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In biomedical research, the outcome of longitudinal studies has been tradition-
ally analyzed using the repeated measures analysis of variance (rm-ANOVA) or
more recently, linear mixed models (LMEMs). Although LMEMs are less restric-
tive than rm-ANOVA as they can work with unbalanced data and non-constant
correlation between observations, both methodologies assume a linear trend in
the measured response. It is common in biomedical research that the true trend
response is nonlinear and in these cases the linearity assumption of rm-ANOVA
and LMEMs can lead to biased estimates and unreliable inference. In contrast,
GAMs relax the linearity assumption of rm-ANOVA and LMEMs and allow the
data to determine the fit of the model while also permitting incomplete observa-
tions and different correlation structures. Therefore, GAMs present an excellent
choice to analyze longitudinal data with non-linear trends in the context of
biomedical research. This paper summarizes the limitations of rm-ANOVA and
LMEMs and uses simulated data to visually show how both methods produce
biased estimates when used on data with non-linear trends. We present the
basic theory of GAMs and using reported trends of oxygen saturation in tumors,
we simulate example longitudinal data (2 treatment groups, 10 subjects per
group, 5 repeated measures for each group) to demonstrate their implementa-
tion in R.We also show that GAMs are able to produce estimates with non-linear
trends even when incomplete observations exist (with 40% of the simulated
observations missing). To make this work reproducible, the code and data used
in this paper are available at: https://github.com/aimundo/GAMs-biomedical-
research.
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1 BACKGROUND

Longitudinal studies are designed to repeatedly measure a variable of interest in a group (or groups) of subjects, with the
intention of observing the evolution of effect across time rather than analyzing a single time point (eg, a cross-sectional
study). Biomedical research frequently uses longitudinal studies to analyze the evolution of a “treatment” effect across
multiple time points, with subjects of analysis ranging from animals (mice, rats, rabbits), to human patients, cells, or blood
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samples, amongmany others. Tumor response,1-4 antibody expression,5,6 and cell metabolism7,8 are examples of different
situations where researchers have used longitudinal designs to study some physiological response. Because the frequency
of the measurements in a longitudinal study is dependent on the biological phenomena of interest and the experimental
design of the study, the frequency of such measurements can range fromminute intervals to study a short-term response
such as anesthesia effects in animals,9 to weekly measurements to analyze a mid-term response like the evolution of
dermatitis symptoms in breast cancer patients,10 to monthly measurements to study a long-term response such as mouth
opening following radiotherapy (RT) in neck cancer patients.11

Traditionally, a “frequentist” or “classical” statistical paradigm is used in biomedical research to derive inferences
from a longitudinal study. The frequentist paradigm regards probability as the limit of the expected outcome when an
experiment is repeated a large number of times,12 and such view is applied to the analysis of longitudinal data by assuming
a null hypothesis under a statistical model that is often an analysis of variance over repeated measures (repeated measures
ANOVA or rm-ANOVA). The rm-ANOVAmodelmakes three assumptions regarding longitudinal data: (1) linearity of the
response across time, (2) constant correlation across same-subject measurements, and (3) observations from each subject
are obtained at all time points through the study (a condition also known as complete observations).13,14

The expected linear behavior of the response through time is a key requisite in rm-ANOVA.15 This “linearity assump-
tion” in rm-ANOVA implies that the model is misspecified when the data does not follow a linear trend, which results
in unreliable inference. In longitudinal biomedical research, non-linear trends are the norm rather than the exception. A
particular example of this non-linear behavior in longitudinal data arises in measurements of tumor response to chemo
and/or radiotherapy in preclinical and clinical settings.1,8,16 These studies have shown that the collected signal does not
follow a linear trend over time, and presents extreme variability at different time points, making the fit of rm-ANOVA
model inconsistent with the observed variation. Therefore, when rm-ANOVA is used to draw inference of such data
the estimates are inevitably biased because the model is only able to accommodate linear trends that fail to adequately
represent the biological phenomenon of interest.

A post hoc analysis is often used in conjunction with rm-ANOVA to perform repeated comparisons to estimate a
P-value, which in turn is used as ameasure of significance. Although it is possible that a post hoc analysis of rm-ANOVA is
able to find “significant effects (P-value< 0.05)” fromdatawith nonlinear trends, the validity of such ametric is dependent
on how adequate the model fits the data. In other words, P-values are valid only if the model and the data have good
agreement; if that is not the case, a “Type III” error (known as “model misspecification”) occurs.17 For example, model
misspecification will occur when a model that is only able to explain linear responses (such as rm-ANOVA) is fitted to
data that follows a quadratic trend, thereby causing the resulting P-values and parameter estimates to be invalid.18

Additionally, the P-value itself is highly variable, and multiple comparisons can inflate the false positivity rate (Type
I error or 𝛼),19,20 consequently biasing the conclusions of the study. Corrections exist to address the Type I error issue of
multiple comparisons (such as Bonferroni),21 but they in turn reduce statistical power (1 − 𝛽),22 and lead to increased
Type II error (failing to reject the null hypothesis when it is false).23,24 Therefore, the tradeoff of post hoc comparisons
in rm-ANOVA between Type I, II, and III errors might be difficult to resolve in a biomedical longitudinal study where a
delicate balance exists between statistical power and sample size.

On the other hand, the assumption of constant correlation in rm-ANOVA (often known as the compound symmetry
assumption) is typically unreasonable because correlation between the measured responses often diminishes as the time
interval between the observation increases.25 Corrections can be made in rm-ANOVA in the absence of compound sym-
metry,26,27 but the effectiveness of the correction is limited by the size of the sample, the number of measurements,28 and
group sizes.29 In the case of biomedical research, where living subjects are frequently used, sample sizes are often not
“large” due to ethical and budgetary reasons,30 which might cause the corrections for lack of compound symmetry to be
ineffective.

Due to a variety of causes, the number of observations during a study can be different between all subjects. For
example, in a clinical trial patients may voluntarily withdraw, whereas attrition due to injury or weight loss in preclin-
ical animal studies is possible. It is even plausible that unexpected complications with equipment or supplies arise that
prevent the researcher from collecting measurements at certain time points. In each of these scenarios, the complete
observations assumption of classical rm-ANOVA is violated. When incomplete observations occur, a rm-ANOVAmodel is
fit by excluding all subjects with incomplete observations from the analysis.13 This elimination of partially missing data
from the analysis can result in increased costs if the desired statistical power is not met with the remaining observations,
because it would be necessary to enroll more subjects. At the same time, if the excluded observations contain insightful
information that is not used, their elimination from the analysis may limit the demonstration of significant differences
between groups.
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During the last decade, the biomedical community has started to recognize the limitations of rm-ANOVA in the anal-
ysis of longitudinal data. The recognition on the shortcomings of rm-ANOVA is exemplified by the use of linear mixed
effects models (LMEMs) by certain groups to analyze longitudinal tumor response data.8,16 Briefly, LMEMs incorporate
fixed effects, which correspond to the levels of experimental factors in the study (eg, the different drug regimens in a
clinical trial), and random effects, which account for random variation within the population (eg, the individual-level dif-
ferences not due to treatment such as weight or age). When compared to the traditional rm-ANOVA, LMEMs are more
flexible as they can accommodate incomplete observations for multiple subjects and allow different modeling strategies
for the variability within each measure in every subject.15 However, LMEMs impose restrictions in the distribution of the
random effects, which need to be independent.13,31 And even more importantly, LMEMs also assume by default a linear
relationship between the response and time15 (polynomial effects can be used, but this approach has its own shortcomings
as we discuss in Section 3.2.1) .

As the rm-ANOVA and the more flexible LMEM approaches make overly restrictive assumptions regarding the trend
of the response, there is a need for biomedical researchers to explore the use of statistical tools that allow the data (and not
a model assumption) to determine the trend of the fitted model and to enable appropriate inference. In this regard, gen-
eralized additive models (GAMs) present an alternative approach to analyze longitudinal data. Although not frequently
used by the biomedical community, these semi-parametric models are customarily used in other fields to analyze longitu-
dinal data. Examples of the use of GAMs include the analysis of temporal variations in geochemical and palaeoecological
data,32-34 health-environment interactions35 and the dynamics of government in political science.36 There are several
advantages of GAMs over LMEMs and rm-ANOVA models: (1) GAMs can fit a more flexible class of smooth responses
that enable the data to dictate the trend in the fit of the model, (2) they can model nonconstant correlation between
repeated measurements,37 and (3) can easily accommodate incomplete observations. Therefore, GAMs provide a more
flexible statistical approach to analyze nonlinear biomedical longitudinal data than LMEMs and rm-ANOVA.

The current advances in programming languages designed for statistical analysis (specifically R), have eased the com-
putational implementation of traditional models such as rm-ANOVA andmore complex approaches such as LMEMs and
GAMs. In particular, R38 has an extensive collection of documentation and functions to fit GAMs in the packagemgcv37,39
that speed up the initial stages of the analysis and enable the use of advanced modeling structures (eg, hierarchical mod-
els, confidence interval comparisons) without requiring advanced programming skills. At the same time, R has many
tools that simplify data simulation.

Data simulation methods are an emerging technique that allow the researcher to create and explore different alterna-
tives for analysis without collecting information in the field, reducing the time window between experiment design and
its implementation. In addition, simulation can be also used for power calculations and study design questions.28

This work provides biomedical researchers with a clear understanding of the theory and the practice of using GAMs to
analyze longitudinal data using by focusing on four areas. First, the limitations of LMEMs and rm-ANOVA regarding an
expected trend of the response, constant correlation structures, and complete observations are explained in detail. Second,
the key theoretical elements of GAMs are presented using clear and simple mathematical notation while explaining the
context and interpretation of the equations. Third, we illustrate the type of non-linear longitudinal data that often occurs
in biomedical research using simulated data that reproduces patterns in previously reported studies.16 The simulated data
experiments highlight the differences in inference between rm-ANOVA, LMEMs and GAMs on data similar to what is
commonly observed in biomedical studies. Finally, reproducibility is emphasized by providing the code to generate the
simulated data and the implementation of different models in R, in conjunction with a step-by-step guide demonstrating
how to fit models of increasing complexity.

In summary, this work will allow biomedical researchers to identify when the use of GAMs instead of rm-ANOVA
or LMEMs is appropriate to analyze longitudinal data, and provide guidance on the implementation of these models to
improve the standards for reproducibility in biomedical research.

2 CHALLENGES PRESENTED BY LONGITUDINAL STUDIES

2.1 The repeated measures ANOVA and linear mixed model

The repeatedmeasures analysis of variance (rm-ANOVA) and the linearmixedmodel (LMEM) are themost commonly used
statistical analysis for longitudinal data in biomedical research. These statistical methodologies require certain assump-
tions for the model to be valid. From a practical view, the assumptions can be divided in three areas: (1) an assumed
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relationship between covariates and response, (2) a constant correlation between measurements, and, (3) complete
observations for all subjects. Each one of these assumptions is discussed below.

2.2 Assumed relationship

2.2.1 The repeated measures ANOVA case

In a longitudinal biomedical study, two ormore groups of subjects (eg, human subject, mice, samples) are subject to differ-
ent treatments (eg, a “treatment” group receives a novel drug or intervention vs a “control” group that receives a placebo),
and measurements from each subject within each group are collected at specific time points. The collected response is
modeled with fixed components. The fixed component can be understood as a constant value in the response which the
researcher is interested in measuring, that is, the average effect of the novel drug/intervention in the “treatment” group.

Mathematically speaking, a rm-ANOVA model with an interaction can be written as

yijt = 𝛽0 + 𝛽1 × treatmentj + 𝛽2 × timet + 𝛽3 × timet × treatmentj + 𝜀ijt, (1)

In this model yijt is the response for subject i, in treatment group j at time t, which can be decomposed in a mean
value 𝛽0, fixed effects of treatment (treatmentj), time (timet), and their interaction timet × treatmentj which have linear
slopes given by 𝛽1, 𝛽2 and 𝛽3, respectively. Independent errors 𝜀ijt represent random variation from the sampling process
assumed to be i.i.d.∼ N(0, 𝜎2) (independently and identically normally distributed with mean zero and variance 𝜎

2). In a
biomedical research context, suppose two treatments groups are used in a study (eg, “placebo” vs “novel drug,” or “saline”
vs “chemotherapy”). Then, the group terms in Equation (1) can be written as below with treatmentj = 0 representing
the first treatment group (Group A) and treatmentj = 1 representing the second treatment group (Group B). With this
notation, the linear model then can be expressed as

yijt =

{
𝛽0 + 𝛽2 × timet + 𝜀ijt if Group A,
𝛽0 + 𝛽1 + 𝛽2 × timet + 𝛽3 × timet + 𝜀ijt if Group B.

(2)

To further simplify the expression, substitute 𝛽0 = 𝛽0 + 𝛽1 and 𝛽1 = 𝛽2 + 𝛽3 in the equation for Group B. This
substitution allows for a different intercept and slope for Groups A and B. The model is then written as

yijt =

{
𝛽0 + 𝛽2 × timet + 𝜀ijt if Group A,
𝛽0 + 𝛽1 × timet + 𝜀ijt if Group B.

(3)

Presenting the model in this manner makes clear that when treating different groups, an rm-ANOVAmodel is able to
accommodate nonparallel lines in each case (different intercepts and slopes per group). In other words, the rm-ANOVA
model “expects” a linear relationship between the covariates and the response. This means that either presented as
Equations (1), (2) or (3), an rm-ANOVA model is only able to accommodate linear patterns in the data. If the data show
nonlinear trends, the rm-ANOVA model will approximate this behavior with nonparallel lines.

2.2.2 The linear mixed model case

A LMEM is a class of statistical models that incorporates fixed effects to model the relationship between the covariates
and the response, and random effects to model subject variability that is not the primary focus of the study but that might
be important to account for.15,40 A LMEM with interaction between time and treatment for a longitudinal study can be
written as

yijt = 𝛽0 + 𝛽1 × treatmentj + 𝛽2 × timet + 𝛽3 × timet × treatmentj + 𝛼ij + 𝜀ijt. (4)

When Equations (1) and (4) are compared, it is noticeable that LMEMs and rm-ANOVA have the same construction
regarding the fixed effects of time and treatment, but that the LMEM incorporates an additional source of variation (the
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4270 MUNDO et al.

term 𝛼ij). This term 𝛼ij corresponds to the random effect, accounting for variability in each subject (subjecti) within each
group (groupj). The random component can also be understood as modeling some “noise” in the response, but that does
not arise from the sampling error term 𝜀ijt from Equations (1) through (3).

For example, if the blood concentration of a drug is measured in certain subjects in the early hours of the morning
while other subjects aremeasured in the afternoon, it is possible that the difference in the collection time introduces some
“noise” in the data that needs to be accounted for. As the name suggests, this “random” variability needs to be modeled
as a variable rather than as a constant value. The random effect 𝛼ij in Equation (4) is assumed to be 𝛼ij ∼ N(0, 𝜎2

𝛼
). In

essence, the random effect in a LMEM enables fitting models with different intercepts at the subject-level.15 However, the
expected linear relationship of the covariates and the response in Equation (1) and in Equation (4) is essentially the same,
representing a major limitation of LMEMs to fit a non-linear response.

Of note, LMEMs are capable of fitting non-linear trends using an “empirical” approach (using polynomial fixed effects
instead of linear effects such as inEquation (4)), which is described in detail by Pinheiro andBates.15 However, polynomial
fits have limited predictive power, cause bias on the boundaries of the covariates,36 and more importantly, their lack of
biological or mechanistic interpretation limits their use in biomedical studies.15

2.3 Covariance in rm-ANOVA and LMEMs

In a longitudinal study there is an expected covariance between repeatedmeasurements on the same subject, and because
repeated measures occur in the subjects within each group, there is a covariance between measurements at each time
point within each group. The covariance matrix (also known as the variance-covariance matrix) is a matrix that captures
the variation between and within subjects in a longitudinal study41 (for an in-depth analysis of the covariance matrix see
West40 and Weiss42).

In the case of an rm-ANOVA analysis, it is typically assumed that the covariance matrix has a specific construction
known as compound symmetry (also known as “sphericity” or “circularity”). Under this assumption, the between-subject
variance and within-subject correlation are constant across time.26,42,43 However, it has been shown that this condition is
frequently not justified because the correlation betweenmeasurements tends to change over time;44 and is higher between
consecutive measurements.13,25 Although corrections can be made (such as Huyhn-Feldt or Greenhouse-Geisser)26,27
their effectiveness is dependent on sample size and number of repeated measurements,28 and it has been shown that
corrections are not robust if the group sizes are unbalanced.29 Because biomedical longitudinal studies are often limited
in sample size and can have an imbalanced design, the corrections required to use an rm-ANOVAmodel may not be able
to provide a reasonable adjustment that makes the model valid.

In the case of LMEMs, one key advantage over rm-ANOVA is that they allow different structures for the
variance-covariance matrix including exponential, autoregressive of order 1, rational quadratic and others.15 Neverthe-
less, the analysis required to determine an appropriate variance-covariance structure for the data can be a challenging
process by itself. Overall, the spherical assumption for rm-ANOVA may not capture the natural variations of the
correlation in the data, and can bias the inferences from the analysis.

2.4 Unbalanced data

In a longitudinal study, it is frequently the case that the number of observations is different across subjects. In biomedical
research, this imbalance in sample size can be caused by reasons beyond the control of the investigator (such as dropout
from patients in clinical studies and attrition or injury of animals in preclinical research) leading to what is known as
“missing,” “incomplete,” or (more generally speaking) unbalanced data.45 The rm-ANOVA model is very restrictive in
these situations as it assumes that observations exist for all subjects at every time point; if that is not the case subjects with
one or more missing observations are excluded from the analysis. This is inconvenient because the remaining subjects
might not accurately represent the population and statistical power is affected by this reduction in sample size.46

On the other hand, LMEMs and GAMs can work with missing observations, and inferences from the model are valid
when the imbalance in the observations are missing at random (MAR) or completely missing at random (MCAR).40,42 In
a MAR scenario, the pattern of the missing information is related to some variable in the data, but it is not related to
the variable of interest.47 If the data are MCAR, this means that the missingness is completely unrelated to the collected
information.48 Missing observations can also bemissing not at random (MNAR) and in the case the missing observations
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F IGURE 1 Simulated responses from two groups with correlated errors using a LMEM and a rm-ANOVA model. Top row: linear
response, bottom row: quadratic response. (A) Simulated linear data with known mean response (thick lines) and individual responses
(points) showing the dispersion of the data. (D) Simulated quadratic data with known mean response (thick lines) and individual responses
(points) showing the dispersion of the data. (B,E) Estimates from the rm-ANOVA model for the mean group response (linear of quadratic).
Points represent the original raw data. The rm-ANOVAmodel not only fails to pick the trend of the quadratic data (E) but also assigns a global
estimate that does not take into account the between-subject variation. (C,F) Estimates from the LMEM in the linear and quadratic case
(subject: thin lines, population: thick lines) . The LMEM incorporates a random effect for each subject, but this model and the rm-ANOVA
model are unable to follow the trend of the data and grossly bias the initial estimates for each group in the quadratic case (bottom row)

are dependent on their value. For example, if attrition occurs in all mice that had lower weights at the beginning of a
chemotherapy response study, the missing data can be considered MAR because the missigness is unrelated to other
variables of interest.

However, it is worth reminding that “all models are wrong”49 and that the ability of LMEMs and GAMs to work with
unbalanced data does not make them immune to problems that can arise due to high rates of incomplete data, such as
sampling bias or a drastic reduction in statistical power. Researchers must ensure that the study design is statistically
sound and that measures exist to minimize missing observation rates.

2.5 What does the fit of an rm-ANOVA and LMEM look like? A visual representation
using simulated data

To visually demonstrate the limitations of rm-ANOVA and LMEMs for longitudinal data with non-linear trends, this
section presents a simulation experiment of a normally distributed response of two groups of 10 subjects each. An
rm-ANOVAmodel (Equation (1)), and a LMEM (Equation (4)) are fitted to each group using R38 and the package nlme.50

Briefly, two cases for the mean response for each group are considered: in the first case, the mean response in each
group is a linear function over timewith different intercepts and slopes; a negative slope is used for Group 1 and a positive
slope is used for Group 2 (Figure 1A). In the second case, a second-degree polynomial (quadratic) function is used for the
mean response per group: the quadratic function is concave down forGroup 1 and it is concave up forGroup 2 (Figure 1D).
In both the linear and quadratic simulated data, the groups start with the same mean value in order to simulate the
expected temporal evolution of some physiological quantity, starting at a common initial condition.

Specifically, the rationale for the chosen linear and quadratic functions is the expectation that a measured response
in two treatment groups is similar in the initial phase of the study, but as therapy progresses a divergence in the trend
of the response indicates a treatment effect. In other words, Group 1 can be thought as a “Control” group and Group 2
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as a “Treatment” group. From the mean response per group (linear or quadratic), the variability or “error” of individual
responses within each group is simulated using a covariance matrix with compound symmetry (constant variance across
time). Thus, the response per subject at each timepoint in both the linear and quadratic simulation corresponds to the
mean response per group plus the error (represented by the points in Figure 1A,D).

A more comprehensive exploration of the fit of rm-ANOVA and LMEMs for linear and nonlinear longitudinal data
can be obtained from the code that appears in Appendix B, (Figures B.1 and B.2), where a simulation with compound
symmetry and independent errors (errors generated from a normal distribution that are not constant over time) is pre-
sented. We are aware that the simulated data used in this section present an extreme case that might not occur frequently
in biomedical research, but they are used to (1) present the consequences of modeling nonlinear trends in data with a
linear model such as rm-ANOVA or a LMEM with “default” (linear) effects and, (2) demonstrate that a visual assess-
ment of model fit is an important tool that helps determine the validity of any statistical assumptions. In Section 4 we use
simulated data that does follow reported trends in the biomedical literature to implement GAMs.

The simulation shows that the fits produced by the LMEM and the rm-ANOVA model are good for linear data (1B),
as the predictions for the mean response are reasonably close to the “truth” of the simulated data (Figure 1A). Note that
because the LMEM incorporates random effects, is able to provide estimates for each subject and a “population” estimate
(Figure 1C).

However, consider the casewhen the data follows anon-linear trend, such as the simulated data inFigure 1D.Here, the
mean response per group was simulated using a quadratic function, and errors and individual responses were produced
as in Figure 1A. The mean response in the simulated data with quadratic behavior changes in each group through the
timeline, and the mean value is the same as the initial value by the fifth time point for each group. Fitting an rm-ANOVA
model (Equation (1)) or a LMEM (Equation (4)) to this data produces the fit that appears in Figure 1E,F.

Comparing the fitted responses of the LMEM and the rm-ANOVA models used in the simulated quadratic data
(Figure 1E,F) indicates that the models are not capturing the changes within each group. Specifically, note that the fit-
ted mean response of both models shows that the change (increase for Treatment 1 or decrease for Treatment 2) in the
response through time points 2 and 4 is not being captured.

The LMEM is only able to account for between-subject variation by providing estimates for each subject (Figure 1F),
but bothmodels are unable to capture the fact that the initial values are the same in each group, and instead fit non-parallel
lines that have initial values that are markedly different from the “true” initial values in each case (compare Figure 1D
with Figure 1E,F). If such a change has important physiological implications, both rm-ANOVA and LMEMs omit it from
the fitted mean response. Thus, even though the model correctly detects a divergence between treatment groups, the
exact nature of this difference is not correctly identified, limiting valuable inferences from the data. It could be argued
that a LMEM with quadratic effects should have been used to fit the data in Figure1F. However, because in reality the
true function is not known, choosing a polynomial degree causes more questions (eg, is it quadratic?, cubic?, or a higher
degree?). Additionally, polynomial effects have other limitations, which we cover in Section 3.2.1.

This section has used simulation to better convey and visualize the limitations of linearity and correlation in the
response in data with non-linear trends using an rm-ANOVA model and a LMEM, where the main issue is the expected
linear trend in the response.Notice that themodelmisspecification is easily noticeable if themodel fit and the response are
visualized. In the following section, we provide a brief overview of linear models, general linear models and generalized
linear mixed models before presenting the theory of GAMs, a class of semi-parametric models that can fit non-linear
trends in data and that overcome the limitations of rm-ANOVA and LMEMs in the analysis of biomedical longitudinal
data.

3 LINEAR MODELS AND BEYOND

Linear models (LMs) are those that assume a normal (Gaussian) distribution of the errors, and only incorporate fixed
effects (such as rm-ANOVA). These are by far the models most commonly used to analyze data within the biomedical
research community. On the other hand, Linear Mixed Effect Models (LMEMs) also incorporate random effects, as it has
been described in Section 2.2.2.

In reality, rm-ANOVA and LMEMs are just special cases of a broader class of models (General Linear Models and
GeneralizedLinearMixedModels, respectively). In order to fully capture the constraints of suchmodels and to understand
how GAMs overcome those limitations this section will briefly provide an overview of the different classes of models and
indicate how rm-ANOVA, LMEMs, and GAMs fit within this framework.
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MUNDO et al. 4273

3.1 Generalized linear models

Amajor limitation of LMs is their assumption of normality in the errors. If the residuals are non-normal, a transformation
is necessary in order to properly fit the model. However, transformation can lead to poor model performance,51 and can
cause problems with the biological interpretation of the model estimates. McCullagh and Nelder52 introduced general
linear models (GLMs) as an extension of LMs, where the errors do not need to be normally distributed. To achieve this,
consider the following model

yijt ∼ 𝒟 (𝜇ijt, 𝜙), (5)

where yijt is the observation i in group j at time t, that is assumed to come from some distribution of the exponential family
𝒟 , with some mean 𝜇ijt, and potentially, a dispersion parameter 𝜙 (which in the Gaussian case is the variance 𝜎2). The
mean (𝜇ijt) is also known as the expected value (or expectation) E(yijt) of the observed response yijt.

Then, the linear predictor 𝜂, which defines the relationship between the mean and the covariates can be defined as

𝜂ijt = 𝛽0 + 𝛽1 × treatmentj + 𝛽2 × timet + 𝛽3 × timet × treatmentj, (6)

where 𝜂ijt is the linear predictor for each observation i in each group j, at each timepoint t. Following the notation from
Equation (1) themodel parameters for each group are 𝛽0 (the intercept), 𝛽1, 𝛽2, and 𝛽3; timet represents the covariates from
each subject in each group at each time point, treatmentj represents the different treatment levels, and timet × treatmentj
represents their interaction.

Finally,

E(yijt) = 𝜇ijt = g−1(𝜂ijt), (7)

whereE(yijt) is the expectation, and g−1 is the inverse of a link function (g). The link function transforms the values from the
response scale to the scale of the linear predictor 𝜂 (Equation (6)). Therefore, it can be seen that LMs (such as rm-ANOVA)
are a special case of GLMs where the response is normally distributed.

3.2 Generalized linear mixed models

Although GLMs relax the normality assumption, they only accommodate fixed effects. Generalized linear mixed models
(GLMMs) are an extension of GLMs that incorporate random effects, which have an associated probability distribution.53
Therefore, in GLMMs the linear predictor takes the form

𝜂ijt = 𝛽0 + 𝛽1 × treatmentj + 𝛽2 × timet + 𝛽3 × timet × treatmentj + 𝛼ij, (8)

where 𝛼ij corresponds to the random effects that can be estimated within each subject in each group, and all the other
symbols correspond to the notation of Equation (6). Therefore, LMEMs are special case of GLMMswhere the distribution
of the response is normally distributed,52 and GLMs are a special case of GLMMs where there are no random effects.
In-depth and excellent discussions about LMs, GLMs and GLMMs can be found in Dobson54 and Stroup.55

3.2.1 GAMs as a special case of generalized linear models

GAMs and basis functions
Notice that in the previous sections, the difference between GLMs and GLMMs resides on their linear predictors
(Equations (6) and (8)). Generalized additive models (GAMs) are an extension of the GLM family that allow the estima-
tion of smoothly varying trends where the relationship between the covariates and the response is modeled using smooth
functions.34,37,56 In a GAM, the linear predictor has the form

𝜂ijt = 𝛽0 + 𝛽1 × treatmentj + f (timet|𝛽j), (9)

where 𝛽0 is the intercept, and 𝛽1 is the coefficient for each treatment group. Notice that the construction of the predictor
is similar to that of Equation (6), but in this case the parametric terms involving the effect of time, and the interaction
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4274 MUNDO et al.

between time and treatment have been replaced by the smooth term f (timet|𝛽j). The smooth term f (timet|𝛽j) gives a
different smooth response for each treatment.* A GAM version of a linear model can be written as

yijt = 𝛽0 + 𝛽1 × treatmentj + f (timet|𝛽j) + 𝜀ijt, (10)

where yijt is the response at time t of subject i in group j, and 𝜀ijt represents the deviation of each observation from the
mean.

In contrast to the linear functions used to model the relationship between the covariates and the response in
rm-ANOVA or LMEM, the use of smooth functions in GAMs is advantageous as it does not restrict the model to a linear
relationship, although a GAM can estimate a linear relationship if the data is consistent with a linear response. One possi-
ble set of functions for f (timet|𝛽j) that allow for non-linear responses are polynomials (which can also be used in LMEMs),
but a major limitation is that polynomials create a “global” fit as they assume that the same relationship exists every-
where, which can cause problems with inference.36 In particular, polynomial fits are known to show boundary effects
because as t goes to ±∞, f (timet|𝛽j) goes to ±∞which is almost always unrealistic and causes bias at the endpoints of the
time period.

The smooth functional relationship between the covariates and the response in GAMs is specified using a semipara-
metric relationship that can be fit within the GLM framework, using a basis function expansion of the covariates and
estimating random coefficients associated with these basis functions. A basis is a set of functions that spans the math-
ematical space within which the true but unknown f (timet) is thought to exist.34 For the linear model in Equation (1),
the basis coefficients are 𝛽1, 𝛽2 and 𝛽3 and the basis vectors are treatmentj, timet, and timet × treatmentj. The basis func-
tion then, is the linear combination of basis coefficients and basis vectors that map the possible relationship between the
covariates and the response,57 which in the case of Equation (1) is restricted to a linear family of functions. In the case
of Equation (10), the basis functions are contained in the expression f (timet|𝛽j), which means that the model allows for
nonlinear relationships among the covariates.

Splines (which derive their name from the physical devices used by draughtsmen to draw smooth curves) are com-
monly used as basis functions that have a long history in solving semiparametric statistical problems and are often a
default choice to fit GAMs as they are a simple, flexible, and powerful option to obtain smoothness.58 Although different
types of splines exist, cubic, thin plate splines, and thin plate regression splines will be briefly discussed next to give a
general idea of these type of basis functions, and their use within the GAM framework.

Cubic splines (CS) are smooth curves constructed from cubic polynomials joined together in a manner that enforces
smoothness. The use of CS as smoothers in GAMs was discussed within the original GAM framework,56 but they are
limited by the fact that their implementation requires the selection of some points along the covariates (known as “knots,”
the points where the basis functions meet) to obtain the finite basis, which affects model fit.59 A solution to the knot
placement limitation of CS is provided by thin plate splines (TPS), which provide optimal smooth estimation without
knot placement, but that are computationally costly to calculate.37,59 In contrast, thin plate regression splines (TPRS)
provide a reasonable “low rank” (truncated) approximation to the optimal TPS estimation, which can be implemented in
an computationally efficient.59 Like TPS, TPRS only requires specifying the number of basis functions to be used to create
the smoother (for mathematical details on both TPS and TPRS see Wood37,59).

To further clarify the concept of basis functions and smooth functions, consider the simulated response for Group 1
that appears in Figure 1D. The simplest GAMmodel that can be used to estimate such response is that of a single smooth
term for the time effect; that is, a model that fits a smooth to the trend of the group through time. A computational
requisite inmgcv is that the number of basis functions to be used to create the smooth cannot be larger than the number of
unique values from the independent variable. Because the data has six unique time points, we can specify a maximum of
six basis functions (including the intercept) to create the smooth. It is important to note that is not necessary to specify a
number of basis equal to the number of unique values in the independent variable; fewer basis functions can be specified
to create the smooth as well, as long as they reasonably capture the trend of the data.

Here, themain idea is that the resulting smoothmatches the data and approximates the true function without becom-
ing too “wiggly” due to the noise present. A detailed exploration of wiggliness and smooth functions is beyond the scope
of this manuscript, but in essence controlling the wiggliness (or “roughness”) of the fit is achieved by using a smoothness
parameter (𝜆), which is used to penalize the likelihood by multiplying it with the integrated square of the second deriva-
tive of the spline smooth. The second derivative of the spline smooth is ameasure of curvature, or the rate of change of the
slope,34,37 and increasing the penalty by increasing 𝜆 results in models with less curvature. As 𝜆 increases, the parameter
estimates are penalized (shrunk toward 0) where the penalty reduces the wiggliness of the smooth fit to prevent
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F IGURE 2 Basis functions for a single smoother for time. (A) Basis functions for a single smoother for time for the simulated data of
Group 1 from this figure. (B) Matrix of basis function weights. Each basis function is multiplied by a coefficient which can be positive or
negative. The coefficient determines the overall effect of each basis in the final smoother. (C) Weighted basis functions. Each of the four basis
functions (and the intercept) of panel A has been weighted by the corresponding coefficient shown in Panel B. Note the corresponding
increase (or decrease) in magnitude of each weighted basis function. (D) Smoother for time and original data points. The smoother (line) is
the result of the sum of each weighted basis function at each time point, with simulated values for Group 1 shown as points

overfitting. In other words, a low penalty estimate will result in wiggly functions whereas a high penalty estimate provides
evidence that a linear response is appropriate.

With this in mind, if four basis functions (plus the intercept) are used to fit a GAM for the data of Group 1 (concave
down trend) that appears in Figure 1D, the resulting fitting process is shown in Figure 2. In Figure 2A the four basis
functions (and the intercept) are shown. Each of the five basis functions is evaluated at six different points (because there
are six points on the timeline). The coefficients for each of the basis functions of Figure 2A are estimated using a penalized
regression with smoothness parameter 𝜆, that is estimated when fitting the model. The penalized coefficient estimates
fitted are shown in Figure 2B.

To get the weighted basis functions, each basis (from Figure 2A) is multiplied by the corresponding coefficients
in Figure 2B, thereby increasing or decreasing the original basis functions. Figure 2C shows the resulting weighted
basis functions. Note that the magnitude of the weighting for the first basis function has resulted in a decrease of its
overall contribution to the smoother term (because the coefficient for that basis function is negative and its magni-
tude is less than one). On the other hand, the third basis function has roughly doubled its contribution to the smooth
term. Finally, the weighted basis functions are added at each timepoint to produce the smooth term. The resulting
smooth term for the effect of time is shown in Figure 2D (brown line), along the simulated values which appear
as points.
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4276 MUNDO et al.

3.2.2 A Bayesian interpretation of GAMs

Bayes’ theorem states that the probability of an event can be calculated using prior knowledge and observed data.60 In the
case of data that shows nonlinear trends, the prior that the true trend of the data is likely to be smooth rather than “wig-
gly” introduces the concept of a prior distribution for wiggliness (and therefore a Bayesian view) of GAMs.37 Moreover,
GAMs are considered “empirical” Bayesian models when fitted using the packagemgcv because the smoothing parame-
ters are estimated from the data (and not from a posterior distribution as in the “fully Bayesian” case, which can be fitted
using JAGS, Stan, or other probabilistic programming language).61 Therefore, the confidence intervals (CIs) calculated by
default for the smooth terms using mgcv are considered empirical Bayesian credible intervals,33 which have good across
the function (“frequentist”) coverage.37

To understand across the function coverage, recall that a CI provides an estimate of the region where the “true” or
“mean” value of a function exists, taking into account the randomness introduced by the sampling process. Because ran-
dom samples from the population are used to calculate the “true” value of the function, there is inherent variability in
the estimation process and the CI provides a region with a nominal value (usually, 95%) where the function is expected
to lie. In an across the function CI (like those estimated by default for GAMs using mgcv), if we average the coverage
of the interval over the entire function we get approximately the nominal coverage (95%). In other words, we expect
that about 95% of the points that compose the true function will be covered by the across the function CI. As a conse-
quence, some areas of the CI for the function have more than nominal coverage and some areas less than the nominal
coverage.

Besides the across the function CI, “simultaneous” or “whole function” CIs can also be computed, which contain the
whole function with a specified probability.37 Suppose we chose a nominal value (say, 95%) and compute a simultane-
ous CI; if we obtain 100 repeated samples and compute a simultaneous CI in each case, we would expect that the true
function lies completely within the computed simultaneous CI in 95 of those repeated samples. Briefly, to obtain a simul-
taneous CI we simulate 10,000 draws from the empirical Bayesian posterior distribution of the fitted smooths. Then, we
obtain the maximum absolute standardized deviation of the differences in smooth estimates which is used to correct the
coverage of the across the function CI62 in a similar fashion to how Q-values correct P-values to control false positive
discovery rates.63

In-depth theory of the Bayesian interpretation of GAMs and details on the computation of simultaneous and across the
function CIs are beyond the scope of this paper, but can be found inMiller,61 Wood,37 Simpson,34 Marra,64 and Ruppert.62
What we want to convey is that a Bayesian interpretation of GAMs allows for robust estimation using simultaneous
empirical Bayesian CIs, as their estimates can be used to make comparisons between different groups in a similar way
that multiple comparisons adjustments make inference from ANOVA models more reliable.

With this in mind, in the next section we consider the use of GAMs to analyze longitudinal biomedical data with
non-linear trends, and use simultaneous empirical Bayesian CIs to assess significance between treatment groups.

4 THE ANALYISIS OF LONGITUDINAL BIOMEDICAL DATA USING GAMS

The previous sections provided the basic understanding of the GAM framework and how these models are more advanta-
geous to analyze non-linear longitudinal data when compared to rm-ANOVA or LMEMs. This section will use simulation
to present the practical implementation of GAMs for longitudinal biomedical data using R and the package mgcv. A brief
guide for model selection and diagnostics appears in Appendix A, and the code for the simulated data and figures can be
found in Appendix B.

4.1 Simulated data

The simulated data is based on the reported longitudinal changes in oxygen saturation (StO2) in subcutaneous tumors
(figure 3C inVishwanath et al16), where diffuse reflectance spectroscopywas used to quantify StO2 changes in both groups
at the same time points (days 0, 2, 5, 7, and 10). In the “Treatment” group (chemotherapy) an increase in StO2 is observed
through time, while a decrease is seen in the “Control” (saline) group. Following the reported trend, we simulated 10
normally distributed observations at each time point with a standard deviation (SD) of 10% (matching the SD in the
original paper). The simulation based on the real data appears in Figure 3A.
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F IGURE 3 Simulated data and smooths for oxygen saturation in tumors. (A) Simulated data (thin lines) that follows previously
reported trends (thick lines) in tumors under chemotherapy (Treatment) or saline (Control) treatment. Simulated data is from a normal
distribution with standard deviation of 10% with 10 observations per time point. (B) Smooths from the GAMmodel for the full simulated data
with interaction of Group and Treatment. Lines represent trends for each group, shaded regions are 95% across the function (narrow region)
and simultaneous (wide region) confidence intervals. (C) The rm-ANOVA model for the simulated data, which does not capture the changes
in each group over time. (D) Smooths for the GAMmodel for the simulated data with missing observations (40%). Lines represent trends for
each group, shaded regions are 95% across the function (narrow region) and simultaneous (wide region) confidence intervals

4.2 An interaction GAM for longitudinal data

An interaction effect is typically the main interest in longitudinal biomedical data, as the interaction takes into account
treatment, time, and their combination. In a practical sense, when a GAM is implemented for longitudinal data, a smooth
can be added to themodel for the time effect for each treatment to account for the repeatedmeasures over time. Although
specific methods of how GAMs model correlation structures is a topic beyond the scope of this paper, it suffices to say
that GAMs are flexible and can handle correlation structures beyond compound symmetry. A detailed description on the
close relationship between basis functions and correlation functions can be found in Hefley et al.57

For the data in Figure 3A, the main effect of interest is how StO2 changes over time for each treatment. To estimate
this, the model incorporates separate smooths for each Group as a function of Day. The main thing to consider is that
model syntax accounts for the fact that one of the variables is numeric (Day) and the other is a factor (Group). Because the
smooths are centered at 0, the factor variable needs to be specified as a parametric term in order to identify any differences
between the group means. Using R and the package mgcv the model syntax is:

This syntax specifies that gam_02 (named this way so it matches the model workflow from Appendix A) contains
the fitted model, and that the change in the simulated oxygen saturation (StO2_sim) is modeled using independent
smooths over Day for each Group (the parenthesis preceded by s) using four basis functions (plus intercept). The smooth
is constructed by default using TPRS, but other splines can be used if desired, including Gaussian process smooths34 (a
description of all the available smooths can be found by typing ?mgcv::smooth.terms in the Console). Finally, the
parametric term Group is added to quantify overall mean differences in the effect of treatment between groups, as we
have indicated above.

Although the default method used to estimate the smoothing parameters in mgcv is generalized cross validation
(GCV), Wood37 showed the restricted maximum likelihood (REML) to be more resistant to overfitting while also easing
the quantification of uncertainty in the smooth parameters; therefore in this manuscript REML is always used for smooth
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4278 MUNDO et al.

parameter estimation. An additional argument (family) allows to specify the expected distribution of the response, but
it is not used in this model because we expect a normally-distributed response (which is the default family inmgcv).

When the smooths are plotted over the raw data, it is clear that the model has been able to capture the trend of the
change of StO2 for each group across time (Figure 3B).Model diagnostics can be obtained using thegam.check function,
and the function appraise from the package gratia65 as we show in Appendix A. Additional discussions on model
selection can be found in Wood37 and Harezlak.66

One question that might arise at this point is “what is the fit that an rm-ANOVA model produces for the sim-
ulated data?” The fit of an rm-ANOVA model, which corresponds to Equation (1), is presented in Figure 3C. This
is a typical case of model misspecification: The slopes of each group are different, which would lead to a P-value
indicating significance for the treatment and time effects, but the model is not capturing the changes that occur
at days 2 and between days 5 and 7, whereas the GAM model is able to reliably estimate the trend over all
timepoints (Figure 3B) .

Because GAMs do not require equally-spaced or complete observations for all subjects (as rm-ANOVA does), they
are advantageous to analyze longitudinal data where unbalanced data exists. The rationale behind this is that GAMs
are able to pick the trend in the data even when some observations are incomplete. However, this usually causes
the resulting smooths to have wider confidence intervals and less ability to discern differences in trends. To exem-
plify this, consider the random deletion of 40% of the simulated StO2 values from Figure 3A. If the same interaction
GAM (gam_02) is fitted to this data with unbalanced observations, the resulting smooths appear in (Figure 3D). Note
that the model is still able to show a different trend for each group, but with a somewhat more linear profile in
some areas.

Additionally, note that in Figure 3B,D we show two CIs for each of the fitted smooths (shaded regions). The across
the function CIs are represented by the narrow regions and because the simultaneous CIs contain the whole func-
tion on a nominal value, they are wider than the across the function CI, resulting in the wide shaded regions. For
the dataset with incomplete observations, the CIs for the smooths overlap during the first 3 days because the esti-
mates are less robust with fewer data points, and the trend is less pronounced than in the full dataset. However, the
overall trend of the data is picked by the model in both cases, with as few as 4 observations per group at certain
time points.

4.3 Determination of significance in GAMs for longitudinal data

At the core of a biomedical longitudinal study lies the question of a significant difference between the effect of two
or more treatments in different groups. In linear models (such as rm-ANOVA), if there is a significant P-value after a
post-hoc analysis we then can make inference about the effect size using the slope or the intercept from the model. In
GAMs however, there is no single P-value to determine the significance of an effect as in linear models. Therefore, the
coefficients of GAMs do not provide a simple interpretation as in the linear model case, but the changes in slope at spe-
cific timepoints can be used to determine the instantaneous effect size. In essence, the idea behind the estimation of
significance in GAMs across different treatment groups is that the difference between the separate smoothers per group
(such as in gam_02) can be computed pairwise, followed by the estimation of an empirical Bayesian simultaneous CI
around this difference.

The pairwise difference in smooths can be conceptualized in the followingmanner:Different time trends in each group
are an indication of an effect by the treatment as in Figure 3A, where the chemotherapy causes StO2 to increase over time.
With this expectation of different trends in each group, computing the difference between the trends will identify if the
observed difference is significant. A difference between groups with similar trends is unlikely to be distinguishable from
zero, which would indicate that the treatment is not causing a change in the response in one of the groups (assuming the
other group is a control or reference group). Therefore, the computation of both the difference between the smooths and
the corresponding simultaneous empirical Bayesian CI around this difference is able to provide an estimation of when
and by how much there is a significant difference between the different groups. Additionally, the correction provided by
the simultaneous empirical Bayesian CI makes the estimation robust as we know that on average, the simultaneous CI
will contain the whole function at a nominal value (say, 95%).

To visualize this, consider the calculation of pairwise differences for the fitted smooths that appear in Figure 3B,D.
Figure 4 shows the difference between each treatment group trend for the full and missing datasets with a simultaneous
CI computed around the difference. Here, the “Control” group is used as the reference to which “Treatment” group is
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F IGURE 4 Pairwise comparisons for smooth terms. (A) Pairwise comparisons for the full dataset. (B) Pairwise comparisons for the
dataset with incomplete observations. Significant differences exist where the 95% empirical Bayesian simultaneous CI does not cover 0. In
both cases the effect of treatment is significant after day 3. For the difference, we have included the means so the value of the difference has
direct correspondence with the scale of the response (Figure 3A)

being compared. Notice that because we have included the means of each group, there is correspondence between the
scale of the original data and the scale of the pairwise comparisons. This can be seen in Figure 3B, where at day 5 there is
essentially a difference of 50% between StO2 in both groups, which corresponds to the−50% difference in 4A. However, if
there aremultiple parametric terms in themodel (more factors that need to be specified), such inclusion of themeans can
become problematic. However, we believe that the model we have presented here suffices in a wide range of situations
where adding the group means is a relatively easy implementation that can help better visualize the estimation from the
model from a biological perspective.

In Figure 4A, the shaded regions over the confidence interval (where the CI does not cover 0) indicate the time interval
where each group has a different mean effect than the other. Notice that the shaded region between days 1 and ≈2 for
the full dataset indicates that through that time, the “Control” group has higher mean StO2, but as therapy progresses
the effect is reversed and by day ≈3 it is the “Treatment” group that statistically on average has greater StO2. This would
suggest that the effect of chemotherapy in the “Treatment” group becomes significant after day 3 for the given model.
Moreover, notice that although there is no actual measurement at day 3, the model is capable of providing an estimate of
when the shift in mean StO2 occurs.

On the data with missing observations (Figure 3D), the smooth pairwise comparison (Figure 4B) shows that because
the confidence intervals overlap zero for the first two days there is no statistically significant difference between the
groups. However, because the model is still able to pick the overall trend in StO2, the pairwise comparison is able to
estimate the change on day 3 where the mean difference between groups becomes statistically significant as in the full
dataset smooth pairwise comparison.

For biomedical studies, the ability of smooth comparisons to provide an estimate ofwhen and by howmuch a biological
process becomes significant is advantageous because it can help researchers gain insight on metabolic changes and other
biological processes that can be worth examining, and can help refine the experimental design of future studies in order
to obtain measurements at time points where a significant change might be expected.

5 DISCUSSION

Biomedical longitudinal data is particularly challenging to analyze due to the frequency of incomplete observations and
different correlation structures in the data, which limit the use of rm-ANOVA. Although LMEMs can handle unbalanced
observations and different correlation structures, both LMEMs and rm-ANOVA yield biased estimates when they are used
to fit data with non-linear trends as we have visually demonstrated in Section 2.5. When these models do not capture the
non-linear trend of the data, this results in a “model misspecification error.” This “model misspecification” error, also is
known as a “Type III” error17 is particularly important because although the P-value is the commonmeasure of statistical
significance, the validity of its interpretation is determined by the agreement of the data and the model.
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Guidelines for statistical reporting in biomedical journals exist (the SAMPL guidelines)67 but they have not been
widely adopted and in the case of longitudinal data, we consider that researchers would benefit from reporting a visual
assessment of the correspondence between themodel fit and the data, rather thanmerely relying on a R2 or P-value value,
whose interpretation is not clear in the case of a Type III error.

In this paper, we have presented GAMs as a suitable method to analyze longitudinal data with non-linear trends.
It is interesting to note that although GAMs are a well-established method to analyze temporal data in differ-
ent fields (eg, which are palaeoecology, geochemistry, and ecology)33,57 they are not routinely used in biomedical
research despite an early publication from Hastie and Tibshirani that demonstrated their use in medical research.68
This is possibly due to the fact that the theory behind GAMs can seem very different from that of rm-ANOVA and
LMEMs.

However, in Section 3.2.1 we demonstrated that at its core the principle underlying GAMs is quite simple: Instead
of using a linear relationship to model the response (as rm-ANOVA and LMEMs do), GAMs use basis functions to build
smooths that are capable of learning nonlinear trends in the data. The use of basis functions is a major advantage over
modelswhere the user has to know the non-linear relationship a priori, such as in the case of polynomial effects in LMEMs
where in addition, there is no biological interpretation for such polynomial assumptions. This does not mean, however,
that as any other statistical model GAMs do not have certain limitations. In particular, beyond the range of the data
GAMs only reflect the assumptions built into the basis functions, be that flat values or linear extrapolation of the slope.
Therefore, researchers need to be careful when using GAMs for extrapolating purposes. In addition, both polynomial and
GAMs show higher variance in estimates near the boundary of the data, but additive models generally have less variance
than polynomials. However, because GAMs let the data speak for themselves, they provide estimates that are consistent
with nonlinear trends and therefore can be used to obtain an accurate representation of the effect of time in a biological
process.

Beyond the theory, from a practical standpoint is equally important to demonstrate how GAMs are computationally
implemented.We have provided an example on howGAMs can be fitted using simulated data that follows trends reported
in biomedical literature16 using R and the package mgcv37 in Section 4, while a basic workflow for model selection is in
Appendix A.

One of the features ofGAMs is that their Bayesian interpretation allows for inference about differences between groups
without the need of a P-value, thereby providing a time-based estimate of shifts in the response that can be directly tied to
biological values as the pairwise smooth comparisons in Figure 4 indicate. The GAM is therefore able to identify changes
between the groups at time points where data was not directlymeasured and in the case of incomplete observations (≈day
3 in Figure 4A,B ). This more nuanced inference can be used by researchers as feedback on experiment design and to
further evaluate important biological changes in future studies.

We have used R as the software of choice for this article because it provides a fully developed environment to fit
GAMs, enables simulation (which is becoming increasingly used for exploratory statistical analysis and power calcula-
tions), and provides powerful and convenientmethods of visualization, which are key aspects that biomedical researchers
might need to consider to make their work more reproducible. In this regard, reproducibility is still an issue in biomedi-
cal research,69,70 but it is becoming apparent that what other disciplines have experienced in this aspect is likely to impact
this field sooner rather than later. Researchers need to plan on how they will make their data, code, and any other mate-
rials open and accessible as more journals and funding agencies recognize the importance and benefits of open science
in biomedical research. We have made all the data and code used in this paper accessible, and we hope that this will
encourage other researchers to do the same with future projects.

6 CONCLUSION

Wehave presentedGAMs as amethod to analyze longitudinal biomedical data. Future directions of this workwill include
simulation-based estimations of statistical power using GAMs, as well as demonstrating the prediction capabilities of
these models using large datasets. Bymaking the data and code used in this paper accessible, we hope to address the need
of creating and sharing reproducible work in biomedical research.
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ENDNOTE
∗If the smooth term represented a linear relationship, then f (timet|𝛽j) = 𝛽2 × timet + 𝛽3 × timet × treatmentj; however, in general, the smooth
term is a more flexible function than a linear relationship, with parameter vectors 𝛽j for each treatment.
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