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A method of analysis for a randomly scattering analyzer offering far-subwavelength spatial reso-
lution with coherent light is presented, and the attributes are supported by numerical simulations.
Without constraints, far-field detection generally results in a spatial resolution of about one wave-
length, mathematically explained through the loss of the evanescent field information in a plane
wave expansion. Enhanced spatial resolution is shown to be possible because of relative motion
with a structured field and the resulting information available. It is shown that detected informa-
tion through a scattering analyzer results in enhanced spatial sensitivity with motion of an object in
a structured field, and that this is accompanied by changes in the relative distribution of significant
eigenvalues of the transmission matrix modeling the analyzer. Thus, the character of the random
analyzer is shown to influence the far-field spatial resolution. A random analyzer in principle allows
subwavelength sensitivity whose resolution is limited only by measurement accuracy and precision,
when fields are scattered from a moving object, or when some other relative change causes a modified
field. Consequently, use of a random analyzer offers substantial impact in a variety of applications.

I. INTRODUCTION

The physics of disordered media is of substantial im-
portance in quantum transport and statistical optics,
with broad ramifications that include the modeling of
small-scale electronic devices and imaging through scat-
tering media. Fundamentally, despite the information
that in principle exists in heavily scattered coherent
waves, extraction or control remains challenging. We de-
scribe the concept of super-resolution spatial sensitivity
from changes in the position (motion) of an object with
a structured coherent background field, when measure-
ments are made through a randomly scattering analyzer
slab. Despite being in the far field, subwavelength spatial
information about a moving object becomes available,
and the sensitivity relates to the properties of the random
analyzer. Experiments indicate far-subwavelength mo-
tion sensitivity [1], and these results are investigated in
relation to extracting subwavelength (super-resolution)
spatial information about an object using numerical sim-
ulations in conjunction with a presented method of anal-
ysis that involves the eigenvalue decomposition of ran-
dom matrices. Breaking the (far-field, wavelength-scale)
diffraction limit on spatial resolution, without resorting
to fluorescence and use of the point spread function of
a microscope, opens new scientific and application do-
mains.

The substantial theoretical contributions related to
electronic transport in disordered wires (see, for exam-
ple, [2]) have been drawn upon by work to model the
propagation of electromagnetic waves through scattering
media via the transmission matrix [3, 4]. Understanding
how to determine the eigenchannels in random media is
a critical step to the coupling of coherent optical waves
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into these channels [5, 6]. With control of these input
channels, such as by using a spatial light modulator, it
becomes possible to focus laser light through substantial
amounts of scatter, as would occur in biological tissue.
While random scatter of light is limiting in some situa-
tions, it has been exploited in the concept of a random
spectrometer, where the frequency-dependent transmis-
sion of a multimode optical fiber provides sensitivity in
measured speckle to changes in frequency [7]. We provide
a new dimension to randomly scattering material acting
as an analyzer for enhanced sensing of geometrical fea-
tures from spatial changes in the incident field. These
changes could be due to motion of a scatterer or set of
scatterers, or the result of small deformations in a solid
state material.

This paper explores the topic of randomly scattering
analyzers using random matrix theory. It is shown that
the ability of such an analyzer to enhance sensitivity is
accompanied by certain changes in the probability distri-
bution of the eigenvalues of the transmission matrix that
models the analyzer. This builds on the concept of ob-
ject motion in structured illumination [8, 9]. A randomly
scattering analyzer is used to greatly enhance far-field
sensitivity to a subwavelength change, with insight into
how such enhancement may be improved upon.

In this work, motion is modeled quasi-statically, so
that the object in question can be considered station-
ary at each discrete time step while the fields in question
are measured or calculated. Also, because our analysis
focuses primarily on sensing and not imaging, we use the
term “resolution” to refer to the length scale of the ob-
ject’s geometrical differences that can be distinguished
by a sensing system, without assuming that an image
can be formed with detail at this length scale (but with
the implication that information to do so is in principle
available).

Section II begins with a mathematical description that
links speckle intensity correlations through a scattering
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analyzer to the eigenvalue distribution of the analyzer’s
transmission matrix. Section III then describes the FEM
(finite element method) simulations that demonstrate
the relationship between the amount of scatter in the
analyzer and the eigenvalue distribution, and these re-
sults are examined in Sect. IV by comparing them to
existing distributions from the literature. These com-
parisons show only partial agreement with the bimodal
distribution, with improvement demonstrated when the
amount of scatter is increased, yet good agreement with
the quarter-circle distribution, despite only partial fulfill-
ment of the distribution’s requirements. An illustrative
example is given in Sect. V, demonstrating that the pres-
ence of a scattering analyzer greatly improves far-field
sensitivity to a subwavelength feature change. Discus-
sion and conclusion sections follow.

II. CORRELATIONS AND EIGENVALUES

In this section, we formulate intensity correlations rep-
resentative of measured data in terms of field correla-
tions. This allows us to incorporate the field transmis-
sion matrix associated with the randomly scattering an-
alyzer, which we investigate using random matrix theory
in Sect. IV.

For this derivation, we assume zero-mean circular
Gaussian statistics for the detected field [10], which have
been found in previous experiments and numerical sim-
ulations [1] involving a scattering analyzer. This deriva-
tion and the following eigenvalue simulations in Sect. III
therefore collectively provide a deeper understanding of
the underlying mechanisms that result in enhanced sen-
sitivity. However, as will be demonstrated in Sect. V,
such statistics are merely sufficient, but not necessary,
for achieving subwavelength far-field sensitivity.

Assuming Gaussian statistics allows us to apply what
is sometimes known as the “complex Gaussian moment
theorem” [10, 11] and write the ensemble-averaged inten-
sity correlation in terms of the correlation of the detected
fields (through a polarizer) Φ(rd) at different object po-
sitions r and r+∆r as

⟨Ĩ(rd; r)Ĩ(rd; r+∆r)⟩ = |⟨Φ∗(rd; r)Φ(rd; r+∆r)⟩|2

⟨I(rd; r)⟩⟨I(rd; r+∆r)⟩
,

(1)

where ∗ represents complex conjugation, rd is the detec-
tor position, which is fixed, and the intensities are nor-
malized as Ĩ = (I − ⟨I⟩)/⟨I⟩. The ⟨·⟩ is mathematically
a configurational average over the random scatterer loca-
tions (but obtained experimentally from speckle intensity
data captured by a camera [8]). Equation (1) is relevant
to the extraction of information about moving objects
inside scattering media with coherent fields [12].

However, we seek understanding about the scattering
analyzer through which Φ(rd) (or, more precisely, Ĩ(rd))
is measured. This can be done with a scattering matrix,
and in particular the transmission sub-matrix T ≡ S21.

Here, S21 refers to the wave transmission sub-matrix of a
2-by-2 block-matrix formulation for the scattering matrix
S, which describes a set of incident and scattered modes.
(The properties of S are detailed in Appendix B 1.) A
plane wave basis for generating a transmission matrix
is relevant for applications [6] and consistent with (al-
though having differing character to) the mode-based [13]
description or the quantum mechanical treatment of con-
ductance channels [2, 14–17] that have been a substan-
tial focus. Seeking insight into the experimental results
from use of a random analyzer in front of a camera [1],
we therefore pursue a Fourier-domain description of the
speckle intensity correlation over spatial changes (trans-
lation of the diffuser or the incident field, as in the nu-
merical simulations) in (1).
First, we draw upon the generalized Wiener-Khinchin

theorem [18], which allows the normalized field correla-
tion [12] to be written as

g(1)(∆r; r) = ⟨Φ̃∗(rd; r)Φ̃(rd; r+∆r)⟩

=
1

2π

∫
Φ̃∗(kd; r)Φ̃(kd; r+∆r)eikd·∆rdkd

≡ ⟨Φ̃∗(kd; r)Φ̃(kd; r+∆r)⟩, (2)

where Φ̃ is the normalized field (whose coefficient of nor-
malization differs from that of the normalized intensity
Ĩ by a square root, due to the relationship between Φ
and I), kd is the conjugate variable corresponding to rd
(the spatial variable at the detector that is evaluated at a
single point in (1)), and the ⟨·⟩ now corresponds to spec-
tral integration and hence a sum over plane waves with
randomly distributed complex coefficients.
We next discretize the plane-wave transmission matrix

describing the analyzer and consider a discrete Fourier-
domain representation for T, so that we may analyze its
eigenvalue decomposition using tools from random ma-
trix theory. The vector with complex amplitudes describ-
ing the output plane wave spectrum for Φ̃(kd), using a
normalization consistent with (1), is

y = Tx, (3)

where T is the (M ×N complex, non-Hermitian) trans-
mission matrix (we will assume M = N), and x is a vec-
tor of incident plane wave coefficients with a uniformly
discretized (propagating in our analysis) spectrum. We
use a singular value decomposition (SVD), T = UΣVH ,
where Σ is a diagonal matrix of the singular values of
T, the matrices U and V are unitary, and H denotes
the Hermitian transpose. This allows us to write the av-
erage normalized discrete (over transverse wave vector)
intensity correlation in the detector half-space as

cI = yH
0 yt

= (Tx0)
H
(Txt)

= xH
0 THTxt

= xH
0

(
VΣHΣVH

)
xt, (4)
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where y0 and x0 contain the complex spectral amplitudes
for the spatial reference position r, and yt and xt those
for the translated diffuser/field situation with position
r + ∆r, the unitary property of U has been used, and
ΣHΣ is a diagonal matrix containing the (real, positive)
eigenvalues Tn (n = 1, . . . , N) of the matrix THT, k
of which are significant (and those close to unity most
important). Discretizing the transmission matrix in this
way allows us to study the continuous correlations that
appear in (2) using random matrix theory.

III. FEM SIMULATION

In relation to (4), the specific nature of the eigenvalues,
and the character of the random elements of T, should
dictate the characteristics of the analyzer. We pursue
this point now in relation to numerical simulations, which
give a solution to the sinusoidal steady state Maxwell’s
equations (at circular frequency, ω, corresponding to the
wavelength of the light, λ) on a mesh. These FEM sim-
ulations use the arrangement in Fig 1, yielding the re-
sults summarized in Fig. 2. There, we use T to represent
a random variable whose samples are Tn (after a nor-
malization process described in Sect. IVA). The FEM
solution domain, shown in Fig 1, used a scattered field
formulation (so that the incident field is added to form
the total field), perfectly matched layers (PMLs) on the
incident and transmission sides (artificial boundaries that
are highly absorbing and represent unbounded space by
limiting reflections back into the domain [19]), periodic
boundaries on the left and right sides, and N = 141 dif-
ferent incident plane wave directions (over ±1.4416 rad
and representing the complete propagating spectrum).
The transverse wavenumbers, kx, of these plane waves
were assigned 2πm/Lx, where m is an integer and Lx is
the transverse period in Fig. 2, so that each is considered
a mode of the periodic geometry. We used only propagat-
ing modes because the scattering slab is in the far field
(regarding the small object features of interest). We note
that the field solution in the analyzer is done to numerical
precision and that the total field solution is Fourier trans-
formed to form the plane wave spectrum. The analyzer is
discretized into square regions of 200 nm × 200 nm, each
of which is randomly assigned material (dielectric or free
space) at a fill factor of 50%. The breadth is Lx = 60 µm
and the level of scatter is controlled by thickness (Ly) of
the analyzer and the dielectric constant (ϵr) of the filled
regions, as described in the first three columns of Table I.
The detector plane is a distance of 4λ from the analyzer
and spans the entire breadth of the geometry (Lx). Data
are collected at N points that are distributed uniformly
across the detector plane, and a discrete Fourier trans-
form is performed to calculate the elements of the matrix
T. All of these aspects of the FEM simulation are elab-
orated upon in Appendix A.

The transmitted field along this detector line is Fourier
transformed to provide the spatial frequency complex

y

x

θ

200 nm

FIG. 1. The numerical simulation arrangement showing a sec-
tion of a 6-µm-thick random analyzer slab (the full breadth
of the slab is wider than the displayed section). The ran-
domly populated blue squares have side lengths of 200 nm,
as shown in the enlarged inset. They consist of dielectric ma-
terial and have a fill fraction of 50%, while the gray region
is free space. The bottom and top rectangular sections are
perfectly matched layers (PMLs) in a scattered field solution.
The angle (θ in the figure) of the incident plane wave (brown)
was swept over ±1.4416 rad, while the analyzer was kept sta-
tionary. The plane waves had Ez, Hx, Hy polarization, and
the free-space wavelength was λ = 850 nm. The y component
of the time-average Poynting vector was measured at the de-
tector plane (red), a distance of 4λ from the top boundary of
the scattering slab (this distance is not shown to scale).

amplitudes and hence the entries in T. The calculated
density functions of the normalized eigenvalues (of THT)
is given in Fig. 2 for each level of scatter. This dataset
includes 10 random instances of each type of scattering
analyzer, and the curves became smoother as this num-
ber increased. Note the clear trend in the numerical data
for increasing scatter: a larger proportion of eigenvalues
near zero.
The last column of Table I contains data that describes

how closely the detected speckle fields satisfy the assump-
tion of zero-mean circular Gaussian statistics that was
made in Sect. II in order to form (1). If the real and
imaginary parts of the electric field each follow an identi-
cal zero-mean Gaussian distribution, then the magnitude
squared of the field follows a negative exponential distri-
bution [10]. The contrast ratio (CR) of such a distribu-
tion, which is the ratio of the standard deviation to the
mean of the intensity, is 1. In order to calculate these, a
normally incident plane wave was shone onto each of the
scattering analyzers, and the y component of the Poynt-
ing vector, Sy, was measured along the detector plane
at points spaced λ/100 apart. For each such instance of
each type of scattering analyzer, the mean and standard
deviation of these values of Sy were calculated, and the
CR calculated from these. For each type of analyzer, the
10 resulting CRs were averaged together, and these aver-
aged results are displayed in the last column of Table I.
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(a)

(b)

(c)

FIG. 2. (a) Empirical density functions p(T ) for the normal-
ized transmission eigenvalues T of the matrixTHT for a plane
wave spectrum with N = 141. Each histogram consists of
25 bins and contains 10 independently generated random in-
stances of the scattering slabs whose configurations are listed
in Table I, and is plotted with a vertical log scale. We compare
these empirical probability distributions to the theoretical bi-
modal probability distribution in order to see if convergence
occurs as the degree of scatter in the analyzer is changed.
(b,c) The lower and upper ends of the plot, respectively, are
shown in greater detail. The “Lowest Scatter” curve in (c)
has a discontinuity: it ends at 0.9, and has a single point at
0.98. As the optical thickness of the scattering slab increases,
the relative proportion of eigenvalues near T = 0 increases,
even slightly surpassing the theoretical bimodal distribution
for some configurations. No clear pattern or agreement is
found for the eigenvalues near T = 1. Potential reasons for
this are discussed in Sect. IVC4.

TABLE I. The parameters for defining the five types of ran-
domly scattering analyzer that were used in the numerical
simulations, as well as the corresponding average speckle con-
trast ratios (CR).

Slab Type Thickness Ly Dielectric ϵr CR
Lowest Scatter 1 µm 3 0.9876
Low Scatter 3 µm 3 1.0284

Medium Scatter 3 µm 5 1.0616
High Scatter 6 µm 5 1.0672

Highest Scatter 9 µm 5 1.0710

These suggest that, if the relative dielectric constant ϵr is
too large, then increasing the analyzer thickness Ly may
result in field statistics that are increasingly far from be-
ing zero-mean circular Gaussian.

IV. EIGENVALUE DISTRIBUTIONS

In this section, we introduce two theoretical eigenvalue
distributions from random matrix theory: the bimodal
distribution and the quarter-circle distribution. They
are compared to the empirical eigenvalue distributions
derived from our numerical simulations in Figs. 2 and 6,
respectively. These comparisons are explored in greater
detail in Sects. IVC and IVD, after a preliminary defi-
nition and calculation in Sects. IVA and IVB.

A. Normalization

The theoretical eigenvalue distributions typically ap-
pear in scaled form. However, unless special case is taken
when scaling the incident plane wave amplitudes, the
eigenvalues in question will not in general be limited in
this way. In order to make these comparisons more ap-
propriate, normalizations are performed.
Section IVC compares the eigenvalues of THT to the

bimodal distribution in Figs. 2 and 4. For these com-
parisons, let us define T̂n,m,p as the nth eigenvalue of
TH

m,pTm,p, where Tm,p is the transmission matrix of the
mth (m = 1, . . . , 10) random instance of a scattering an-
alyzer with of slab type p (p = 1, . . . , 5, for each row in
Table I). The normalized eigenvalues Tn are derived from

these T̂n,m,p according to

Tn =
T̂n,m,p

T̂max

, (5)

where

T̂max = max
n,m,p

T̂n,m,p.

By normalizing all eigenvalues from different slab types
with the same scaling value, we are able to compare all
of these eigenvalue distributions to one another. The
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FIG. 3. Modeling the relationship between the transmission
coefficient t, given in (6), the slab thickness Ly, and the mean
free path ℓ, using the Beer-Lambert law. The relative dielec-
tric constant is ϵr = 5 for the material being modeled. The
fitted curve gives an estimated value of ℓ̂ ≈ 2.8 µm.

resulting eigenvalues, which were always nonzero, fall in
the range Tn ∈ (0, 1]. This normalization process will
be implicitly assumed throughout the remainder of this
work.

Section IVD similarly compares the singular values of
both ℜ(T) and ℑ(T) to the quarter-circle distribution.
Each of these sets of singular values is normalized using
methods analogous to (5).

B. Estimated Mean Free Path Length

In order to contextualize these simulations, we use the
Beer-Lambert law to estimate the mean free path length,
ℓ, of the scattering material with ϵr = 5. It relates to
the transmission coefficient t and the slab thickness Ly,
as [20]

t = eLy/ℓ. (6)

Here, t is not the normalized transmission eigenvalue T
(described in Sect. IVA, and used throughout this pa-
per), but instead the ratio of the power flowing through
the detector plane to the power incident upon the slab.

The transmission coefficient t was calculated for each
of the 10 instances of the Medium-, High-, and Highest-
Scatter configurations (see Table I), and the exponential
model in (6) was fit to the data. The results are shown

in Fig. 3, and the fitted mean free path is ℓ̂ ≈ 2.8 µm.
Except for the Lowest-Scatter configuration, all the slabs

listed in Table I have a thickness Ly ≥ ℓ̂.

C. Bimodal Distribution

The bimodal distribution has arisen when discussing
the transmission matrix eigenvalues in scattering sys-
tems [2, 13, 21]. Prior to the appearance of an ex-

plicit form for this distribution, qualitative descriptions
based on various analyses have been included in the
study of conductance in one-dimensional disordered sys-
tems. Dorokhov [22] discusses a decreasing number of
highly conducting states as the wire length increases, and
Imry [14] gives a qualitative result based on a heuristic
argument. Pendry et al. [23] prove what can be consid-
ered a binary approximation to the continuous bimodal
distribution, showing that the transmission coefficients
take on values of either 0 or 1 in the limit of increasing
wire length.
The bimodal density function for Tn is given by

pbm(T ) =
T0

T
√
1− T

, (7)

for T ∈ [δ, 1], δ being positive and small compared to
unity, and T0 the scaling parameter for the distribution
to integrate to unity. See Appendix B for a derivation.
Note that this distribution contains a non-integrable sin-
gularity at T = 0 (but not at T = 1), which is why T
cannot span the full range [0, 1].
The presence of this singularity makes the value of δ

non-arbitrary. The peak near T = 0 grows larger as
δ → 0, but the normalization accomplished by T0 results
in the suppression of the rest of the distribution. There-
fore, as δ → 0, the peak near T = 1 appears to shrink
relative to the peak near T = 0. The values of δ and
T0 are thus intertwined. The correct choice of δ corre-
sponds to the maximum value of x in (8), discussed below
in Sect IVC4. However, because the empirical eigenval-
ues are being binned in a histogram, these extrema are
not preserved, and this method of choosing of δ and T0

does not result in theoretical bimodal distributions that
match the empirical distributions. Choosing δ as the cen-
ter of the lowest histogram bin results in the theoretical
bimodal distribution curve shown in Fig. 2.

The bimodal character of (7) has been widely pre-
sented in full formality [2, 21], though this result had
been in development for some time [14, 24]. It has also
been investigated in relation both to waveguide problems
with random scatter [13] and to statistical optics and
imaging applications [3].

1. Empirical Eigenvalue Distributions

Figure 2 shows the empirical density functions for
the normalized transmission eigenvalues T of the matrix
THT for a plane wave spectrum with N = 141. Each his-
togram consists of 25 bins and contains 10 independently
generated random instances of the scattering slabs whose
configurations are listed in Table I, and is plotted with a
vertical log scale (base 10). In addition to the normaliza-
tion discussed in Sect. IVA, the histograms for each slab
configuration are each renormalized (this time along the
vertical axis, as opposed to the horizontal axis) so that
they each integrate to unity, making them valid proba-
bility distributions.
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The lower and upper ends of the plot are shown with
greater detail in Figs. 2(b) and (c), respectively. We com-
pare these empirical probability distributions to the the-
oretical bimodal probability distribution in order to in-
vestigate trends as the degree of scatter in the analyzer
is changed. No comparison is made to the quarter-circle
distribution because that would be inappropriate, as is
discussed in Sect. IVD2.

Increasing analyzer scatter representative of the diffu-
sion regime is expected to yield a bimodal density [2], a
trend supported by normalized eigenvalues with a space-
based T [25]. We find that, as the optical thickness of
the scattering slab increases, the relative proportion of
small eigenvalues (close to T = 0) increases, even slightly
surpassing the theoretical bimodal distribution for some
configurations, implying only moderate agreement with
this theory.

No clear pattern emerges for the relatively large eigen-
values (close to 1) and the amount of scatter considered.
The results also do not match the bimodal distribution,
and the expected peak near T = 1 is not evident.

2. Statistics of the Bimodal Distribution

As a measure of the shape of p(T ), the bottom- and
top-10% means of the normalized transmission eigenval-
ues are shown in Table II. These were calculated by
first taking the eigenvalue sets for each random analyzer
(normalized uniformly so that the maximum eigenvalue
seen anywhere is 1, as detailed in the caption of Fig. 2),
adding up the bottom and top 14 eigenvalues (which,
out of N = 141 elements, corresponds to just under 10%
each), and dividing each by the sum of these normalized
eigenvalues. Finally, these ratios are averaged together.

Figure 2 clearly shows an increasing proportion of
closed channels as the analyzer scatter increases, and
the bottom-10% means in Table II agree with this trend.
The top-10% means also demonstrate an increasing pro-
portion of transmissive channels as the scatter increases,
though no clear corresponding trend appears in the fig-
ure. These two patterns in Table II suggest that more
agreement with the theoretical bimodal distribution may
emerge as the thickness Ly is increased, despite the find-
ings in Sect. IVB that Ly exceeds the estimated mean

free path length, ℓ̂. Still, an increase in scatter is ac-
companied by higher proportions both of closed channels
and of channels that are at least partially open, and we
associate this with the demonstrated increased sensitiv-
ity to changes in the field incident on the analyzer (see
Sect. V).

3. Impact of Angular Support

Here we explore the effect of reducing the angular sup-
port of the set of plane waves used in T. Figure 4 shows
the effects of using different subsets of central modes (the

TABLE II. The bottom- and top-10% means of the normal-
ized transmission eigenvalues, for the bimodal distribution.
This data agrees with the model’s argument that, as the level
of scatter increases in the analyzer, the eigenvalue distribu-
tion becomes more bimodal (even though this trend can be
only partially found in Fig. 2).

Slab Type Bottom 10% Top 10%
Lowest Scatter 2.5959× 10−3 0.2301
Low Scatter 3.6097× 10−4 0.3203

Medium Scatter 7.1288× 10−5 0.3936
High Scatter 2.1257× 10−6 0.5791

Highest Scatter 1.4675× 10−7 0.7235

lowest-order modes, whose kx is close to zero), with the
Highest Scatter slab type (Table I). Interestingly, reduc-
ing this set of plane waves seems to have a somewhat
similar effect on the eigenvalue distribution as reducing
the amount of scatter in the analyzer: the peak near zero
shrinks in height. However, no trend appears near T = 1.

4. Assumptions of the Bimodal Distribution

For further insight into potential reasons for the ab-
sence of the high-eigenvalue peak in Fig. 2, we turn to the
derivation [2] of the bimodal distribution. Appendix B
has the relevant background details and derivations. One
important assumption involves the values xn, which are
related to the eigenvalues Tn that appear in (7) by

T =
1

cosh2 x
, (8)

or

x = cosh−1

(
1√
T

)
, (9)

where x is a random variable of which xn are samples
(similar to the relationship between T and Tn). Note that
x breaks with the convention used elsewhere throughout
this paper that random variables are represented using
capital letters. This notation is used here in keeping with
existing literature.
It has been noted that, for the scattering regime where

the bimodal distribution is an appropriate model for the
transmission eigenvalues, the probability distribution for
xn tends towards uniform [2, 17]. Indeed, such uniformity
forms a basis for the derivation of the bimodal distribu-
tion (7), as shown in Appendix B. We therefore apply
the transformation defined in (9) to the values of Tn that
are plotted in Fig. 2. The resulting xn are compared to
a uniform distribution in Fig. 5.
Figure 5 shows that these xn are not in fact uniformly

distributed, meaning that the scattering regime resulting
from our simulations is not the same as the one in which
we would expect to see a bimodal eigenvalue distribution.
This explains the absence of the high-eigenvalue peak in
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(a)

(b)

(c)

FIG. 4. Comparison of empirical density functions for the
normalized transmission eigenvalues T from the SVD of THT
for different amounts of angular support in the set of incident
plane-wave modes. Only the Highest Scatter slab type (de-
scribed in Table I) was used. Only the “central” angles were
kept, meaning those whose angles of incidence were close to
normal with respect to the slab. (a) The data here was taken
from the same simulations that were used to generate Fig. 2,
and was processed similarly. The bimodal probability distri-
bution is also shown, for comparison. (b,c) The lower and
upper ends of the plot, respectively, are shown in greater de-
tail. Note that, as the set of incident plane waves becomes less
complete (with respect to the set of propagating modes), the
relative proportion of small eigenvalues (close to 0) decreases.
No clear relationship emerges between the number of modes
used and the relative proportion of large eigenvalues.

Fig. 2. However, the curves do appear to approach the
uniform distribution as the amount of scatter increases,
when looking at the region xn > 5. On the other hand,
such a relationship does not exist for the other notable
region, around xn < 2. In fact, this behavior is anal-
ogous to that of Fig. 2: the low-eigenvalue peak grows
higher as the amount of scatter increases, while the high-
eigenvalue peak does not. The relationship between these
two figures is not coincidental. Equation (9) is strictly
monotonically decreasing for Tn ∈ (0, 1), which is the
range of Tn plotted in Fig. 2. Therefore, the left side of
Fig. 5 is related to the right side of Fig. 2(a), and vice
versa. For this reason, the normalization procedure per-
formed on Tn (Sect. IVA) may play a role in the steep
feature around xn < 2.

These results suggest that we may expect the lower
peak of the bimodal eigenvalue distribution in Fig. 2 to
continue to be better represented as the amount of scat-
ter in the analyzer is increased. While the upper peak
has not appeared for the types of scattering slab used
in this paper, the results of Sect. IVC2 suggest that
both peaks may grow as the amount of scatter is fur-
ther increased. While the assumption does not hold that
the scatterers are far apart compared to the wavelength,
this is unlikely to be the cause for the lack of an up-
per peak, as the CRs in Table I are close to unity. The
relatively low number of eigenvalues near T = 1 means
that statistical convergence in this region may not have
been achieved. It has been suggested using an incomplete
set of channels when calculating the transmission matrix
could cause this T = 1 peak to fail to appear [13], though
our simulations use the full set of propagating plane-wave

FIG. 5. Density functions for the x calculated from the em-
pirical distributions of T that are shown in Fig. 2, using (9).
The histograms were calculated in a similar method to those
in Fig. 2, except that 50 bins were used instead of 25. They are
not uniform distributions, thus indicating that the scattering
regime resulting from our simulations is not the same as the
one in which we would expect to see a bimodal eigenvalue dis-
tribution, but the trend towards uniform as scatter increases
is clear. This explains the absence of the high-eigenvalue peak
in Fig. 2.
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modes. However, there are differences between our sim-
ulations and those of Goetschy and Stone [13]. For one,
the contrast between the regions of high ϵr and low ϵr
within the scattering medium is higher in our simulations
than in theirs. Also, their scattering medium was about
twice as large (relative to the wavelength λ) as our largest
slab, in both dimensions. It also had a slightly different
structure, having less of a difference between regions of
high and low dielectric constant. As a result, they had
over thrice our number of eigenvalues (N = 485 versus
N = 141). Their findings indicate a certain sensitivity
of the presence of this high-eigenvalue peak to the simu-
lation parameters, and the same explanation holds here
regarding the bimodal eigenvalue distribution.

D. Quarter-Circle Distribution

We now turn our attention to a different eigenvalue dis-
tribution. While the bimodal distribution arose from a
physical background, the quarter-circle distribution orig-
inated from random matrix theory. Specifically, it first
appeared during a derivation by Wigner of the eigenvalue
distribution of random-sign real symmetric matrices [26].
This class of matrices was generalized in later work [27],
allowing the distribution to be applied to real symmetric
Gaussian matrices.

Wigner’s research was further extended by Marčenko
and Pastur in several ways, notably allowing for complex-
valued matrices [28]. The constraints on the properties of
the random matrix for this eigenvalue distribution to be
valid have been loosened over time. We will simply note
here that they are satisfied by independent and Gaussian-
distributed matrix elements, but a more thorough review
of the history of the quarter-circle distribution and its
assumptions can be found in Appendix C. The sim-
plified quarter-circle density function that we use, with
σ ∈ [0, 1], is

pqc(σ) =
4

π

√
1− σ2, (10)

where σ is a random variable corresponding to the eigen-
values of the appropriate random matrix. We have so
far been studying the eigenvalues of the random matrix
THT, since they relate to the correlation data, as pre-
sented in (4). When studying the quarter-circle distri-
bution though, we consider the field transmission matrix
T. We also consider its singular values, rather than its
eigenvalues, as is explained next.

1. Empirical Singular Value Distributions

While the work by Marčenko and Pastur shows that
complex-valued random matrices can have quarter-circle-
distributed eigenvalue distributions, the assumptions
made in their derivation are somewhat unclear in our con-
text. As detailed in Appendix C, they all refer to proper-

ties of the random matrix that are more formal than what
we have access to. Therefore, rather than investigating
the complex-valued matrix THT, we will instead use the
real-valued matrices ℜ(T) and ℑ(T) (the real and imag-
inary parts of T, respectively). These matrices are not
symmetric, so their eigenvalues are complex in general.
Instead, the (real-valued) singular value distributions of
these matrices are compared to the quarter-circle dis-
tribution in Fig. 6. The singular values (normalized as
described in Sect. IVA) of ℜ(T) and ℑ(T) are σR and
σI , respectively. The decision to compare these matrices’
singular value distributions to the quarter-circle distribu-
tion is not merely a practical one: it is actually the more
correct choice of comparison in a rigorous sense.

By reviewing the details of the quarter-circle distribu-
tion more closely (see Appendix C), we note that the
matrix T already satisfies one of the distribution’s re-
quirements. In forming (1), we required the detected
fields (and hence the entries in T) to be zero-mean circu-
lar Gaussian. That is, both the real and imaginary parts
of T (ℜ(T) and ℑ(T), respectively) have been assumed
to have zero-mean Gaussian statistics.

If these matrix entries are independently distributed
as well, then the only remaining constraint [27] required
for the eigenvalues (singular values) to follow a quarter-
circle distribution is for these two matrices to be sym-
metric. For example, if such independence were to ex-

ist, then the matrices ℜ(T)+ℜ(T)
⊤
and ℑ(T)+ℑ(T)

⊤

(where ⊤ represents the transpose) would be expected
to have eigenvalue distributions that follow the quarter-
circle distribution. Indeed, the quarter-circle distribution
has been found experimentally when studying the singu-
lar value distribution of transmission matrices for disor-
dered media [3]. However, it will now be shown that
such assumptions on T are incompatible with the matrix
THT having a quarter-circle eigenvalue distribution.

2. Applicability of the Quarter-Circle Distribution

This section demonstrates that the matrices T and
THT cannot simultaneously satisfy the assumptions of
the quarter-circle distribution. This is done by assuming
the statistics of T and proving that the diagonal elements
of THT are distributed according to an Erlang distribu-
tion (which is related to the χ2 or chi-square distribu-
tion), rather than the required exponential distribution.

The Erlang and χ2 distributions [29] are both special
cases of the Gamma distribution. The Erlang distribu-
tion with shape parameter k and rate parameter γ has
the density function

fEr(x; k, γ) =

{
γkxk−1

(k−1)! e
−γx x ≥ 0

0 otherwise,
(11)

while the χ2 distribution with k degrees of freedom (de-
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(a) (b)

(c) (d)

(e) (f)

FIG. 6. Density functions for the normalized singular values of the matrices (a,c,e) ℜ(T) and (b,d,f) ℑ(T) for a plane
wave spectrum with N = 141. The data here was taken from the same simulations that were used to generate Fig. 2, and was
processed in a similar way. Subfigures (a) and (b) show probability distributions corresponding to ℜ(T) and ℑ(T), respectively.
Subfigures (c) and (e) show the lower and upper ends, respectively, of (a) in greater detail. Subfigures (d) and (f) correspond
to (b) in the same way. The theoretical quarter-circle distribution is included for comparison, and good agreement with it is
found. This is somewhat surprising, as symmetry is a requirement for quarter-circle statistics, (as discussed in Sect IVD),
and the matrices ℜ(T) and ℑ(T) are not symmetric, nor are their entries independently distributed. This may explain why
the empirical distributions, compared to the quarter-circle distribution, tend to have more eigenvalues close to 0, and fewer
eigenvalues close to 1.

noted χ2
k) has the density function

fχ2(x; k) =

{
xn/2−1

2n/2Γ(n/2)
e−x/2 x ≥ 0

0 otherwise.
(12)

The connection between the Erlang and χ2 distributions

is interesting. Comparing (11) and (12), we note that
an Erlang distribution with rate parameter γ = 1/2 and
shape parameter k = n/2 is equivalent to a χ2 distribu-
tion with k degrees of freedom.

Next, it can be shown [29] that, given n independent
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Gaussian random variables zi with zero mean and unit
variance, their sum of squares

∑n
i=1 z

2
i follows a χ2 dis-

tribution with n degrees of freedom. Taken with the pre-
vious result, this means that, if the number of such Gaus-
sian random variables n is even, then this sum follows an
Erlang distribution with shape parameter k = n/2 (and
rate parameter γ = 1/2).
Now, the matrix THT is in general complex-valued

(with Hermitian symmetry), except for the diagonal ele-
ments, which are real-valued. IfTHT is anN×N matrix,
then the ith element along its diagonal is given by

(
THT

)
ii
=

N∑
j=1

ℜ(Ti,j)
2
+ ℑ(Ti,j)

2
. (13)

Therefore, if the elements of T are independently dis-
tributed zero-mean Gaussian random variables, then the
diagonal elements of THT follow a χ2

2N distribution,
which is equivalent to an Erlang(N, 1/2) distribution.
Regardless of the behavior of the (complex-valued) off-
diagonal matrix elements, these diagonals prevent THT
from satisfying the requirements for its eigenvalues to
follow a quarter-circle distribution.

Still, the statistics resulting from (13) do hold a certain
conceptual similarity with those mentioned in Sect II.
Zero-mean circular Gaussian field statistics result in in-
tensity statistics that follow an exponential distribution
(sometimes called negative exponential [10]), which has
the distribution [29]

fEx(x; γ) = γe−γx, (14)

where γ is the rate parameter. By comparing (11)
and (14), we see that the exponential distribution is
merely a special case of the Erlang distribution, with
shape parameter k = 1. This means that, if we were
to let N = 1 in (13) (corresponding to a single plane
wave and a single measurement), then we would indeed
have negative-exponential statistics in THT, resulting in
an albeit trivial case of a quarter-circle-distributed eigen-
value.

3. Statistics of the Quarter-Circle Distribution

Section IVD2 mentioned the conditions required of a
random matrix for its eigenvalues to follow the quarter-
circle distribution. Here we examine how closely these
are met.

One condition on the matrix entries is that they must
be independently distributed [27] (except for the sym-
metry of the matrix). We will use the distance correla-
tion [30] between pairwise matrix elements of some ma-
trix A to measure this independence. For reasons dis-
cussed above, A = ℜ(T) and A = ℑ(T) will be exam-
ined, and the results displayed in Table III. For this
analysis, each matrix element Ai,j is considered a ran-
dom variable, where i, j ∈ {1, . . . , 141}. For each type of

TABLE III. Statistics of the T matrix elements resulting from
the numerical simulations: mean distance correlation (Dist.
Corr.) and mean contrast ratio (CR). These values indicate
how independently distributed they are and how Gaussian-
distributed they are, respectively. Both of these properties
relate to the quarter-circle distribution.

Slab Type Dist. Corr. CR
ℜ(T) ℑ(T) T

Lowest Scatter 0.5044 0.5048 0.9876
Low Scatter 0.5045 0.5043 1.0284

Medium Scatter 0.5043 0.5049 1.0616
High Scatter 0.5050 0.5047 1.0672

Highest Scatter 0.5056 0.5050 1.0710

scattering slab, any given random variable Ai,j can be
said to have been sampled 10 times, as that is the num-
ber of slab instances of each type that were numerically
generated. For any pair Ai,j and Ai′,j′ , their distance
correlation can be computed as a measure of indepen-
dence. The resulting average distance correlations were
thus calculated [31] and are shown in Table III. Note
that the distance correlation between two random vari-
ables is 0 if and only if they are independent. The results
indicate that the matrix elements are not independent,
and do not approach independence for the slabs that we
have simulated.
The final column of Table III contains the mean con-

trast ratios (CRs) for the complex elements of the matrix
T, which were also displayed in Table I. As discussed
in Sect. III, a mean CR near 1 is an indicator that the
field follows a zero-mean circular Gaussian distribution.
These statistics are repeated here in order to gauge how
closely the elements of the real-valued matrices ℜ(T) and
ℑ(T) each follow zero-mean Gaussian distributions with
identical variances. These same statistics therefore ap-
pear in two different contexts throughout this work. As
a result, we would expect that, as the field more closely
approaches zero-mean circular Gaussian statistics, the
eigenvalues of the matrices ℜ(T) and ℑ(T) more closely
approach a quarter-circle distribution.
Still, it should be noted that an assumption of zero-

mean circular Gaussian field statistics was made in form-
ing (1) only because of the basis of a moment theorem
used to relate intensity and field correlations. However,
the discrete mathematical description in Sect. II involv-
ing field correlations over space, notably (4) and the en-
suing treatment ofTHT, does not require Gaussian prop-
erties and remains valid regardless of the field statistics.

V. SUPER-RESOLUTION FAR-FIELD
SENSITIVITY

We have previously established [1], with experimental
and simulation-based data, that the use of a randomly
scattering analyzer can enhance subwavelength sensitiv-
ity to either a shifting incident electric field or a changing
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field associated with a remote shifting object. This sec-
tion elaborates upon that result by demonstrating super-
resolution sensitivity in a fundamental way: distinguish-
ing between two features that are separated in space by
a subwavelength distance.

A. Super-Resolution Far-Field Simulation

The object’s features take the form of two apertures
in a 200-nm-thick perfect electric conductor (PEC) film
that otherwise spans the entire breadth of the geometry,
as illustrated in Fig. 7. A small central PEC segment
is added or removed, creating either one large aperture
or two smaller apertures in the PEC. The PEC plane is
placed below the analyzer slab (see Fig. 1), so that the
incident field has to pass through the apertures before
reaching the analyzer. There is a free-space margin of 2λ
between the PEC and the bottom PML (for numerical
purposes). There is also a gap of 2λ between the PEC
and the bottom of the analyzer slab. For each of the
configurations in Table I, 10 different random analyzer
slabs were generated (except for the Highest Scatter case,
which required more memory than was available on our
compute server); the resulting correlations were averaged
together. We also compare to a “control” case, in which
no random analyzer is present at all. The correlation
curves shown in Fig. 8 were calculated as described in
Appendix A 5.

It should be noted that, since the aperture construc-
tion has a total size of λ, the far-field distance is approx-
imately 2(λ)

2
/λ = 2λ away. Because this is in fact the

distance between the aperture construction and analyzer
slab (when applicable), this analyzer can be considered
a far-field sensing system.

The correlations plotted in Fig. 8 were calculated over
the changing detected speckle intensity patterns that re-
sulted from translating the aperture system shown in
Fig. 7 through a normally-incident plane-wave back-
ground field. Specifically, the aperture system is trans-
lated in intervals of λ/10, up to a maximum of λ/2 in
each direction (+x and −x). This contrasts with our
previous work [1], in which the detected speckle intensity
patterns change in response to a translating (randomly
generated) background speckle field, with everything else
being stationary. Here, the translating apertures render
it unnecessary to have a shifting speckle field, or to even
have a stationary one, which is why we switch to using a
simple normally incident plane wave. This has the added
benefit of eliminating one of the sources of randomness
in the simulations (the other being the distribution of
random scatterer positions in the analyzer, which still
remains). This improves the distinguishability between
the one-aperture and two-aperture cases by effectively
removing what can be thought of as a source of noise.

λ/10

Lx

λ

Ly

4λ

2λ

Analyzer

FIG. 7. Diagram of two apertures in a 200-nm-thick PEC
film (green). This is placed 2λ in front of the analyzer (blue)
in order to demonstrate super-resolution sensitivity to the
absence or presence of the central PEC segment (λ/10 across).
When this central segment is removed, the single remaining
aperture has a width of λ. The PEC otherwise spans the
entire breadth of the geometry, Lx. As in Fig. 1, there is a
separation of 4λ between the analyzer and the detectors.

B. Speckle Intensity Correlations

Figure 8 exhibits several patterns. Without a scat-
tering analyzer, the one-aperture and two-aperture cases
are difficult to distinguish. When a scattering analyzer
is added, the decorrelation curves become more distin-
guishable. This demonstrates far-field super-resolution
sensing.
It should be noted that, while the one-aperture and

two-aperture curves in the No Analyzer case are sepa-
rated by much less than when an analyzer is present, the
mere presence of any separation at all may suggest the
possibility of such super-resolution sensing without an
analyzer (albeit with less effectiveness). However, noise
has been neglected. Out interest here is in enhancing the
separation of the two object cases, which indicates an
ability to distinguish them in a noisy environment. The
key point is that sensitivity is enhanced by the analyzer.

1. Using Standard Slab Types

We began by using the same types of scattering ana-
lyzer that are parameterized in Table I (except for the
Highest Scatter type, which our computer had insuffi-
cient memory to simulate), with ϵr ∈ {3, 5}. Some ex-
pected patterns are noticeably absent from Figs. 8(a)
and (c) for this situation. For the Lowest Scatter and
Low Scatter analyzer types, an increase in scatter results
in a faster decorrelation as well as greater separation be-
tween the one-aperture and two-aperture curves. This
increases sensitivity, and it reinforces prior results [1]
(even though we have used a plane-wave illumination in
this work, rather than the speckle-field illumination of
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(a) (b)

(c) (d)

FIG. 8. Correlations over shifting aperture(s), illuminated by a normally incident plane wave, with or without an analyzer
slab. The different colors each represent a different type of analyzer (or lack thereof). The solid lines represent one aperture,
while the dashed lines represent two apertures. Error bars are shown based on averaging the results of 10 different random
analyzers (where applicable). While the difference between the one-aperture and two-aperture setup is difficult to distinguish
in the absence of an analyzer slab, they become more distinguishable with the addition of a scattering random analyzer. This
demonstrates far-field super-resolution sensing. (a,c) The same types of analyzer from Table I are used. Surprisingly, increasing
the amount of scatter does not consistently result in faster decorrelation and greater separation (sensitivity). (b,d) After
lowering the dielectric constant to ϵr = 2, this pattern indeed holds.

the previous work). However, the Medium Scatter and
High Scatter do not follow this pattern. By consulting
Table I, we notice that this change comes about with the
transition from ϵr = 3 to ϵr = 5.

2. Reduced Dielectric Constant

Exploring this lack of a consistent trend, we also tried
simulating analyzers with a lower dielectric constant,
ϵr = 2, with the results in Figs. 8(b,d). When using
ϵr = 2, a more complete pattern emerges: by increasing
the thickness of the scattering analyzer (and therefore in-
creasing the amount of scatter), the speckle decorrelates
more quickly, and there is a greater difference between
the one-aperture and two-aperture decorrelation curves,
thereby resulting in greater sensitivity. This suggests
that increasing the thickness of a randomly scattering

analyzer, rather than the dielectric constant, may be a
preferable method of increasing far-field subwavelength
sensitivity.

C. Object Function Comparison

Figure 8 shows that, for the no-analyzer case, the two-
aperture correlation decays slightly more quickly than
the one-aperture correlation. This can be understood by
considering the Fourier transform of the object function
(aperture arrangement), which gives an approximation
for its effect in the far field. Here, the object function is
being used as a proxy for the fields that lie within the
aperture(s). The far-field approximation of a compact
source or field distribution can be written in terms of the
spatial Fourier transform of the source distribution, re-
gardless of position. This vector field result requires the
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distance to the detector points be large relative to both
the wavelength and the source size, hence the size of the
effective source in wavelengths is relevant. In our case,
we have a periodic transverse arrangement, where the
period is very large compared to the wavelength. With
a small aperture and a relatively large spatial period, we
can move into the far field of the aperture at a distance
that is still much less than the period. If the object func-
tion is nonzero where the apertures exist, then (ignoring
the periodic boundary conditions) the object functions
are estimated as

o1(x) = rect
(x
λ

)
and

o2(x) = rect
(x
λ

)
− rect

(
x

λ/10

)
for the one-aperture and two-aperture case, respectively,
where rect(x) is a rectangle function of unit width. We
have thus assumed that the field has constant amplitude
across the aperture (generally used as an approximation
when the aperture is large compared to the wavelength
and with a normal plane wave incident), but here applied
to a small aperture for qualitative insight. The Fourier
transforms of these object functions are

O1(kx) = λ sinc

(
λkx
2

)
(15)

and

O2(kx) = λ sinc

(
λkx
2

)
− λ

10
sinc

(
λ

10

kx
2

)
, (16)

for sinc(kx) = sin(kx)/kx. Comparing (15) and (16), we
see that the addition of the small PEC segment (Fig. 7) in
the two-aperture case slightly narrows the far-field aper-
ture response, as shown in Fig. 9(a). The autocorrelation
functions are very similar in Fig. 9(b), though this is a
slightly different metric than the method based on the
Pearson correlation coefficient, which is used to generate
Fig. 8 and is detailed in Appendix A5.

We note that the decorrelation rate order in Fig. 8
appears to reverse when a scattering analyzer is added:
the one-aperture correlation decays faster than the two-
aperture correlation. This might be expected given ear-
lier experimental work involving extraction of the (pat-
terned) field incident on a randomly scattering slab from
speckle intensity correlations over position [32, 33]. It
was found that a larger object (circular apertures in a
screen with greater separation in this case), having a
narrower spatial Fourier transform (far field distribu-
tion), resulted in a slower decorrelation with measure-
ments through a randomly scattering slab [32]. The ba-
sic understanding from this earlier work, with translated
patterned fields incident on a random medium and mea-
sured intensity speckle correlations over translated posi-
tion, is that the Fourier magnitude of the incident field

spectrum (from the object) is being accessed (and the
incident field could thus be determined with phase re-
trieval). In the cases considered here, the double aper-
ture system in Fig. 7 has the narrower Fourier transform
(Fig. 9) and also the slower decorrelation in Fig. 8, with
use of the analyzer. As the aperture system is translated,
the total field is changed everywhere. This means that
the situation is not exactly as in Ref. [32], where a re-
mote (at a substantial distance) beam was patterned and
sensed through a scattering medium, yet the conclusions
on the influence of the aperture system (where that with
a narrower far-field or source spatial Fourier transform
has the faster decorrelation) are similar. Our results in
Fig. 8 could thus be interpreted as providing access to
certain features of the two different object functions (of
the aperture systems) even amid the continual changes in
the total field. However, and of significance here, the mo-
tion effect and the changing fields sensed by the analyzer
provides access to subwavelength object information.

D. Speckle Intensity Statistics and Scattering
Regime

The speckle intensity patterns that were attained in
Sect. VA are now inspected further. One possible scat-
tering regime results in zero-mean circular Gaussian
speckle intensity statistics, as is discussed in Sect. II.
Such statistics are marked by an intensity CR that is
close to unity. With plane wave illumination of the ob-
ject, the resulting CRs obtained at the detector plane,
shown in Table IV, are not close to unity. When com-
pared to the CRs in the last column of Table I (which are
much closer to unity), these indicate that introduction of
a PEC film with a small aperture(s) has dramatically
changed the field statistics.
When the speckle intensity pattern is examined, an in-

tensity envelope is clearly noticeable, indicating a lack
of uniform intensity statistics. The envelope’s width is
considerably larger than the distance over which the cor-
relations in Fig. 8 are calculated (the first slab of the
High Scatter type has a full width of about 30 µm, or
about 35λ), meaning that this envelope plays only a neg-
ligible direct role in the decorrelations. It is also clear
that the level of scatter in the analyzers used here was
not high enough to generate zero-mean circular Gaus-
sian field statistics that are stationary across the entire
breadth of the detector plane, despite the findings in
Sect. IVB that almost all the slab types studied in this
paper have a thickness, Ly, of at least one mean free path
length, ℓ.
All previous experimental work involving coherent

light passing through a heavily scattering medium [1,
8, 32, 33], though, has had sufficient scatter to achieve
unit CRs, thereby indicating the presence of such statis-
tics. Because the results presented here are in a different
statistical regime as previous experimental results, be-
ing neither uniform nor zero-mean circular Gaussian, we
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(a)

(b)

FIG. 9. (a) Fourier transforms of the object functions for the
one-aperture case and two-aperture case, (15) and (16), re-
spectively. These transforms were then both normalized to
maximum values of one. Only the main lobes of these sinc
functions are shown here, though the side ripples do exist.
Note that the two-aperture case results in a slightly narrower
far-field aperture response. This is why, for the no-analyzer
case in Fig. 8, the two-aperture case decorrelates slightly
faster than the one-aperture case. (b) Autocorrelations of
the object function Fourier transforms, again normalized to
unit maxima. They are very difficult to distinguish, and the
inset shows how close the zero-crossings are. This similarity
demonstrates the power of the random analyzer to increase
sensitivity.

should not expect full agreement with all of their conclu-
sions. Still, cross-referencing Table IV with Fig. 8 sug-
gests that such statistics might be achieved by increasing
the thickness Ly while possibly decreasing the dielectric
constant ϵr. This should also enlarge the intensity en-
velope, making the statistics more uniform. Notably,
these statistics show that the results presented herein
extend beyond previous work [1]: super-resolution far-
field sensitivity (Sect. VA) to a subwavelength change is
not limited to one particular type of field statistics, i.e.,

zero-mean circular Gaussian fields.

E. Proposed Explanation

An explanation for the presented super-resolution re-
sults is proposed here, though further exploration is
needed to test parts of it. Because the object and ana-
lyzer are outside the near-field region of each other, prac-
tical sensing will not be based on the evanescent portion
of the plane wave spectrum for the field scattered by
the object. With a measure such as the illumination
domain, or in the numerical problem treated with a peri-
odic boundary condition (or equivalently, in some waveg-
uide arrangement), the incident mode will scatter from
the analyzer and generate speckle. In this situation, the
object (the aperture system) is translated in this back-
ground field, and it is the change in the total field (back-
ground plus the scattered field due to the object) that
the analyzer senses. In this manner, far-subwavelength
object information can be encoded from the near field
into the propagating spectrum, as has been previously
demonstrated using object motion in structured illumi-
nation [9].
This propagating spectrum is sampled by the random

analyzer. The modes each excite the eigenchannels of
the analyzer slab, and are weighted by the correspond-
ing eigenvalues. In the extreme case of a completely uni-
form eigenvalue distribution (all eigenchannels open, cor-
responding to no analyzer), any change in one or more of
the incident field modes will be averaged together with
all other modes. As the eigenvalue distribution becomes
more selective though (fewer open eigenchannels, corre-

TABLE IV. Speckle intensity statistics for the simulations in
Sect. VA. These differ from the statistics in Table I because
of the aperture(s) in the PEC. As discussed in Sect. II, a
speckle contrast ratio near unity indicates zero-mean circular
Gaussian field statistics. CRs were calculated for each of the
random analyzers used in generating Fig. 8, and were then
averaged together. The CR is not applicable for the No Ana-
lyzer case, because no speckle field is expected. In a pattern
similar to Fig. 8, increasing Ly while keeping ϵr = 2 results in
statistics that more reliably converge to unity than increas-
ing both Ly and ϵr. This suggests a connection between the
statistics of the speckle and the far-field sensitivity of the an-
alyzer.

Contrast Ratio
Slab Type 1 Aperture 2 Apertures

No Analyzer N/A N/A
Lowest Scatter 2.3196 2.2086
Low Scatter 1.9389 1.9627

Medium Scatter 1.9795 1.9833
High Scatter 1.4852 1.5582

Ly = 1 µm, ϵr = 2 2.3077 2.5385
Ly = 3 µm, ϵr = 2 1.9838 2.0466
Ly = 6 µm, ϵr = 2 1.5096 1.5143
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sponding to a heavily scattering analyzer), any change in
certain incident field modes will pass through with hardly
any such averaging at all. As a result of this diminished
set of open channels, spatial sensitivity is enhanced.

We have shown that intensity correlation information
of object position is enhanced with use of the analyzer.
This means that, in a given noisy environment, we should
be able to reach deeper into subwavelength geometrical
features of objects under investigation. However, the ef-
ficacy in doing so will relate to experimental specifics.
A heavily scattering analyzer will only be sensitive to
changes in its open eigenchannels. In our experimental
and numerical results so far [1], the changes being sensed
have all continued to excite this shrinking subset of open
eigenchannels. However, it also suggests the possibility
of engineering the transmission matrix of an analyzer to
be sensitive to changes in only a desired subset of field
modes.

VI. DISCUSSION

Our interest has been the character of a randomly scat-
tering analyzer placed in front of a detector array. This
provides a new perspective to earlier work, where it was
found that intensity correlations over translated incident
field position allow retrieval of the field incident on a
random medium based on transmission speckle intensity
data as a function of translated field position [33]. Now
we understand that the randomly scattering medium can
be adapted to achieve increased spatial sensitivity to sub-
wavelength geometrical features of an object in the far-
field with motion in structured illumination. Likewise,
the idea of coherent imaging in a heavily scattering ran-
dom medium [8] can be re-interpreted in terms of the
intervening random scatter (such as due to tissue) acting
as an analyzer.

Discrepancies are found in Fig. 2 between the empiri-
cal eigenvalue distributions (Tn) and the theoretical bi-
modal distribution. The peak near T = 0 is prominent,
though the one near T = 1 is not, despite evidence for
both in Table II. As shown in Fig. 5, the discrepancy
is understood as a consequence of the non-uniformity
of xn, which are related to Tn by (8). This uniformity
is a necessary condition for the bimodal distribution to
hold, as is detailed in Appendix B. Nonetheless, the in-
creasing proportion of closed channels with more scatter
in the analyzer is an important conclusion that is con-
sistent with earlier studies of the bimodal density func-
tion where most eigenchannels are either fully “closed” or
fully “open” [2, 13, 34, 35]. Importantly, there is evidence
that regulating the scattering properties of the analyzer
influences the achievable sensing resolution.

The quarter-circle distribution shows close agreement
with the singular value distributions of ℜ(T) and ℑ(T),
despite their lack of both symmetry and independently
distributed matrix entries. This greater degree of agree-
ment with the quarter-circle distribution than with the

bimodal distribution (of the singular values σ and eigen-
values Tn, respectively) is notable, and may indicate dif-
fering rates of convergence to these two distributions.

Following the discussion of subwavelength far-field sen-
sitivity in Sect. V, a question naturally arises regarding
the limit of such a technique. One relevant concern ap-
plies to both sensitivity and imaging: uniqueness of the
data. If two inputs (positions of an object, for exam-
ple) happen to yield identical sets of measurements, then
neither distinguishability nor inversion for such inputs
is possible. If uniqueness can be assumed for at least
a subset of possible inputs though, then inversion (and
therefore imaging) can always be done, in theory, though
the computational efficiency of such a practice is often
reliant upon further assumptions. A second fundamental
concern is the accuracy and precision of the measure-
ments involved. These relate to the signal-to-noise ratio
(SNR) of the measurements and number of bits used by
the sensor’s analog-to-digital converter (ADC). The law
of large numbers [29] states that, if enough independent
and identically distributed samples can be drawn from
a distribution, then the sample mean can be made ar-
bitrarily close to the true mean, effectively achieving an
arbitrarily high SNR. In this context, this means that,
with sufficient sampling, any arbitrarily small difference
in datasets can be distinguished. One mitigation on this
somewhat idealistic outlook is that, in practice, most
sources of noise are not time-invariant, meaning that an
arbitrarily high number of independent measurements is
impossible to achieve (this is also true for other practical
reasons, such as patience). A second, more subtle com-
plication is that of sampling. For computational meth-
ods such as the one discussed here, comparisons can only
be made between the discretized versions of data output
by the ADC. If the difference between inputs is small
enough, then the corresponding datasets may differ by
an amount smaller than this discretization, bringing back
the uniqueness issue and making these datasets indistin-
guishable no matter how much averaging one does. To
be clear, these limiting issues of accuracy and precision
exist in all cases where digital processing is performed on
experimentally derived data, regardless of whether a scat-
tering analyzer is used, and our method does not purport
to bypass them; it merely approaches them more quickly
than if a scattering analyzer were not used.

Various subsequent steps could be interesting. This
work raises the prospect of regulating the statistical prop-
erties of a random medium to achieve high spatial sensi-
tivity to changes in the incident field. For instance, ape-
riodic structures have field-control properties that are de-
pendent on the specific geometrical features of the struc-
ture [36]. We now find a relationship between structures
that may be designed for a specific task and the general
statistical character of a random medium acting as an
analyzer for super-resolution spatial sensing. The ana-
lyzer is acting in a compressed sensing framework [37],
where, in our case, spatial field information is encoded
in speckle from multiply scattered light. Optical scatter
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is already being employed in the field of lensless imag-
ing, in which the traditional lens is replaced with a thin
diffuser. 3D imaging is enabled using a convolutional
forward model [38], and while increasing the amount of
scatter would likely invalidate such an approach, it could
result in higher spatial resolution. One-way functions
(functions that are computationally easy to compute but
difficult to invert) form the basis of modern cryptogra-
phy, but replacements are increasingly being sought for
existing methods such as prime factorization and discrete
logarithms [39]. Physical one-way functions have been
studied as a potential alternative, and their effective-
ness is hinged upon the sensitivity of a heavily scattering
medium [40]. Designing a scattering analyzer using an
asymmetric-transfer-function metasurface [41] could re-
sult in increased sensitivity compared to a random ana-
lyzer. Optimizing the spatial profile of the incident field
has been shown to improve precision in estimations of pa-
rameters through diffuse media [42]. Such optimizations
of the incident field could be combined with the analyzer
concept discussed here, possibly resulting in further im-
provements of estimation performance or greater sensi-
tivity. All results have assumed monochromatic light.
In an experiment, this implies suitably high coherence,
and in the sense of speckle statistics, the light source re-
quirements depend on the degree of scatter. It would be
interesting to consider reduced coherence requirements
in relation to enhanced spatial resolution with a ran-
dom analyzer. With a thin analyzer, it may also be
possible to utilize the axial wavelength separation re-
sulting from the chromato-axial memory effect [43, 44]
(dilation of the speckle pattern due to spectral shift) to
separate wavelengths and draw upon enhanced spatial
resolution (where “memory” indicates the approximate
angular tracing of light transmitted through a thin scat-
tering medium with incident beam angle). Finally, es-
timation of the axial separation of two incoherent point
sources using a mode sorter [45] might be re-imagined in
the context of a random analyzer.

VII. CONCLUSION

This work has developed the underlying theory of ran-
domly scattering analyzers, built further understanding
of random matrix theory and the physics of coherent
transport, demonstrated a far-field super-resolution sens-
ing capability, and offered a new dimension for metrology
and other application domains. This remote sensing ap-
proach with a randomly scattering analyzer is applicable
to all wave types for which a heavily scattering medium
exists, and that are coherent enough to produce an ef-
fect analogous to optical speckle, and hence offers sub-
stantial scope for impact on the physical sciences. The
presented random analyzer concept offers opportunities
for sensing and microscopy where far-subwavelength spa-
tial information is important. While we have treated the
informational aspects of the analyzer, achieving identifi-

cation is possible with calibration, as in the concept of
motion in structured illumination [9]. Based upon the
results presented, it may be possible that measured in-
tensity data through a random analyzer can be inverted
to form a super-resolution image.
Regarding random matrix theory, we have established

that the eigenvalue distribution for the transmission ma-
trix that represents a scattering analyzer provides an ex-
planation for why a more heavily scattering analyzer re-
sults in faster speckle intensity decorrelation. We have
compared the applicability of two different probability
distributions to the empirical eigenvalue distributions ob-
tained from our numerical simulations. When compared
to appropriate datasets, our results show good agreement
with the quarter-circle distribution, though the amount
of scatter was likely insufficient for the upper peak of the
bimodal distribution to appear.
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Appendix A: Simulation Details

Here we elaborate upon the different aspects of the
numerical FEM [46] simulations that were used to calcu-
late empirical eigenvalue and singular value probability
distributions (Sect. III) involving the transmission ma-
trix T, as well as the simulations involving the apertures
(Sect. V).

1. Mesh Generation

The accuracy of any FEM simulation depends heav-
ily on the size of the mesh elements. The mesh must
be fine enough that numerical errors are negligible, but
increasing the element density beyond this point merely
increases the computational burden without improving
results. The mesh density was primarily controlled by
reducing the maximum mesh element size, while allow-
ing the elements to be smaller than this by a factor of
10 as necessary (determined automatically by the FEM
software [46]). The resolution of “narrow regions” (also
determined automatically) was further increased by a fac-
tor of 10.
During our tests for numerical convergence, we found

that regions near rapid material variations need to be
more finely meshed. Therefore, in order to achieve nu-
merical convergence while minimizing the computational
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resources required, the maximum mesh element size was
changed for different parts of the geometry domain. The
necessary mesh densities were found to differ for the
eigenvalue simulations of Sect. III and the aperture sim-
ulations of Sect. V. For the eigenvalue simulations, sub-
domain 1 consists of all the 200-nm dielectric squares,
and was meshed with a maximum element size of λ/40.
Subdomain 2 consists of all the free space in the domain,
and was meshed with a maximum element size of λ/20.
Subdomain 3 consists of the two perfectly matched layers
(PMLs), and was also meshed with a maximum element
size of λ/20.

When meshing the apertures for Sect. V, care was
taken to ensure that the mesh density near the aper-
tures was high enough. The region near the aperture(s),
both inside and outside the film, was meshed to a maxi-
mum element size of λ/80, while the rest of the free space
had a maximum element size of only λ/50. The dielec-
tric squares were meshed with a maximum element size
of λ/100. The maximum element size of the PMLs was
increased to λ/10.

We also found that the square corners of the thick PEC
film (but not the corners of the dielectric scatterers) had a
slight singularity effect, so they were rounded to a radius
of 1 nm to mitigate this effect.

2. Scatterers

The specified breadth and thickness of the scattering
analyzer define its volume, which was discretized into
200-nm square regions. Exactly 50% of these were filled
with dielectric material, with the rest being free space.
The locations of the dielectric squares were randomized,
with the distribution of all possible sets of dielectric po-
sitions being a uniform one.

It should be noted that the scattering properties of
the simulated version of the analyzer are different from
those of the analyzer used in previous experiments [1].
First, the TiO2 scatterers in the experiments were 50 nm
across, making them smaller than the simulated ones.
Also, the scatterers in the experiment were far apart com-
pared to the wavelength, whereas that property does not
hold in the simulation. The reason for these changes is
that we are able to achieve an increased level of scatter
in a smaller simulation domain, which reduces the com-
putational burden to a manageable level.

3. Boundary Conditions

To the left and right of the scattering analyzer (the
x-axis boundaries) were Floquet periodic boundary con-
ditions, The associated Floquet wave vector had discrete
kx = 2π/Lx, consistent with the discrete plane wave
spectrum. Note that, because of this equality, this Flo-
quet boundary condition is equivalent to a continuity

boundary condition, as the phase progression between
boundaries becomes zero.

Above and below the scattering analyzer (the y-axis
boundaries) were free space regions. These were followed
by PMLs, each with a thickness of 2λ, which are intended
to minimize reflections in the scattered field formulation
used, thereby simulating an infinite medium in the y di-
mension.

To implement the apertures in the PEC for Sect. V,
the three rectangular shapes shown in green in Fig. 7
were first defined. The large rectangles left and right
of the aperture construction were assigned each to have
edges of infinitesimally thin PEC (except the ones that
touch the periodic boundaries), and the insides of these
rectangles were left as free space. For the two-aperture
setup, the small central rectangular region was also given
PEC edges. For the one-aperture setup, it was left as free
space.

When the field magnitude was plotted just after the
aperture system (at a distance of λ/100 away), it resulted
in one or two spatial pulses of approximately the same
width as the one or two apertures (with centers coinciding
appropriately), which is expected. The singularity effects
mentioned in Appendix A1 were minimal.

4. Field Generation

The incident plane wave was specified in the FEM soft-
ware as a background field (electric polarized in the z
direction, which was orthogonal to the 2D simulation
plane), and the scattered field was solved for. The to-
tal field is then the sum of the background and scattered
fields.

The spectrum of plane waves used for the transmission
matrix simulations (Sect. III) was chosen to be the full set
of propagating modes that are periodic in the geometry.
Each such mode has a transverse wavenumber of kx =
mkx0, where kx0 = 2π/Lx and the integer m spans the
range −mmax ≤ m ≤ mmax. The maximum mode mmax

was chosen as the highest-order propagating plane wave
that is periodic over the geometry, or

mmax =

⌊
k0
kx0

⌋
=

⌊
2π/λ

2π/Lx

⌋
=

⌊
Lx

λ

⌋
.

In our case, with Lx = 60 µm and λ = 850 nm, we get
mmax = 70, for a total of N = 2mmax + 1 = 141 plane-
wave modes. The two outermost plane waves (for which
m = ±mmax) have angles of ±1.4416 radians.

For the aperture simulations (Sect. V), only the m = 0
mode was used for the incident field, which corresponds
to the plane wave perpendicular to the scattering an-
alyzer. These field passed through the aperture system
(which consisted of either one or two apertures, as shown
in Fig. 7), thereby generating the discrete plane wave
spectrum.
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5. Detection and Processing

The detector plane was located a distance of 4λ away
from the scattering analyzer, along which all the detector
points are located. The detector plane spanned the entire
breadth of the geometry.

Our goal is to measure only the far field and minimize
the effect of evanescent fields, but the choice of detector
plane distance is not trivial. Because the periodic bound-
ary conditions make the scattering analyzer infinite in
breadth, it becomes impossible to use a heuristic for the
far-field distance based on analyzer size. If we instead
model the analyzer as a collection of small apertures of
size equal to the 200-nm dielectric squares, then the far-
field distance becomes approximately 2(λ/4)

2
/λ = λ/8

(since λ = 850 nm). The chosen 4λ distance was settled
on by gradually increasing the distance until the field
statistics (as listed in final column of Table I) appeared
to converge. Specifically, the Medium Scatter slab was
chosen for this convergence analysis and showed a change
in mean CR of about 0.5% between detector distances
of 4λ and 5λ. The other analyzer configurations also
showed mean CRs closer to 1 at 4λ than at 1λ, meaning
that the statistics became closer to zero-mean circular
Gaussian. Another near-field effect of note is optical vor-
tices [47, 48], which involve small regions of alternating
positive and negative time-average Poynting vector (in
our case, the component normal to the detector plane).
These were noticed in our simulations, but their effect
had significantly decayed by the chosen distance of 4λ.
For the transmission matrix simulations, N detectors

were uniformly distributed along the detector plane, and
they detected the z component of the total electric field
(background plus scattered). Because of the periodic
boundary conditions on either side, it would be redun-
dant to have detectors on both endpoints of the detector
plane (as they would detect the same value). In order
to gain true periodicity, we therefore instead calculated
N + 1 uniformly distributed points along the detector
plane and place detectors on N of these, omitting one of
the endpoints. These N values were then passed through
a discrete Fourier transform in order to calculate the en-
tries of the matrix T, which we have thereby ensured is
a square matrix (as is assumed in Sect. II).

For the aperture simulations, periodicity is not a con-
cern because we are not calculating a transmission ma-
trix, so we are free to use more than N detectors. In this
case, we uniformly distributed detectors along the detec-
tion plane with a separation interval of λ/100. These
were configured to detect the y component of the Poynt-
ing vector of the total field (again, background plus scat-
tered).

The aperture system was shifted in intervals of λ/10
parallel to the x axis, up to maximum distances of λ/2
in each direction. For each position of the aperture sys-
tem, the speckle intensity pattern was measured at the
detector plane. These speckle patterns were pairwise
correlated using the Pearson correlation coefficient, and

these coefficients were averaged together to form Fig. 8.
Let sy be the shift distance of the aperture system, so
that sy = m · (λ/10) for m ∈ {−5,−4, . . . , 5}. Also, let
1 ≤ n ≤ N refer to the (N = 10) different instances
of the random analyzer. Therefore, if CP (sy1, sy2, n) is
the Pearson correlation coefficient between aperture posi-
tions sy1 and sy2 for the nth random analyzer, then the
average Pearson correlation coefficient for relative dis-
tance ∆sy is

C(∆sy) =
1

N

1

|S(sy)|

N∑
n=1

∑
{sy1,sy2∈S(sy)}

CP (sy1, sy2, n) ,

(A1)
where S(sy) is the set of all shift distances sy1,sy2 such
that sy = |sy1 − sy2|.

Appendix B: Derivation of Random Medium
Transfer Matrix and Bimodal Density Function

The derivation of the bimodal probability density func-
tion is developed here for completeness, and because we
are unaware of this having been done elsewhere. It begins
with consideration of the matrices that the eigenvalues
belong to.
During the mid-to-late 1980s, motivated in part to de-

velop quantum transport theory in disordered systems
and build on the work of Landauer and others [49], a
multitude of papers considered various mathematical as-
pects, as summarized in Beenakker’s review paper [2].
We draw on specific parts of this body of work only to
provide background for our treatment of random matrix
theory for the analyzer problem.

1. Symplectic Character of Transfer Matrix

The electromagnetic scattering matrix, relating the in-
cident to scattered wave amplitudes through four sub-
matrices, is reciprocal (with time-reversal symmetry) and
unitary (lossless materials), resulting in

SSH = I, (B1)

with

S =

[
S11 S21

S12 S22

]
=

[
R T′

T R′

]
, (B2)

where the subscript notation on the scattering param-
eters is broadly used in some literature, and lower-case
variants of the reflection and transmission sub-matrices is
common in the quantum transport literature drawn upon
here [2]. In general, the four N × N sub-matrices of S
represent non-symmetry (differing S11 and S22) and non-
reciprocity (differing S21 and S12). With a lossless recip-
rocal system, we have SH = S−1. Additionally, time-
reversal invariance gives S = S⊤, where ⊤ denotes the
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(non-conjugate) transpose [2, 16]. We utilize the trans-
mission matrix, T in our work here, and S21 = S12 = T
because of this symmetry [50, 51], and because the wave
impedances are identical on either side of the random
analyzer. Using the notation of Beenakker [2], we have

cout = Scin, (B3)

with cin the vector of complex incident mode coefficients
(multiple modes incident from, say, two ports: the left
and the right) and cout that for the scattered amplitudes
(at the two ports). It is useful to explicitly split cin into
al and br (incoming on the left and right ports, respec-
tively), and split cout into bl and ar (outgoing on the
right and left ports, respectively), a notation used by
Imry [14] and by Pichard and André [15] (see either of
these references for a diagram). This version of (B3)
yields [

bl

ar

]
= S

[
al
br

]
. (B4)

Using a standard transformation, one can write the
useful transfer matrix, which relates output (port 2)
quantities to those at the input (port 1) as

cright = Mcleft (B5)[
ar
br

]
= M

[
al
bl

]
, (B6)

where M is 2N × 2N and written as

M =

[
A B
C D

]
. (B7)

Here we use an upper case Roman notation, rather than
the lower-case Greek equivalents in Mello, Pereyra, and
Kumar [16]. The transfer matrix is useful for cascad-
ing systems, because the overall transfer matrix becomes
simply a product of each sub-system transfer matrix. The
eigenvalues ofMHM are real because the matrix product
is real and symmetric.

In quantum transport, conservation of current flux is
considered, but in our work, it is conservation of power
(through the Poynting vector, or energy per unit time)
that is imposed. However, this is a mathematical detail.
Conservation conditions lead to [52]

MHΣM = Σ, (B8)

where

Σ =

[
I 0
0 −I

]
, (B9)

with I and 0 being the N × N identity and zero matri-
ces, respectively. As a result of this symplectic property
(which has also been referred as “pseudo-unitarity” [2]),
Pichard and Sarma [53] noted that real transfer matri-
ces are symplectic, as are products. From time-reversal
invariance [54],

M =

[
A B
B∗ A∗

]
, (B10)

where ∗ denotes the element-wise complex conjugate. As
a result of flux (power) conservation and time-reversal
invariance, the elements of the transfer matrix satisfy [16]

AHA−B⊤B∗ = I (B11)

AHB = B⊤A∗. (B12)

In noting from (B8) that |det(M)| = 1, that det(M) is
real, and (based on analytic continuity) that det(M) = 1,
it can be shown thatM is symplectic under the more typ-
ically used definition, involving a skew-symmetric matrix,
rather than one such as Σ with structure given in (B9).
The symplectic nature of M is proven ([16], Appendix
A) by decomposing M into real sub-matrices to yield
M⊤ΩM = Ω, when combined with (B11) and (B12).
This yields the standard symplectic form, with Ω skew
symmetric (2N × 2N) and Ω⊤Ω = I.
The pseudo-unitary character of M allows us to write,

from (B8),

MH = ΣM−1Σ (B13)

M−1 = ΣMHΣ, (B14)

since Σ−1 = Σ. Consequently,(
MHM

)−1
= M−1

(
MH

)−1

=
(
ΣMHΣ

) (
ΣM−1Σ

)−1

=
(
ΣMHΣ

) (
Σ−1MΣ−1

)
= ΣMHMΣ−1

= ΣMHMΣ (B15)

= Σ−1MHMΣ. (B16)

This similarity transform result (B16) implies that the

eigenvalues of
(
MHM

)−1
must be identical to those of

MHM [55]. In addition, because M and MH are both
symplectic, MHM will also be symplectic (demonstrated
by (B15), due to conjugate symmetry ofMHM), and will
have real and positive eigenvalues that occur in inverse
pairs [14, 56].

2. Relating the Scattering and Transfer Matrices

From here until (B35), we follow a line from Pichard’s
1984 PhD thesis [57]. This derivation is also reviewed in
part by Imry [14]. Applying (B14) with (B7) and (B9)
yields

M−1 =

[
AH −CH

−BH DH

]
. (B17)

From M−1M = I, one finds

AHA−CHC = I (B18)

AHB−CHD = 0 (B19)

−BHA+DHC = 0 (B20)

−BHB+DHD = I. (B21)
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Using (B7), (B15), (B18), and (B21), it is found that

MHM+
(
MHM

)−1

= 2

[
AHA+CHC 0

0 BHB+DHD

]
= 2

[
2AHA− I 0

0 2DHD− I

]
. (B22)

Here, Pichard lists out the full set of equations speci-
fied by the matrices S, M, and M−1, using (B4), (B6),
and (B17):

ar = Aal +Bbl (B23)

br = Cal +Dbl (B24)

al = AHar −CHbr (B25)

bl = −BHar +DHbr (B26)

ar = Tal +R′br (B27)

bl = Ral +T′bl. (B28)

Using these, a set of relationships is deduced between the
elements of S and those of M,

R = −D−1C (B29)

T′ = D−1 (B30)

T =
(
AH

)−1
(B31)

R′ =
(
AH

)−1
CH . (B32)

It can be shown that these satisfy (B23) through (B28).

Using (B29) through (B32), (B22) becomes

1

4
MHM+

(
MHM

)−1
+

1

2
I

= 2

[(
THT

)−1
0

0
(
T′T′H)−1

]
, (B33)

where I is now the 2N ×2N identity matrix, rather than
N ×N . Inverting gives

[
MHM+

(
MHM

)−1
+ 2I

]−1

=
1

4

[
THT 0

0 T′T′H

]
=

1

4

[
THT 0
0 TTH

]
,

(B34)

because T = T′. Taking the trace (Tr) gives

Tr
(
THT

)
= 2Tr

{[
MHM+

(
MHM

)−1
+ 2I

]−1
}
.

(B35)
It should be noted that this result is exact, and not an
approximation [14, 15, 57].

3. Transmission Eigenvalues and Conductance

We adapt a theory that was developed for electron
transport and localization [50] and under the assump-
tion of low conductance leads to the approximation that
the conductance g is given by Tr

(
THT

)
(in units of

e2/h, with a factor of two to account for spin). Work
in the early 1980s to generalize from one such transmis-
sion channel [58] to many channels argued that, since the
overall conductance was finite, the transmission probabil-
ity of each individual channel must be small [50, 51, 59].
Perhaps most notably, it has also been derived using an
assumption that the conductor length is much greater
than the mean free path length [60, 61]. This interpre-
tation draws a direct analogy between the transport of
electrons through a long disordered region and of photons
through a thick scattering region.
In our case of the field transmission matrix, we can

consider this conductance relationship as being exact [4].
We can thus write

g = Tr
(
THT

)
=

N∑
n=1

Tn, (B36)

where the Tn are the eigenvalues of THT, without ap-
proximation as N → ∞. Using (B36), the mean conduc-
tances of each of the types of randomly scattering ana-
lyzer are calculated, and the results are shown in Table V.
Here, the normalization discussed in Sect. IVA was ap-
plied, not because a direct comparison to a probability
distribution for g is being made, but in order to account
for the incident power used when calculating Tn. Notice
that these conductance values decrease as the amount
of scatter in the analyzer increases, while the number of
eigenchannels remains constant (N = 141). This indi-
cates that the transmission eigenvalues (Tn) themselves
are becoming smaller, behavior that is analogous to the
low-transmission approximation from electron transport
theory that leads to its version of (B36). This sug-
gests that we are getting closer to the limit in which
the bimodal distribution applies as the level of scatter
increases, though we may not have reached this regime
with these slab types.

4. Transmission Matrix and Transfer Matrix
Eigenvalues

Mello and Pichard [62] prove that M can be decom-
posed in an orthogonal basis as

M = U

[√
I+ λ

√
λ√

λ
√
I+ λ

]
V, (B37)

with U and V unitary, and λ a diagonal, real, positive
matrix. This form was presented in earlier work [16, 63].
It has been stated that [14, 15, 56] (for a proof, see
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TABLE V. The mean conductance, calculated using (B36),
for the five types of randomly scattering analyzer that are
listed in Table I. The same normalization was performed for
this calculation as has been used elsewhere (see Sect. IVA).
The conductance g was calculated for each instance of the
randomly scattering analyzers, and these conductances were
averaged together for each type.

Slab Type Mean Conductance g
Lowest Scatter 37.357
Low Scatter 28.037

Medium Scatter 24.426
High Scatter 15.669

Highest Scatter 11.605

Ref. [64])

X =
1

4

[
MHM+

(
MHM

)−1 − 2I
]

(B38)

= VH

[
λ 0
0 λ

]
V, (B39)

where X is defined to have this form and the diago-
nalization was shown to result. This indicates that λ
in (B39) contains the unique eigenvalues of X. It has
been shown [64] and indicated [14–16, 56] that (B39)
leads to

Tr
(
THT

)
=

N∑
n=1

1

1 + λn
, (B40)

where λn are the eigenvalues of the 2N × 2N matrix X
in (B38), and the λn constitute the diagonal entries in
the λ matrices in (B37) and (B39). Comparing (B40)
with the second relationship in (B36), we have

Tn =
1

1 + λn
. (B41)

The eigenvalues Λn ofMHM come in inverse pairs, be-
cause of the symplectic character of M [14]. With a view
to a Lyapunov exponent form [65], we can thus assign
exp(±2xn) to these eigenvalues. Using this perspective
motivates a mapping

1

1 + λn
=

2

1 + cosh 2xn
, (B42)

so that

λn = cosh2 xn − 1. (B43)

As a result, and from (B41),

Tn =
1

cosh2 xn

, (B44)

so the conductance can be written exactly in the limit
as [2, 21]

g = Tr
(
THT

)
=

N∑
n=1

1

cosh2 xn

. (B45)

Again, these Tn are the eigenvalues of the matrix THT,
which in this work are plotted in Fig. 2. Under conditions
where xn is uniformly distributed, we will prove that Tn

has a bimodal density function.

5. Uniform Distribution for xn

The asymptotic Lyapunov behavior is established from
the large length limit, and this can be represented as the
multiplication of Mi, where this is the transfer matrix for
the ith thin scattering layer. The multiplicative character
of M has been presented a basis for xn being uniformly
distributed [65]. The situation where the xn are uni-
formly distributed has been called the metallic diffusive
regime [2] (see page 774). We review the basis of this
representation, because it is used along with (B44) to
prove bimodal character in the limit of sufficient random
scatter.
Nieuwenhuizen and van Rossum [21] utilize (B44) and

the assumption that the Lyapunov coefficients xn are uni-
formly distributed to study the transmission character of
multiply scattered waves and note that this is the case un-
der very general conditions. Numerical evidence for the
approximately uniform nature of xn has been found [15].
Starting with the DMPK equation, Beenakker derives the
uniform density result for the diffusive regime (see [2],
page 764). Mello and Pichard [17] explain the resulting
uniform density as a result of associating each eigenchan-
nel of the disordered system with a localization length
that characterizes its exponential decay in transmission.
In the limit of many channels, this results in a uniform
density function for xn. They also note that the trend
for the Lyapunov exponents to be uniform appears to be
rather generic, noting the example of dynamic systems.
In our work, we find that as the amount of scatter in the
analyzer increases, we approach a uniform density for xn

based on numerical calculations for the random analyzer
situation that we treat.

6. Bimodal Density Function

The final step in this derivation is to develop the prob-
ability density function for Tn, given in (B44), into the
bimodal density function (Eq. (251) in [2]) that appears
in (7). This is done by incorporating the assuming that
xn is uniformly distributed, using a simplified random
variable notation.
The development here is based on material in Daven-

port and Root [66] (pages 33–35) and van Kampen [67]
(pages 17–18). When notation differs between these two
sources, we prefer that of van Kampen, where random
variables are capitalized. Let X be a real-valued random
variable that can take on values X ∈ SX . Let Y [X] be a
real-valued function of X, making it also a random vari-
able. This Y can be considered a mapping from the space
SX to a new space SY , where Y ∈ SY .
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Assume that the probability density function for X ex-
ists, denote it as pX(x), and assume that it is continuous
almost everywhere. It can be shown that, if the prob-
ability density function of Y exists (denoted pY (y)), Y
is a differentiable monotonic function of X, and dY/dX
vanishes only at isolated points, then a direct relation
can be written between pX(x) and pY (y). It can then be
shown that, if SY (y) is the interval −∞ < Y ≤ y (for
some y), then there exists an x(y) such that SX(y) is the
interval −∞ < X ≤ x(y). The general relationship then
becomes

pY (y) = pX(x(y))

∣∣∣∣dxdy
∣∣∣∣ , (B46)

with |dx/dy| the Jacobi determinant. We will use (B46)
in the derivation of the bimodal density function.

Now consider the special case

Y =
1

cosh2 X
, (B47)

or equivalently, with a one-to-one mapping,

X = cosh−1

(
1√
Y

)
, (B48)

and for Y ≥ 0 and X ≥ 0. Note that (B48) diverges as
Y → 0. Equations (B47) and (B48) satisfy the aforemen-
tioned requirements. Because Y cannot be negative,

P (Y ≤ y) = 0 for y < 0

=⇒ pY (y) = 0 for y < 0. (B49)

SX(y) is the set of points 0 ≤ X ≤ cosh−1
(
1/
√
y
)
for

y ≥ 0. Therefore,

P (Y ≤ y) = P

[
0 ≤ X ≤ cosh−1

(
1
√
y

)]
= P

[
X ≤ cosh−1

(
1
√
y

)]
− P [X < 0]

= P

[
X ≤ cosh−1

(
1
√
y

)]
. (B50)

Writing this probability in terms of pX(x), we have

P (Y ≤ y) =

∫ cosh−1
(

1√
y

)
0

pX(x)dx. (B51)

Taking the derivative of (B51), and use of (B46), leads
to

dP (Y ≤ y)

dy
= pY (y)

= pX

(
x = cosh−1 1

√
y

)
·
∣∣∣∣dxdy

∣∣∣∣ . (B52)

Now consider the special case of a uniform density
function over a continuous interval. Let SX = [0, ŜX ],
giving

pX(x) =

{
1/ŜX if x ∈ [0, ŜX ]

0 otherwise
. (B53)

A point X = x is related to Y = y by

x = cosh−1 1
√
y
. (B54)

To obtain pY (y), we form

dx

dy
=

d

dy

(
cosh−1 1

√
y

)
. (B55)

From Abramowitz and Stegun [68], page 88,

d

dz

(
cosh−1 z

)
=

(
z2 − 1

)−1/2
. (B56)

With z = 1/
√
y, dz/dy = −y−3/2/2. We thus have, with

use of the chain rule for differentiation,

d

dy

(
cosh−1 1

√
y

)
=

d

dz

(
cosh−1 z

)
· dz
dy

=

(
1

y
− 1

)−1/2

·
(
−1

2
y−3/2

)
= −1

2

1

y
√
1− y

. (B57)

With use of (B57) in (B46), we have

pY (y) = Aδ
1

y
√
1− y

, (B58)

where, in order to form a density function with a non-
integrable singularity at y = 0, we have

A−1
δ =

∫ ∞

δ

1

y
√
1− y

dy, (B59)

with δ some small positive value. We have now arrived
at the bimodal eigenvalue density function.

Appendix C: Quarter-Circle Distribution
Background

This appendix gives a brief overview of the quarter-
circle distribution, beginning with its origins in random-
sign matrices and ending with a more general treatment
that allows for complex-valued matrices. We end by dis-
cussing how the form of the quarter-circle distribution
used in (10) relates to this line of work.
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1. Random-Sign Matrices

The quarter-circle distribution originated during a
derivation by Wigner of the eigenvalue distribution of
random-sign real symmetric matrices [26]. It deals with
real-valued symmetric matrices H of dimension 2N + 1,
where N is very large. The diagonal elements are 0,
and the non-diagonal elements vij = vji = ±v all have
the same absolute value v but random signs. There are
2N(2N+1) such matrices, and Wigner defines the kth mo-
ment as Mk = ⟨Hk⟩00, where the brackets indicate av-
eraging over all such matrices. Wigner calculates these
moments Mk, and then uses these moments to calculate
the probability density function (referred to in his work
as the “strength function”) σ(x), where x represents the
eigenvalues of H. This results in the quarter-circle dis-
tribution shown in Eq. (20a) of [26], which is

σ(x) =

√
8Nv2 − x2

4πNv2
, (C1)

for −v
√
8N < x < v

√
8N .

The notation used throughout this appendix differs
from that used in (10), instead having been chosen to
agree with the literature that is being reviewed.

2. Gaussian Matrices

This set of constraints on these matrices was relaxed
in a later work by Wigner [27], allowing the distribution
to be applied to real symmetric Gaussian matrices. The
revised requirements are then as follows.

• The matrix dimension is simply N , thereby allow-
ing for matrices of either even or odd dimensional-
ity.

• These matrices must still be real and symmetric,
and there must be no statistical correlations be-
tween matrix elements, except for the condition of
symmetry.

• Instead of requiring random-sign matrix elements,
now the probability distributions of vij and vji just
have to be the same.

• All of these probability distributions also must have
an upper bound that is independent of i and j. This
condition, when combined with the previous one,
means that all the odd moments vanish to zero.

• The second moment of all vij must be the same,
denoted by m2.

Wigner notes that this last condition can be relaxed so
that it holds for only a large majority for matrix elements,
and that this relaxation allows use of the random-sign
matrices considered in Ref. [26]. Using these conditions,
Wigner arrives at the same quarter-circle distribution as

in the earlier random-sign-matrix analysis. That eigen-
value distribution is

σ(x) =

√
4Nm2 − x2

2πNm2
, (C2)

for x2 < 4Nm2. Note the similarity between (C1)
and (C2) despite the different types of random matrices
involved.

3. Complex Matrices

This line of work was further extended by Marčenko
and Pastur [28] in several ways, notably allowing for
complex-valued matrices. They begin by defining an
operator BN (n) that acts in an N -dimensional unitary
space HN , which includes randomly distributed real ran-
dom variables τi and complex vectors qi (n of each), and
is given by

BN (n) = AN +
n∑

i=1

τiq
(i)(·, q(i)), (C3)

where n is a nonrandom number, AN is a nonrandom
self-adjoint operator, and (x, q(i)) is the scalar product
in HN between q(i) and some other vector x. They also
denote v(λ,BN (n)) as the probabilistic cumulative den-
sity function of the operator BN (n)’s eigenvalues. They
then consider the case N → ∞, and assume that four
conditions are satisfied.

• The limit c = limN→∞(n/N) exists.

• The sequence of normalized spectral functions for
AN converges as N → ∞.

• The random vectors qi have absolute moments to
fourth order, and the even moments can be put into
a form specified in Eqs. (1.4) through (1.6) of their
paper [28].

• The random variables τi are independent and iden-
tically distributed.

The authors [28] go on to prove properties based on these
assumptions. Then, as an example, they specify a cer-
tain BN (n) so that the operator becomes a projection
onto the n-dimensional space spanned by the n complex
random vectors qi. Therefore, the corresponding cumula-
tive distribution function v(λ;BN (n), c) becomes that of
the eigenvalues for some complex random matrix, which
is what we seek to calculate in this work. After show-
ing that this form of BN (n) satisfies the four constraints
listed above, they derive an expression for the cumula-
tive density function v(λ;BN (n), c), as well as its first
derivative with respect to λ, which is the corresponding
probability density function. As N → ∞, this eigenvalue
density function converges to

dv(λ;BN (n), c)

dλ
=

4cτ2 − λ2

2πcτ2

(
1 +

λ+ τ

τc

)−1

(C4)
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for λ2 ≤ 4cτ2. The authors note that, in the limit c → ∞,
this becomes the same quarter-circle probability distri-
bution that was arrived at by Wigner [26, 27]. This re-
sult is significant to us, because our random matrices are
complex-valued.

4. In This Work

The quarter-circle density function that we use in (10),
with σ ∈ [0, 1] a random variable corresponding to the
singular values of the appropriate random matrices (the
real-valued ℜ(T) and ℑ(T)), can be considered a sim-
plified version (C2), where the distribution no longer has

the range [0, 4Nm2) and explicit dependence on N andm
has been dropped through the normalization procedure
in Sect. IVA.

The required conditions for this distribution are met
by independent and identically distributed Gaussian en-
tries. Note that two Gaussian random variables being
uncorrelated does not imply that they are independent,
and that this independence is necessary for the quarter-
circle distribution. Also, the matrices do not satisfy the
symmetry requirement. An alternative approach would
have been to use the Marčenko-Pastur law (which has
different requirements) and compare it to

√
Tn, where

Tn are the eigenvalues of THT.
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