II. All the activation are quantized
with Fixed schemes, and the weights are quantized with the
schemes as shown in the first column. It can be seen that the
PoT quantization on ViTs obtains noticeable throughput im-
provement compared with the Fixed-point quantization at the
same bit-width level with manageable accuracy loss, and our
mixed-scheme quantization further achieves higher throughput
and better model accuracy than the PoT quantization. With
various FPS targets, we investigate the effectiveness of our
mixed-scheme quantization by adjusting the bit-widths and
scheme mixing ratio for different models. Specifically, we set
the target FPS as 150 and 100 for DeiT-small, and 50 and 30
for DeiT-base.

For DeiT-small, it can be seen that a target FPS of 150
can be met using W4A4+W3A4 quantization precision with
PoT ratio kpor = 43% and the Top-1 accuracy reaches
77.94%, outperforming the W8A8 model of PTQ [12] by
0.47% even with a lower bit-width. For the desired FPS of 100,
the implementation using W8A8+W4AS precision with PoT
ratio of kpor = 43% can fulfill the requirement with 78.74%
accuracy, which is 1.27% higher than that of PTQ. As for
DeiT-base, the accuracy loss incurred by quantization is less
than 1%, while 55 FPS with 81.14% accuracy can be achieved
using W4A4+W3A4 precision with kp,1 = 40%, and 33 FPS
with 81.84% accuracy can be reached using W8A8+W4AS8
precision with kpot = 45%.



TABLE II. Accuracy and Hardware Results under Different Quantization Schemes for DeiT-small and DeiT-base on ImageNet Dataset

Quantization Bit-Width Model Accuracy (%) Resource Utilization | Power Thrpt. Frame Rate Energy Eff.
Weight Scheme (Weight/Actv.) Top-1 Top-5 DSP kLUT (W) (GOPS) (FPS) (FPS/W)
DeiT-small
Baseline W32A32 79.85 94.97 1745 (69%) 130 (47%) | 8.38  354.5 389 4.64
PTQ [12] (Fixed) W8AS8 77.47 (—2.38) - - - - - - -
Fixed W4A4 78.50 (—1.35) 94.41 (—0.56) | 1933 (77%) 137 (50%) | 10.44 1186.6 130.3 12.48
PoT W3A4 77.24 (=2.61) 93.89 (—1.08)| 13 (1%) 176 (64%)| 6.55 1374.1 150.9 23.04
Mixed (FPStg; = 150) W4A44+-W3A4 (kpor = 43%) | 77.94 (—1.91) 94.07 (—0.90) | 1549 (61%) 193 (70%) | 10.34 1418.4 155.8 15.06
Fixed W8AS8 79.69 (—0.16) 94.89 (—0.08) | 1936 (77%) 122 (44%)| 8.46  711.2 78.1 9.23
PoT W4AS8 77.97 (—1.88) 94.06 (—=0.91) | 16 (1%) 175 (64%)| 8.58  837.0 91.9 10.71
Mixed (FPSigy = 100) W8A8+W4A8 (kpor = 43%) | 78.74 (—1.11) 94.50 (—0.47) | 1552 (62%) 185 (67%)| 9.63  907.8 99.7 10.35
DeiT-base
Baseline W32A32 81.85 95.59 1564 (62%) 120 (44%)| 991 3458 10.0 1.01
PTQ [12] (Fixed) WBA8 80.48 (—1.37) - - - - - - -
Fixed W4A4 81.33 (—0.52) 95.63 (40.06) | 2064 (82%) 139 (51%) | 11.27 1648.1 475 421
PoT W3A4 80.87 (—0.98) 95.57 (—0.02) | 19 (1%) 191 (70%) | 8.11 1958.4 56.4 6.95
Mixed (FPStgt = 50) W4A4+W3A4 (kpor = 40%) | 81.14 (—0.71) 95.60 (4+0.01) | 1555 (62%) 179 (65%) | 11.03 1970.3 56.8 5.15
Fixed WS8AS8 81.93 (4-0.08) 95.90 (+0.31) | 2066 (82%) 128 (47%) | 9.40  899.6 259 2.76
PoT W4A8 81.51 (—0.34) 95.73 (+0.14) | 20 (1%) 192 (70%) | 7.24  1080.5 31.1 4.30
Mixed (FPStg; = 30) W8A8+W4AS8 (kpor = 45%) | 81.84 (—0.01) 95.85 (4-0.26) | 1556 (62%) 186 (68%)| 9.31 1181.5 34.0 3.66

Comparison with Baseline and Other Framework. Under
the similar quantization bit-width, the Top-1 accuracy of our
Fixed W8AS8 + PoT W4AS8 model is 1.36% higher than that in
PTQ. Under a lower bit-width, our Fixed W4A4 + PoT W3A4
model still outperforms the W8A8 model of PTQ by 0.66%.
Compared with the 32-bit baseline model, our quantized model
achieves around 5.6x improvement on frame rate (i.e., 56.8
FPS vs. 10.0 FPS) with only 0.71% Top-1 accuracy drop.

TABLE III. Performance comparison between TX2 and ZCU102 (FPGA) on
full-precision models.

Model ‘ Hardware  Power (W)  Latency (ms) FPS
. X2 1187 54 18.52
DeiT-small ‘ ZCU102 8.38 26 38.90
. X2 12.28 127 7.87
DeiT-base ‘ ZCUl2 991 100 10.00

Comparison with Embeded CPU/GPU. We also test DeiT-
base and DeiT-small on Jetson TX2 with 4-core ARM CPU
and NVIDIA Pascal GPU, and compared them with our FPGA
(ZCU102) implementation. Since TX2 GPU does not support
low-bit computation, we only present the performance of the
full precision model as shown in Table III. Overall, compared
to TX2 GPU, our FPGA implementation achieves about 2x
and 1.3x speedup on DeiT-small and DeiT-base, respectively,
with 2.37 W 3.49 W lower power consumption. Even without
quantization, our FPGA implementation is still more efficient
compared with TX2 with the similar compute capability level.

VII. CONCLUSION

In this paper, we propose an FPGA-aware automatic ViT
acceleration (Auto-ViT-Acc) framework for our mixed-scheme
ViT quantization algorithm. The bit-width and the ratio of
fixed-point quantized rows over PoT quantized rows can
be optimized and used as inputs to guide the quantization
algorithm. This framework also designs a novel FPGA com-
pute engine for ViT multi-head attention with optimizations
for accelerators. We automate the entire workflow based on

a target FPS, to obtain a quantized model and an FPGA
accelerator. Compared with the 32-bit floating-point baseline
FPGA accelerator, our accelerator achieves around 5.6X im-
provement on the frame rate with 0.71% accuracy drop on
ImageNet dataset for DeiT-base. To the best of our knowledge,
this is the first work for quantization-based ViT acceleration
on FPGAs.
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