HeatViT: Hardware-Efficient Adaptive Token
Pruning for Vision Transformers

Peiyan Dong!, Mengshu Sun!, Alec Lu?,

Xin Meng', Zhengang Li',

Yanyue Xie!,
Xue Lin',

Kenneth Liu?, Zhenglun Kong!,

Zhenman Fang?, Yanzhi Wang'

"Northeastern University, 2Simon Fraser University
{dong.pe, sun.meng, xie.yany, kong.zhe, 1li.zhen, xue.lin, yanz.wang}@northeastern.edu,
{alec_1lu, ksl24, zhenman}@sfu.ca, 1601214372@pku.edu.cn

Abstract—While vision transformers (ViTs) have continuously
achieved new milestones in the field of computer vision, their
sophisticated network architectures with high computation and
memory costs have impeded their deployment on resource-limited
edge devices. In this paper, we propose a hardware-efficient
image-adaptive token pruning framework called HeatViT for
efficient yet accurate ViT acceleration on embedded FPGAs.
Based on the inherent computational patterns in ViTs, we
first adopt an effective, hardware-efficient, and learnable
head-evaluation token selector, which can be progressively
inserted before transformer blocks to dynamically identify
and consolidate the non-informative tokens from input images.
Moreover, we implement the token selector on hardware by
adding miniature control logic to heavily reuse existing hardware
components built for the backbone ViT. To improve the hardware
efficiency, we further employ 8-bit fixed-point quantization and
propose polynomial approximations with regularization effect on
quantization error for the frequently used nonlinear functions
in ViTs. Compared to existing ViT pruning studies, under the
similar computation cost, HeatViT can achieve 0.7% ~8.9%
higher accuracy; while under the similar model accuracy,
HeatViT can achieve more than 28.4%~65.3% computation
reduction, for various widely used ViTs, including DeiT-T,
DeiT-S, DeiT-B, LV-ViT-S, and LV-ViT-M, on the ImageNet
dataset. Compared to the baseline hardware accelerator, our
implementations of HeatViT on the Xilinx ZCU102 FPGA
achieve 3.46x~4.89x speedup with a trivial resource utilization
overhead of 8% ~11% more DSPs and 5% ~8% more LUTs.

Keywords- Vision Transformer; FPGA Accelerator; Hardware
and Software Co-design; Data-level Sparsity.

I. INTRODUCTION

Transformers [2], [39] have recently made an attractive
resurgence in the form of Vision Transformers (ViTs) [11],
showing strong versatility in NLP [3], [26], [48], computer
vision (e.g., image classification [11], object detection [5],
[66], semantic segmentation [62], image processing [7], and
video understanding [64]), and complex scenarios with multi-
modal data. Furthermore, ViTs can be used as effective back-
bone networks [4], [11], [19], [50] with superior transferability
to downstream tasks through minor fine-tunings. Seemingly,
ViTs and transformers have great potential to unify diverse
application domains through common architectures and tackle
the reliance on scarce domain data, ultimately addressing the
two fundamental problems in deep learning: (i) strong reliance
on domain data, and (ii) constant model improvements to serve

evolving needs. ViTs and transformers are largely considered
as one of the future dominant deep learning techniques.

However, to fully unleash advantages of transformer archi-
tectures, we need to address the following challenges before
ViTs and transformers become an indispensable staple in fu-
ture Al computing. (i) Although the self-attention mechanism
is a key defining feature of transformer architectures, a well-
known concern is its quadratic time and memory complexity
with respect to the number of input tokens. This hinders
scalability in many settings, let alone deployment on resource-
constrained edge devices. (ii) Majority of existing works
on efficient ViT and transformer techniques followed what
has been done for Convolutional Neural Networks (CNNs)
by using conventional weight pruning [10], [56], [57], [65],
quantization [35], [40], [61], and compact architecture design
[6], [8], [9], [16], [18], [31], [43], [49], [51], with limited ac-
curacy and speed performance. (iii) In the efforts of exploring
token removal to address the quadratic complexity, the static
approaches [10], [13], [33], [42], [45] remove tokens with a
fixed ratio in an input-agnostic manner, ignoring input sample
dependent redundancy; and most of existing image-adaptive
approaches [38], [54], [57] simply discard non-informative
tokens and do not fully explore token-level redundancies from
different attention heads. Both approaches achieve a relatively
low pruning rate (to preserve accuracy) or an undermined ac-
curacy (at a high pruning rate). Moreover, none of these studies
support efficient hardware implementation on edge devices.
(iv) Transformer architectures tend to use more hardware-
unfriendly computations, e.g., more nonlinear operations than
CNNs, to improve accuracy. Therefore, we need to address
the low hardware efficiency issue of such computations, while
enjoying the additional optimization dimension provided by
multi-head self-attention.

In this paper, we propose HeatViT, a hardware-efficient
image-adaptive token pruning framework, together with 8-bit
quantization, for efficient yet accurate ViT inference acceler-
ation on embedded FPGA platforms. To improve pruning rate
while preserving model accuracy, we make two observations
by analyzing the computation workflow in ViTs, similar to
what are reported in [28]: (i) the information redundancy in
input tokens differs among attention heads in ViTs; and (ii)
non-informative tokens identified in earlier transformer blocks
may still encode important information when propagating to

] XLln S informative %
. 7 L ’—Q% : Li _—
[— N o W
2" Eﬂ* > Dﬂ % mfommu\,: xLg
-mcos | 00— | D0
M 00—z OO —8
Mgz 2O 0 ms B 0.0 ol Elgl
,&‘D’ﬁ D D‘D"ﬁ D D%% =
1= 00 e o0 e
= e o mgsdccgn{”é’m') L D [T ?-»

class token S

Fig. 1. The workflow of HeatViT on DeiT-S. The token selector S conserves
informative tokens conditioned on features from the previous layer. And non-
informative tokens are averaged into one package token (blue).

later blocks. Based on these, we adopt an effective token
selector module similar to [28] but consider its design with
hardware efficiency, which can be inserted before transformer
blocks to reduce token number (i.e., number of tokens) with
negligible computational overhead. As shown in Fig. 1, we
incorporate different token-level redundancies from multiple
attention heads to be more accurate in token scoring. Further-
more, instead of completely discarding non-informative ones,
similar to [28], we package them together into one informative
token to preserve information for later transformer blocks.

For hardware implementation on edge FPGA devices, we
design our token selector with linear layers, i.e., fully-
connected (FC) layers, instead of convolutional (CONV) lay-
ers, to reuse the GEMM (General Matrix Multiply) hardware
component built for the backbone ViT (i.e., without token
selectors) execution. In addition, we always concatenate the
identified (and sparse) informative tokens and the packaged
informative token together to form a dense input of tokens to
avoid sparse computations on hardware. To improve the hard-
ware efficiency, we further apply 8-bit quantization for weights
and activations, and propose polynomial approximations for
the frequently used nonlinear functions in ViTs, including
GELU [21], Softmax [17], and Sigmoid [37]. Besides, we
introduce the regularization effect on quantization error into
the design of polynomial approximations to support more
ambitious quantization. We design a proof-of-concept FPGA
accelerator for ViTs based on our proposed HeatViT. We
implement the GEMM engine inspired by [14], [32] to exe-
cute the most computation-intensive multi-head self-attention
module and feed-forward network in the backbone ViT, and
the classification network in our token selector. It is worth
noting that only lightweight control logic is added to support
our adaptive token pruning by reusing the same hardware
components built for the backbone ViT execution.

To reduce inference latency on hardware while preserving
model accuracy (typically within 0.5% or 1% accuracy loss),

we adopt a similar latency-aware multi-stage training strategy
to [28], which (i) determines the transformer blocks for in-
serting token selectors and (ii) optimizes the desired (average)
pruning rates for these token selectors. To reduce the training
time, we also adapt the training strategy to insert less number
of token selectors and use less number of training epochs: our
training effort is roughly 90% of that for training-from-scratch
of backbone ViTs without token selectors.

TABLE I. Comparison between representative ViT pruning methods.

Design Design

Method Scheme Method Scheme
DyViT [42] @ ATS [13] @
1A [38]) PS-ViT [45] @
VTP [65] ® Evo-ViT [54])
S2ViTE [10] @®®® | UP-DeiT [56] @@

® - Static Token Pruning; @ — Adaptive Token Pruning; ® — Head Pruning;
@ — Token Channel Pruning.

As summarized in Fig. 2, we evaluate HeatViT for mul-
tiple widely used ViT models on the ImageNet dataset, in-
cluding DeiT-tiny (DeiT-T, HeatViT-T), DeiT-small (DeiT-S,
HeatViT-S), DeiT-base (DeiT-B, HeatViT-B) [46], LV-ViT-
small (LV-ViT-S, HeatViT-LV-S), and LV-ViT-medium (LV-
ViT-M, HeatViT-LV-M) [25]. These models are already well
condensed and thus more challenging to prune compared to
larger ViT models. Compared to state-of-the-art ViT pruning
studies in Table I (pruning types are explained in detail
in Sec II-B), HeatViT achieves better accuracy-computation
trade-offs: Under a similar computation cost, HeatViT can
achieve 0.7%~8.9% higher accuracy; while under a similar
accuracy, HeatViT can reduce the computation cost by more
than 28.4%~ 65.3%. Compared to the baseline hardware
accelerator (16-bit and no token pruning), our implemen-
tations of HeatViT on the Xilinx ZCU102 FPGA achieves
3.46 x ~4.89 xspeedup with a trivial resource utilization over-
head of 8%~11% more DSPs and 5%~8% more LUTs.
Compared to the optimized ARM CPU and NVIDIA GPU
versions on the NVIDIA Jetson TX2 board with our token
pruning, our FPGA implementations achieve 685x~1695x
and 2.68x~3.79x more speedups, 242.6x~719.0x and
3.0x~4.7x higher energy efficiency.

Our contributions are summarized as follows:

o Algorithm and hardware co-design for an effective,
hardware-efficient, and learnable token selector to enable
efficient image-adaptive token pruning in ViTs.

o A polynomial approximation of nonlinear functions inside
ViTs for more ambitious quantization and efficient FPGA-
based implementations.

e An end-to-end acceleration framework, with both image-
adaptive pruning and 8-bit quantization, for ViT inference
on embedded FPGAs.

« Experiments to demonstrate superior pruning rates and infer-
ence accuracy of HeatViT over state-of-the-art ViT pruning
studies, as well as trivial hardware resource overhead.

84 _ HeatViT-LV-S1 eatViT-LvV-M1 P
HeatViT-LV-S0 LV-ViT-M
i ATS-13
82 HeatViT-B1
. IA-B
= 80 + _HeatViT-S2 ATS-21/384 Dy’1T-B
é y Het?/t_;/_l'g-oﬂ (17.4,83.1)
S 75 4 eatvit- DeiT-B @
< HeatViT-T, (17.6,81.8)
T ditTa ATS+DeiT-T
iT- .
5 76! UP-DeiT-T Model | GMACs | Top-1Acc Model GMACs | Top-1 Acc
=) HeatViT-TO | 0.54 70.90% HeatViT-S3 3.86 79.84%
O 74 4
% HeatViT-T} HeatViT-T1 0.90 72.15% HeatViT-BO 6.10 80.13%
& 1 HpatViT 3E SeiT T HeatViT.T2 | 1.00 | 72.20% HeatViT-B1 1049 | 81.08%
E Heatli- DyVIT-T HeatViT-T3 | 1.29 76.94% | HeatViT-LV-SO 3.10 83.07%
70 S2VITE-T HeatViT-T4 | 1.30 77.13% HeatViT-LV-S1 428 83.14%
, HeatViT-SO | 1.80 78.59% | HeatViT-LV-MO | 5.30 82.73%
| @DeiT/160 . '
68 HeatViT-S1 | 2.01 79.08% | HeatViT-LV-M1 7.32 83.74%
HeatViT-S2 | 2.64 79.38%
66 1 1 1 1 1
0 2 4 6 10 12
GMACs

Fig. 2. Comparison of HeatViT with prior pruning methods: Under a similar computation cost, HeatViT achieves 0.7%~8.9% higher accuracy; while under
a similar accuracy, HeatViT reduces the computation cost by more than 28.4%~ 65.3%. Final HeatViT models are quantized into 8-bit fixed-point format.

II. BACKGROUND AND RELATED WORK

A. Vision Transformer

Transformers are initially proposed to handle the learning
of long sequences in NLP tasks. Dosovitskiy et al. [11] and
Carion et al. [5] adapt the transformer architecture to image
classification and detection, respectively, and achieve com-
petitive performance against CNN counterparts with stronger
training techniques and larger-scale datasets. DeiT [46] further
improves the training pipeline with the aid of distillation,
eliminating the need for large-scale pretraining [58]. Inspired
by the competitive performance and global receptive field of
transformer models, follow-up works design ViTs for different
computer vision tasks including object detection, semantic
segmentation, 3D object animation, and image retrieval.

Fig. 3 illustrates three components in ViTs: patch embed-
ding, transformer encoders, and classification output head.
For patch embedding, an image X € R7*WxC ig reshaped
into a sequence of 2D patches X, € RN*(P*O) where
(H,W) is original image resolution, C' is channel number,
(P, P) is the resolution of patches, and N = HW/P? is
the number of patches and also the effective input sequence
length (i.e., number of tokens) to transformer encoders. Patch
embeddings are obtained by mapping X, into D dimensions
via a trainable linear projection E € R(FP*O)xD: X, —
[Xetass; X, B X2E; .. XIJ?VE]+EP(,S, where D is the constant
latent vector size throughout transformer encoders, and E,,, €
RWVADXD s Jearnable position embeddings. A learnable
embedding X9 = X . is prepended in patch embeddings
Xj. Then X goes through a stack of L transformer encoders

for processing. The output X (class token) of the final (L-
th) transformer encoder is fed to a classification output head
implemented by an MLP to obtain the final result. The MLP
module uses two linear layers with a Gaussian Error Linear
Unit (GELU) activation layer in between.

The [-th transformer encoder receives the patch embed-
dings X;_; as input. Fig. 3 illustrates a ViT encoder block,
consisting of a multi-head self-attention (MSA) module and
an MLP (FFN) module, both with LN (layer normalization)
applied before input. The encoder block operations are then:

X’;_1 = MSA(LN(X;_1)) + X;_1, 0
X; = FFN(LN(X’l_l)) + X/l—1~
For h heads in MSA, LN(X;_;) is split into h parts. For
each head, the corresponding part in LN(X;_1) is transferred
into query Q, key K, and value V through three linear pro-
jections Wq, Wik, and Wy, respectively. Then self-attention
function [48] in each head is performed as:

Attention(Q, K, V) = Softmax(QK” /VD)V. (2)

Attention outputs from all the heads are concatenated and
linearly transformed.

B. Model Pruning on ViT

State-of-the-art ViT pruning studies exploring the redun-
dancy from three dimensions in ViTs are summarized below.
Redundancy of the attention head. Attention head prun-
ing [10], [56], [57], [65] reduces weight redundancy on the
transformation matrices (W¢g, Wx, Wy,) before MSA opera-
tion. Due to the parallel computing nature of the transformer
heads, these works directly prune some heads entirely and

Class D class position
g ((Bird, Grass, ..) A token | | embedding
E* + , |N x D Feed
[Classification Head] / Fully-Connected |/ 0o o
- X%T / N x 4D Network
r K
[Block L]
A e 4
4 X, [Block2.. Blatk L-1 Fully-Connected
=1V Ne 7 ; AN XD
S < ’, |
g e TXH
= [FIFN] 1T /7 — NxD_ Multi-head
s Self-attention
=k LayerNorm S/ T
S A B N x D
X
S N~ 4 Attention Pro x'V
2] < .
U K NxN A Q:NxD
§ 7 T K:NxD
; M;A | Softmax V:NxD
LayerNorm R
A \
\ Block 1 J e Ak |v
"ﬁ X,) Linear Transformatia] x h heads
&
e £ %
Sz 0
g g Token Channels: D
QlF
= E 1 2 8 4 5 6 7 8 9
E 9 class token
i Linear Projection of Flatten Patches
P L I I IR R N B R l“
QCE N > ‘i | N | ‘
™

Fig. 3. Overview of ViT

lead to significant accuracy drop, for example, 27% GMACs
reduction, but with 2.2% accuracy drop on DeiT-T in [10].
It is an inefficient way of computation reduction because the
attention head usually contributes less than 43% of the total
computation in several ViT architectures [28].

Redundancy of the token channel. Token channel [10], [56],
[57] pruning executes feature-level pruning on the embedding
of the token feature to diminish the redundancy of the fea-
ture representation. Since this pruning type is equivalent to
structured pruning on the token embedding, i.e., removing the
same embedding dimension for different tokens, it is difficult
to guarantee an ideal pruning rate without significant accuracy
deterioration.

Redundancy of the token number. Token pruning [10], [13],
[33], [38], [42], [45], [54], [57] aims at removing the non-
informative input data. According to [55], the accuracy of
neural networks is more related to the object information,
but not the background information, implying the input-level
redundancy. There is often much higher redundancy along the
token number dimension.

C. Computational Complexity

As summarized in Table II, the computational complex-
ity of the ViT can be written as [AND.,(hDatn,) +

TABLE II. Computational complexity of one ViT block.

Notation: D.p, — channel size of a token; Dg¢tn, — sub-channel size of
one head; Dy, — channel size of FFN; Query (Q), Key (K), Value (V);
h — the number of heads; N — the number of tokens.

Module | Input Size Computation | Output Size #MACs

N X Den Tran];;:)]rf:rzrilrzltion N X hDattn, | NDenhDatin,

MSA N x hDattnS Q X I(1 N XN NQhDattnS

N x N QKT XV [N x hDattn, | N%hDgtin,
N X hDattn, Projection N X Dy, NhDattn, Den

FEN N X D.p, FC Layer N X 4Dy, ANDcp Dy

N x 4ch FC Layer N x Dch 4NchDch

Total MACs: 4N D ,hDatin, + 2N?hDgtin, + 8ND.pDge

2N?%(hDgttn,) + 8N D, Dy.]. Compared with other prunable
dimensions, directly pruning the number of tokens (/N) con-
tributes to the reduction of all operations linearly or even
quadratically (N2 in MSA layers), leading to more compres-
sion benefits. Please note that since token pruning is equivalent
to removing information redundancy within the image data, it
can be more freely integrated into the compression process on
other model dimensions (e.g., model quantization in our case).

D. Static vs. Image-Adaptive Token Pruning

There are two sub-branches in the token pruning of the
ViT: static token pruning and image-adaptive token pruning.
Static token pruning [10], [13], [33], [42], [45] limits the
compression ratio by reducing the input tokens of each image
with a fixed ratio while ignoring the fact that each image’s
information varies in terms of both region size and location.
In contrast, to achieve a per-image adaptive pruning rate,
image-adaptive token pruning [28], [38], [54], [57] eliminates
redundant tokens depending on the inherent image features.
Generally, smaller pruning rates are applied for complex and
information-rich images while larger pruning rates for simple
and information-less ones. Ideally, it can achieve a larger
overall pruning rate than the static one as Fig 4.

However, most of existing adaptive token pruning stud-
ies [38], [54], [57] do not consider the visual characteristics
inside the ViT (token redundancy in ViT, Sec III) —visual
receptive field of different heads, and delete the less infor-
mative tokens completely without the opportunity to correct
evaluation errors. Moreover, there are no more details on how
to determine the location, number, and pruning rate of the
pruning evaluation module specifically. Hence, [38], [54], [57]
often lead to a limited overall pruning rate (e.g., 35% GMACsSs
reduction on DeiT-S [38]).

Most recently, SPVIT [28] analyzes the token redundancy
in each ViT head and proposes soft pruning techniques to
identify and package pruned tokens to preserve the information
of less-informative tokens. Also, it designs an automatic search
algorithm to determine the location and settings of each
pruning module. However, SPViT only considers the algorithm
aspect and lacks the optimization of hardware design and
resource utilization on edge devices. It does not take into
account of the subsequent model quantization, either, which
is often required for hardware implementation and efficiency.

Static Token Pruning Image-Adaptive Token Pruning

Stage 2 Stage 3 ut Stage 1 Stage 2 Stage 3
. .

ol I,
- b= B N\
=g |
=

Fig. 4. Comparison between static token pruning and HeatViT image-adaptive
token pruning.

Our HeatViT design is inspired by SPViT [28] but is
optimized for the actual deployment on embedded FPGA
hardware. It differs to SPViT in the following ways. First,
we explore different accuracy and hardware trade-offs for
the token selector module design, including the comparison
between fully-connected layer and convolutional layer, and
comparison between different activation functions such as
ReLU [1], GELU [21], and Hardswish [23]. Second, we
apply more ambitious 8-bit quantization and a polynomial
approximation of nonlinear functions inside ViTs—such as
GELU [21], Softmax [17], and Sigmoid [37]—to support
quantization and efficient FPGA-based implementations, with-
out losing accuracy. In the training process, we also stop the
training earlier by skipping early ViT blocks that are more
accuracy-sensitive to the pruning and stopping the pruning
module insertion once we meet the target latency. After the
pruning stage, the algorithm enters the quantization process.
Lastly, we also implement an end-to-end ViT hardware accel-
erator on embedded FPGAs by heavily reusing the hardware
components built for the backbone ViT to support the adaptive
token pruning module and 8-bit data precision.

E. Transformer Accelerators on FPGAs

Previous state-of-the-art FPGA accelerators on Transformer-
based models [30], [41] and [60] also leverage sparsity.
However, they have three main limitations. (i) [30] depends
on block-circulant matrix-based weight representation in order
to replace the matrix-vector multiplication in FC layers with
FFT/IFFT-based processing elements. However, [30] acceler-
ates only the MSA part of the model and omits the FFN
part (about 65% computation of the whole model). (ii) [41]
utilizes the block-wise weight pruning and [60] implements
the structure pruning (row-wise or column-wise) to compress
weights to similar sizes (lower memory footprint). However,
the pruning granularity of both is coarse, resulting in se-
vere accuracy degradation at limited compression rates. For
example, [41] shows 2% accuracy drops under the 36%
sparsity. (iii) These FPGA-based accelerators are mainly for
transformers in the Natural Language Processing (NLP) tasks,
not for computer vision ones. In addition, they all compress
the model weights, which means that new substructures or
additional overhead is needed to support the specific sparse

Head 1

Head 2 Head 3 Head 4

Fig. 5. The information region detected by each head in DeiT-S.

100
All Tokens
90 A Informative Tokens
Token Packager 1
801 mmm Token Packager 2
Token Packager 3
70 A
e
S 60
>
2
::E 50 -
E a0
n
30 A
20 A
10 4
0 T T T T T

2 3 4 5 6 7 8 9 10 11
Layer Index of DeiT-S

Fig. 6. The similarity between the CLS (class token) and other tokens
measured after each ViT block (2 to 11).

matrix multiplication. According to our Section III analysis,
the difference in input data type will introduce a unique
redundancy that motivates an effective compression space.
Experiments show that adaptive token pruning at the data level
can speed up the model inference with negligible accuracy
losses and little overhead for hardware implementations.

III. ANALYSIS OF TOKEN REDUNDANCY IN VIT AND
OVERVIEW OF HEATVIT

A. Token Redundancy in ViT

Token redundancy viewed by different attention heads.
Assuming that the class (CLS) token is significantly correlated
with the final prediction [63], we visualize the information
regions detected by the CLS token in different attention heads
of DeiT-S, as shown in Fig. 5. It can be seen that each
head extracts the features of the image (multi-head visual
receptive area of the image) independently and differently [22],
[36], [38], indicating that the heads contain distinct token-
level redundancy. This inspires the token selector design with
multiple heads, which is elaborated in Section IV-A.

Token redundancy viewed by different transformer blocks.
Fig. 6 gives the centered kernel alignment (CKA) [29] that rep-
resents the similarity between the tokens in each transformer
block and the final CLS token, showing a tendency from weak

s

Tm '

= i i
Patch Partition = gj E i !
8| |8 g VBE—H
= S| |2 ' !
o) 3 1
2r2e 3 W
g |2 |2 g [
= 5| |8 N
) = e [!
= =3 A 0
' H—m

1 ~ !

o oo oo I

E
5|

|
Looooad [N
Token Selector

.

g g
= =
8 K]
2] S
Q Q
B 5
2 2
2. 2.
= =
5 &
5 3
3 5
& &
£ £
5 &

Token
Sequence

L —— L]
Token Selector

Xh

uonEANIY
uonEANIY

(p/up
TWIP)ANOD/OA

(w1p ‘wiIp) ANOD/OA
(g/up ‘wIp) ANOD/D A
UODBADIY
(T ‘p/mP)ANOD/OA

7

Tol;k\n Classifier .

:

EECTTTTO
o

N

Stageyq

Input Local/Global Token score Final token

Split by

[[] Informative tokens [] Non-informative tokens [I Package token [Class tokenJ

feature

each head

feature

.

by each head decision

Fig. 7. HeatViT overview. Left: Transformer blocks split into multiple stages with token selectors inserted between them (One token selector includes one
token classifier and one token packager). Right: Multi-head token classifier to identify informative tokens.

to strong. It tells us that it is inaccurate for each transformer
block to encode or evaluate the image tokens, especially in the
front blocks. Thus, pruning rates for these front blocks should
be lower to avoid ruling the informative tokens out. This also
inspires the token packager technique to provide chances to
make up for pruning mistakes (Section IV-B).

These two observations are consistent with what have been
reported in [28].

B. Overview of HeatViT

To develop a hardware-efficient image-adaptive token prun-
ing framework, we first adopt an effective and hardware-
efficient adaptive token pruning module (also known as token
selector, based on [28]) according to the vision redundancy in
ViTs (Section IV). This module includes an head-evaluation
multi-head token classifier and a token packager, as shown in
Fig. 7. To improve the pruning rate and accuracy, the token
classifier incorporates different token-level redundancies in
multiple heads to more accurately classify tokens and the token
packager consolidates (instead of discarding) non-informative
tokens to one informative token to reserve information for
later transformer blocks. To improve the hardware efficiency,
we choose linear layers for the token selector to reuse the
GEMM hardware component for the backbone ViT, and al-
ways concatenate the classified sparse tokens into dense ones.
Please note that it is challenging for CNN-based architecture
to implement data-level pruning, because the kernel size of
the convolution operation is fixed so that the irregular input
features cannot be directly concatenated into dense ones to
speed up the model inference. Moreover, we deploy 8-bit fixed-
point quantization to further compress the model, and propose
a polynomial approximation of nonlinear functions inside ViTs
for FPGA-based efficient implementations and regularize the
quantization errors. A proof-of-concept hardware accelerator
design is presented in Section V. To meet the target ViT infer-
ence speed on hardware while reserving the accuracy (typically

within 1% accuracy loss), one also needs to carefully decide
the number of token selectors to insert in the backbone ViT,
the location and pruning rate of each token selector, as well
as the quantization influence on the accuracy performance. To
address this challenge, in Section VI, based on [28], we adapt
a more efficient latency-aware multi-stage training strategy to
learn all these parameters.

IV. ADAPTIVE TOKEN PRUNING MODULE

Shown in Fig. 7, the adaptive token selector is based
on observations in Section III and inspired by SPViT [28],
including the head-evaluation multi-head token classifier and
the token packager. Note that, different to SPViT, nonlinear
functions involved in our token pruning module and the ViT
backbone are the implementation of polynomial approximation
as described in Section V-D. Next, we give a brief introduction
to the token classifier and token packager design (for interested
audience, please refer to [28] for more details), and focus more
on the trade-off of accuracy and hardware efficiency.

A. Head-Evaluation Multi-Head Token Classifier

Multi-Head Token Classifier. As shown in Fig. 7 (right side),
each head focuses on extracting different content and position
of an image by using a simple learnable neural network,
demonstrating the different importance of each token towards
each head. Different to SPVIT that uses a default fully-connect
layer, in Section IV-C, we will explore different neural network
units for the consideration of accuracy and hardware efficiency
trade-offs. At the end, our multi-head classifier generates a
score-map vector S for each input token, which separately
marks the information amount of each token in each head.

Head-Evaluation Branch. To synthesize the importance of
each head, A, we also add a head-evaluation branch along the

7287 7265 GELU

RELU

72.15 Hardswish

72.05
7174

ccuracy (%)
NN NN
HFEFNNNN
dmoN RO

A
N
=
>

L

69.96
69.66

Convolution-based Selector MLP-based Selector

Fig. 8. Accuracy comparison of different token selector structures under the
same computational cost. We use DeiT-T as the backbone network, where its
accuracy is 72.2% before the pruning.

classifier backbone based on the attention mechanism [24].
Then the token score S is weighted averaged by A:

~ th Si * a;

§=S5"— RV 3)

Dim1 @

Then we apply the Gumbel-Softmax on S for the token
keep/prune decision mask, M. Since deleted image tokens
cannot appear in subsequent blocks, M passes on to the
following blocks and will be updated by the next pruning step.

B. Token Packager

To avoid pruning useful token information in earlier ViT
blocks, we apply a token packaging step that summarizes non-
informative tokens (predicted by the classifier) into a package
token instead of completely discarding them. Assuming there
are T (evaluated by the classifier) non-informative tokens
{2}, along with their token scores {3;}7_,, these tokens
are compressed into one token through weighted averaging:

T .
po Si sl
> i1 5t[0]

P continues the subsequent calculations along with the infor-
mative ones, enabling the model to correct scoring mistakes.

RIXD (4)

C. Exploration for Hardware Efficiency

Hardware Consideration for Token Classifier. Different
from SPVIT [28] that uses fixed MLP and GELU to extract
image features in the token classifier by default, we explore
different alternatives for the design, considering the trade-off
between model accuracy and hardware efficiency. For the ma-
jor operation units to extract feature information, we consider
both fully-connected layers (i.e., FC, or MLP) and convolu-
tional layers (i.e., conv), where the prior favors better hardware
efficiency and the latter favors better model accuracy. For
the activation function, we consider three alternatives: more
hardware-friendly ReLU [1] and ReLLU-based Hardswish [23],
and more accurate GELU [21].

In Fig. 8, we compare these different alternatives, where
we set their computation cost as the same: 0.9 GMACs after

pruning for the DeiT-T model; more detailed experimental
setup will be presented in Section VII-A. Compared to MLP
layers, the final accuracy of using convolutional layers is
further improved by 0.3% ~ 0.5% with the same com-
putational complexity. However, to maximize the hardware
resource utilization, we choose the MLP layer as our main
computational unit, since it has already been there in the
backbone ViT blocks and the accuracy is acceptable. For the
activation function, although ReLU is much more hardware
friendly, it would lead to a 2.49% ~ 2.69% accuracy drop.
Even though Hardswish is more hardware friendly than GELU,
we still choose GELU as the activation function, since 1) it
achieves 0.3% ~ 0.6% better accuracy than Hardswish, 2) it
already exists in the backbone ViT blocks, and 3) we can
apply the polynomial approximation of GELU to optimize its
hardware efficiency (Section V-D).

Hardware Consideration for Token Packager. In the token
packaging step, the sparse input matrices—i.e., all the infor-
mative tokens and package token—will be concatenated into a
new smaller-size dense matrix to complete the computation in
the following blocks, which can speed up the model inference
directly.

Since most of the component operations (FC layer, Softmax,
GELU) in the token selector already exist in the backbone ViT
blocks, we can maximize the resource utilization and leverage
our unified operation-level optimization scheme of the ViT
deployment on FPGA.

V. VIT HARDWARE ACCELERATOR DESIGN WITH
ADAPTIVE TOKEN PRUNING

The hardware architecture of ViT accelerators in HeatViT is
illustrated in Fig. 9, including the accelerator design for
pruned ViTs with token selector and the computation flow
in the General Matrix Multiply (GEMM) engine. Besides the
LayerNorm layer (less time consuming but more complex to
implement on the FPGA) that is left on the ARM CPU, all
other components in HeatViT are implemented on the FPGA.

A. Challenges

To implement ViT FPGA accelerator with our dynamic
token pruning, we address the following challenges. (i) The
token selector module should be implemented with minimal
hardware overhead by adding miniature control logic and
reusing existing hardware for the backbone ViT. (ii) The
GEMM loop tiling should accommodate an additional tiling
dimension due to multi-head parallelism. (iii) ViTs use more
nonlinear operations than CNNs, and we need to refine these
operations for more aggressive quantization and efficient hard-
ware implementations without losing accuracy.

B. VWiT Accelerator with Dynamic Token Selection

As displayed in Fig. 9(a), the input (tokens) and weight of
each ViT layer are loaded from the off-chip DDR memory
to the on-chip buffers, and processed by the GEMM engine
which we will implement motivated by [15], [32]. Outputs
are further processed with the activation function (Softmax or

FPGA
—> Control Logic =~ — GEMM Engine
Ping-Pong PE BEN - RN
CPU Buffer
Ping-Pong
Buffer FE e o
Memory Output
Controller Buffer PE PE PE
[Token Selector i I
Token Packaging N
4 4 ' Softmax
Off-Chip GumbleSoftmax ’
DDR Memory + !
Token Classifier « 7 GELU
1 |

(a) ViT hardware accelerator arch. supporting dynamic token selection.

Input Weight Output
N Tokens Ti N Tokens
Ti z 1 [
= Toj Toq
head 1 ‘Q 0‘7777 Do 0] }Do out; -
Th — :
Di/H :
head Th
ca % % outTh r <“Attention? N
o
: Concat Sum
head H % % OUtH4

(b) GEMM loop tiling with one extra tiling from multi-head mechanism.

Fig. 9. Hardware architecture of ViT accelerator in HeatViT.

GELU), and then stored from the on-chip output buffer back to
the off-chip memory. Double buffering will be applied to over-
lap data transfer time with computation. The token selector for
pruning consists of FC layers and GELU activations, which
also exist in the original ViTs, and thus can be managed by the
same computation engine with negligible hardware overhead
(Section V-C). Note LayerNorm is executed on the CPU.

1) Loop Tiling in GEMM: We generalize loop tiling [59]
for GEMM engine to deal with relatively large ViT layers.
The concurrency of MAC operations in matrix multiplications
requires pipelining and loop unrolling, as well as array parti-
tioning of buffers. Fig. 9(b) shows detailed computation flow
in GEMM loop tiling for ViTs accommodating an additional
tiling dimension from multi-head mechanism. Given a ViT
layer j from @~® in Table II that performs one or h matrix
multiplications with its N; tokens after pruning, we represent
input size as N; x D;, weight matrix size as D; x D,, and
output size as N; x D,, where D; denotes D.p, Dgtin, OF
N in the MHSA module, and D, or 4Dy, in the MLP
module. Tiling is applied to D; and D, dimensions, with
tiling sizes T; and T, respectively. For attention computations
(Q x KT in @ and QK™ x V in ®), both input and
output are split into h groups. A control signal is used to
indicate whether current computations are attention-related.
Results from @ and @ are kept in h groups, while results

from other layers are accumulated. To improve throughput,
we optimize parallelism factors including T, T, and T}, (an
additional tiling dimension for h heads). Therefore, we will
conduct comprehensive FPGA resource modeling for available
computing and on-chip memory resources.

2) Throughput and Resource Utilization Analysis: The in-
ference throughput (FPS) of ViT inference is determined by
the parallelism factors 75, T, and T}, which are bounded by
the number of available computation (mainly DSPs) and on-
chip memory (BRAMs) resources. The inference is executed
layer-by-layer, and the FPS can be inferred through dividing
the total number of clock cycles required to process all the ViT
layers with the working frequency on FPGAs. The throughput
and resource utilization analysis of ViT accelerators is sim-
ilar to that of CNN accelerators [44], except that the head
dimension in ViTs needs to be additionally considered for
parallelism. Since the layers in token selectors can be managed
by the same GEMM engine as for the existing ViT layers, this
analysis also applies to token selectors.

C. Token Selection Flow

Token selection contains token classification to determine
informative and non-informative tokens using GumbelSoftmax
with a threshold value (usually 0.5), and token packaging
to average the non-informative tokens to one that is then
consolidated into the informative tokens. The pruned token
(input) sequences with sparsity will be reorganized as dense
ones, eliminating hardware overhead for indexing. Fig. 10
describes the three steps to implement token selection in our
ViT hardware accelerator: (1) calculating the exponent for each
token x; and the summation Sum of all these exponents;
(2) dividing each exponent by the sum and classifying the
corresponding token as informative or not according to a
threshold; and (3) if the token is informative, concatenating
it to the informative token sequence, otherwise adding it
to a temporary token T'mp. Finally, T'mp is averaged and
concatenated to the informative token sequence.

D. Polynomial Approximation of Nonlinear Functions

ViT models contain nonlinear functions including GELU,
Softmax, and Sigmoid. (i) Some nonlinear operations in-
side those functions, e.g., exponential function exp(z) and
error function erf(z) consume large amounts of computing
resources when implemented with the built-in Xilinx Vitis
HLS math library [52], and thus incurring difficulty for hard-
ware acceleration (Table III). (ii) To apply more aggressive
quantization than CNN/RNN models, we need to add the
regularization effect on quantization error to these approximate
operations. Inspired by [27], we propose to explore algorithm-
level polynomial approximation to implement GELU and
Softmax functions, through which we introduce d; and Js
(both <1) to control the regularization effect. Since the Sig-
moid function is only present inside token selectors (a small
number), we do not introduce a regularization effect for it.

k
Sum = ijl exp(z;)
lFor each token x;

exp(z:) N
>05°?

Sum

)

z; is Informative

IRt

Non-Informative

ol T

- —
Concat = o
D:IE:D(_ - D(—Average (IT'mp)
C]
-
Concat

!
EENEEE

Fig. 10. Token selection flow.

The erf(z) function is approximated using a second-order
polynomial as,

Lext (x) = sign(x) 61 - [a(clip(|z|, max = —b) +b)*+1], (5)

with the constants ¢ = —0.2888, b = —1.769 and §; < 1.
The GELU function is then expressed as

GELU ypux(2) = g [1 + Lot (\%)] , 6)

The Softmax function is approximated as

o T
Softmaxape (X;) =]\grexip(:vz’ (N
Zj:l exp(Z;)
with Z; = 2, — Tmax, Tmax = maxi(wi) and 02 < 1.

This subtraction ensures the numerical stability during the
approximation calculation, and all inputs can be decomposed
as £ = (—In2)z + p, where z is a non-negative integer and p
is a real number in (—1n2,0]. exp(Z) can then be calculated
as exp(p) >> z, where z = |—%/In2|, p =2 + zIn2, and
exp(p) is approximated as

exp(p) = 0.3585(p + 1.353)% + 0.344. (8)

Both §; and 45 are regularization value (< 1) on quantization
error, which can be constant (61=0.5, §2=0.5 in our case).

For the Sigmoid function, we adopt the piece-wise linear
approximation (PLAN) from [47].

Table III compares the resource utilization for these non-
linear functions between the original implementations using
the built-in Xilinx Vitis HLS math library and our proposed
implementations. Our methods are more resource efficient than
those using the HLS math library, with 1.5x~572% resource
improvement. Furthermore, for each model, we try multiple
sets of token pruning ratios and there is no accuracy drops
between the approximate model and the original one.

TABLE III. Resource utilization for nonlinear functions between original
(Orig.) and approximation (Aprx.) implementations.

\ GELU | Sigmoid | Softmax
[Aprx. Orig. | Aprx. Orig. | Aprx. Orig.
FF | 334 191116 | 1015 2334 | 1939 2464
LUT | 438 160909 | 1512 2333 | 2364 2476
DSP 4 139 0 3 2 3
1.0 N -
0.8 1
SA 0.6 A .o
el a.c
0X0.4 1
0.2 ©
0.0 A 'y @ The derivative of A,
'; * The derivative of A,,;,
_20 ~20 0 20 40
X

Fig. 11. Regularization effect on quantization error of approximated GELU.

E. Regularization Effect on Quantization Error

GELU and Softmax functions are abundant in transformer
blocks, which inspires us to introduce the regularization effect
of quantization error into the approximated functions for more
aggressive quantization (e.g., 8-bit fixed-point quantization in
our case). Here we proof that our regularization works.

GELU for activation data is: A=GELU(z). Quantization
on z can be considered as adding a small error Ae to x. We
examine the influence of Ae on output A by computing the
GELU derivative %. Assuming that A changes by Ae>0, we
can obtain the absolute error of output A:

0A

Errorge (z) = o Ae. 9)

Since % is always < 1 (Fig. 11) for GELU, the total
quantization error is reduced after approximation.

02 exp(&4) As
o Y o1 exp(Z;)”
similar process as GELU, we compute the Softmazapre
derivative 24:

Softmax for activation data is: A;= a

oz *
§_d2.0xp(%;)

il exp()) .
DA | =i =0 A (1= Ay), = 1
87— 9 5 exp(&;) (O)
L Sl ew) s 4 g .
- oz, Y2 44y i F]

Assuming A changes by Aeg, the absolute error of all outputs
with Equation (10) is:
N-1
E’I”I”O’f’softmax = ‘52A60A0(1 — A0)| =+ Z | — 52A60AOAi|
i=1
= 252|A60‘ Ao(l — Ao) < Aeo,
(11)
since 0 < Ay < 1, 245(1 — Ap) is always smaller than 1

and 255 Ap(1 — Ap) is further reduced (d; < 1). So, the total
quantization error after Softmax approximation is < Aeg.

VI. LATENCY-AWARE MULTI-STAGE TRAINING
STRATEGY

Our training strategy is as follows: (1) We leverage the same
latency-sparsity loss concept in [28] to take into account the
latency characteristics of the hardware side during the training
process. (2) We design a block-to-stage training pipeline to
learn the number of token selectors to insert in the backbone
ViT, their locations and pruning rates. Different from the
brute-force token selector insertion in [28] (i.e., insert a token
selector after every ViT block), we reduce the number of token
selectors to insert and reduce the training epochs. Note that (i)
the block-to-stage training is based on token pruning, and 8-bit
quantization on weight and activation will lead to 2x~2.4x
speedup without accuracy drops; and (ii) our training strategy
uses finetuning for each selector, and the training effort of our
pipeline is equivalent to the effort of training-from-scratch of
the backbone ViT.

Relationship between Latency and Keep Ratio. We build
the latency-sparsity table for the target FPGA as Table IV. In
this paper, we measure the actual numbers from our FPGA
implementation. Each time we only input the KeepRatio
tokens into one ViT block with a selector and test the latency.

TABLE IV. Tested latency of one DeiT block with different token keeping
ratios on ZCU102 FPGA.

Keep Ratio | 1.0 09 08 0.7 06 05
Latency | DeiT-T | 1.034 0.945 0.881 0.764 0.702 0.636
(ms) DeiT-S | 3.161 2.837 2.565 2255 1973 1.682

Latency-Sparsity Loss. /,..¢;, is built as follows:

ti(pi) = latency_sparsity_table(1 — p;) (12)
L
> ti(pi) < Liarget (13)
i=1
L | BN
ib
bratio =Y (L=pi= 5> D M")* (14)
i=1 b=1 j=1

where Eq. (12) shows the look-up-table function (in Table IV)
for the latency ¢; of Layer;, under the pruning rate p;. Eq. (13)
constraints the inference speed of the whole model satisfies the
target hardware latency requirement (only for the pruning part,
and the subsequent 8-bit quantization can lead to 1.8x ~ 2.1x
speedups). Based on Eq. (12) and (13), we can derive proper
p; and then feed p; to Eq. (14) to calculate the latency-sparsity
loss 4,415, that participates in the back propagation process. In
Eq. (14), M denotes the token keep decision, N denotes the
number of tokens, and B denotes the batch size. The average
pruning rate of all images in a batch is set as the convergence
target in Eq. (14).

Block-to-Stage Training. Algorithm 1 presents our training
strategy to find the optimal accuracy and pruning rate trade-
offs, a proper number of token selectors and their locations

Algorithm 1: Latency-Aware Multi-Stage Training
with Image-Adaptive Token Pruning

: ViT blocks {Layer,};

Accuracy drop constraint Gdrop;

Initial pruning rate pinit;

Target latency Liarget-
Output : Token selectors with pruning rates ps,, ..., Ps; -
// Stepl: Insert a token selector between each two

Input

adjacent blocks and adjust the pruning rate p;.

1 foreach i € [L,L —1,...,4] do

2 Pi = Pinit;
L .
3 a,t < Evaluate({Layer,(p;)};=1);
4 // a and t represent accuracy drop and latency of

the whole model.

5 while a < aqrop do
6 if ¢t < Lta7‘get then
7 \ Return the finalized token pruned ViT;
8 else
9 Decrease t;;
10 pi = latency_sparsity_table(;);
L .
11 a,t < Evaluate({Layer; (p;)};=1);
// Step2: Combine sequential selectors with similar

pruning rates as one stage, keep the first
selector and retrain ViT.

12 Psy,..ey Ps, < Combine p1, ..., pL;

13 Retrain ViT[Layer, (p1), .., Layer;(ps,), .., Layer, (ps,)];
14 if t < Liarget then
15 | Go to the quantization process;

16 else

17 Increase agrop O Liarget;

18 Initialize the model and selectors from the end of the
last Stepl;

19 Go to Step 1 and repeat the training process.

to insert, based on the token redundancy (Fig. 6). Inspired by
SPViT [28], we adopt finetuning to insert the token selector
from later blocks to front ones progressively. Each time when
we insert a token selector, we train the current selector and
fine-tune the other parts by decreasing the latency of the
current block until accuracy drops noticeably (> 0.5%).

Our training algorithm differs from SPViT in three ways.
First, since token pruning in the front three ViT blocks leads to
more severe accuracy drops, we do not insert token selectors
for these three blocks. Second, to ensure that the number
of token selectors is minimal, once the pruned model has
satisfied the target latency, we end the training and finalize
the pruned model. After the progressive training, we combine
the neighbor token selectors with a similar pruning rate into
one. Third, if the final latency of the whole model is lower
than the target latency, we move to the quantization stage;
otherwise, we will relax the accuracy or latency constraints
and repeat the training.

VII. EXPERIMENTAL RESULTS

A. Experimental Setup

Our experiments include adaptive token pruning and hard-
ware implementation for ViTs with different pruning settings.
Note that after token pruning we will apply 8-bit quantization

on weight and activation, and all the quantization processes
do not lose accuracy, except for 1.2% on DeiT-T.

1) Training Setup for ViT Pruning: The baseline models
with 32-bit floating-point precision are from the TorchVision
library [12]. Our experiments are conducted on the ImageNet-
1K dataset with various transformers backbones, including
DeiT-T, DeiT-S, DeiT-B, LV-ViT-S, and LV-ViT-M, as shown
in Table V. We follow the training settings in DeiT. Training
on one selector insertion costs 30 epochs on 8 NVIDIA A100-
SXM4-40GB GPUs. The training effort on block-to-stage
training is listed in Table V which illustrates that the training
effort of the entire block-to-stage pipeline is equivalent to the
train-from-scratch of the backbone ViT. Through our training
pipeline, we observe that 3~4 token selectors are suitable for
most of the models.

TABLE V. Training effort for ViTs with different backbones.

Embed. #Epochs for Trainin,
Model #Heads Dim. Depth Bageline Ours .
DeiT-T 3 192 12 300 270
DeiT-S 6 384 12 300 270
DeiT-B 12 768 12 300 270
LV-ViT-S 6 384 16 400 390
LV-ViT-M 8 512 20 400 390

2) Hardware Platform: Our hardware accelerator designs
are evaluated on the Xilinx ZCU102 platform [53] with
Zynq UltraScale+ MPSoC, containing 2520 DSPs, 912 BRAM
blocks, and 274.1k LUTs. We use Vitis HLS and Vitis 2020.1
tool [52] to generate, synthesis, and implement FPGA accel-
erator design, with 150 MHz operating frequency. The data in
all models are represented in an 8-bit fixed-point format. The
hardware design for HeatViT is built based on state-of-the-art
FPGA design for ViT [32] with the GEMM engine described
in Section V-B1. Additionally, the HeatViT hardware design
incorporates a token selector and polynomial approximation
of nonlinear functions explained in Section V-C and V-D.

B. Accuracy and GMACs Results

Our models outperform other pruned models in terms of
accuracy-computation trade-offs, as shown in Fig. 2. Our
HeatViT reduces the computation cost by 16.1%~42.6% for
various backbones with negligible < 0.75% accuracy degra-
dation, which surpasses existing methods on both accuracy
and efficiency. Also, we train more DeiT models with the
embedding dimension of 160/256/288/320 as our baselines.
The accuracy improvement of HeatViT is 4.05% (72.15% vs.
68.1% with 0.9 GMACs) over DeiT-T-160, 4.74% (76.94% vs.

TABLE VI. Results on COCO object detection and instance segmentation.
FLOPs are computed on 1280 x 800 image, and backbone FLOPs are
reported. APP°% denotes box mAP and AP™#5F denotes mask mAP, both
of which are common metrics for the accuracy of object detection.

Backbone | GFLOPs [APP°% (%) [AP™%5F (%)
Swin-T 267 459 414

HeatSwin-T 227 45.6 41
Swin-S 359 485 433

HeatSwin-S 306 48.3 42.9

72.20% with 1.3 GMACs) over DeiT-T, and 0.85% (79.38%
vs. 78.53% with 2.64 GMACs) over DeiT-S-288.

We further evaluate our adaptive pruning method on object
detection and instance segmentation. We conduct our experi-
ments on the COCO 2017 dataset [34] with the widely used
Mask-RCNN [20]. The Swin-transformer [4] is used as the
backbone following the training receipt on semantic segmen-
tation. As shown in Table VI, our HeatViT model is capable
of the object detection and instance segmentation tasks, with
only a negligible degradation on the final performance after
reducing 15% of the FLOPs. The results also indicate that our
technique accommodates well to much larger image resolution
for the detection task.

C. Hardware Results

Multiple hardware accelerators are designed according to
the number of heads in a specific ViT. As shown in Table VII,
with the same total degree of computation parallelism, the
resource utilization and power of DeiT-S and LV-ViT-S designs
are higher than those of DeiT-T ones, since DeiT-T has 3 heads
while DeiT-S and LV-ViT-S all have 6 heads, requiring more
BRAM space to accommodate data of all the attention heads.
This trend is similar for DeiT-B (12 heads).

Compared with the baseline hardware designs (16-bit and
no token pruning), the accelerators with token selector in
HeatViT framework utilize 9% more DSPs and 8% more LUTs
for DeiT-T, 8% more DSPs and 5% more LUTs for DeiT-S
and LV-VIT-S, 11% more DSPs and 6% more LUTs for DeiT-
B. This demonstrates that the control flow to support adap-
tive token pruning introduces negligible resource utilization
overhead. After the token pruning, the frame rate increases
from 78.3 FPS to 142.7 FPS (1.82x) for DeiT-T, from 25.9
FPS to 57.6 FPS (2.22x) for DeiT-S, from 19.4 FPS to
46.9 FPS (2.42x) for LV-ViT-S, and from 11.2 FPS to 28.9
FPS (2.58x) for DeiT-B. Furthermore, we deploy the 8-bit
fixed-point quantization on models to achieve another 1.90x
speedup, ending up the final speedup with 3.46x (271.2 FPS)
for DeiT-T, 4.22x (109.2 FPS) for DeiT-S, 4.59x (89.1 FPS)
for LV-ViT-S, and 4.89x (54.8 FPS) for the DeiT-B.

40
2000 4 —*— CPU Energy Efficiency Jetson TX2-CPU w/Pruning

—*— GPU Energy Efficiency Jetson TX2-GPU w/Pruning 35 —~
3500 - FPGA Energy Efficiency Jetson TX2-GPU E
=) 3003 BN FPGA + Pruning + 8-bit [30 %L
6 3000 N BEE FPGA Design w/Pruning =

. F 25
a; 2500 FPGA Design (>)~.
z 2184 2228 0 §
(=¥ Q
g 2000 1827 W2
3 15 5
8 1500 =
A)

10
1000 1 814 8
796 730 - 647 [f]

500 A 441 308 - L5
0 1.78 . 24 .20 . 267 ol 0
DeiT-T DeiT-S LV-ViT-S DeiT-B

Fig. 12. Comparison of energy efficiency between HeatViT and TX2

CPU/GPU with the improvement breakdown of different techniques.

TABLE VII. Hardware results under different pruning settings for various ViTs on ImageNet dataset.

Desion Model Keep Ratio #GMACs Bitwidth Resource Utilization Power FPS Energy Effi.
g (Stage 1/2/3) (Pruning Rate) KLUT kFF BRAM36 DSP | (W) | (Accl. Rate) (FPS/W)
. 1156 1015 2885 1739
DeiT-T 111 1.30 (1x) 16 | uoae) (19%) (329 (69%)| 3012 | 783 (1x) 9.77
Baseline | Deil-S 7171 260 (1x) 16 303 1028 4925 1754 ["ooc| 259 (1X) 257
LV-ViT-S 7171 655 (IX) 16 | (48%) (19%) (54%) (70%)| 194 (IX) 192
. 1445 1039 6643 1736

DeiT-B 1/1/1 17.60 (1) 16 | (530 (19%) (73%) (719 | 1041] 112(1) 1.01
0.85/0.79/0.51 1.00 (1.30x) 8 183.4 (2.34%) 19.4
DeiT-T [0.76/0.70/0.41 0.90 (1.44x) 8 (15307(%6) (2132;) (33595;) (g;?;) 9.453 [198.8 (2.54%) 21.0
0.70/0.39/021 0.75 (1.74%) 3 ¢ ° ‘ ¢ 2712 (3.46X) 28.7
0.90/0.84/0.61 3.86 (1.19x) 8 57.0 (2.20%) 533
HeatviT | DeiT-S [0-700039/0.2T 2.64 (1.74x) 8 97.1 (3.75X) 9.08
with Token 0.42/021/0.13 2.02 2.27X) 8 145 1004 3385 1955 | o [109.2 (@22%) 10.2
Selector 0.90/0.84/0.61 5.49 (1.19x) 8 (53%) (18%) (37%) (18%)| 62.8 (3.24%) 5.87
LV-ViT-S [0.70/0.39/0.21 3.77 (1.74x) 8 72.8 (3.75X) 6.81
0.42/021/0.13 2.88 (2.27X) 8 89.1 (4.59%) 333
0.90/0.8470.61 14.79 (1.19%) 8 36.1 (3.22X) 3.18
DeiT-B [0.70/039/021 T0.1T (1.74%) 8 (156910}4) (1]091,,}% é@%‘z ég?;’) 11.352 [433 3.87%) 381
0.42/021/0.13 7.75 2.27X) 3 ° ° ¢ ¢ 54.8 (4.89%) 4383

1) Comparisons with CPUs and GPUs: We also test DeiT-
T, DeiT-S, LV-VIiT-S, and DeiT-B on Jetson TX2 with 4-core
ARM CPU and NVIDIA Pascal GPU, and compared them
with our FPGA (ZCU102) implementation. Since MSA and
FFN computations are reduced by token pruning, CPUs and
GPUs can also be accelerated. And TX2 CPU/GPU does not
support low-bit computation, so we only present the full pre-
cision model for them with adaptive token pruning as shown
in Fig. 12. All the results are normalized against the original
model on TX2 CPU without token pruning. First, our final
FPGA implementation achieves the highest 1827x ~ 3013x
speedup with 9.453W, 10.697W, and 11.352W power for
different designs. While the baseline FPGA design [32] (16-bit
and no token pruning) achieves 373 x~870x speedup, token
pruning can bring 1.82x~2.58x speedup and ambitious 8-bit
quantization can contribute another 1.90x speedup. Second,
with token pruning, TX2 GPU achieves 647 x~814 x speedup
with 12W power and TX2 CPU achieves 1.78x~2.67x
speedup with 4W power. For the energy efficiency, our FPGA
implementation achieves 4.8 FPS/W~28.7 FPS/W, which
is 242.6x~719.0x higher than TX2 CPU and 3.0x~4.7x
higher than TX2 GPU (with token pruning).

VIII. CONCLUSION

In this paper, we have proposed a hardware-efficient image-
adaptive token pruning framework called HeatViT for ViT
inference acceleration on resource-constraint edge devices. To
improve the pruning rate and accuracy, we first adopted an
effective and hardware-efficient token selector that can more
accurately classify tokens and consolidates non-informative
tokens. We also implemented a proof-of-concept ViT hard-
ware accelerator on FPGAs by heavily reusing the hardware
components built for the backbone ViT to support the adaptive
token pruning module. Besides, we propose a polynomial
approximation of nonlinear functions for ambitious (8-bit)
quantization and efficient hardware implementation. Finally,
to meet both the target inference latency and model accuracy,

we applied a latency-aware multi-stage training strategy to
learn the number of token selectors to insert into the backbone
ViT, and the location and pruning rate of each token selector.
Experimental results show that HeatViT achieves superior
pruning rate and accuracy compared to state-of-the-art pruning
studies while incurring a trivial amount of hardware resource
overhead.

ACKNOWLEDGEMENTS

This work is partly supported by NSF CCF-1901378;
NSERC Discovery Grant RGPIN-2019-04613, DGECR-2019-
00120, Alliance Grant ALLRP-552042-2020; CFI John R.
Evans Leaders Fund.

REFERENCES

[11 A. F. Agarap, “Deep learning using rectified linear units (relu),” arXiv
preprint arXiv:1803.08375, 2018.

D. Bahdanau, K. H. Cho, and Y. Bengio, “Neural machine translation
by jointly learning to align and translate,” in International Conference
on Learning Representations (ICLR), 2015.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler,
J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei, “Language models are few-shot learners,” in Advances
in Neural Information Processing Systems (NeurIPS), vol. 33, 2020, pp.
1877-1901.

H. Cao, Y. Wang, J. Chen, D. Jiang, X. Zhang, Q. Tian, and M. Wang,
“Swin-unet: Unet-like pure transformer for medical image segmenta-
tion,” arXiv preprint arXiv:2105.05537, 2021.

N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-end object detection with transformers,” in
European Conference on Computer Vision (ECCV). Springer, 2020,
pp. 213-229.

B. Chen, P. Li, C. Li, B. Li, L. Bai, C. Lin, M. Sun, J. Yan, and
W. Ouyang, “Glit: Neural architecture search for global and local image
transformer,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2021, pp. 12-21.

H. Chen, Y. Wang, T. Guo, C. Xu, Y. Deng, Z. Liu, S. Ma, C. Xu,
C. Xu, and W. Gao, “Pre-trained image processing transformer,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2021, pp. 12299-12310.

[2]

[3]

[5]

[6

=

[7

—

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

M. Chen, H. Peng, J. Fu, and H. Ling, “Autoformer: Searching
transformers for visual recognition,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), 2021, pp. 12270-
12 280.

M. Chen, K. Wu, B. Ni, H. Peng, B. Liu, J. Fu, H. Chao, and H. Ling,
“Searching the search space of vision transformer,” in Advances in
Neural Information Processing Systems (NeurIPS), vol. 34, 2021, pp.
8714-8726.

T. Chen, Y. Cheng, Z. Gan, L. Yuan, L. Zhang, and Z. Wang, “Chasing
sparsity in vision transformers: An end-to-end exploration,” in Advances
in Neural Information Processing Systems, 2021.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words: Trans-
formers for image recognition at scale,” in International Conference on
Learning Representations (ICLR), 2021.

Facebook, “Torchvision,” 2021, last accessed Sept 12, 2021. [Online].
Available: https://pytorch.org/vision/stable/models.html

M. Fayyaz, S. A. Kouhpayegani, F. R. Jafari, E. Sommerlade, H. R. V.
Joze, H. Pirsiavash, and J. Gall, “Ats: Adaptive token sampling for
efficient vision transformers,” arXiv preprint arXiv:2111.15667, 2021.
S. Fox, J. Faraone, D. Boland, K. Vissers, and P. H. Leong, “Training
deep neural networks in low-precision with high accuracy using fpgas,”
in 2019 International Conference on Field-Programmable Technology
(ICFPT), 2019, pp. 1-9.

S. Fox, J. Faraone, D. Boland, K. Vissers, and P. H. Leong, “Training
deep neural networks in low-precision with high accuracy using fpgas,”
in 2019 International Conference on Field-Programmable Technology
(ICFPT). IEEE, 2019, pp. 1-9.

C. Gong, D. Wang, M. Li, X. Chen, Z. Yan, Y. Tian, and V. Chandra,
“Nasvit: Neural architecture search for efficient vision transformers with
gradient conflict aware supernet training,” in International Conference
on Learning Representations (ICLR), 2021.

1. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

Y. Guo, Y. Zheng, M. Tan, Q. Chen, J. Chen, P. Zhao, and J. Huang,
“Nat: Neural architecture transformer for accurate and compact ar-
chitectures,” in Advances in Neural Information Processing Systems
(NeurlPS), vol. 32, 2019.

K. Han, A. Xiao, E. Wu, J. Guo, C. Xu, and Y. Wang, “Transformer
in transformer,” in Advances in Neural Information Processing Systems,
2021.

K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask r-cnn,” in
Proceedings of the IEEE international conference on computer vision,
2017, pp. 2961-2969.

D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),” arXiv
preprint arXiv:1606.08415, 2016.

B. Heo, S. Yun, D. Han, S. Chun, J. Choe, and S. J. Oh, “Rethink-
ing spatial dimensions of vision transformers,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), 2021.
A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang,
Y. Zhu, R. Pang, V. Vasudevan et al., “Searching for mobilenetv3,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2019, pp. 1314-1324.

J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2018, pp. 7132-7141.

Z. Jiang, Q. Hou, L. Yuan, D. Zhou, Y. Shi, X. Jin, A. Wang, and
J. Feng, “All tokens matter: Token labeling for training better vision
transformers,” arXiv preprint arXiv:2104.10858, 2021.

J. D. M.-W. C. Kenton and L. K. Toutanova, “Bert: Pre-training of deep
bidirectional transformers for language understanding,” in Proceedings
of NAACL-HLT, 2019, pp. 4171-4186.

S. Kim, A. Gholami, Z. Yao, M. W. Mahoney, and K. Keutzer, “I-bert:
Integer-only bert quantization,” arXiv preprint arXiv:2101.01321, 2021.
Z. Kong, P. Dong, X. Ma, X. Meng, W. Niu, M. Sun, X. Shen, G. Yuan,
B. Ren, H. Tang, M. Qin, and Y. Wang, “Spvit: Enabling faster vision
transformers via latency-aware soft token pruning,” in Computer Vision
— ECCV 2022: 17th European Conference, Tel Aviv, Israel, October
23-27, 2022, Proceedings, Part XI, 2022, p. 620-640.

S. Kornblith, M. Norouzi, H. Lee, and G. Hinton, “Similarity of
neural network representations revisited,” in International Conference
on Machine Learning (ICML). PMLR, 2019, pp. 3519-3529.

(31]

[32]

(33]

(34]

(35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

B. Li, S. Pandey, H. Fang, Y. Lyv, J. Li, J. Chen, M. Xie, L. Wan, H. Liu,
and C. Ding, “Ftrans: energy-efficient acceleration of transformers using
fpga,” in Proceedings of the ACM/IEEE International Symposium on
Low Power Electronics and Design, 2020, pp. 175-180.

C. Li, T. Tang, G. Wang, J. Peng, B. Wang, X. Liang, and X. Chang,
“Bossnas: Exploring hybrid cnn-transformers with block-wisely self-
supervised neural architecture search,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), 2021, pp. 12281
12291.

Z.Li, M. Sun, A. Lu, H. Ma, G. Yuan, Y. Xie, H. Tang, Y. Li, M. Leeser,
Z. Wang, X. Lin, and Z. Fang, “Auto-vit-acc: An fpga-aware automatic
acceleration framework for vision transformer with mixed-scheme quan-
tization,” in International Conference on Field Programmable Logic and
Applications. Springer, 2022, pp. 289-300.

Y. Liang, C. GE, Z. Tong, Y. Song, J. Wang, and P. Xie,
“EVit: Expediting vision transformers via token reorganizations,” in
International Conference on Learning Representations, 2022. [Online].
Available: https://openreview.net/forum?id=BjyvwnXXVn_

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollar, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European conference on computer vision. Springer, 2014,
pp. 740-755.

Z. Liu, Y. Wang, K. Han, W. Zhang, S. Ma, and W. Gao, “Post-training
quantization for vision transformer,” in Advances in Neural Information
Processing Systems (NeurIPS), vol. 34, 2021, pp. 28 092-28 103.

M. Mao, R. Zhang, H. Zheng, P. Gao, T. Ma, Y. Peng, E. Ding, and
S. Han, “Dual-stream network for visual recognition,” in Advances in
Neural Information Processing Systems, 2021.

T. M. Mitchell, “Machine learning and data mining,” Communications
of the ACM, vol. 42, no. 11, pp. 30-36, 1999.

B. Pan, Y. Jiang, R. Panda, Z. Wang, R. Feris, and A. Oliva, “Ja-red?:
Interpretability-aware redundancy reduction for vision transformers,” in
Advances in Neural Information Processing Systems, 2021.

A. Parikh, O. Tackstrom, D. Das, and J. Uszkoreit, “A decomposable
attention model for natural language inference,” in Proceedings of the
2016 Conference on Empirical Methods in Natural Language Process-
ing, 2016, pp. 2249-2255.

G. Prato, E. Charlaix, and M. Rezagholizadeh, “Fully quantized trans-
former for machine translation,” in Findings of the Association for
Computational Linguistics: EMNLP 2020, 2020, pp. 1-14.

P. Qi, Y. Song, H. Peng, S. Huang, Q. Zhuge, and E. H.-M. Sha,
“Accommodating transformer onto fpga: Coupling the balanced model
compression and fpga-implementation optimization,” in Proceedings of
the 2021 on Great Lakes Symposium on VLSI, 2021, pp. 163-168.

Y. Rao, W. Zhao, B. Liu, J. Lu, J. Zhou, and C.-J. Hsieh, “Dynamicvit:
Efficient vision transformers with dynamic token sparsification,” in
Advances in Neural Information Processing Systems, 2021.

D. So, Q. Le, and C. Liang, “The evolved transformer,” in International
Conference on Machine Learning (ICML). PMLR, 2019, pp. 5877—
5886.

M. Sun, Z. Li, A. Lu, Y. Li, S.-E. Chang, X. Ma, X. Lin, and Z. Fang,
“Film-qnn: Efficient fpga acceleration of deep neural networks with
intra-layer, mixed-precision quantization,” in Proceedings of the 2022
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays (FPGA), 2022, p. 134-145.

Y. Tang, K. Han, Y. Wang, C. Xu, J. Guo, C. Xu, and D. Tao, “Patch
slimming for efficient vision transformers,” 2021.

H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and
H. Jégou, “Training data-efficient image transformers & distillation
through attention,” in International Conference on Machine Learning,
2021, pp. 10347-10357.

I. Tsmots, O. Skorokhoda, and V. Rabyk, “Hardware implementation of
sigmoid activation functions using fpga,” in 2019 IEEE 15th Interna-
tional Conference on the Experience of Designing and Application of
CAD Systems (CADSM), 2019, pp. 34-38.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems, 2017, pp. 5998-6008.

H. Wang, Z. Wu, Z. Liu, H. Cai, L. Zhu, C. Gan, and S. Han, “Hat:
Hardware-aware transformers for efficient natural language processing,”
in Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics (ACL), 2020, pp. 7675-7688.

W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu, P. Luo,
and L. Shao, “Pyramid vision transformer: A versatile backbone for

[51]

[52]

(53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

dense prediction without convolutions,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), 2021.

H. Wu, B. Xiao, N. Codella, M. Liu, X. Dai, L. Yuan, and L. Zhang,
“Cvt: Introducing convolutions to vision transformers,” arXiv preprint
arXiv:2103.15808, 2021.

Xilinx, “Vitis unified software platform,” 2022, last accessed April
21, 2022. [Online]. Available: https://www.xilinx.com/products/design-
tools/vitis/vitis-platform.html#development

Xilinx, “Zcul02 evaluation board - user guide,”
2022, last accessed April 21, 2022. [Online]. Avail-
able: https://www.xilinx.com/content/dam/xilinx/support/documents/

boards_and_kits/zcu102/ug1182-zcul02-eval-bd.pdf

Y. Xu, Z. Zhang, M. Zhang, K. Sheng, K. Li, W. Dong, L. Zhang,
C. Xu, and X. Sun, “Evo-vit: Slow-fast token evolution for dynamic
vision transformer,” arXiv preprint arXiv:2108.01390, 2021.

C. Yang, Z. Wu, B. Zhou, and S. Lin, “Instance localization for self-
supervised detection pretraining,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2021,
pp. 3987-3996.

H. Yu and J. Wu, “A unified pruning framework for vision transformers,”
arXiv preprint arXiv:2111.15127, 2021.

S. Yu, T. Chen, J. Shen, H. Yuan, J. Tan, S. Yang, J. Liu, and Z. Wang,
“Unified visual transformer compression,” in International Conference
on Learning Representations, 2022.

L. Yuan, Y. Chen, T. Wang, W. Yu, Y. Shi, Z.-H. Jiang, F. E. Tay, J. Feng,
and S. Yan, “Tokens-to-token vit: Training vision transformers from
scratch on imagenet,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2021, pp. 558-567.

C. Zhang, G. Sun, Z. Fang, P. Zhou, P. Pan, and J. Cong, “Caffeine:
Toward uniformed representation and acceleration for deep convolutional
neural networks,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 38, no. 11, pp. 2072-2085, 2018.
X. Zhang, Y. Wu, P. Zhou, X. Tang, and J. Hu, “Algorithm-hardware
co-design of attention mechanism on fpga devices,” ACM Transactions
on Embedded Computing Systems (TECS), vol. 20, no. 5s, pp. 1-24,
2021.

Z. Zhao, Y. Liu, L. Chen, Q. Liu, R. Ma, and K. Yu, “An investigation
on different underlying quantization schemes for pre-trained language
models,” in CCF International Conference on Natural Language Pro-
cessing and Chinese Computing. Springer, 2020, pp. 359-371.

S. Zheng, J. Lu, H. Zhao, X. Zhu, Z. Luo, Y. Wang, Y. Fu, J. Feng,
T. Xiang, P. H. Torr et al., “Rethinking semantic segmentation from a
sequence-to-sequence perspective with transformers,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2021, pp. 6881-6890.

D. Zhou, Y. Shi, B. Kang, W. Yu, Z. Jiang, Y. Li, X. Jin, Q. Hou, and
J. Feng, “Refiner: Refining self-attention for vision transformers,” 2021.
L. Zhou, Y. Zhou, J. J. Corso, R. Socher, and C. Xiong, “End-to-end
dense video captioning with masked transformer,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2018, pp. 8739-8748.

M. Zhu, K. Han, Y. Tang, and Y. Wang, “Visual transformer pruning,”
in KDD 2021 Workshop on Model Mining, 2021.

X.Zhu, W. Su, L. Lu, B. Li, X. Wang, and J. Dai, “Deformable detr: De-
formable transformers for end-to-end object detection,” in International
Conference on Learning Representations (ICLR), 2020.

