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Abstract

Understanding the evolution of massive binary stars requires accurate estimates of their masses. This understanding
is critically important because massive star evolution can potentially lead to gravitational-wave sources such as
binary black holes or neutron stars. For Wolf—Rayet (WR) stars with optically thick stellar winds, their masses can
only be determined with accurate inclination angle estimates from binary systems which have spectroscopic M sin i
measurements. Orbitally phased polarization signals can encode the inclination angle of binary systems, where the
WR winds act as scattering regions. We investigated four Wolf—Rayet + O star binary systems, WR 42, WR 79,
WR 127, and WR 153, with publicly available phased polarization data to estimate their masses. To avoid the
biases present in analytic models of polarization while retaining computational expediency, we used a Monte Carlo
radiative-transfer model accurately emulated by a neural network. We used the emulated model to investigate the
posterior distribution of the parameters of our four systems. Our mass estimates calculated from the estimated
inclination angles put strong constraints on existing mass estimates for three of the systems, and disagree with the
existing mass estimates for WR 153. We recommend a concerted effort to obtain polarization observations that can
be used to estimate the masses of WR binary systems and increase our understanding of their evolutionary paths.

Unified Astronomy Thesaurus concepts: Massive stars (732); Binary stars (154); Polarimetry (1278); Bayesian

statistics (1900); Radiative transfer (1335)

1. Introduction

Massive stars enrich the interstellar medium with heavy
elements via stellar winds and supernova explosions. Their
high-mass remnants, such as neutron stars and black holes,
have been detected with gravitational-wave observations (e.g.,
Abbott et al. 2016, 2017a). The evolutionary paths that massive
stars take to reach different types of supernovae, or even core
collapse without a luminous event, are strongly dependent on
their masses and mass-loss rates (Puls et al. 2008; Langer 2012;
Abbott et al. 2016; Woosley 2019).

A large fraction of sufficiently massive (18-80 M.,) individual
stars are expected to evolve to the Wolf-Rayet (WR) stage
(Sander et al. 2019), which is characterized by strong emission
line spectra and high mass-loss rates (~107> M, yr '
Crowther 2007). However, the optically thick winds of WR
stars make it impossible to measure their masses using log g.
Fortunately, massive stars typically occur in binary systems
(Mason et al. 2009; Sana et al. 2014) so it is possible to obtain
mass estimates using orbital models. Massive binaries can evolve
into compact binaries that emit gravitational waves (Abbott et al.
2017b). Aside from using binaries for mass estimation, binary
interactions can have a strong effect on the pre-supernova masses
and structure of massive stars (e.g., Laplace et al. 2021) and
more than 50% of massive binaries interact during their lifetime
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(Sana et al. 2012, 2013). Mass transfer as part of these
interactions reduces the mass at which stars can reach the WR
stage (McClelland & Eldridge 2016). It is therefore important to
constrain the masses of massive binary systems so that we can
understand whether or not the WR components were formed as a
result of binary interactions.

Only three massive Milky Way binaries with WR stars have
masses derived using both spectroscopic and visual binary orbits:
72 Velorum (Lamberts et al. 2017), WR 133 (Richardson et al.
2021), and WR 140 (Thomas et al. 2021). Fifteen Milky Way
WR binary stars have mass estimates derived from spectroscopy,
photometry, and polarimetry, although their uncertainties are not
well constrained (Crowther 2007). Outside the Milky Way, some
progress has been made to determine WR + O masses in the
Magellanic Clouds using radiative-transfer models of WR and O
star spectra (Shenar et al. 2016, 2019).

Measuring the masses of noneclipsing binary stars is a
difficult task. The most robust method is to combine spectro-
scopic radial velocity orbital solutions that provide M sini
values with astrometric orbits to obtain the inclination angle of
the system, and thus derive masses. Obtaining the inclination
angle requires alternative solutions in the absence of a visual
orbit. Methods that have been used to determine inclination
angles without a visual orbit include photometric models that
are reliant on wind eclipses (e.g., Lamontagne et al. 1996),
stellar spectral synthesis models (e.g., Martins et al. 2005),
models of colliding winds (e.g., Hill et al. 2000), and
polarimetric models (e.g., Brown et al. 1978). These methods
span a wide range of uncertainties, with the most precise being
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Figure 1. Schematic diagram of the binary model. The diagram is presented
such that the system is viewed at an inclination angle of 60° measured from the
normal to the orbital plane. A definition of the model inclination angle i is
shown in the bottom right. The stars are the labeled circles of radius ry; the
dotted ellipse is the scattering region of electron scattering optical depth 7. The
diagram is not to-scale (ry < a). Other parameters are described in Section 3.1
and Table 2.

the photometric models (on the order of 50% formal uncertainty
in WR mass; Lamontagne et al. 1996) and the least precise the
models based on stellar spectral synthesis. The true uncertainties
of the photometric models may be larger (see footnote 11 of
Lamontagne et al. 1996). The stellar spectral synthesis method
does not report uncertainties, but rather a likely mass range for
the O star based on its spectral class, and that informs the
inclination angle of the system to determine the WR mass in
concert with previous inclination angle estimates (Vanbeveren
et al. 1998, 2020). Furthermore, the methods do not consistently
agree on the masses for a given WR + O system, exacerbated by
the range of reported uncertainties (or lack thereof). For example,
previous estimates for the mass of WR 79 from the photometric
and polarimetric methods disagree by more than 30 (Lamon-
tagne et al. 1996). This motivates the more robust method that
we describe in this paper.

The polarimetic method mentioned previously works by
modeling the time-varying linear polarization signal that occurs
when the hot winds of the WR star act as electron-scattering
regions for photons produced both by the WR star and its
companion (see Figure 1, showing an electron-scattering region
and WR + O illumination sources). This produces a constant
linear polarization from the WR star when the wind is asymmetric
(Brown & McLean 1977). Illumination by the secondary star
produces the time-varying linear polarization, which is partly
dependent on the orbital inclination angle i (Brown et al. 1978),
and this provides a way to measure inclination angles and thus
masses. To recover accurate uncertainties for the inclination angle,
we must determine the posterior distribution of the inclination
angle through repeated model evaluations.

There are two primary methods for modeling polarimetric
signals: analytic methods and numerical radiative-transfer
methods. Analytic models suffer from a variety of challenges,
including a bias toward high inclination angles and limitations
to optically thin scattering regions (7 < 0.01; Aspin et al. 1981;
Brown et al. 1982; Simmons et al. 1982; Wolinski &
Dolan 1994; Buchner 2019). In contrast, numerical radiative-
transfer methods are not biased by inclination angle and can
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include the effects of high optical depths such as multiple
scattering (e.g., Hoffman et al. 2003) though these simulations
are computationally expensive. We have used an enhanced
version of the Monte Carlo radiative-transfer (MCRT) code
SLIP (Hoffman 2007; Huk 2017; Shrestha et al. 2018) to
perform numerical simulations of binary stars in circular orbits,
for cases where one star has a scattering region surrounding it.
To obtain sufficient signal-to-noise for numerical polarimetric
estimates, which are often much less than 1% of the total
emitted intensity, SLIP requires large numbers of photons to be
propagated through the simulation, slowing its evaluation
times. To reconstruct the posterior distribution of the model
parameters, we must evaluate the model many times. This
motivates the adoption of acceleration methods.

One such method to accelerate models is that of emulators
based on neural networks. Emulators relate the approximated
model to its input parameters. Neural networks are capable of
rapidly approximating any model (see, e.g., Cybenko 1989;
Hornik et al. 1989). In our case, the trained neural network rapidly
generates an approximated polarimetric SLIP model based on the
input parameters. This means the emulator can be rapidly sampled
to obtain many models and infer parameters using Bayesian
statistics with maximum-likelihood testing for problems that lie
within the range of the training data. This technique has been
successfully applied to spectral models (Czekala et al. 2015;
O’Brien et al. 2021; Kerzendorf et al. 2021).

In this paper, we use an enhanced version of the SLIP
radiative-transfer code accelerated by an emulator to produce a
robust probabilistic estimate of the inclination angles and thus
masses of four WR + O binary systems in the Galaxy with
existing polarimetric observations. In Section 2, we describe
the polarimetric data and the WR + O systems. In Section 3,
we describe our radiative-transfer model and emulator
procedure. In Section 4, we present our results and discuss
their implications. Appendix A describes the SLIP code in
detail, and we validate our model in Appendix B. In
Appendix C, we provide additional details about our emulator
method. The full parameter spaces for our investigations of
each system are presented in Appendix D.

2. Data

We investigated four WR 4+ O binary systems with publicly
available, phased polarization data. We sourced the data from
St-Louis et al. (1987; WR 42 and WR 79) and St-Louis et al.
(1988; WR 127 and WR 153). All of the objects were observed
with the Minipol polarimeter at Las Campanas, Chile from
1985 to 1986 (Frecker & Serkowski 1976), using a blue filter
with central wavelength 4700 A and FWHM 1800 A. Table 1
lists the objects and their estimated orbital characteristics. We
refer to the systems via their WR catalog number as defined in
Crowther (2015).”

These systems have similar orbital periods (~1 week) and
circularized orbits. They are split into two each of WC- and
WN-type WR stars with O-type companions. We used the
orbital phases calculated by St-Louis et al. (1987, 1988) despite
the determination of newer ephemerides (e.g., Nazé et al.
2021), because any uncertainties in the ephemerides are greatly
amplified by the large number of orbits of each system that
have occurred since the polarimetric data were taken. The
ephemerides in St-Louis et al. (1987, 1988) are closer in date to

7 http: / /pacrowther.staff.shef.ac.uk /WRcat /index.php
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Table 1
WR + O System Spectral Types and Orbital Data
WR Spectral Type Period (d) Source i(°) Source Q) Source
42 WC7 + O7V 7.8912 1 3644 2,3 63.1-72.8 6
79 WC7 + 05-8 8.8911 1 2945 2,3 103.2-111.2 6
127 WNS5o + 08.5V 9.5550 2 55-90 4 83.6-103 7
153 WN60/CE + 03-6 6.6887 3 65-78 5 93.5-95.4 7

Note. Spectral types are taken from Crowther (2015).

References. 1: Hill et al. (2000); 2: Lamontagne et al. (1996); 3: Hill et al. (2002); 4: de La Chevrotiére et al. (2011); 5: Demers et al. (2002); 6: St-Louis et al. (1987);

7: St-Louis et al. (1988).

the observations, and thus the effects of uncertainties on the
orbital phase are lowest.

3. Methods

For this investigation, we used an enhanced version of the
MCRT code SLIP (Hoffman 2007; Huk 2017; Shrestha et al.
2018, 2021) that includes binary star capabilities (Fullard 2020).
Appendix A gives more information about the design of SLIP.
Using this code, we created a model system and trained a
neural-network emulator in order to analyze the observations.

3.1. Model Binary System

Our model binary system is described using four parameters:
Itracs T, Zen, and i. Figure 1 shows a schematic diagram of the
model. Here, I;, is the fractional intensity of the central
photon source (the WR star) relative to the total number of
photons. Thus, the O star intensity is 1 — I,.. T is the electron
scattering optical depth of the scattering region at i = 90°. z.y is
the half-height of the ellipsoidal scattering region as measured
normal to the orbital plane, in arbitrary units. x.; and y. are the
x and y extents of the scattering region and are held constant
and equal to each other. If z.; = x; = 1.5, the scattering region
is spherical. If z.;; = x.p;, the scattering region can be considered
prolate or disk-like. i is the inclination (viewing) angle,
measured from the normal to the orbital plane. The remaining
parameters shown in Figure 1 are held constant and are
described in Table 2. SLIP produces simulations of the
fractional g and u polarization signal produced by the electron
scattering in this model, normalized from the Stokes Q and U
vectors as ¢ = Q/I and u=U/L

The z.; parameter should not be thought of as the true
geometry of the scattering region. Rather, it is a measure of the
asymmetry of the scattering region or the density distribution
within it (e.g., a disk-like scattering region produces polariza-
tion signals similar to a spherical scattering region with
equatorially enhanced density). We assume only electron
scattering is an important contributor to the polarization signal,
which is a reasonable assumption for the case of a highly
ionized WR star wind. To reduce the number of parameters
required for the model, we assume a constant electron density
in the scattering region and a constant albedo of unity, as well
as total ionization of the wind. The uniform density means that
for scattering regions that are asymmetric, there is a nonlinear
relationship between z.; and 7 as a function of i. The constant
albedo of one means that the polarization signal is independent
of wavelength.

We assume that the stars are sufficiently separated (para-
meter a) so that eclipse effects are negligible, which is
appropriate for the range of expected inclination angles and

Table 2
Constant Model Parameters for the Emulator
Parameter Value Description
r* 4.65x 107* Stellar radii
a 3.1 Binary separation
Xells Yell L.5 x, y extent of the scattering region

Note. Lengths are displayed as relative values (see Figure 1).

Table 3
Sample Space of the Model
Parameter Min Max Description
Lioc 0.0 1.0 Fractional intensity of the WR star
T 0.0 1.0 Electron scattering optical depth
Zell 0.2 3.1 z extent of the scattering region
i 0°0 18070 Orbital inclination angle

periods of our chosen objects. Fox (1994) showed that
occultation is only important in extremely close binary
systems, where the separation of stars is less than 10 times
the radius of the primary. In the case of WR 127, eclipsing
inclination angles are unlikely as they would result in a mass
for the system that is significantly lower than any other estimate
(see comparisons and discussion in Section 4). An exploration
of eclipse effects would require varying star-separation and
star-size parameters, with a commensurate increase in the
number of model runs required to train the emulator.

The sample space of our model, tabulated in Table 3, was
chosen to represent the four WR + O binaries described in
Section 2. The range of scattering region geometries encapsu-
lated by z.y transitions from disk-like (0.2 < z.;; < 1.5) through
to prolate (1.5 <z < 3.1) distributions. For the WR + O star
binaries we have investigated in this paper, the scattering
region approximates various geometries (or, equivalently,
density distributions) of the WR star wind. The optical depth
range covers scattering from optically thin material (the outer
regions of WR star winds) to more optically thick material
(closer to the location of emission lines that drive the wind;
Sander et al. 2020). The inclination angle range is valid for
Stokes Q and U polarization measurements, which can
distinguish between above and below the orbital plane, or
equivalently the orbital direction about the orbital plane normal
vector.

3.2. Transforming to the Observational Frame

When a binary system is observed in polarized light, two
additional factors arise that we do not model using SLIP. These
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are interstellar polarization (ISP) and the position angle of the
binary system’s orbit as projected onto the sky.

The ISP in the Milky Way at optical wavelengths is
described by the empirical Serkowski law (Serkowski et al.
1975). We treat it as constant with time for our purposes,
because the observations were taken over a timescale that is
much shorter than the expected timescale of ISP change
(~30-50 Myr; Voshchinnikov & Hirashita 2014).

In our case of broadband filter polarimetry, we add ISP to the
g and u models separately by calculating the g;sp and u;sp at the
peak wavelength of each filter. This ISP estimate is therefore a
flux-weighted ISP across the observed filter.

The observed position angle of the binary orbit manifests
itself as a rotation of the observed polarization in the g—u plane,
and thus applying this rotation to the model moves it to the
observational frame. The rotation is applied to the model using

q = pcos2(0 — bg), (D)
u = psin2(0 — Og), 2

where p = quzm + u2, (total polarization), 6 is the position
angle of the observation, and 0% is the rotation angle of the
model. Following Villar-Sbaffi et al. (2005), we recover the
angle of the line of ascending nodes, €2, using 2 = (0% + m)/2.

A final correction is needed to match the model’s orbitally
phased polarization signal to the observed phases. We project
the model onto an orbital phase grid of 40 points, shifted to the
center of each orbital phase bin that is output from SLIP. We
linearly interpolate the model onto the observed phases so that
the likelihood function (see Section 3.4.2) is valid for each
observed phase ¢.

3.3. Emulator Pipeline

Typical run times for our model in the sample space are
around 2-4 hr (see Appendix C.1). This makes model
evaluations intractable for producing probabilistic estimates
of parameters. We accelerate the process with an emulator,
which is a machine-learning method, in this case a neural
network, that is trained to relate model parameters to the output
of the model. Such emulators have been successfully applied to
astrophysics problems (e.g., Type Ia supernovae; O’Brien et al.
2021). The emulator learns the relationship between model
parameters and output by fitting to a parameter set and its
associated model outputs (the training data). The user chooses
the training data, and these constrain the region over which the
emulator is valid.

The construction of an emulator thus requires training data
but also a specified neural-network architecture. We trained the
emulator on the model described in Section 3.1. The emulator
training set is described in Appendix C.1 and the emulator
architecture is described in Appendix C.2. The emulator
increases the model evaluation speed by a factor of ~10% over
running SLIP for a typical model in the sample space in Table 3.
The emulator representation of SLIP for the training set is
accurate to within 5% of the SLIP model.

3.4. Parameter Inference

Two components are required for a rigorous parameter
inference from our model: a prior distribution and a likelihood
function. Obtaining the posterior distribution requires the
selection of a prior probability distribution across the parameter
space and a likelihood function to compare the data with the
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Table 4
WR + O ISP Estimates

WR Number qisp (%) usp (%)
42 —0.085 +0.164 —1.13£0.179
79 —0.284 4+ 0.020 —0.214 + 0.025
127 0.618 + 0.149 0.661 + 0.140
153 —0.182 +0.170 4.16 +0.018

Note. Calculated from Fullard et al. (2020), except for WR 42 (see text).

model. We describe the prior distributions in Section 3.4.1.
Polarimetric models are produced by the emulator from
samples drawn from the prior distribution. We calculate the
likelihood of an individual prior input using a x> likelihood
function, described in Section 3.4.2. We describe our
exploration of the posterior via Monte Carlo sampling of the
priors in Section 3.4.3.

3.4.1. Priors

We constructed the Bayesian prior of the parameters listed in
Table 2 using information about the target object. We sampled
the parameters I, 7, and z uniformly over the entire sample
space of the model, because we do not have existing constraints
on these parameters that are narrower than the sample space.
We chose a normal distribution for the prior of the inclination
angle, i, with the standard deviation set as the half-range of
previous inclination angle estimates for each system in Table 1,
and the mean taken to be the center of the range. In this way,
we incorporate existing information about the system, includ-
ing photometric and spectroscopic measurements. Ig,. is
allowed to vary over the entire emulator sample space.

For the transformation parameters described in Section 3.2, we
sample ¢isp and usp from Gaussian distributions with the peaks
located at the estimated ISP from Fullard et al. (2020) for each
target. We take o values from the propagated uncertainty of gisp
and u;sp, using the uncertainties reported by Fullard et al. (2020).
For WR 42, we refit the ISP following the methods in Fullard
et al. (2020) without the intrinsic constant polarization comp-
onent, because our model should produce intrinsic constant
polarization by varying Ilg,. 7, and zen. The ISP values are
presented in Table 4. The transformation parameter, g, is taken
as a uniform prior from —7/2 < 0r < 7/2 because existing
estimates for the directly related orbital parameter, (2, were
produced with the biased analytic polarization model. Note that
this specific range occurs because the polarization position angle
is degenerate (repeating in 7 instead of 27 rotations in the g—u
plane).

3.4.2. Likelihood

We formulated the likelihood function with a log-likelihood
function

log L(t) =

2 2
—%Z@ (M) +(“n(’)7—“b) B

Oq P Ou

where g.., and u.,, are the predicted g and u Stokes vectors
from the emulator using parameters £. gups and uqps are the
observed Stokes vectors, and o, and o, are the associated
uncertainties of the observed Stokes vectors. The likelihood
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function is summed over ¢, the orbital phase of the individual
Gobs and Uy, data points. Stokes g and u are independent, hence
we simply sum them as part of the logarithmic transformation
of the likelihood function.

The transformation to the observational frame described in
Section 3.2 replaces ¢enm and ue, in Equation (3) with
transformed versions. The transformations are applied in the
following order: interpolation to the observed phases, then
rotation to the observed position angle, then addition of gisp
and ujsp O Gem and Uep,.

3.4.3. Sampling

Following the methodology of O’Brien et al. (2021), we
used the UltraNest® (Buchner 2021) nested sampling package
to achieve robust sampling of the posterior distribution with the
MLFriends algorithm (Buchner 2016, 2019). The posterior
distribution was explored with 800 live points. It converged
(based on the UltraNest measures) after ~25,000 iterations and
required ~6 x 10° model evaluations for each target. The
convergence of the sampling process typically took 2 hr.

4. Results and Discussion

We sampled the posterior distribution following the prescrip-
tion described in Section 3.4.3, which produced a six-dimensional
posterior distribution across the parameter space (one dimension
for each parameter). Figure 2 shows the posterior distributions for
the masses of the WR star components, derived from the
inclination angles using Myrg sin’i measurements taken from
Davis et al. (1981), Seggewiss (1974), de La Chevrotiere et al.
(2011), and Lamontagne et al. (1996). Existing mass estimates for
the systems we investigated are based on spectral class (Shao &
Li 2016; Vanbeveren et al. 2020), analysis of their polarimetric
behavior (St-Louis et al. 1987, 1988), colliding-wind models (Hill
et al. 2000), and photometric eclipse models (Lamontagne et al.
1996). Of these existing mass estimates, the spectral-class models
do not provide uncertainties.

Figure 3 shows the posterior distributions of masses for the
O star components. Table 5 shows the 90% credible interval(s)
for the component masses of each object, and we discuss these
results below. The credible intervals were calculated using the
highest-density interval algorithm of the ARVIZ Python
package (Kumar et al. 2019). We display the full set of
posterior distributions as corner plots in Appendix D.

4.1. WR 42

The WR mass 90% credible interval calculated from our
method for WR 42 (16.2-44.0 M) agrees with existing mass
estimates from all of the methods displayed in Figure 2, taking
into account their uncertainties. For the previous polarimetric
analysis (St-Louis et al. 1987), the estimate was 8—14 M.;
however, this did not fully take into account the bias in the
analytical polarimetric model (Wolinski & Dolan 1994) and
thus the true uncertainty is larger. The photometric method
mass estimate (Lamontagne et al. 1996) did not provide WR
mass uncertainties, though the reported inclination angle of
40°3 +2.9 produces a WR mass range of 11-16 M. It is
important to note that the inclination angle uncertainty here is
the “formal” uncertainty and the real values can be larger (see
footnote 11 of Lamontagne et al. 1996). The wind model of

8 https:/ /johannesbuchner.github.io /UltraNest/
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Hill et al. (2000) produces a very uncertain mass estimate of
54 £43 M., so we provide it for the sake of completeness. Our
derived 90% credible interval for the O star mass agrees with
the existing mass estimates from spectral-class models,
encapsulating the Vanbeveren et al. (2020) estimated mass
range of 27-37 M.. The WR mass reported by Vanbeveren
et al. (2020) is “adopted” as 16 M., based on the previous
reported inclination angles for the system (and thus similarly
uncertain as the polarimetric and photometric mass estimates).

It is interesting to note that the polarimetric measurement
from St-Louis et al. (1987), produced using the same data,
overlaps (within the St-Louis et al. 1987 polarimetric
uncertainties) a small secondary peak in our posterior
distribution. This may indicate a local minimum was found
with the analytic model. If the uncertainty in M sin®i reported
by Davis et al. (1981) for WR 42 is used to calculate the mass
range, this extends both the WR and O star mass 90% credible
intervals to 25-48 M., and 19-81 M., respectively.

Fullard et al. (2020) reported that the mean polarization
signal of WR 42 had a large constant intrinsic component in
both ¢ and u. As noted in Section 3.4.1, we fit the ISP without
the intrinsic polarization terms. As a result, the model predicts a
strongly asymmetric WR wind that is more disk-like, or
equivalently a symmetric WR wind with a strong density
increase parallel to the orbital plane. This may explain the
intrinsic polarization, and potentially represents the asymmetry
produced by the colliding wind structures proposed by Hill
et al. (2000).

4.2. WR 79

We find multiple peaks in the WR 79 mass posterior
distribution. This creates a series of three modes with
associated credible intervals, which we report from low to
high mass in Table 5. The first credible interval (8.3—12.8 M)
agrees with both the spectral-class-model mass lower limit of
10 M., (Vanbeveren et al. 2020) and the photometric-model
mass estimate of 9—13 M. (Lamontagne et al. 1996) The
second, more mathematically probable posterior peak and
associated credible interval (15.3—62.8 M) matches the mass
estimate from the colliding-wind model of Hill et al. (2000).
However, we note that the wind-model mass estimate is very
uncertain at 27 + 17 M., (Hill et al. 2000) and therefore it also
overlaps with the first credible interval. The third credible
interval (89.5-152.2 M,,) is very unlikely, and suggests masses
well outside any previous model. None of the intervals agree
with the previous polarimetric mass estimate that used the same
data (St-Louis et al. 1987), confirming that the basic analytic
model is unlikely to provide accurate results for binary systems
with low inclination angles. Note that our model recovers an
inclination angle greater than 90°, which is possible for
polarimetry because the sign of Stokes U breaks the degeneracy
present in spectroscopic orbital models. This inclination angle
is equivalent to a reversed orbital motion compared to the
model’s motion in the inclination range 0° < i < 90°.

The physical implications of the multiple modes are of some
interest. Scale renderings of the models are shown in Figure 4. The
first inclination angle (mass) mode (top in Figure 4) corresponds to
models with an extremely asymmetric WR wind, low electron
scattering optical depth of 7 < 0.1, and the majority of emission
(~95%) originating from the O star. The asymmetric wind can
also be considered to be a strong polar density enhancement.
However, such an enhancement is unlikely. Distortions to the WR
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Figure 2. WR 42, WR 79, WR 127, and WR 153 WR star mass posterior distributions, shown as solid curves. The gray shaded regions show the 90% credible interval
of the distribution calculated using the highest-density interval algorithm. Vertical lines show previous mass estimates for the systems and are labeled with the method
that was used to obtain the estimate. Spec. class: spectral-class mass estimates from Vanbeveren et al. (2020; WR 42, WR 79, WR 127) and Shao & Li (2016; WR
153). Arrows show lower limits. Phot: photometric mass estimates from Lamontagne et al. (1996). Pol: polarimetric estimates from St-Louis et al. (1987; WR 42, WR
79) and St-Louis et al. (1988; WR 127, WR 153). Wind model: mass estimates using a spectroscopic colliding-wind model from Hill et al. (2000).

wind caused by wind—wind collisions are observed to occur
primarily in the plane of the orbit (e.g., Callingham et al. 2020)
and models agree (e.g., Hill et al. 2000; Lamberts et al. 2017).
Corotating interaction regions (see, e.g., Mullan 1984) are another
potential source of wind asymmetries, but their effect on
polarization is small unless they have an optical depth of order
unity (Carlos-Leblanc et al. 2019), which would disagree with this
first mass mode.

The second mass mode (bottom in Figure 4) corresponds to
models with a nearly spherical WR wind (with z; > X, or
equivalently a slight polar density enhancement), an electron

scattering optical depth of 7~ 0.3, and the majority of emission
(~70%) originating from the WR star. The second WR mass
mode at ~27 M, would further increase the similarities
between WR 42 and WR 79, which are identical in WR type,
similar in O star type, and with orbital periods only 1 day apart.
The corresponding second mode O star mass of ~60 M, is
compatible with the upper estimate for the O star from
Vanbeveren et al. (2020). Another implication of the higher
WR star mass is that the WR star would be more likely to have
reached the WR stage without interacting with its companion,
based on single-star evolutionary tracks (Sander et al. 2019).
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Figure 3. WR 42, WR 79, WR 127, and WR 153 O star mass posterior distributions, shown as solid curves. The gray shaded regions show the 90% credible interval
of the distribution. Vertical lines show previous mass estimates for the systems and are labeled with the method that was used to obtain the estimate (see the caption to

Figure 2).

4.3. WR 127

The posterior for the mass of the WR component of WR 127
(90% credible interval 11.1-102.5 M) is in agreement with
Vanbeveren et al. (2020), since they provide only a lower limit.
We also agree with both photometric and polarimetric
estimates. However, our method provides an upper limit on
the mass of 49.5 M. It also increases the mass of the lower
limit to 11.1 M. The most probable mass is ~14 M. The
same is true for the O star, with its most probable mass near
~25 M, at the upper end of the 17-24 M, estimate given by
Vanbeveren et al. (2020).

Our mass estimate also agrees with both the previous
polarimetric  (St-Louis et al. 1988) and photometric

(Lamontagne et al. 1996) methods, which reported WR masses
of 11-21 M, and 12-16 M., respectively. Although these are
lower uncertainty mass estimates than our presented values, the
previous polarimetric estimate was published before the complete
bias analysis of Wolinski & Dolan (1994) and thus the uncertainty
is likely to be larger in reality. Furthermore, the photometric model
assumes a spherical WR wind and formal uncertainties. This is
unlikely for WR 127 given the evidence for a possible wind
collision from X-rays (see Section 4.5 and Naz¢ et al. 2021).

4.4. WR 153

We find that WR 153 has a significantly lower mass (90%
credible interval 13.7-14.2 M) than measured by photometric
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Table 5
Our New WR + O System Mass Estimates

WR Number Mwr M) Mo (M) M sin®i Source
42 16.2-44.0 27.4-74.6 1
79 (mode 1) 8.3-12.8 22.5-34.8 2
79 (mode 2) 15.3-62.8 41.8-170.9 2
79 (mode 3) 89.5-152.2 243.7-414.2 2
127 11.1-102.5 19.8-183.1 3
153 13.7-14.2 25.3-26.3 4

Note. Derived from our radiative-transfer models, including all modes for
WR 79.

References. 1: Davis et al. (1981); 2: Seggewiss (1974); 3: de La Chevrotiere
et al. (2011); 4: Lamontagne et al. (1996).

and spectral-class models (where we define “significant” as
outside the 90% credible interval), with a low uncertainty
compared to the other stars in the sample. The photometric-
model inclination angle estimate is similarly certain, with a
mass range of 14.5-14.7 M, (Lamontagne et al. 1996), though
the true uncertainty is likely to be larger. Similarly to
Vanbeveren et al. (2020), Shao & Li (2016) simply present
an adopted mass for the WR star of 15 M., with no associated
uncertainty. Our posterior distribution agrees with the analytic
polarimetric estimate using the same data (St-Louis et al.
1988), which is unsurprising, given that the high inclination
angle of the system reduces the bias of the analytic model. The
O star mass is low for its spectral type, which is expected to be
greater than 30 M, (Vanbeveren et al. 1998). However, there is
not currently a measure of its luminosity class, which makes
this expectation very uncertain. Furthermore, measurement
uncertainties for M sin®; would broaden the range of masses,
potentially including the mass estimate from Shao & Li (2016),
Demers et al. (2002) produced an additional measurement of
M sin’i, but it was only a lower limit.

4.5. Wind Asymmetry

Our findings indicate that all four systems we investigated
have some form of asymmetry in their winds. It is unsurprising
to find asymmetry in the winds of close massive stellar binaries
because of the possibility of wind—wind interaction between the
components. Hill et al. (2000) modeled the colliding winds in
both WR 42 and WR 79, and found that optical line variations
could be explained by the presence of conic wind collision
regions, making it plausible that our detection of wind
asymmetries in these systems is caused by wind-wind
collision. Recent work by Nazé et al. (2021) has shown that
WR 127 exhibits X-ray emission that indicates the presence of
wind collision regions, though WR 42 was a nondetection and
WR 153 showed only faint X-rays compared to the expectation
for a wind collision. Thus, the possible wind asymmetry we
find for WR 153 may not be caused by wind—wind collision.
These results also cast some doubt on the presence of wind—
wind collision regions in WR 42. Instead, the wind
asymmetries could be caused by rotation of the WR star
expanding the wind equatorially (Vink & Harries 2017) or
optically thick corotating interaction regions producing areas of
enhanced density in the wind (Carlos-Leblanc et al. 2019).

Fullard et al.

(b)

Figure 4. (a) WR 79 representative model of the first posterior mode of mass
8.3-12.8 M, at i=144°. (b) WR 79 representative model of the second
posterior mode of mass 15.3-62.8 M, at i = 156°. Both figures are at orbital
phase 0.5 and to scale. The triple lines on the scattering regions show the
orbital planes, and the semitransparent fills represent their optical depths. The
thick black lines are the projected O star orbits. The stars have relative emission
equivalent to each model.

4.6. Other Model Parameters

Our posterior distribution reveals relationships between
parameters. Across all models, we note relationships between
T—Zell> Ifrac_Ta Ifrac_zell’ and q1sp—Uisp- In the case of T—Zell and
Ito—T, the two-dimensional posterior distributions show strong
exponential-like relationships. The [Igac—zen correlation is
similar, but generally less strong. This is unsurprising, given
that the probability of a photon scattering in a path length [ is
1 — exp(—7), and 7o L. ze changes the path length and thus
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Figure 5. Posterior distributions of the longitude of the ascending node, €2, for
WR 42, WR 79, WR 127, and WR 153, shown as solid lines. The shaded area
in each panel shows the 90% credible interval.

the required optical depth to reach a given polarization. Therefore,
Zenn and 7 are directly related. Then, a more asymmetric scattering
region produces more polarization for a given I, which
produces the I,z relationship; the relationship between 7z
follows from Ig.—Zey and 7z Finally, the relationship gisp—uisp
occurs because the rotation of the model by 6z transforms the
polarization directly between ¢ and u.

As part of the modeling process, we also recover ISP and 2
posterior distributions. Our ISP posteriors are strongly
influenced by the priors, though all the systems show some
deviation from the existing estimates in Fullard et al. (2020).
We present the maximum-likelihood estimates in Table 6. The
uncertainties for the distributions are displayed in Appendix D
as part of the corner plots, split into upper and lower 34%
quantiles.

Figure 5 shows the posterior distribution of {2 for each
system. The gray shaded regions show the 90% credible
interval of the distributions. Our posterior distributions for €2
are in complete disagreement with the previous estimates
presented in Table 1 for all but WR 127 (i.e., the previous
estimates lie outside the plotted range of  in Figure 5).
However, this is not surprising given that the sources of these
estimates did not provide uncertainty estimates for 2 that take
into account the bias on the analytic model that was used to
derive €2 (Wolinski & Dolan 1994).

The final parameters we recover are Iy,. and 7, the fraction
of photons arising from the WR star and the optical depth of the
scattering region, respectively. Our method confirms that these
parameters are related to each other and to z.y;. This means that
the posterior distributions are difficult to interpret as standalone
results. For example, in the case of WR 79, the Iy, distribution
peaks at zey~ 1.6 and 7~ 0.2. There are also peaks in the
posteriors that correspond to values of 7~ 0, zg; ~ 3.0, and
Ii,. ~ 0. Although these two possible models are peaks in the
posterior distributions, there is a range of possible models
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Table 6
WR + O System ISP Maximum-likelihood Estimates from Our Analysis
WR Number qisp (%) uysp (%)
42 —0.52 —0.49
79 —0.31 —0.24
127 0.69 0.68
153 —0.04 4.15

Note. Uncertainties are displayed in Appendix D as part of the corner plots.

between these peaks because of the relationship between the
parameters. If we disregard these relationships and focus on the
median T for each object, we typically find low optical depths,
indicating that the broadband polarization arises in the outer
regions of the WR star wind.

5. Conclusions

We have found probabilistic estimates for the mass of four
WR + O binary systems, with a new method based on an
emulated radiative-transfer model. Our results are different to
previous estimates for WR 153, and we provide robust upper
limits in all cases, as well as information about degeneracies in
the model. Our disagreement with existing polarimetric
estimates for these systems shows that care must be taken
when drawing conclusions using masses derived from analytic
polarimetric models.

We have shown that our method can break the orbital
inclination degeneracy in M sin®i, but this still requires
spectroscopic determination. Thus, we recommend improve-
ments to spectroscopic measurements of M sin®i to obtain
more certain mass estimates for the four systems presented in
this paper, and others like them. Phased polarimetric measure-
ments are also a requirement for this method, and thus more
accurate polarimetric observations are necessary to apply this
method to more targets. We are obtaining accurate phased
polarimetric observations of a larger sample of Milky Way WR
+ O systems (Fullard et al. 2018; Johnson et al. 2019), and will
apply this method to them in the future. In principle, the model
can also be applied to the 30% of Be stars that have
companions (Oudmaijer & Parr 2010), because their disks
produce polarization signals. Further improvements to our
model could be made with the incorporation of elliptical orbits,
to investigate systems such as WR 133 that already have
polarimetric observations available.

With the advent of telescopes like the Polstar UV spectro-
polarimetric satellite (Scowen et al. 2021), it will be critical to
have polarization models that can be explored with statistical
approaches to understand the observations. UV observations of
WR + O binary systems can provide new constraints for the
priors presented here.
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Appendix A
SLIP Monte Carlo Radiative-transfer Code

SLIP is a Fortran + MPI code based on the MCRT method
outlined in Whitney (2011).The simulation grid is a uniformly
spaced spherical polar coordinate system in r, 6, and ¢. Photon
packets are emitted from user-specified locations in the grid
and propagate through the user-defined scattering region. At
each grid cell the optical depth is integrated until the photon
scatters or exits the grid cell. The photons are collected as they
exit the simulation limits and are binned into different
observational directions in 6 and ¢, with uncertainties
calculated via Poisson statistics. In this way, a single model
can be viewed from multiple angles, reducing computation
time. For additional details of the SLIP code, see Huk (2017)
and Shrestha et al. (2018).

The original SLIP code included a single photon source at the
center of the simulation grid. We used an enhanced version of
the code that includes an additional photon source located at an
arbitrary distance along the x-axis (0 =90°, ¢ =0°) from the
central source (each source can be a finite size or a point). The
number of photons emitted from each source is controlled as a
fraction of the total photon count. We simulate circular orbits
by simply moving the “observer” around the grid in the ¢
direction. In Appendix B, we provide validation of these new
capabilities against the existing analytic model of Brown et al.
(1978), while being aware of the inherent limitations described
in Appendix B.

Appendix B
Validating the SLIP Binary Model

To test the validity of the enhanced SLIP code, we computed
models with three circumstellar geometries that can be fit with
the analytic model of Brown et al. (1978); that is, a spherical
distribution of electron scattering region, a circular disk-like
distribution in the orbital plane with an opening angle of 1°8 (a
single 6 angle bin width in height), and a prolate distribution.
The prolate distribution is described by an ellipsoid with the
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major axis parallel to the z-axis, described by

2 2 2
x__|_y__|_z_:1’

02 B

where x, y, and z refer to the standard Cartesian coordinate
system that SLIP transforms to its spherical coordinate system.
The denominators are the values of Xy, ye, and zy, the x, y,
and z axes of the ellipsoid.

The finite nature of the SLIP grid means that the disk-like
distribution is a single grid cell thick in the 6 direction. All
three geometries were centered on the source located at the
origin. Both stellar sources emitted an equal proportion of the
photons, and both were set as point sources so eclipse effects
are not important and photons are not absorbed within either
star. We set the optical depth of all these CSM distributions at
60 =90° to 7=0.1 for 0 < ¢ <27 to match the optically thin
assumption of the analytic model (Carlos-Leblanc et al. 2019
found that this was the limit between optically thin and
optically thick for their similar MCRT models). Note that the
CSM density is set to be constant and proportional to the
optical depth at # = 90°, so the prolate model shows an increase
in optical depth toward #=0° and 180° because of its
increased radius toward those angles. Model calculations were
made on the Stampede high-performance computing cluster at
the Texas Advanced Computing Center,” with 8 x 10° photons
per simulation. The output was binned to 23 inclination bins
and 40 orbital phase bins.

We fit the analytic model to the numerical results using
LMFIT (Newville et al. 2014) to minimize x°, and algebraically
calculated the orbital parameters i and 2 from the Fourier
coefficients following Drissen et al. (1986). The Fourier
coefficients g; and u; are found by fitting the following
equations:

q =q,+ q,cosd + q,sinp + g;cos2¢ + q,sin2¢, (B2)
U= up+ ucosp + upsin ¢ + uzcos2¢ + uysin2¢, (B3)

where ¢ is the azimuthal coordinate and ¢ /27 is the equivalent
orbital phase. The fits had median X,2, values of 3.30, 2.85, and
0.90 for the disk-like, spherical, and prolate density distribu-
tions, respectively (using x> = x2/(N — 10), where N is the
number of data points and 10 is the number of fit variables).
The xlz, value of 0.9 suggests some overfitting or overestimate
of uncertainties in the case of the disk-like density distribution.

The comparisons between the numerical and analytic models
are shown in Figures 6, 7, and 8 for the disk-like, spherical, and
prolate density distributions, respectively. In all Figures 6-8,
the color of the points corresponds to the inclination angle of
the SLIP model. The uncertainty of the polarization increases as
the inclination angle approaches zero (i.e., perpendicular to the
orbital plane) because the amplitude of polarization is directly
proportional to the orbital inclination angle (Brown et al. 1978),
and a lower amplitude increases the Monte Carlo noise in the
simulation because fewer photons have a polarization signal. In
Figure 6, the significantly higher uncertainty of the SLIP model
arises due to the extremely thin disk-like scattering region. This
reduces the polarization from the model by an order of
magnitude relative to the spherical and prolate density
distributions, and thus the uncertainty is proportionally larger.

° https://www.tacc.utexas.edu /systems/stampede
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Figure 6. Comparison of SLIP results for a thin disk to the analytic model of Brown et al. (1978). The circles represent SLIP results for a range of inclination angles
from 0° to 90° as displayed in the color bar. The data have been fit by the model of Brown et al. (1978; gray lines).

The fit results for a selection of inclination angles are to 0°. Our results agree with those of Wolinski & Dolan (1994):
presented in Figure 9 for the thin disk, sphere, and prolate CSM despite the high accuracy of the numerical models, the truly
models. As described by Wolinski & Dolan (1994), the analytic low inclination angle numerical models are fitted with a biased
model requires extremely high precision measurements relative higher inclination angle by the analytic model. The disk model
to the polarization variation amplitude to recover accurate is most strongly affected because it has the lowest amplitude of
derived parameters as the inclination angle decreases from 90° polarization variation of the models.
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Figure 7. Comparison of SLIP results for a sphere to the analytic model of Brown et al. (1978). The circles represent SLIP results for a range of inclination angles from
0° to 90° as displayed in the color bar. The data have been fit by the model of Brown et al. (1978; gray line).
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Appendix C
Emulator Details

Here we present the details of our emulator, including its
training set and architecture.

C.1. Training Set

The data set used to train the neural network was produced
using 4517 runs of the modified SLIP MCRT code using
uniform random sampling of the parameter space described in
Table 3.

To create the training set, we used the MSU high-
performance computing cluster provided by the Institute of
Cyber-Enabled Research. Each run took up to 4 hr across eight
CPUs with 2 x 10® photons per CPU. This photon count was
chosen to produce uncertainties in g and u below ~0.05% with
a median uncertainty of ~0.03%. The resulting training set
including all inclination angle bins has size 406,530 x 40
because of the uniform sampling of i in each model and
because each model has 40 total ¢ (phase) bins.

C.2. Emulator Architecture

The emulator is based on the proven DALEK emulator
methods that have previously been applied to the TARDIS
radiative-transfer code (Kerzendorf & Sim 2014; Kerzendorf
et al. 2021). It was built using Tensorflow (Martin et al. 2015)
and scikit-learn (Pedregosa et al. 2011) tools to provide the
neural network and data preprocessing, respectively.

The neural-network architecture was investigated using a
hyperparameter search of 2000 possible architectures on a
cluster with 54 GPUs running Polyaxon, on-premise at the

Volkswagen Group Machine Learning Research Lab. The
resulting best architecture was chosen based on the total loss
(here, using the mean-squared error) and the number of steps
required to train. The neural network consists of five hidden
layers of width 30, with softplus activation (where
softplus(x) = log[expx + 1]) and Glorot normal initialization
(Glorot & Bengio 2010). No dropouts or layer normalization
was deemed necessary by the hyperparameter search.

The data and model input parameters were scaled using the
StandardScaler function of scikit-learn. The data were
randomly split into 90%/10% train/validation sets. Optimal
neural-network architectures were those that had a minimal
error on the validation set. The training was performed on an
nVidia RTX 2080Ti graphics card with 12 GB of VRAM, and
took approximately 19 hr to reach 20,000 epochs. Of these
20,000 steps, the training result with the lowest total validation
set loss was chosen to represent the best result.

Two emulators were produced from the training set, one for
Stokes ¢ and one for Stokes u. Validation of the emulator
against random samples of the training set showed that the two
emulators returned consistent model parameters independently
of each other.

Appendix D
Corner Plots

The corner plots, in Figures 10-13, show the six-dimen-
sional posterior distributions of each parameter with two-
dimensional posterior distributions for each pair of parameters.
These distributions are available at Zenodo at https://doi.org/
10.5281/zenodo.6226123.
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Figure 11. Corner plot of WR 79 showing posterior distributions for each parameter and their relationships.
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Figure 12. Corner plot of WR 127 showing posterior distributions for each parameter and their relationships.
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