
HeatViT: Hardware-Efficient Adaptive Token

Pruning for Vision Transformers

Peiyan Dong1, Mengshu Sun1, Alec Lu2, Yanyue Xie1, Kenneth Liu2, Zhenglun Kong1,

Xin Meng1, Zhengang Li1, Xue Lin1, Zhenman Fang2, Yanzhi Wang1

1Northeastern University, 2Simon Fraser University

{dong.pe, sun.meng, xie.yany, kong.zhe, li.zhen, xue.lin, yanz.wang}@northeastern.edu,
{alec_lu, ksl24, zhenman}@sfu.ca, 1601214372@pku.edu.cn

AbstractÐWhile vision transformers (ViTs) have continuously
achieved new milestones in the field of computer vision, their
sophisticated network architectures with high computation and
memory costs have impeded their deployment on resource-limited
edge devices. In this paper, we propose a hardware-efficient
image-adaptive token pruning framework called HeatViT for
efficient yet accurate ViT acceleration on embedded FPGAs.
Based on the inherent computational patterns in ViTs, we
first adopt an effective, hardware-efficient, and learnable
head-evaluation token selector, which can be progressively
inserted before transformer blocks to dynamically identify
and consolidate the non-informative tokens from input images.
Moreover, we implement the token selector on hardware by
adding miniature control logic to heavily reuse existing hardware
components built for the backbone ViT. To improve the hardware
efficiency, we further employ 8-bit fixed-point quantization and
propose polynomial approximations with regularization effect on
quantization error for the frequently used nonlinear functions
in ViTs. Compared to existing ViT pruning studies, under the
similar computation cost, HeatViT can achieve 0.7%∼8.9%
higher accuracy; while under the similar model accuracy,
HeatViT can achieve more than 28.4%∼65.3% computation
reduction, for various widely used ViTs, including DeiT-T,
DeiT-S, DeiT-B, LV-ViT-S, and LV-ViT-M, on the ImageNet
dataset. Compared to the baseline hardware accelerator, our
implementations of HeatViT on the Xilinx ZCU102 FPGA
achieve 3.46×∼4.89× speedup with a trivial resource utilization
overhead of 8%∼11% more DSPs and 5%∼8% more LUTs.

Keywords- Vision Transformer; FPGA Accelerator; Hardware
and Software Co-design; Data-level Sparsity.

I. INTRODUCTION

Transformers [2], [39] have recently made an attractive

resurgence in the form of Vision Transformers (ViTs) [11],

showing strong versatility in NLP [3], [26], [48], computer

vision (e.g., image classification [11], object detection [5],

[66], semantic segmentation [62], image processing [7], and

video understanding [64]), and complex scenarios with multi-

modal data. Furthermore, ViTs can be used as effective back-

bone networks [4], [11], [19], [50] with superior transferability

to downstream tasks through minor fine-tunings. Seemingly,

ViTs and transformers have great potential to unify diverse

application domains through common architectures and tackle

the reliance on scarce domain data, ultimately addressing the

two fundamental problems in deep learning: (i) strong reliance

on domain data, and (ii) constant model improvements to serve

evolving needs. ViTs and transformers are largely considered

as one of the future dominant deep learning techniques.

However, to fully unleash advantages of transformer archi-

tectures, we need to address the following challenges before

ViTs and transformers become an indispensable staple in fu-

ture AI computing. (i) Although the self-attention mechanism

is a key defining feature of transformer architectures, a well-

known concern is its quadratic time and memory complexity

with respect to the number of input tokens. This hinders

scalability in many settings, let alone deployment on resource-

constrained edge devices. (ii) Majority of existing works

on efficient ViT and transformer techniques followed what

has been done for Convolutional Neural Networks (CNNs)

by using conventional weight pruning [10], [56], [57], [65],

quantization [35], [40], [61], and compact architecture design

[6], [8], [9], [16], [18], [31], [43], [49], [51], with limited ac-

curacy and speed performance. (iii) In the efforts of exploring

token removal to address the quadratic complexity, the static

approaches [10], [13], [33], [42], [45] remove tokens with a

fixed ratio in an input-agnostic manner, ignoring input sample

dependent redundancy; and most of existing image-adaptive

approaches [38], [54], [57] simply discard non-informative

tokens and do not fully explore token-level redundancies from

different attention heads. Both approaches achieve a relatively

low pruning rate (to preserve accuracy) or an undermined ac-

curacy (at a high pruning rate). Moreover, none of these studies

support efficient hardware implementation on edge devices.

(iv) Transformer architectures tend to use more hardware-

unfriendly computations, e.g., more nonlinear operations than

CNNs, to improve accuracy. Therefore, we need to address

the low hardware efficiency issue of such computations, while

enjoying the additional optimization dimension provided by

multi-head self-attention.

In this paper, we propose HeatViT, a hardware-efficient

image-adaptive token pruning framework, together with 8-bit

quantization, for efficient yet accurate ViT inference acceler-

ation on embedded FPGA platforms. To improve pruning rate

while preserving model accuracy, we make two observations

by analyzing the computation workflow in ViTs, similar to

what are reported in [28]: (i) the information redundancy in

input tokens differs among attention heads in ViTs; and (ii)

non-informative tokens identified in earlier transformer blocks

may still encode important information when propagating to

Pa
tc

h
Em

be
dd

in
g

Se
lf-

at
te

nt
io

n

FF
N

S

tokens decision

informative

class token

1

non-informative

pa
ck

ag
e

to
ke

n

Se
lf-

at
te

nt
io

n

FF
N

S

decision

informative

2

non-informative

pa
ck

ag
e

to
ke

n Se
lf-

at
te

nt
io

n

FF
N

tokens

1 1 2 1 2 3

...

Input Stage1 Stage2 Stage3

Fig. 1. The workflow of HeatViT on DeiT-S. The token selector S conserves
informative tokens conditioned on features from the previous layer. And non-
informative tokens are averaged into one package token (blue).

later blocks. Based on these, we adopt an effective token

selector module similar to [28] but consider its design with

hardware efficiency, which can be inserted before transformer

blocks to reduce token number (i.e., number of tokens) with

negligible computational overhead. As shown in Fig. 1, we

incorporate different token-level redundancies from multiple

attention heads to be more accurate in token scoring. Further-

more, instead of completely discarding non-informative ones,

similar to [28], we package them together into one informative

token to preserve information for later transformer blocks.

For hardware implementation on edge FPGA devices, we

design our token selector with linear layers, i.e., fully-

connected (FC) layers, instead of convolutional (CONV) lay-

ers, to reuse the GEMM (General Matrix Multiply) hardware

component built for the backbone ViT (i.e., without token

selectors) execution. In addition, we always concatenate the

identified (and sparse) informative tokens and the packaged

informative token together to form a dense input of tokens to

avoid sparse computations on hardware. To improve the hard-

ware efficiency, we further apply 8-bit quantization for weights

and activations, and propose polynomial approximations for

the frequently used nonlinear functions in ViTs, including

GELU [21], Softmax [17], and Sigmoid [37]. Besides, we

introduce the regularization effect on quantization error into

the design of polynomial approximations to support more

ambitious quantization. We design a proof-of-concept FPGA

accelerator for ViTs based on our proposed HeatViT. We

implement the GEMM engine inspired by [14], [32] to exe-

cute the most computation-intensive multi-head self-attention

module and feed-forward network in the backbone ViT, and

the classification network in our token selector. It is worth

noting that only lightweight control logic is added to support

our adaptive token pruning by reusing the same hardware

components built for the backbone ViT execution.

To reduce inference latency on hardware while preserving

model accuracy (typically within 0.5% or 1% accuracy loss),

we adopt a similar latency-aware multi-stage training strategy

to [28], which (i) determines the transformer blocks for in-

serting token selectors and (ii) optimizes the desired (average)

pruning rates for these token selectors. To reduce the training

time, we also adapt the training strategy to insert less number

of token selectors and use less number of training epochs: our

training effort is roughly 90% of that for training-from-scratch

of backbone ViTs without token selectors.

TABLE I. Comparison between representative ViT pruning methods.

Method
Design
Scheme

Method
Design
Scheme

DyViT [42] ① ATS [13] ①

IA [38] ② PS-ViT [45] ①

VTP [65] ③ Evo-ViT [54] ②

S2ViTE [10] ①③④ UP-DeiT [56] ③④

① ± Static Token Pruning; ② ± Adaptive Token Pruning; ③ ± Head Pruning;
④ ± Token Channel Pruning.

As summarized in Fig. 2, we evaluate HeatViT for mul-

tiple widely used ViT models on the ImageNet dataset, in-

cluding DeiT-tiny (DeiT-T, HeatViT-T), DeiT-small (DeiT-S,

HeatViT-S), DeiT-base (DeiT-B, HeatViT-B) [46], LV-ViT-

small (LV-ViT-S, HeatViT-LV-S), and LV-ViT-medium (LV-

ViT-M, HeatViT-LV-M) [25]. These models are already well

condensed and thus more challenging to prune compared to

larger ViT models. Compared to state-of-the-art ViT pruning

studies in Table I (pruning types are explained in detail

in Sec II-B), HeatViT achieves better accuracy-computation

trade-offs: Under a similar computation cost, HeatViT can

achieve 0.7%∼8.9% higher accuracy; while under a similar

accuracy, HeatViT can reduce the computation cost by more

than 28.4%∼ 65.3%. Compared to the baseline hardware

accelerator (16-bit and no token pruning), our implemen-

tations of HeatViT on the Xilinx ZCU102 FPGA achieves

3.46×∼4.89×speedup with a trivial resource utilization over-

head of 8%∼11% more DSPs and 5%∼8% more LUTs.

Compared to the optimized ARM CPU and NVIDIA GPU

versions on the NVIDIA Jetson TX2 board with our token

pruning, our FPGA implementations achieve 685×∼1695×
and 2.68×∼3.79× more speedups, 242.6×∼719.0× and

3.0×∼4.7× higher energy efficiency.

Our contributions are summarized as follows:

• Algorithm and hardware co-design for an effective,

hardware-efficient, and learnable token selector to enable

efficient image-adaptive token pruning in ViTs.

• A polynomial approximation of nonlinear functions inside

ViTs for more ambitious quantization and efficient FPGA-

based implementations.

• An end-to-end acceleration framework, with both image-

adaptive pruning and 8-bit quantization, for ViT inference

on embedded FPGAs.

• Experiments to demonstrate superior pruning rates and infer-

ence accuracy of HeatViT over state-of-the-art ViT pruning

studies, as well as trivial hardware resource overhead.

Model GMACs Top-1 Acc Model GMACs Top-1 Acc

HeatViT-T0 0.54 70.80% HeatViT-S3 3.86 79.80%

HeatViT-T1 0.90 72.10% HeatViT-B0 6.10 80.10%

HeatViT-T2 1.00 72.20% HeatViT-B1 10.49 81.05%

HeatViT-T3 1.29 76.87% HeatViT-LV-S0 3.10 83.05%

HeatViT-T4 1.30 77.02% HeatViT-LV-S1 4.28 83.10%

HeatViT-S0 1.80 78.50% HeatViT-LV-M0 5.30 82.70%

HeatViT-S1 2.01 79.00% HeatViT-LV-M1 7.32 83.71%

HeatViT-S2 2.64 79.34%

ATS-21/384

(17.4, 83.1)

DeiT-B

(17.6,81.8)

70.90%

72.15%

72.20%

76.94%

77.13%

78.59%

79.08%

79.38%

79.84%

80.13%

81.08%

83.07%

83.14%

82.73%

83.74%

Fig. 2. Comparison of HeatViT with prior pruning methods: Under a similar computation cost, HeatViT achieves 0.7%∼8.9% higher accuracy; while under
a similar accuracy, HeatViT reduces the computation cost by more than 28.4%∼ 65.3%. Final HeatViT models are quantized into 8-bit fixed-point format.

II. BACKGROUND AND RELATED WORK

A. Vision Transformer

Transformers are initially proposed to handle the learning

of long sequences in NLP tasks. Dosovitskiy et al. [11] and

Carion et al. [5] adapt the transformer architecture to image

classification and detection, respectively, and achieve com-

petitive performance against CNN counterparts with stronger

training techniques and larger-scale datasets. DeiT [46] further

improves the training pipeline with the aid of distillation,

eliminating the need for large-scale pretraining [58]. Inspired

by the competitive performance and global receptive field of

transformer models, follow-up works design ViTs for different

computer vision tasks including object detection, semantic

segmentation, 3D object animation, and image retrieval.

Fig. 3 illustrates three components in ViTs: patch embed-

ding, transformer encoders, and classification output head.

For patch embedding, an image X ∈ R
H×W×C is reshaped

into a sequence of 2D patches Xp ∈ R
N×(P 2

·C), where

(H,W) is original image resolution, C is channel number,

(P, P) is the resolution of patches, and N = HW/P 2 is

the number of patches and also the effective input sequence

length (i.e., number of tokens) to transformer encoders. Patch

embeddings are obtained by mapping Xp into D dimensions

via a trainable linear projection E ∈ R
(P 2

·C)×D: X0 =
[Xclass;X

1
pE;X2

pE; ...;XN
p E]+Epos, where D is the constant

latent vector size throughout transformer encoders, and Epos ∈
R

(N+1)×D is learnable position embeddings. A learnable

embedding X0
0 = Xclass is prepended in patch embeddings

X0. Then X goes through a stack of L transformer encoders

for processing. The output X0
L (class token) of the final (L-

th) transformer encoder is fed to a classification output head

implemented by an MLP to obtain the final result. The MLP

module uses two linear layers with a Gaussian Error Linear

Unit (GELU) activation layer in between.

The l-th transformer encoder receives the patch embed-

dings Xl−1 as input. Fig. 3 illustrates a ViT encoder block,

consisting of a multi-head self-attention (MSA) module and

an MLP (FFN) module, both with LN (layer normalization)

applied before input. The encoder block operations are then:

X′

l−1 = MSA(LN(Xl−1)) +Xl−1,

Xl = FFN(LN(X′

l−1)) +X′

l−1.
(1)

For h heads in MSA, LN(Xl−1) is split into h parts. For

each head, the corresponding part in LN(Xl−1) is transferred

into query Q, key K, and value V through three linear pro-

jections WQ, WK , and WV , respectively. Then self-attention

function [48] in each head is performed as:

Attention(Q,K,V) = Softmax(QKT /
√
D)V. (2)

Attention outputs from all the heads are concatenated and

linearly transformed.

B. Model Pruning on ViT

State-of-the-art ViT pruning studies exploring the redun-

dancy from three dimensions in ViTs are summarized below.

Redundancy of the attention head. Attention head prun-

ing [10], [56], [57], [65] reduces weight redundancy on the

transformation matrices (WQ, WK , WV) before MSA opera-

tion. Due to the parallel computing nature of the transformer

heads, these works directly prune some heads entirely and

Softmax

Attention Pro

Linear Projection

GELU

Fully-Connected

Fully-Connected

LayerNorm

LayerNorm

MSA

FFN

Token Channels: D

To
ke

n
N

um
be

rs
: N

position
embedding

class
token

Linear TransformationLinear Transformation heads

Multi-head
Self-attention

Feed
Forward
Network

Block L

Classification Head

Class
(Bird, Grass, ..)

Embedded
Tokens

Block2 ... Block L-1

Block 1

Linear Projection of Flatten Patches

1 2 3 4 5 6 7 8 90
class token

H
ea

d
Tr

an
sf

or
m

er
 E

nc
od

er
s

Pa
tc

h
Em

be
dd

in
g

Fig. 3. Overview of ViT

lead to significant accuracy drop, for example, 27% GMACs

reduction, but with 2.2% accuracy drop on DeiT-T in [10].

It is an inefficient way of computation reduction because the

attention head usually contributes less than 43% of the total

computation in several ViT architectures [28].

Redundancy of the token channel. Token channel [10], [56],

[57] pruning executes feature-level pruning on the embedding

of the token feature to diminish the redundancy of the fea-

ture representation. Since this pruning type is equivalent to

structured pruning on the token embedding, i.e., removing the

same embedding dimension for different tokens, it is difficult

to guarantee an ideal pruning rate without significant accuracy

deterioration.

Redundancy of the token number. Token pruning [10], [13],

[33], [38], [42], [45], [54], [57] aims at removing the non-

informative input data. According to [55], the accuracy of

neural networks is more related to the object information,

but not the background information, implying the input-level

redundancy. There is often much higher redundancy along the

token number dimension.

C. Computational Complexity

As summarized in Table II, the computational complex-

ity of the ViT can be written as [4NDch(hDattns
) +

TABLE II. Computational complexity of one ViT block.

Notation: Dch ± channel size of a token; Dattns ± sub-channel size of
one head;Dfc ± channel size of FFN; Query (Q), Key (K), Value (V);

h ± the number of heads; N ± the number of tokens.

Module Input Size Computation Output Size #MACs

MSA

N ×Dch
Linear

Transformation
N × hDattns NDchhDattns

N × hDattns Q×KT
N ×N N

2
hDattns

N ×N QKT
×V N × hDattns N

2
hDattns

N × hDattns Projection N ×Dch NhDattnsDch

FFN
N ×Dch FC Layer N × 4Dfc 4NDchDfc

N × 4Dfc FC Layer N ×Dch 4NDfcDch

Total MACs: 4NDchhDattns + 2N2
hDattns + 8NDchDfc

2N2(hDattns
)+8NDchDfc]. Compared with other prunable

dimensions, directly pruning the number of tokens (N) con-

tributes to the reduction of all operations linearly or even

quadratically (N2 in MSA layers), leading to more compres-

sion benefits. Please note that since token pruning is equivalent

to removing information redundancy within the image data, it

can be more freely integrated into the compression process on

other model dimensions (e.g., model quantization in our case).

D. Static vs. Image-Adaptive Token Pruning

There are two sub-branches in the token pruning of the

ViT: static token pruning and image-adaptive token pruning.

Static token pruning [10], [13], [33], [42], [45] limits the

compression ratio by reducing the input tokens of each image

with a fixed ratio while ignoring the fact that each image’s

information varies in terms of both region size and location.

In contrast, to achieve a per-image adaptive pruning rate,

image-adaptive token pruning [28], [38], [54], [57] eliminates

redundant tokens depending on the inherent image features.

Generally, smaller pruning rates are applied for complex and

information-rich images while larger pruning rates for simple

and information-less ones. Ideally, it can achieve a larger

overall pruning rate than the static one as Fig 4.

However, most of existing adaptive token pruning stud-

ies [38], [54], [57] do not consider the visual characteristics

inside the ViT (token redundancy in ViT, Sec III) ±visual

receptive field of different heads, and delete the less infor-

mative tokens completely without the opportunity to correct

evaluation errors. Moreover, there are no more details on how

to determine the location, number, and pruning rate of the

pruning evaluation module specifically. Hence, [38], [54], [57]

often lead to a limited overall pruning rate (e.g., 35% GMACs

reduction on DeiT-S [38]).

Most recently, SPViT [28] analyzes the token redundancy

in each ViT head and proposes soft pruning techniques to

identify and package pruned tokens to preserve the information

of less-informative tokens. Also, it designs an automatic search

algorithm to determine the location and settings of each

pruning module. However, SPViT only considers the algorithm

aspect and lacks the optimization of hardware design and

resource utilization on edge devices. It does not take into

account of the subsequent model quantization, either, which

is often required for hardware implementation and efficiency.

Stage 1 Stage 2 Stage 3Input Stage 1 Stage 2 Stage 3Input

Static Token Pruning Image-Adaptive Token Pruning

30.0% 51.0% 65.7%

30.0% 51.0% 65.7%

30.0% 51.0% 65.7% 58.1% 72.4%

40.8% 63.2% 78.5%

74.5%60.2%37.2%

35.2%

Fig. 4. Comparison between static token pruning and HeatViT image-adaptive
token pruning.

Our HeatViT design is inspired by SPViT [28] but is

optimized for the actual deployment on embedded FPGA

hardware. It differs to SPViT in the following ways. First,

we explore different accuracy and hardware trade-offs for

the token selector module design, including the comparison

between fully-connected layer and convolutional layer, and

comparison between different activation functions such as

ReLU [1], GELU [21], and Hardswish [23]. Second, we

apply more ambitious 8-bit quantization and a polynomial

approximation of nonlinear functions inside ViTsÐsuch as

GELU [21], Softmax [17], and Sigmoid [37]Ðto support

quantization and efficient FPGA-based implementations, with-

out losing accuracy. In the training process, we also stop the

training earlier by skipping early ViT blocks that are more

accuracy-sensitive to the pruning and stopping the pruning

module insertion once we meet the target latency. After the

pruning stage, the algorithm enters the quantization process.

Lastly, we also implement an end-to-end ViT hardware accel-

erator on embedded FPGAs by heavily reusing the hardware

components built for the backbone ViT to support the adaptive

token pruning module and 8-bit data precision.

E. Transformer Accelerators on FPGAs

Previous state-of-the-art FPGA accelerators on Transformer-

based models [30], [41] and [60] also leverage sparsity.

However, they have three main limitations. (i) [30] depends

on block-circulant matrix-based weight representation in order

to replace the matrix-vector multiplication in FC layers with

FFT/IFFT-based processing elements. However, [30] acceler-

ates only the MSA part of the model and omits the FFN

part (about 65% computation of the whole model). (ii) [41]

utilizes the block-wise weight pruning and [60] implements

the structure pruning (row-wise or column-wise) to compress

weights to similar sizes (lower memory footprint). However,

the pruning granularity of both is coarse, resulting in se-

vere accuracy degradation at limited compression rates. For

example, [41] shows 2% accuracy drops under the 36%

sparsity. (iii) These FPGA-based accelerators are mainly for

transformers in the Natural Language Processing (NLP) tasks,

not for computer vision ones. In addition, they all compress

the model weights, which means that new substructures or

additional overhead is needed to support the specific sparse

Head 1 Head 2 Head 3 Head 4 Head 5 Head 6

Fig. 5. The information region detected by each head in DeiT-S.

� � � � � � � � �� ��

���������������������

�

��

��

��

��

��

��

��

��

��

���

�
��

��
��
��
�
��
�
�

����������

������������������

����������������

����������������

����������������

Fig. 6. The similarity between the CLS (class token) and other tokens
measured after each ViT block (2 to 11).

matrix multiplication. According to our Section III analysis,

the difference in input data type will introduce a unique

redundancy that motivates an effective compression space.

Experiments show that adaptive token pruning at the data level

can speed up the model inference with negligible accuracy

losses and little overhead for hardware implementations.

III. ANALYSIS OF TOKEN REDUNDANCY IN VIT AND

OVERVIEW OF HEATVIT

A. Token Redundancy in ViT

Token redundancy viewed by different attention heads.

Assuming that the class (CLS) token is significantly correlated

with the final prediction [63], we visualize the information

regions detected by the CLS token in different attention heads

of DeiT-S, as shown in Fig. 5. It can be seen that each

head extracts the features of the image (multi-head visual

receptive area of the image) independently and differently [22],

[36], [38], indicating that the heads contain distinct token-

level redundancy. This inspires the token selector design with

multiple heads, which is elaborated in Section IV-A.

Token redundancy viewed by different transformer blocks.

Fig. 6 gives the centered kernel alignment (CKA) [29] that rep-

resents the similarity between the tokens in each transformer

block and the final CLS token, showing a tendency from weak

T
o
k
en
C
la
ssifier

M
o
d
u
le

T
r
a
n
s
fo
r
m
e
r

B
lo
c
k

T
r
a
n
s
fo
r
m
e
r

B
lo
c
k

…

T
o
k
en
C
la
ssifier

M
o
d
u
le

× "! ×"!"#

Non-informative tokens Package tokenInformative tokens Class token

Token

Sequence

N

D

Local/Global

feature

d

P
o
o
lin
g

M
L

P
/

C
O

N
V

×h

d

Final token

decision

⨂

S
ig
m
o
id

A
ctiv

a
tio
n

N

× h × h

…

Split by

each head

Head score

Input

feature

Token score

by each head

Token Classifier

M
L

P
/

C
O

N
V

F
C

F
C

Patch Partition F
C

/C
O

N
V

(d
im

, d
im

)

A
ctiv

a
tio
n

F
C

/C
O

N
V

(d
im

, d
im

/2
)

A
ctiv

a
tio
n

F
C

/C
O

N
V

(d
im

/2
,

d
im

/4
)

A
ctiv

a
tio
n

F
C

/C
O

N
V

(d
im

/4
, 2

)

S
o
ftm
a
x

T
o
k

e
n

C
la

s
s
ifie

r

D
e
c
is

io
n

 M
a
s
k ⨂

A
v
era
g
e(

)

G
u

m
b

le
S

o
ftm

a
x

Token Packager

×h ×h

'()*+! '()*+!"#
Token Selector Token Selector

…

Fig. 7. HeatViT overview. Left: Transformer blocks split into multiple stages with token selectors inserted between them (One token selector includes one
token classifier and one token packager). Right: Multi-head token classifier to identify informative tokens.

to strong. It tells us that it is inaccurate for each transformer

block to encode or evaluate the image tokens, especially in the

front blocks. Thus, pruning rates for these front blocks should

be lower to avoid ruling the informative tokens out. This also

inspires the token packager technique to provide chances to

make up for pruning mistakes (Section IV-B).

These two observations are consistent with what have been

reported in [28].

B. Overview of HeatViT

To develop a hardware-efficient image-adaptive token prun-

ing framework, we first adopt an effective and hardware-

efficient adaptive token pruning module (also known as token

selector, based on [28]) according to the vision redundancy in

ViTs (Section IV). This module includes an head-evaluation

multi-head token classifier and a token packager, as shown in

Fig. 7. To improve the pruning rate and accuracy, the token

classifier incorporates different token-level redundancies in

multiple heads to more accurately classify tokens and the token

packager consolidates (instead of discarding) non-informative

tokens to one informative token to reserve information for

later transformer blocks. To improve the hardware efficiency,

we choose linear layers for the token selector to reuse the

GEMM hardware component for the backbone ViT, and al-

ways concatenate the classified sparse tokens into dense ones.

Please note that it is challenging for CNN-based architecture

to implement data-level pruning, because the kernel size of

the convolution operation is fixed so that the irregular input

features cannot be directly concatenated into dense ones to

speed up the model inference. Moreover, we deploy 8-bit fixed-

point quantization to further compress the model, and propose

a polynomial approximation of nonlinear functions inside ViTs

for FPGA-based efficient implementations and regularize the

quantization errors. A proof-of-concept hardware accelerator

design is presented in Section V. To meet the target ViT infer-

ence speed on hardware while reserving the accuracy (typically

within 1% accuracy loss), one also needs to carefully decide

the number of token selectors to insert in the backbone ViT,

the location and pruning rate of each token selector, as well

as the quantization influence on the accuracy performance. To

address this challenge, in Section VI, based on [28], we adapt

a more efficient latency-aware multi-stage training strategy to

learn all these parameters.

IV. ADAPTIVE TOKEN PRUNING MODULE

Shown in Fig. 7, the adaptive token selector is based

on observations in Section III and inspired by SPViT [28],

including the head-evaluation multi-head token classifier and

the token packager. Note that, different to SPViT, nonlinear

functions involved in our token pruning module and the ViT

backbone are the implementation of polynomial approximation

as described in Section V-D. Next, we give a brief introduction

to the token classifier and token packager design (for interested

audience, please refer to [28] for more details), and focus more

on the trade-off of accuracy and hardware efficiency.

A. Head-Evaluation Multi-Head Token Classifier

Multi-Head Token Classifier. As shown in Fig. 7 (right side),

each head focuses on extracting different content and position

of an image by using a simple learnable neural network,

demonstrating the different importance of each token towards

each head. Different to SPViT that uses a default fully-connect

layer, in Section IV-C, we will explore different neural network

units for the consideration of accuracy and hardware efficiency

trade-offs. At the end, our multi-head classifier generates a

score-map vector S for each input token, which separately

marks the information amount of each token in each head.

Head-Evaluation Branch. To synthesize the importance of

each head, A, we also add a head-evaluation branch along the

Fig. 8. Accuracy comparison of different token selector structures under the
same computational cost. We use DeiT-T as the backbone network, where its
accuracy is 72.2% before the pruning.

classifier backbone based on the attention mechanism [24].

Then the token score S is weighted averaged by A:

S̃ =

∑h
i=1 si ∗ ai
∑h

i=1 ai
∈ R

N×2 (3)

Then we apply the Gumbel-Softmax on S̃ for the token

keep/prune decision mask, M . Since deleted image tokens

cannot appear in subsequent blocks, M passes on to the

following blocks and will be updated by the next pruning step.

B. Token Packager

To avoid pruning useful token information in earlier ViT

blocks, we apply a token packaging step that summarizes non-

informative tokens (predicted by the classifier) into a package

token instead of completely discarding them. Assuming there

are T (evaluated by the classifier) non-informative tokens

{x̂t}Tt=1 along with their token scores {s̃t}Tt=1, these tokens

are compressed into one token through weighted averaging:

P =

∑T
t=1 x̂t ∗ s̃t[0]
∑T

t=1 s̃t[0]
∈ R

1×D (4)

P continues the subsequent calculations along with the infor-

mative ones, enabling the model to correct scoring mistakes.

C. Exploration for Hardware Efficiency

Hardware Consideration for Token Classifier. Different

from SPViT [28] that uses fixed MLP and GELU to extract

image features in the token classifier by default, we explore

different alternatives for the design, considering the trade-off

between model accuracy and hardware efficiency. For the ma-

jor operation units to extract feature information, we consider

both fully-connected layers (i.e., FC, or MLP) and convolu-

tional layers (i.e., conv), where the prior favors better hardware

efficiency and the latter favors better model accuracy. For

the activation function, we consider three alternatives: more

hardware-friendly ReLU [1] and ReLU-based Hardswish [23],

and more accurate GELU [21].

In Fig. 8, we compare these different alternatives, where

we set their computation cost as the same: 0.9 GMACs after

pruning for the DeiT-T model; more detailed experimental

setup will be presented in Section VII-A. Compared to MLP

layers, the final accuracy of using convolutional layers is

further improved by 0.3% ∼ 0.5% with the same com-

putational complexity. However, to maximize the hardware

resource utilization, we choose the MLP layer as our main

computational unit, since it has already been there in the

backbone ViT blocks and the accuracy is acceptable. For the

activation function, although ReLU is much more hardware

friendly, it would lead to a 2.49% ∼ 2.69% accuracy drop.

Even though Hardswish is more hardware friendly than GELU,

we still choose GELU as the activation function, since 1) it

achieves 0.3% ∼ 0.6% better accuracy than Hardswish, 2) it

already exists in the backbone ViT blocks, and 3) we can

apply the polynomial approximation of GELU to optimize its

hardware efficiency (Section V-D).

Hardware Consideration for Token Packager. In the token

packaging step, the sparse input matricesÐi.e., all the infor-

mative tokens and package tokenÐwill be concatenated into a

new smaller-size dense matrix to complete the computation in

the following blocks, which can speed up the model inference

directly.

Since most of the component operations (FC layer, Softmax,

GELU) in the token selector already exist in the backbone ViT

blocks, we can maximize the resource utilization and leverage

our unified operation-level optimization scheme of the ViT

deployment on FPGA.

V. VIT HARDWARE ACCELERATOR DESIGN WITH

ADAPTIVE TOKEN PRUNING

The hardware architecture of ViT accelerators in HeatViT is

illustrated in Fig. 9, including the accelerator design for

pruned ViTs with token selector and the computation flow

in the General Matrix Multiply (GEMM) engine. Besides the

LayerNorm layer (less time consuming but more complex to

implement on the FPGA) that is left on the ARM CPU, all

other components in HeatViT are implemented on the FPGA.

A. Challenges

To implement ViT FPGA accelerator with our dynamic

token pruning, we address the following challenges. (i) The

token selector module should be implemented with minimal

hardware overhead by adding miniature control logic and

reusing existing hardware for the backbone ViT. (ii) The

GEMM loop tiling should accommodate an additional tiling

dimension due to multi-head parallelism. (iii) ViTs use more

nonlinear operations than CNNs, and we need to refine these

operations for more aggressive quantization and efficient hard-

ware implementations without losing accuracy.

B. ViT Accelerator with Dynamic Token Selection

As displayed in Fig. 9(a), the input (tokens) and weight of

each ViT layer are loaded from the off-chip DDR memory

to the on-chip buffers, and processed by the GEMM engine

which we will implement motivated by [15], [32]. Outputs

are further processed with the activation function (Softmax or

FPGA

CPU

Memory

Controller

GEMM Engine

PE PE PE

PE PE PE

PE PE PE

…

…

…

… … ……

Ping-Pong

Buffer

Ping-Pong

Buffer

Off-Chip

DDR Memory

Token Selector

Softmax

Output

Buffer

Control Logic

GELUToken Classifier

GumbleSoftmax

Token Packaging

(a) ViT hardware accelerator arch. supporting dynamic token selection.

N Tokens
Tihead 1

head Th

Th

head H

Input

D
i/H

Weight

To
Do

Di/H

out1

Output

outTh

outH

N TokensTi

To
Do

...
...

...
...

Attention?

Concat
Y

Sum

N

(b) GEMM loop tiling with one extra tiling from multi-head mechanism.

Fig. 9. Hardware architecture of ViT accelerator in HeatViT.

GELU), and then stored from the on-chip output buffer back to

the off-chip memory. Double buffering will be applied to over-

lap data transfer time with computation. The token selector for

pruning consists of FC layers and GELU activations, which

also exist in the original ViTs, and thus can be managed by the

same computation engine with negligible hardware overhead

(Section V-C). Note LayerNorm is executed on the CPU.

1) Loop Tiling in GEMM: We generalize loop tiling [59]

for GEMM engine to deal with relatively large ViT layers.

The concurrency of MAC operations in matrix multiplications

requires pipelining and loop unrolling, as well as array parti-

tioning of buffers. Fig. 9(b) shows detailed computation flow

in GEMM loop tiling for ViTs accommodating an additional

tiling dimension from multi-head mechanism. Given a ViT

layer j from ①∼⑥ in Table II that performs one or h matrix

multiplications with its Nj tokens after pruning, we represent

input size as Nj × Di, weight matrix size as Di × Do, and

output size as Nj × Do, where Di denotes Dch, Dattn, or

N in the MHSA module, and Dch or 4Dfc in the MLP

module. Tiling is applied to Di and Do dimensions, with

tiling sizes Ti and To, respectively. For attention computations

(Q × KT in ② and QKT × V in ③), both input and

output are split into h groups. A control signal is used to

indicate whether current computations are attention-related.

Results from ② and ③ are kept in h groups, while results

from other layers are accumulated. To improve throughput,

we optimize parallelism factors including Ti, To, and Th (an

additional tiling dimension for h heads). Therefore, we will

conduct comprehensive FPGA resource modeling for available

computing and on-chip memory resources.

2) Throughput and Resource Utilization Analysis: The in-

ference throughput (FPS) of ViT inference is determined by

the parallelism factors Ti, To and Th, which are bounded by

the number of available computation (mainly DSPs) and on-

chip memory (BRAMs) resources. The inference is executed

layer-by-layer, and the FPS can be inferred through dividing

the total number of clock cycles required to process all the ViT

layers with the working frequency on FPGAs. The throughput

and resource utilization analysis of ViT accelerators is sim-

ilar to that of CNN accelerators [44], except that the head

dimension in ViTs needs to be additionally considered for

parallelism. Since the layers in token selectors can be managed

by the same GEMM engine as for the existing ViT layers, this

analysis also applies to token selectors.

C. Token Selection Flow

Token selection contains token classification to determine

informative and non-informative tokens using GumbelSoftmax

with a threshold value (usually 0.5), and token packaging

to average the non-informative tokens to one that is then

consolidated into the informative tokens. The pruned token

(input) sequences with sparsity will be reorganized as dense

ones, eliminating hardware overhead for indexing. Fig. 10

describes the three steps to implement token selection in our

ViT hardware accelerator: (1) calculating the exponent for each

token xi and the summation Sum of all these exponents;

(2) dividing each exponent by the sum and classifying the

corresponding token as informative or not according to a

threshold; and (3) if the token is informative, concatenating

it to the informative token sequence, otherwise adding it

to a temporary token Tmp. Finally, Tmp is averaged and

concatenated to the informative token sequence.

D. Polynomial Approximation of Nonlinear Functions

ViT models contain nonlinear functions including GELU,

Softmax, and Sigmoid. (i) Some nonlinear operations in-

side those functions, e.g., exponential function exp(x) and

error function erf(x) consume large amounts of computing

resources when implemented with the built-in Xilinx Vitis

HLS math library [52], and thus incurring difficulty for hard-

ware acceleration (Table III). (ii) To apply more aggressive

quantization than CNN/RNN models, we need to add the

regularization effect on quantization error to these approximate

operations. Inspired by [27], we propose to explore algorithm-

level polynomial approximation to implement GELU and

Softmax functions, through which we introduce δ1 and δ2
(both <1) to control the regularization effect. Since the Sig-

moid function is only present inside token selectors (a small

number), we do not introduce a regularization effect for it.

Y

 is Informative

N

Non-Informative

 ?

For each token

Concat

Average ()

Concat

Fig. 10. Token selection flow.

The erf(x) function is approximated using a second-order

polynomial as,

Lerf(x) = sign(x) ·δ1 · [a(clip(|x|,max = −b)+b)2+1], (5)

with the constants a = −0.2888, b = −1.769 and δ1 < 1.

The GELU function is then expressed as

GELUaprx(x) =
x

2

[

1 + Lerf

(

x√
2

)]

, (6)

The Softmax function is approximated as

Softmaxaprx(xi) =
δ2 exp(x̃i)

∑N
j=1 exp(x̃j)

, (7)

with x̃i = xi − xmax, xmax = maxi(xi) and δ2 < 1.

This subtraction ensures the numerical stability during the

approximation calculation, and all inputs can be decomposed

as x̃ = (− ln 2)z+ p, where z is a non-negative integer and p
is a real number in (− ln 2, 0]. exp(x̃) can then be calculated

as exp(p) >> z, where z = ⌊−x̃/ ln 2⌋, p = x̃ + z ln 2, and

exp(p) is approximated as

exp(p) = 0.3585(p+ 1.353)2 + 0.344. (8)

Both δ1 and δ2 are regularization value (< 1) on quantization

error, which can be constant (δ1=0.5, δ2=0.5 in our case).

For the Sigmoid function, we adopt the piece-wise linear

approximation (PLAN) from [47].

Table III compares the resource utilization for these non-

linear functions between the original implementations using

the built-in Xilinx Vitis HLS math library and our proposed

implementations. Our methods are more resource efficient than

those using the HLS math library, with 1.5×∼572× resource

improvement. Furthermore, for each model, we try multiple

sets of token pruning ratios and there is no accuracy drops

between the approximate model and the original one.

TABLE III. Resource utilization for nonlinear functions between original
(Orig.) and approximation (Aprx.) implementations.

GELU Sigmoid Softmax
Aprx. Orig. Aprx. Orig. Aprx. Orig.

FF 334 191116 1015 2334 1939 2464
LUT 438 160909 1512 2333 2364 2476
DSP 4 139 0 3 2 3

x

δA

δx

The derivative of Aaprx

The derivative of Aorig

Fig. 11. Regularization effect on quantization error of approximated GELU.

E. Regularization Effect on Quantization Error

GELU and Softmax functions are abundant in transformer

blocks, which inspires us to introduce the regularization effect

of quantization error into the approximated functions for more

aggressive quantization (e.g., 8-bit fixed-point quantization in

our case). Here we proof that our regularization works.

GELU for activation data is: A=GELU(x). Quantization

on x can be considered as adding a small error ∆e to x. We

examine the influence of ∆e on output A by computing the

GELU derivative ∂A
∂x

. Assuming that A changes by ∆e>0, we

can obtain the absolute error of output A:

Errorgelu(x) =
∂A

∂x
·∆e. (9)

Since
∂Aaprx

∂x
is always < 1 (Fig. 11) for GELU, the total

quantization error is reduced after approximation.

Softmax for activation data is: Ai=
δ2 exp(x̃i)

∑

N
j=1 exp(x̃j)

. As a

similar process as GELU, we compute the Softmaxaprx

derivative ∂A
∂x

:

∂A

∂x
=











∂
δ2 exp(x̃i)

∑N
j=1 exp(x̃j)

∂x̃j
= δ2 ·Ai · (1−Ai), i = j

∂
δ2 exp(x̃i)

∑N
j=1 exp(x̃j)

∂x̃i
= −δ2 ·Ai ·Aj , i ̸= j

. (10)

Assuming A0 changes by ∆e0, the absolute error of all outputs

with Equation (10) is:

Errorsoftmax = |δ2∆e0A0(1−A0)|+
N−1
∑

i=1

| − δ2∆e0A0Ai|

= 2δ2|∆e0| A0(1−A0) < ∆e0,
(11)

since 0 ≤ A0 ≤ 1, 2A0(1 − A0) is always smaller than 1

and 2δ2A0(1− A0) is further reduced (δ2 < 1). So, the total

quantization error after Softmax approximation is < ∆e0.

VI. LATENCY-AWARE MULTI-STAGE TRAINING

STRATEGY

Our training strategy is as follows: (1) We leverage the same

latency-sparsity loss concept in [28] to take into account the

latency characteristics of the hardware side during the training

process. (2) We design a block-to-stage training pipeline to

learn the number of token selectors to insert in the backbone

ViT, their locations and pruning rates. Different from the

brute-force token selector insertion in [28] (i.e., insert a token

selector after every ViT block), we reduce the number of token

selectors to insert and reduce the training epochs. Note that (i)

the block-to-stage training is based on token pruning, and 8-bit

quantization on weight and activation will lead to 2×∼2.4×
speedup without accuracy drops; and (ii) our training strategy

uses finetuning for each selector, and the training effort of our

pipeline is equivalent to the effort of training-from-scratch of

the backbone ViT.

Relationship between Latency and Keep Ratio. We build

the latency-sparsity table for the target FPGA as Table IV. In

this paper, we measure the actual numbers from our FPGA

implementation. Each time we only input the KeepRatio
tokens into one ViT block with a selector and test the latency.

TABLE IV. Tested latency of one DeiT block with different token keeping
ratios on ZCU102 FPGA.

Keep Ratio 1.0 0.9 0.8 0.7 0.6 0.5

Latency DeiT-T 1.034 0.945 0.881 0.764 0.702 0.636
(ms) DeiT-S 3.161 2.837 2.565 2.255 1.973 1.682

Latency-Sparsity Loss. ℓratio is built as follows:

ti(ρi) = latency sparsity table(1− ρi) (12)

L
∑

i=1

ti(ρi) ≤ Ltarget (13)

ℓratio =
L
∑

i=1

(1− ρi −
1

B

B
∑

b=1

N
∑

j=1

M i,b
j)2 (14)

where Eq. (12) shows the look-up-table function (in Table IV)

for the latency ti of Layeri, under the pruning rate ρi. Eq. (13)

constraints the inference speed of the whole model satisfies the

target hardware latency requirement (only for the pruning part,

and the subsequent 8-bit quantization can lead to 1.8× ∼ 2.1×
speedups). Based on Eq. (12) and (13), we can derive proper

ρi and then feed ρi to Eq. (14) to calculate the latency-sparsity

loss ℓratio that participates in the back propagation process. In

Eq. (14), M denotes the token keep decision, N denotes the

number of tokens, and B denotes the batch size. The average

pruning rate of all images in a batch is set as the convergence

target in Eq. (14).

Block-to-Stage Training. Algorithm 1 presents our training

strategy to find the optimal accuracy and pruning rate trade-

offs, a proper number of token selectors and their locations

Algorithm 1: Latency-Aware Multi-Stage Training

with Image-Adaptive Token Pruning

Input : ViT blocks {Layeri}
L
i=1;

Accuracy drop constraint adrop;
Initial pruning rate ρinit;
Target latency Ltarget.

Output : Token selectors with pruning rates ρs1 , ..., ρsk .
// Step1: Insert a token selector between each two

adjacent blocks and adjust the pruning rate ρi.

1 foreach i ∈ [L,L− 1, . . . , 4] do
2 ρi = ρinit;

3 a, t← Evaluate({Layerj(ρj)}
L
j=1);

4 // a and t represent accuracy drop and latency of

the whole model.

5 while a < adrop do
6 if t < Ltarget then
7 Return the finalized token pruned ViT;
8 else
9 Decrease ti;

10 ρi = latency sparsity table(ti);

11 a, t← Evaluate({Layerj(ρj)}
L
j=1);

// Step2: Combine sequential selectors with similar

pruning rates as one stage, keep the first

selector and retrain ViT.

12 ρs1 , ..., ρsk ← Combine ρ1, ..., ρL;

13 Retrain ViT[Layer1(ρ1), ..,Layeri(ρs1), ..,LayerL(ρsk)];
14 if t < Ltarget then
15 Go to the quantization process;
16 else
17 Increase adrop or Ltarget;
18 Initialize the model and selectors from the end of the

last Step1;
19 Go to Step 1 and repeat the training process.

to insert, based on the token redundancy (Fig. 6). Inspired by

SPViT [28], we adopt finetuning to insert the token selector

from later blocks to front ones progressively. Each time when

we insert a token selector, we train the current selector and

fine-tune the other parts by decreasing the latency of the

current block until accuracy drops noticeably (> 0.5%).

Our training algorithm differs from SPViT in three ways.

First, since token pruning in the front three ViT blocks leads to

more severe accuracy drops, we do not insert token selectors

for these three blocks. Second, to ensure that the number

of token selectors is minimal, once the pruned model has

satisfied the target latency, we end the training and finalize

the pruned model. After the progressive training, we combine

the neighbor token selectors with a similar pruning rate into

one. Third, if the final latency of the whole model is lower

than the target latency, we move to the quantization stage;

otherwise, we will relax the accuracy or latency constraints

and repeat the training.

VII. EXPERIMENTAL RESULTS

A. Experimental Setup

Our experiments include adaptive token pruning and hard-

ware implementation for ViTs with different pruning settings.

Note that after token pruning we will apply 8-bit quantization

on weight and activation, and all the quantization processes

do not lose accuracy, except for 1.2% on DeiT-T.

1) Training Setup for ViT Pruning: The baseline models

with 32-bit floating-point precision are from the TorchVision

library [12]. Our experiments are conducted on the ImageNet-

1K dataset with various transformers backbones, including

DeiT-T, DeiT-S, DeiT-B, LV-ViT-S, and LV-ViT-M, as shown

in Table V. We follow the training settings in DeiT. Training

on one selector insertion costs 30 epochs on 8 NVIDIA A100-

SXM4-40GB GPUs. The training effort on block-to-stage

training is listed in Table V which illustrates that the training

effort of the entire block-to-stage pipeline is equivalent to the

train-from-scratch of the backbone ViT. Through our training

pipeline, we observe that 3∼4 token selectors are suitable for

most of the models.

TABLE V. Training effort for ViTs with different backbones.

Model #Heads
Embed.

Dim.
Depth

#Epochs for Training
Baseline Ours

DeiT-T 3 192 12 300 270

DeiT-S 6 384 12 300 270

DeiT-B 12 768 12 300 270

LV-ViT-S 6 384 16 400 390

LV-ViT-M 8 512 20 400 390

2) Hardware Platform: Our hardware accelerator designs

are evaluated on the Xilinx ZCU102 platform [53] with

Zynq UltraScale+ MPSoC, containing 2520 DSPs, 912 BRAM

blocks, and 274.1k LUTs. We use Vitis HLS and Vitis 2020.1

tool [52] to generate, synthesis, and implement FPGA accel-

erator design, with 150 MHz operating frequency. The data in

all models are represented in an 8-bit fixed-point format. The

hardware design for HeatViT is built based on state-of-the-art

FPGA design for ViT [32] with the GEMM engine described

in Section V-B1. Additionally, the HeatViT hardware design

incorporates a token selector and polynomial approximation

of nonlinear functions explained in Section V-C and V-D.

B. Accuracy and GMACs Results

Our models outperform other pruned models in terms of

accuracy-computation trade-offs, as shown in Fig. 2. Our

HeatViT reduces the computation cost by 16.1%∼42.6% for

various backbones with negligible ≤ 0.75% accuracy degra-

dation, which surpasses existing methods on both accuracy

and efficiency. Also, we train more DeiT models with the

embedding dimension of 160/256/288/320 as our baselines.

The accuracy improvement of HeatViT is 4.05% (72.15% vs.

68.1% with 0.9 GMACs) over DeiT-T-160, 4.74% (76.94% vs.

TABLE VI. Results on COCO object detection and instance segmentation.
FLOPs are computed on 1280 × 800 image, and backbone FLOPs are

reported. APbox denotes box mAP and APmask denotes mask mAP, both
of which are common metrics for the accuracy of object detection.

Backbone GFLOPs APbox (%) APmask (%)

Swin-T 267 45.9 41.4

HeatSwin-T 227 45.6 41

Swin-S 359 48.5 43.3

HeatSwin-S 306 48.3 42.9

72.20% with 1.3 GMACs) over DeiT-T, and 0.85% (79.38%

vs. 78.53% with 2.64 GMACs) over DeiT-S-288.

We further evaluate our adaptive pruning method on object

detection and instance segmentation. We conduct our experi-

ments on the COCO 2017 dataset [34] with the widely used

Mask-RCNN [20]. The Swin-transformer [4] is used as the

backbone following the training receipt on semantic segmen-

tation. As shown in Table VI, our HeatViT model is capable

of the object detection and instance segmentation tasks, with

only a negligible degradation on the final performance after

reducing 15% of the FLOPs. The results also indicate that our

technique accommodates well to much larger image resolution

for the detection task.

C. Hardware Results

Multiple hardware accelerators are designed according to

the number of heads in a specific ViT. As shown in Table VII,

with the same total degree of computation parallelism, the

resource utilization and power of DeiT-S and LV-ViT-S designs

are higher than those of DeiT-T ones, since DeiT-T has 3 heads

while DeiT-S and LV-ViT-S all have 6 heads, requiring more

BRAM space to accommodate data of all the attention heads.

This trend is similar for DeiT-B (12 heads).

Compared with the baseline hardware designs (16-bit and

no token pruning), the accelerators with token selector in

HeatViT framework utilize 9% more DSPs and 8% more LUTs

for DeiT-T, 8% more DSPs and 5% more LUTs for DeiT-S

and LV-ViT-S, 11% more DSPs and 6% more LUTs for DeiT-

B. This demonstrates that the control flow to support adap-

tive token pruning introduces negligible resource utilization

overhead. After the token pruning, the frame rate increases

from 78.3 FPS to 142.7 FPS (1.82×) for DeiT-T, from 25.9

FPS to 57.6 FPS (2.22×) for DeiT-S, from 19.4 FPS to

46.9 FPS (2.42×) for LV-ViT-S, and from 11.2 FPS to 28.9

FPS (2.58×) for DeiT-B. Furthermore, we deploy the 8-bit

fixed-point quantization on models to achieve another 1.90×
speedup, ending up the final speedup with 3.46× (271.2 FPS)

for DeiT-T, 4.22× (109.2 FPS) for DeiT-S, 4.59× (89.1 FPS)

for LV-ViT-S, and 4.89× (54.8 FPS) for the DeiT-B.

Fig. 12. Comparison of energy efficiency between HeatViT and TX2
CPU/GPU with the improvement breakdown of different techniques.

TABLE VII. Hardware results under different pruning settings for various ViTs on ImageNet dataset.

Design Model
Keep Ratio #GMACs

Bitwidth
Resource Utilization Power FPS Energy Effi.

(Stage 1/2/3) (Pruning Rate) kLUT kFF BRAM36 DSP (W) (Accl. Rate) (FPS/W)

Baseline

DeiT-T 1/1/1 1.30 (1×) 16
115.6
(42%)

101.5
(19%)

288.5
(32%)

1739
(69%)

8.012 78.3 (1×) 9.77

DeiT-S 1/1/1 4.60 (1×) 16 130.3
(48%)

102.8
(19%)

492.5
(54%)

1754
(70%)

10.095
25.9 (1×) 2.57

LV-ViT-S 1/1/1 6.55 (1×) 16 19.4 (1×) 1.92

DeiT-B 1/1/1 17.60 (1×) 16
144.5
(53%)

103.9
(19%)

664.3
(73%)

1786
(71%)

11.041 11.2 (1×) 1.01

HeatViT
with Token

Selector

DeiT-T
0.85/0.79/0.51 1.00 (1.30×) 8

137.6
(50%)

126
(23%)

355.5
(39%)

1968
(78%)

9.453
183.4 (2.34×) 19.4

0.76/0.70/0.41 0.90 (1.44×) 8 198.8 (2.54×) 21.0
0.70/0.39/0.21 0.75 (1.74×) 8 271.2 (3.46×) 28.7

DeiT-S
0.90/0.84/0.61 3.86 (1.19×) 8

145
(53%)

100.4
(18%)

338.5
(37%)

1955
(78%)

10.697

57.0 (2.20×) 5.33
0.70/0.39/0.21 2.64 (1.74×) 8 97.1 (3.75×) 9.08
0.42/0.21/0.13 2.02 (2.27×) 8 109.2 (4.22×) 10.2

LV-ViT-S
0.90/0.84/0.61 5.49 (1.19×) 8 62.8 (3.24×) 5.87
0.70/0.39/0.21 3.77 (1.74×) 8 72.8 (3.75×) 6.81
0.42/0.21/0.13 2.88 (2.27×) 8 89.1 (4.59×) 8.33

DeiT-B
0.90/0.84/0.61 14.79 (1.19×) 8

161.4
(59%)

101.8
(19%)

528.6
(58%)

2066
(82%)

11.352
36.1 (3.22×) 3.18

0.70/0.39/0.21 10.11 (1.74×) 8 43.3 (3.87×) 3.81
0.42/0.21/0.13 7.75 (2.27×) 8 54.8 (4.89×) 4.83

1) Comparisons with CPUs and GPUs: We also test DeiT-

T, DeiT-S, LV-ViT-S, and DeiT-B on Jetson TX2 with 4-core

ARM CPU and NVIDIA Pascal GPU, and compared them

with our FPGA (ZCU102) implementation. Since MSA and

FFN computations are reduced by token pruning, CPUs and

GPUs can also be accelerated. And TX2 CPU/GPU does not

support low-bit computation, so we only present the full pre-

cision model for them with adaptive token pruning as shown

in Fig. 12. All the results are normalized against the original

model on TX2 CPU without token pruning. First, our final

FPGA implementation achieves the highest 1827× ∼ 3013×
speedup with 9.453W, 10.697W, and 11.352W power for

different designs. While the baseline FPGA design [32] (16-bit

and no token pruning) achieves 373×∼870× speedup, token

pruning can bring 1.82×∼2.58× speedup and ambitious 8-bit

quantization can contribute another 1.90× speedup. Second,

with token pruning, TX2 GPU achieves 647×∼814× speedup

with 12W power and TX2 CPU achieves 1.78×∼2.67×
speedup with 4W power. For the energy efficiency, our FPGA

implementation achieves 4.8 FPS/W∼28.7 FPS/W, which

is 242.6×∼719.0× higher than TX2 CPU and 3.0×∼4.7×
higher than TX2 GPU (with token pruning).

VIII. CONCLUSION

In this paper, we have proposed a hardware-efficient image-

adaptive token pruning framework called HeatViT for ViT

inference acceleration on resource-constraint edge devices. To

improve the pruning rate and accuracy, we first adopted an

effective and hardware-efficient token selector that can more

accurately classify tokens and consolidates non-informative

tokens. We also implemented a proof-of-concept ViT hard-

ware accelerator on FPGAs by heavily reusing the hardware

components built for the backbone ViT to support the adaptive

token pruning module. Besides, we propose a polynomial

approximation of nonlinear functions for ambitious (8-bit)

quantization and efficient hardware implementation. Finally,

to meet both the target inference latency and model accuracy,

we applied a latency-aware multi-stage training strategy to

learn the number of token selectors to insert into the backbone

ViT, and the location and pruning rate of each token selector.

Experimental results show that HeatViT achieves superior

pruning rate and accuracy compared to state-of-the-art pruning

studies while incurring a trivial amount of hardware resource

overhead.

ACKNOWLEDGEMENTS

This work is partly supported by NSF CCF-1901378;

NSERC Discovery Grant RGPIN-2019-04613, DGECR-2019-

00120, Alliance Grant ALLRP-552042-2020; CFI John R.

Evans Leaders Fund.

REFERENCES

[1] A. F. Agarap, ªDeep learning using rectified linear units (relu),º arXiv

preprint arXiv:1803.08375, 2018.

[2] D. Bahdanau, K. H. Cho, and Y. Bengio, ªNeural machine translation
by jointly learning to align and translate,º in International Conference

on Learning Representations (ICLR), 2015.

[3] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler,
J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei, ªLanguage models are few-shot learners,º in Advances

in Neural Information Processing Systems (NeurIPS), vol. 33, 2020, pp.
1877±1901.

[4] H. Cao, Y. Wang, J. Chen, D. Jiang, X. Zhang, Q. Tian, and M. Wang,
ªSwin-unet: Unet-like pure transformer for medical image segmenta-
tion,º arXiv preprint arXiv:2105.05537, 2021.

[5] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, ªEnd-to-end object detection with transformers,º in
European Conference on Computer Vision (ECCV). Springer, 2020,
pp. 213±229.

[6] B. Chen, P. Li, C. Li, B. Li, L. Bai, C. Lin, M. Sun, J. Yan, and
W. Ouyang, ªGlit: Neural architecture search for global and local image
transformer,º in Proceedings of the IEEE/CVF International Conference

on Computer Vision, 2021, pp. 12±21.

[7] H. Chen, Y. Wang, T. Guo, C. Xu, Y. Deng, Z. Liu, S. Ma, C. Xu,
C. Xu, and W. Gao, ªPre-trained image processing transformer,º in
Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), 2021, pp. 12 299±12 310.

[8] M. Chen, H. Peng, J. Fu, and H. Ling, ªAutoformer: Searching
transformers for visual recognition,º in Proceedings of the IEEE/CVF

International Conference on Computer Vision (ICCV), 2021, pp. 12 270±
12 280.

[9] M. Chen, K. Wu, B. Ni, H. Peng, B. Liu, J. Fu, H. Chao, and H. Ling,
ªSearching the search space of vision transformer,º in Advances in

Neural Information Processing Systems (NeurIPS), vol. 34, 2021, pp.
8714±8726.

[10] T. Chen, Y. Cheng, Z. Gan, L. Yuan, L. Zhang, and Z. Wang, ªChasing
sparsity in vision transformers: An end-to-end exploration,º in Advances

in Neural Information Processing Systems, 2021.

[11] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, ªAn image is worth 16x16 words: Trans-
formers for image recognition at scale,º in International Conference on

Learning Representations (ICLR), 2021.

[12] Facebook, ªTorchvision,º 2021, last accessed Sept 12, 2021. [Online].
Available: https://pytorch.org/vision/stable/models.html

[13] M. Fayyaz, S. A. Kouhpayegani, F. R. Jafari, E. Sommerlade, H. R. V.
Joze, H. Pirsiavash, and J. Gall, ªAts: Adaptive token sampling for
efficient vision transformers,º arXiv preprint arXiv:2111.15667, 2021.

[14] S. Fox, J. Faraone, D. Boland, K. Vissers, and P. H. Leong, ªTraining
deep neural networks in low-precision with high accuracy using fpgas,º
in 2019 International Conference on Field-Programmable Technology

(ICFPT), 2019, pp. 1±9.

[15] S. Fox, J. Faraone, D. Boland, K. Vissers, and P. H. Leong, ªTraining
deep neural networks in low-precision with high accuracy using fpgas,º
in 2019 International Conference on Field-Programmable Technology

(ICFPT). IEEE, 2019, pp. 1±9.

[16] C. Gong, D. Wang, M. Li, X. Chen, Z. Yan, Y. Tian, and V. Chandra,
ªNasvit: Neural architecture search for efficient vision transformers with
gradient conflict aware supernet training,º in International Conference

on Learning Representations (ICLR), 2021.

[17] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[18] Y. Guo, Y. Zheng, M. Tan, Q. Chen, J. Chen, P. Zhao, and J. Huang,
ªNat: Neural architecture transformer for accurate and compact ar-
chitectures,º in Advances in Neural Information Processing Systems

(NeurIPS), vol. 32, 2019.

[19] K. Han, A. Xiao, E. Wu, J. Guo, C. Xu, and Y. Wang, ªTransformer
in transformer,º in Advances in Neural Information Processing Systems,
2021.

[20] K. He, G. Gkioxari, P. DollÂar, and R. Girshick, ªMask r-cnn,º in
Proceedings of the IEEE international conference on computer vision,
2017, pp. 2961±2969.

[21] D. Hendrycks and K. Gimpel, ªGaussian error linear units (gelus),º arXiv

preprint arXiv:1606.08415, 2016.

[22] B. Heo, S. Yun, D. Han, S. Chun, J. Choe, and S. J. Oh, ªRethink-
ing spatial dimensions of vision transformers,º in Proceedings of the

IEEE/CVF International Conference on Computer Vision (ICCV), 2021.

[23] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang,
Y. Zhu, R. Pang, V. Vasudevan et al., ªSearching for mobilenetv3,º in
Proceedings of the IEEE/CVF International Conference on Computer

Vision, 2019, pp. 1314±1324.

[24] J. Hu, L. Shen, and G. Sun, ªSqueeze-and-excitation networks,º in
Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), 2018, pp. 7132±7141.

[25] Z. Jiang, Q. Hou, L. Yuan, D. Zhou, Y. Shi, X. Jin, A. Wang, and
J. Feng, ªAll tokens matter: Token labeling for training better vision
transformers,º arXiv preprint arXiv:2104.10858, 2021.

[26] J. D. M.-W. C. Kenton and L. K. Toutanova, ªBert: Pre-training of deep
bidirectional transformers for language understanding,º in Proceedings

of NAACL-HLT, 2019, pp. 4171±4186.

[27] S. Kim, A. Gholami, Z. Yao, M. W. Mahoney, and K. Keutzer, ªI-bert:
Integer-only bert quantization,º arXiv preprint arXiv:2101.01321, 2021.

[28] Z. Kong, P. Dong, X. Ma, X. Meng, W. Niu, M. Sun, X. Shen, G. Yuan,
B. Ren, H. Tang, M. Qin, and Y. Wang, ªSpvit: Enabling faster vision
transformers via latency-aware soft token pruning,º in Computer Vision

± ECCV 2022: 17th European Conference, Tel Aviv, Israel, October

23±27, 2022, Proceedings, Part XI, 2022, p. 620±640.

[29] S. Kornblith, M. Norouzi, H. Lee, and G. Hinton, ªSimilarity of
neural network representations revisited,º in International Conference

on Machine Learning (ICML). PMLR, 2019, pp. 3519±3529.

[30] B. Li, S. Pandey, H. Fang, Y. Lyv, J. Li, J. Chen, M. Xie, L. Wan, H. Liu,
and C. Ding, ªFtrans: energy-efficient acceleration of transformers using
fpga,º in Proceedings of the ACM/IEEE International Symposium on

Low Power Electronics and Design, 2020, pp. 175±180.

[31] C. Li, T. Tang, G. Wang, J. Peng, B. Wang, X. Liang, and X. Chang,
ªBossnas: Exploring hybrid cnn-transformers with block-wisely self-
supervised neural architecture search,º in Proceedings of the IEEE/CVF

International Conference on Computer Vision (ICCV), 2021, pp. 12 281±
12 291.

[32] Z. Li, M. Sun, A. Lu, H. Ma, G. Yuan, Y. Xie, H. Tang, Y. Li, M. Leeser,
Z. Wang, X. Lin, and Z. Fang, ªAuto-vit-acc: An fpga-aware automatic
acceleration framework for vision transformer with mixed-scheme quan-
tization,º in International Conference on Field Programmable Logic and

Applications. Springer, 2022, pp. 289±300.

[33] Y. Liang, C. GE, Z. Tong, Y. Song, J. Wang, and P. Xie,
ªEVit: Expediting vision transformers via token reorganizations,º in
International Conference on Learning Representations, 2022. [Online].
Available: https://openreview.net/forum?id=BjyvwnXXVn

[34] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. DollÂar, and C. L. Zitnick, ªMicrosoft coco: Common objects in
context,º in European conference on computer vision. Springer, 2014,
pp. 740±755.

[35] Z. Liu, Y. Wang, K. Han, W. Zhang, S. Ma, and W. Gao, ªPost-training
quantization for vision transformer,º in Advances in Neural Information

Processing Systems (NeurIPS), vol. 34, 2021, pp. 28 092±28 103.

[36] M. Mao, R. Zhang, H. Zheng, P. Gao, T. Ma, Y. Peng, E. Ding, and
S. Han, ªDual-stream network for visual recognition,º in Advances in

Neural Information Processing Systems, 2021.

[37] T. M. Mitchell, ªMachine learning and data mining,º Communications

of the ACM, vol. 42, no. 11, pp. 30±36, 1999.

[38] B. Pan, Y. Jiang, R. Panda, Z. Wang, R. Feris, and A. Oliva, ªIa-red2:
Interpretability-aware redundancy reduction for vision transformers,º in
Advances in Neural Information Processing Systems, 2021.

[39] A. Parikh, O. TÈackstrÈom, D. Das, and J. Uszkoreit, ªA decomposable
attention model for natural language inference,º in Proceedings of the

2016 Conference on Empirical Methods in Natural Language Process-

ing, 2016, pp. 2249±2255.

[40] G. Prato, E. Charlaix, and M. Rezagholizadeh, ªFully quantized trans-
former for machine translation,º in Findings of the Association for

Computational Linguistics: EMNLP 2020, 2020, pp. 1±14.

[41] P. Qi, Y. Song, H. Peng, S. Huang, Q. Zhuge, and E. H.-M. Sha,
ªAccommodating transformer onto fpga: Coupling the balanced model
compression and fpga-implementation optimization,º in Proceedings of

the 2021 on Great Lakes Symposium on VLSI, 2021, pp. 163±168.

[42] Y. Rao, W. Zhao, B. Liu, J. Lu, J. Zhou, and C.-J. Hsieh, ªDynamicvit:
Efficient vision transformers with dynamic token sparsification,º in
Advances in Neural Information Processing Systems, 2021.

[43] D. So, Q. Le, and C. Liang, ªThe evolved transformer,º in International

Conference on Machine Learning (ICML). PMLR, 2019, pp. 5877±
5886.

[44] M. Sun, Z. Li, A. Lu, Y. Li, S.-E. Chang, X. Ma, X. Lin, and Z. Fang,
ªFilm-qnn: Efficient fpga acceleration of deep neural networks with
intra-layer, mixed-precision quantization,º in Proceedings of the 2022

ACM/SIGDA International Symposium on Field-Programmable Gate

Arrays (FPGA), 2022, p. 134±145.

[45] Y. Tang, K. Han, Y. Wang, C. Xu, J. Guo, C. Xu, and D. Tao, ªPatch
slimming for efficient vision transformers,º 2021.

[46] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and
H. JÂegou, ªTraining data-efficient image transformers & distillation
through attention,º in International Conference on Machine Learning,
2021, pp. 10 347±10 357.

[47] I. Tsmots, O. Skorokhoda, and V. Rabyk, ªHardware implementation of
sigmoid activation functions using fpga,º in 2019 IEEE 15th Interna-

tional Conference on the Experience of Designing and Application of

CAD Systems (CADSM), 2019, pp. 34±38.

[48] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
è. Kaiser, and I. Polosukhin, ªAttention is all you need,º in Advances

in Neural Information Processing Systems, 2017, pp. 5998±6008.

[49] H. Wang, Z. Wu, Z. Liu, H. Cai, L. Zhu, C. Gan, and S. Han, ªHat:
Hardware-aware transformers for efficient natural language processing,º
in Proceedings of the 58th Annual Meeting of the Association for

Computational Linguistics (ACL), 2020, pp. 7675±7688.

[50] W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu, P. Luo,
and L. Shao, ªPyramid vision transformer: A versatile backbone for

dense prediction without convolutions,º in Proceedings of the IEEE/CVF

International Conference on Computer Vision (ICCV), 2021.
[51] H. Wu, B. Xiao, N. Codella, M. Liu, X. Dai, L. Yuan, and L. Zhang,

ªCvt: Introducing convolutions to vision transformers,º arXiv preprint

arXiv:2103.15808, 2021.
[52] Xilinx, ªVitis unified software platform,º 2022, last accessed April

21, 2022. [Online]. Available: https://www.xilinx.com/products/design-
tools/vitis/vitis-platform.html#development

[53] Xilinx, ªZcu102 evaluation board - user guide,º
2022, last accessed April 21, 2022. [Online]. Avail-
able: https://www.xilinx.com/content/dam/xilinx/support/documents/
boards and kits/zcu102/ug1182-zcu102-eval-bd.pdf

[54] Y. Xu, Z. Zhang, M. Zhang, K. Sheng, K. Li, W. Dong, L. Zhang,
C. Xu, and X. Sun, ªEvo-vit: Slow-fast token evolution for dynamic
vision transformer,º arXiv preprint arXiv:2108.01390, 2021.

[55] C. Yang, Z. Wu, B. Zhou, and S. Lin, ªInstance localization for self-
supervised detection pretraining,º in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), 2021,
pp. 3987±3996.

[56] H. Yu and J. Wu, ªA unified pruning framework for vision transformers,º
arXiv preprint arXiv:2111.15127, 2021.

[57] S. Yu, T. Chen, J. Shen, H. Yuan, J. Tan, S. Yang, J. Liu, and Z. Wang,
ªUnified visual transformer compression,º in International Conference

on Learning Representations, 2022.
[58] L. Yuan, Y. Chen, T. Wang, W. Yu, Y. Shi, Z.-H. Jiang, F. E. Tay, J. Feng,

and S. Yan, ªTokens-to-token vit: Training vision transformers from
scratch on imagenet,º in Proceedings of the IEEE/CVF International

Conference on Computer Vision, 2021, pp. 558±567.
[59] C. Zhang, G. Sun, Z. Fang, P. Zhou, P. Pan, and J. Cong, ªCaffeine:

Toward uniformed representation and acceleration for deep convolutional
neural networks,º IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 38, no. 11, pp. 2072±2085, 2018.
[60] X. Zhang, Y. Wu, P. Zhou, X. Tang, and J. Hu, ªAlgorithm-hardware

co-design of attention mechanism on fpga devices,º ACM Transactions

on Embedded Computing Systems (TECS), vol. 20, no. 5s, pp. 1±24,
2021.

[61] Z. Zhao, Y. Liu, L. Chen, Q. Liu, R. Ma, and K. Yu, ªAn investigation
on different underlying quantization schemes for pre-trained language
models,º in CCF International Conference on Natural Language Pro-

cessing and Chinese Computing. Springer, 2020, pp. 359±371.
[62] S. Zheng, J. Lu, H. Zhao, X. Zhu, Z. Luo, Y. Wang, Y. Fu, J. Feng,

T. Xiang, P. H. Torr et al., ªRethinking semantic segmentation from a
sequence-to-sequence perspective with transformers,º in Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), 2021, pp. 6881±6890.
[63] D. Zhou, Y. Shi, B. Kang, W. Yu, Z. Jiang, Y. Li, X. Jin, Q. Hou, and

J. Feng, ªRefiner: Refining self-attention for vision transformers,º 2021.
[64] L. Zhou, Y. Zhou, J. J. Corso, R. Socher, and C. Xiong, ªEnd-to-end

dense video captioning with masked transformer,º in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2018, pp. 8739±8748.

[65] M. Zhu, K. Han, Y. Tang, and Y. Wang, ªVisual transformer pruning,º
in KDD 2021 Workshop on Model Mining, 2021.

[66] X. Zhu, W. Su, L. Lu, B. Li, X. Wang, and J. Dai, ªDeformable detr: De-
formable transformers for end-to-end object detection,º in International

Conference on Learning Representations (ICLR), 2020.

