

1 **Toward Collaborative Adaptation: Assessing Impacts of Coastal Flooding at the Watershed
2 Scale**

4 Allison Mitchell¹ • Anamaria Bukvic² • Yang Shao³ • Jennifer L. Irish⁴ • Daniel L. McLaughlin⁵

7 **Abstract**

8 The U.S. Mid-Atlantic coastal region is experiencing higher rates of SLR than the global average,
9 especially in Hampton Roads, Virginia, where this acceleration is primarily driven by land
10 subsidence. The adaptation plans for coastal flooding are generally developed at the municipal
11 level, ignoring the broader spatial implications of flooding outside the individual administrative
12 boundaries. Flood impact assessments at the watershed scale would provide a more holistic
13 perspective on what is needed to synchronize the adaptation efforts between the neighboring
14 administrative units. This paper evaluates flooding impacts from sea level rise (SLR) and storm
15 surge among watersheds in Hampton Roads to identify those that are most at risk of coastal
16 flooding over different time horizons. It also explores the transboundary implications of flooding
17 on the municipalities within the watershed, and on the land uses and land covers throughout this
18 region and within the case study watershed. The 2% Annual Exceedance Probability (AEP) storm
19 surge flood hazard data and NOAA's intermediate SLR projections were used to develop flooding
20 scenarios for 2030, 2060, and 2090 and delineate land areas at risk of combined flooding.
21 Findings show that five out of 98 watersheds will see a substantial increase in inundation, with
22 two of them intersecting multiple municipalities. They also indicate significant inundation of
23 military, commercial, and industrial land uses and wetland land covers. Flooding will also impact
24 residential areas concentrated in urban areas along the Elizabeth River and in Hampton City,
25 supporting the need for collaborative adaptation planning on hydrologically influenced spatial
26 scales.

27
28 **Keywords:** coastal, flooding, sea level rise, watershed, adaptation

30 **1. Introduction**

31 Coastal communities are increasingly experiencing flooding from various sources including
32 precipitation, high tides, and episodic events such as storm surges (Atkinson et al., 2013; Wright
33 et al. 2018). Precipitation, tidal inundation, and storm surge are projected to increase in
34 frequency and severity due to climate change, especially on the Atlantic and Gulf coasts in the
35 United States (USGCRP 2018). With changing precipitation patterns, severe rainfall events will

¹ Department of Geography, Virginia Tech, 238 Wallace Hall, 295 West Campus Drive, Blacksburg, VA 24061, USA

² Department of Geography, Center for Coastal Studies, Virginia Tech, 207 Wallace Hall, 295 West Campus Drive, Blacksburg, VA 24061, USA

³ Department of Geography, Center for Coastal Studies, Virginia Tech, 295 West Campus Drive, Blacksburg, VA 24061, USA

⁴ Civil and Environmental Engineering, Center for Coastal Studies, Virginia Tech, 750 Drillfield Drive, Blacksburg, VA 24061, USA

⁵ Department of Forest Resources & Environmental Conservation, Virginia Tech, 210-C Cheatham Hall, Blacksburg, VA 24061, USA

36 likely occur more frequently and lead to surface flooding (IPCC 2014, USGCRP 2018). Sea level
37 rise (SLR), which will further augment the frequency and severity of coastal flood events, has
38 been observed globally and is projected to continue in the future (IPCC 2014; Parris et al. 2012).
39 Consequently, nuisance or high tide flooding is 300-900% more frequent now than 50 years ago
40 (Lindsey 2019). Based on the literature review conducted by the National Oceanic and
41 Atmospheric Administration, there is high confidence that SLR will increase between 0.2-2
42 meters by 2100 (Lindsey 2019). The IPCC 2100 projections suggest that Global Mean Sea Level
43 (GMSL) will increase between 0.43 (RCP2.6) and 0.84 (RCP8.5) meters at a rate of 15 mm/year
44 globally (Oppenheimer et al. 2019).

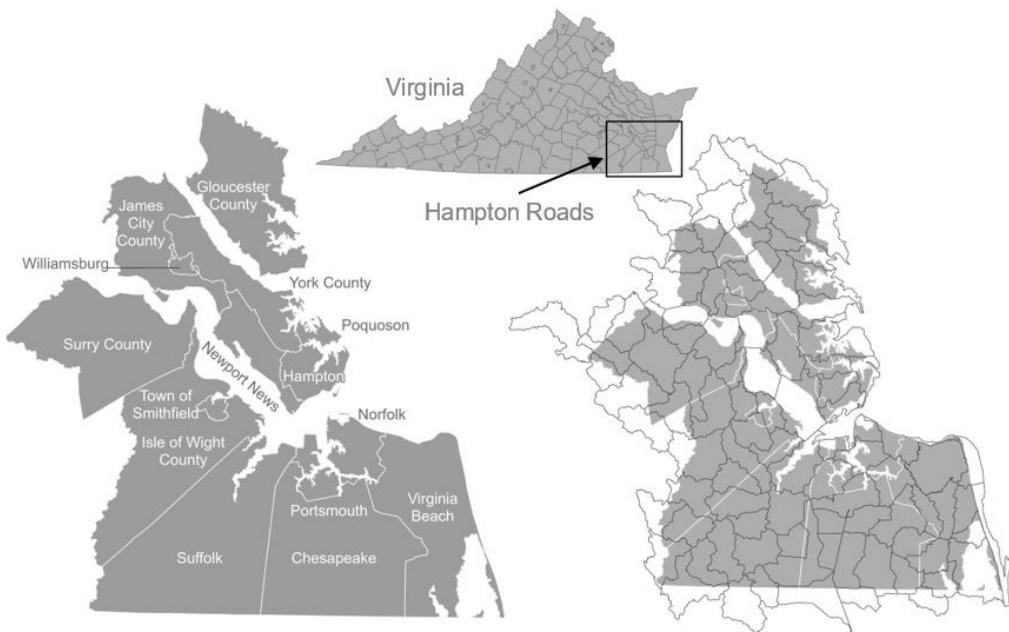
45
46 In the Mid-Atlantic U.S. region, the rate of SLR is increasing above the global average (Engelhart
47 et al. 2011; Parris et al. 2012; Atkinson et al. 2013), largely due to land subsidence from sediment
48 compaction, glacial isostatic rebound, and groundwater extraction, as well as weakening Gulf
49 Stream currents (Parris et al. 2012; Engelhart et al. 2011; Atkinson et al. 2013). Sewell's Point
50 tidal gauge (Norfolk, VA), which has been documenting sea levels since 1928, recorded a rising
51 rate of 45.72 cm per century, nearly twice that of the global rate (Atkinson et al. 2013; Boon
52 2012; Ezer 2018). Habete and Ferreira's (2017) further predicted that the rate of SLR in Virginia
53 will increase anywhere between 13.1-71% by 2100. Coastal Virginia is particularly at risk due to
54 its low-lying topography (Kleinovsky et al. 2007), especially in urban centers (Liu et al. 2016) where
55 already low elevations are gradually sinking (Atkinson et al. 2013). For example, Ezer (2018) found
56 that seven out of the nine years with the highest number of nuisance flooding hours in Norfolk,
57 Virginia, have occurred since 1998. Further, the "The Hague" neighborhood of Norfolk is
58 experiencing an increase in hours of flooded streets per year, with hours under water per year
59 reaching 300 in the late 2000s (Atkinson et al. 2013).

60
61 Rising sea levels will exacerbate flood risk from storm surges, particularly in urban coastal
62 communities. Critical facilities, such as hospitals, schools, and police and fire stations are crucial
63 to provide daily essential services and emergency response. Flooding can interrupt the access to
64 these facilities, causing delays in service acquisition, disruption in people's livelihoods, and public
65 safety issues. In Hampton Roads, 90 cm of SLR is predicted to increase the impact on critical
66 facilities affected by a category one hurricane storm surge by 62.5% (Kleinovsky et al. 2007).
67 Similarly, Considine et al. (2017) analyzed the potential impact of SLR and storm surges on four
68 watersheds in Norfolk and Virginia Beach and found that SLR (0.46 and 0.91 meters) alone would
69 have little impact on the critical infrastructure, but SLR combined with 100-year storm surge
70 would pose a high threat for critical infrastructure within the study area.

71
72 Flooding associated with SLR also has a significant economic impact on coastal communities. The
73 Hampton Roads Climate Report (McFarlane 2012) identified Norfolk and Virginia Beach as
74 municipalities with the highest SLR impacts on the businesses in the region. Some of those
75 impacts stem from the ability of the workforce to commute to work and access alternative travel
76 routes (Considine et al. 2017). Economic impact could also ensue due to expansion of the Federal
77 Emergency Management Agency (FEMA) Special Flood Hazard Areas (SFHA). Should the SFHAs
78 expand to account for SLR, more homeowners would be required to purchase flood insurance
79 from the National Flood Insurance Program (Habete and Ferreira 2017; FEMA 2019). Recurrent

80 or permanent inundation will also reduce property values, an outcome that has been identified
81 as one of the main concerns among residents living in flood-prone areas (Bukvic and Harrald
82 2019).

83
84 Flooding does not conform to the administrative or political boundaries in which planning and
85 zoning decisions are made, but rather propagates based on the topography, built features, and
86 stormwater infrastructure. Yet, the majority of coastal vulnerability assessments use political
87 boundaries as a unit of analysis (Bukvic et al. 2020), such as the flood impact study conducted by
88 the Hampton Roads Planning District Commission (McFarlane 2012). Multiple studies
89 demonstrate why this approach may be problematic. For example, based on the stakeholder
90 interviews, John and Yusuf (2019) found that the most significant barrier to coastal adaptation is
91 a legacy of “regional conflicts” with administrative boundaries being perceived as deterrents to
92 implementation of effective adaptation strategies (p. 161). Many studies recognize climate
93 change impacts on hydrologic systems and propose adaptation strategies on the watershed scale
94 (Cheng et al. 2017; Dudula and Randhir 2016; Shannon et al. 2019, Choden et al. 2020), showing
95 precedent for studying human systems at a natural system scale. Additionally, Enri’quez-de-
96 Salamanca (2018) proposed that adaptation and resilience to flooding could be achieved through
97 watershed management of land use practices. Hampton Roads, as the urban center of coastal
98 Virginia, is unique. While each jurisdiction is its own administrative and governance entity, their
99 social capital and economic infrastructure are highly codependent and interrelated (Bukvic and
100 Harrald 2019). Recognizing the importance of watershed-scale approach, Considine et al. (2017)
101 conducted a flood impact study of four watersheds near the Norfolk-Virginia Beach boundary to
102 study how risk and adaptation planning span across neighboring jurisdictions within that area.
103 Finding the most effective and comprehensive way to adapt to SLR is especially important for this
104 coastal region, due to its dense population and presence of vital federal facilities, ports, historic
105 sites, and natural resources.


106
107 Even though the areas adjacent to the coast often receive disproportionate attention in the flood
108 risk research, flooding will also affect populated areas along the creeks and rivers further inland,
109 especially with the increase in extreme rain events. Assessing impacts on a watershed-scale will
110 provide insights into which river systems vulnerable to flooding will have the most impact on
111 adjacent communities. Among studies using watersheds as the spatial scale of analysis, two
112 studies (Joyce et al. 2018; Kolok et al. 2009) were conducted outside the Hampton Roads area
113 and one studied just four sub-watersheds within Norfolk and Virginia Beach (Considine et al.
114 2017). Therefore, this study evaluates both extent and impacts of storm surge flooding at
115 different SLR scenarios and time horizons at an all-inclusive watershed scale in the Hampton
116 Roads area. It also provides estimates of permanent SLR inundation to indicate which areas
117 would become inaccessible over time. However, SLR represents only a water level baseline and
118 does not capture compounding risks stemming from the anticipated changes in the storm surge
119 dynamics that would more accurately capture aggregate impacts on the coastal communities
120 (Rezaie et al. 2021). The paper further measures the impacts of storm surge flooding on land use,
121 land cover, and population on a regional level and within a selected case study location to
122 produce spatially explicit information to help inform adaptation planning in this geographic
123 location and other similar coastal, flood-prone urban landscapes.

124

125 **2. Materials and methods**

126 **Study Locations.** The study is focused on the Hampton Roads Planning District that encompasses
 127 17 municipalities. Two of those municipalities, Southampton and Franklin, were excluded from
 128 the analysis as they are not prone to SLR and storm surge flooding due to their location further
 129 inland. Within the remaining 15 municipalities, there are 98 watersheds (12-digit HUC) that
 130 intersect with their administrative boundaries (**Figure 1**). The impacts of storm surge flooding at
 131 different SLR scenarios were analyzed for all 98 watersheds to identify which ones are at the
 132 highest risk of future flooding. Substantial differences in risk were expected, as many of the
 133 watersheds overlap multiple municipalities with different land uses, population densities, and
 134 socioeconomic and institutional characteristics, creating unique circumstances within each
 135 watershed.

136

137 **Figure 1.** Hampton Roads municipalities (left), the 12-digit HUC watersheds that intersect them (right), and the
 138 location reference of study area within Virginia (top-center).

139

140 **Table 1** shows population densities that range from 190.9 people/km² in Isle of Wight County to
 141 4,570.8 in Norfolk, capturing the spatial extent from more rural areas to densely populated urban
 142 centers. Some municipalities, like Williamsburg, have a small area coverage (23 km²), while
 143 others, like Suffolk have a much larger area (1036 km²). Poverty rates tend to stay below 20% in
 144 this region, with the exception of Williamsburg and Norfolk with rates just above 20%. The
 145 majority of Hampton Roads municipalities have mostly white populations, with the exception of
 146 the urban core in Hampton, Newport News, Norfolk, and Portsmouth. Collectively, this region is
 147 a home for roughly 1.7 million residents (U.S. Census Bureau 2019b).

148

149 **Table 1.** Socioeconomic characteristics of Hampton Roads municipalities in this study (U.S. Census Bureau, 2019b).

Municipalities	Population Density	Area (sq. km)	Median Income	Persons in poverty %	Race % White
Chesapeake	277	881	72,214	9.6	61.8
Gloucester County	64	583	63,881	8.7	87.7
Hampton	1,007	135	52,021	14.9	41.8
Isle of Wight County	46	818	67,767	10.3	72.5
James City County	191	396	80,772	7.5	80.3
Newport News	999	181	51,082	16.4	49.0
Norfolk	1765	139	47,137	21.0	47.4
Poquoson	297	41	88,328	4.9	94.5
Portsmouth	1,111	85	48,727	17.7	40.4
Town of Smithfield	326	26	72,308	14.2	68.3
Suffolk	89	1036	68,089	11.2	52.1
Surry County	9	723	54,656	13.6	52.5
Virginia Beach	706	642	70,500	8.0	67.2
Williamsburg	651	23	54,606	21.5	73.9
York County	250	275	86,781	5.2	76.3

150

151 **Inundation Corridors.** To characterize the spatial extent of coastal flooding, we first assessed the
 152 spatial extent of permanent inundation extents using different SLR scenarios. We then applied
 153 detailed evaluations of combined storm surge and SLR flooding and its impacts. Inundation
 154 corridors are the areas projected to be flooded under given SLR and storm surge scenarios. In
 155 this paper, our estimates are based on the 2% annual exceedance probability (AEP) storm surge
 156 flood hazard due to tropical cyclones (inclusive of tropical storms and hurricanes) and
 157 extratropical storms (popularly known as Nor'easters), i.e. the 50-year floodplain that represents
 158 a moderately frequent flood hazard. To represent the 2% AEP hurricane flood hazard, we used
 159 the U.S. Army Corps of Engineers' (2015) North Atlantic Coast Comprehensive Study's statistical
 160 coastal flood hazard data (NACCS; Cialone et al. 2015, Nadal-Caraballo et al. 2015, Nadal-
 161 Caraballo personal communication). The methods employed in the NACCS study are consistent
 162 with FEMA's methodology for Flood Insurance Rate Maps.

163

164 The NACCS tropical cyclone surge hazard characterization uses the joint probability method with
 165 optimal sampling (Resio and Irish, 2015 and references therein) and 1031 synthetic tropical
 166 cyclone surge simulations (ADCIRC; e.g., Dietrich et al. 2011) where astronomical tides are
 167 incorporated through superposition of 96 unique tidal phases with surge-tide nonlinearity
 168 adjustments. Nonlinearity here refers to the divergence from a linear trend in SLR for each
 169 station. The NACCS extratropical storm surge hazard characterization is based on dynamic
 170 astronomical tide and storm surge simulations of historical Nor'easters. Flood elevations were
 171 simulated atop a mean sea level represented by the 1983-2001 tidal epoch mean sea level datum;
 172 this level is assumed to represent mean sea level in 1992, namely the middle of the tidal epoch
 173 (Cialone et al. 2015, M. Cialone personal communication). The NACCS-reported 2% AEP flood
 174 elevations in the study area are characterized by a median value of 2.39 m, NAVD88 (1992 mean
 175 sea level), with 90% of the stations between 1.29 to 2.88 m, NAVD88 (1992 mean sea level).

176

177 We projected the 2% AEP flood elevations for the year 2000 (base year) and 2030, 2060, and
 178 2090 (reflecting corresponding SLR scenarios). Intermediate SLR projections from NOAA (Sweet

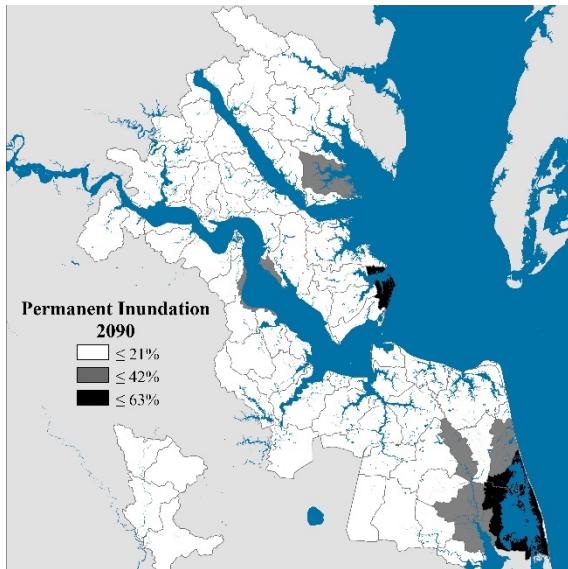
179 et al. 2017) were used as they represent scenarios that are more relevant for policy making.
180 Relative to the 2000 sea level, these SLR scenarios in Hampton Roads are 0.3m (2030), 0.7m
181 (2060), and 1.2m (2090). The impact of SLR on flood elevation is not linear, where the sum of
182 present-day flood elevation and projected future SLR may not be correct and will likely be
183 substantially biased high or low (e.g., Smith et al. 2010, Mousavi et al. 2011). Thus, the NACCS
184 study includes a nonlinearity assessment with the surge simulated dynamically with a 1 m SLR
185 scenario (Cialone et al. 2015; Nadal-Caraballo et al. 2015). Variation of the normalized
186 nonlinearities range between -12 to +5% departure from the linear trend at 90% of the stations.
187 Using these SLR values, the 2% AEP flood elevations from NACCS (considered to have a base year
188 of 1992) were adjusted by multiplying the normalized nonlinearity with the sea level change from
189 1992 to the target year (starting with interpolation to 2000), and then adding this product to the
190 sum of the 1992-basis flood elevation and sea level change value. This means the 2% AEP flood
191 elevations were interpolated for 2000, 2030, and 2060 but were extrapolated for 2090 since the
192 2090 SLR scenario is higher than the 1 m scenario. These methods assume no change in coastal
193 morphology over the selected time period. The inundation dataset was in the point grid format,
194 which was interpolated into a raster using inverse distance weighting with a resolution of 30m.
195 The Digital Elevation Model (30 m resolution; USGS National Elevation Dataset, 2014) was then
196 subtracted from the water surface elevation so that positive values would represent a flooded
197 area. The resulting raster provides both area and depth of flooding under the given scenario.
198 Flooding is treated as a binary factor for the purpose of this study. An area is considered flooded
199 at any depth above 0.2m. The value of 0.2m was chosen based on studies that identify this depth
200 as a threshold where property damage and threats to safety begin (Dinh et al. 2012; Balica et al.
201 2013).

202 Permanent inundation due to SLR was mapped by selecting all cells on the DEM under the new
203 MSL (NAVD88; 0.25 m, 0.65 m, 1.15 m., respectively). To ensure hydrologic connectivity, cells
204 that did not intersect with bodies of water were excluded from the analysis. To ensure that only
205 flooded land areas were included in the calculation, each of the datasets were delineated to
206 exclude water areas. Water areas are mapped by the USGS in the National Hydrography Dataset
207 (NHD; U.S. Geological Survey). The water body and water area layers were merged together, and
208 the open water feature types were extracted. These feature types are defined by the NOAA GIS
209 workflow (NOAA 2019) for mapping open waters as bays/inlets, lakes/ponds, reservoirs,
210 sea/ocean, stream/river, and estuaries. The workflow further recommends filtering out bodies
211 of water with less than 10 acres of area, but water bodies with less than 5 acres of land were
212 filtered out for this study. This is to ensure higher accuracy when recording flooded land areas
213 while also excluding areas such as swimming pools. The delineated study area was created by
214 deleting the water areas from the merged county and NHD layers. The inundation corridor raster
215 layers were then masked using this delineated layer to ensure that only the flooded land area
216 was considered in all steps of the analysis.

217
218 **Flooding Impacts at watershed-scales.** Area of land within the inundation corridor was
219 calculated for each scenario within each HUC-12 watershed (Siverd et al. 2019). Area of land
220 inundated was calculated using zonal statistics by multiplying the sum of cells by the area of each
221 cell. Additionally, only areas within watersheds within the boundaries of Hampton Roads were

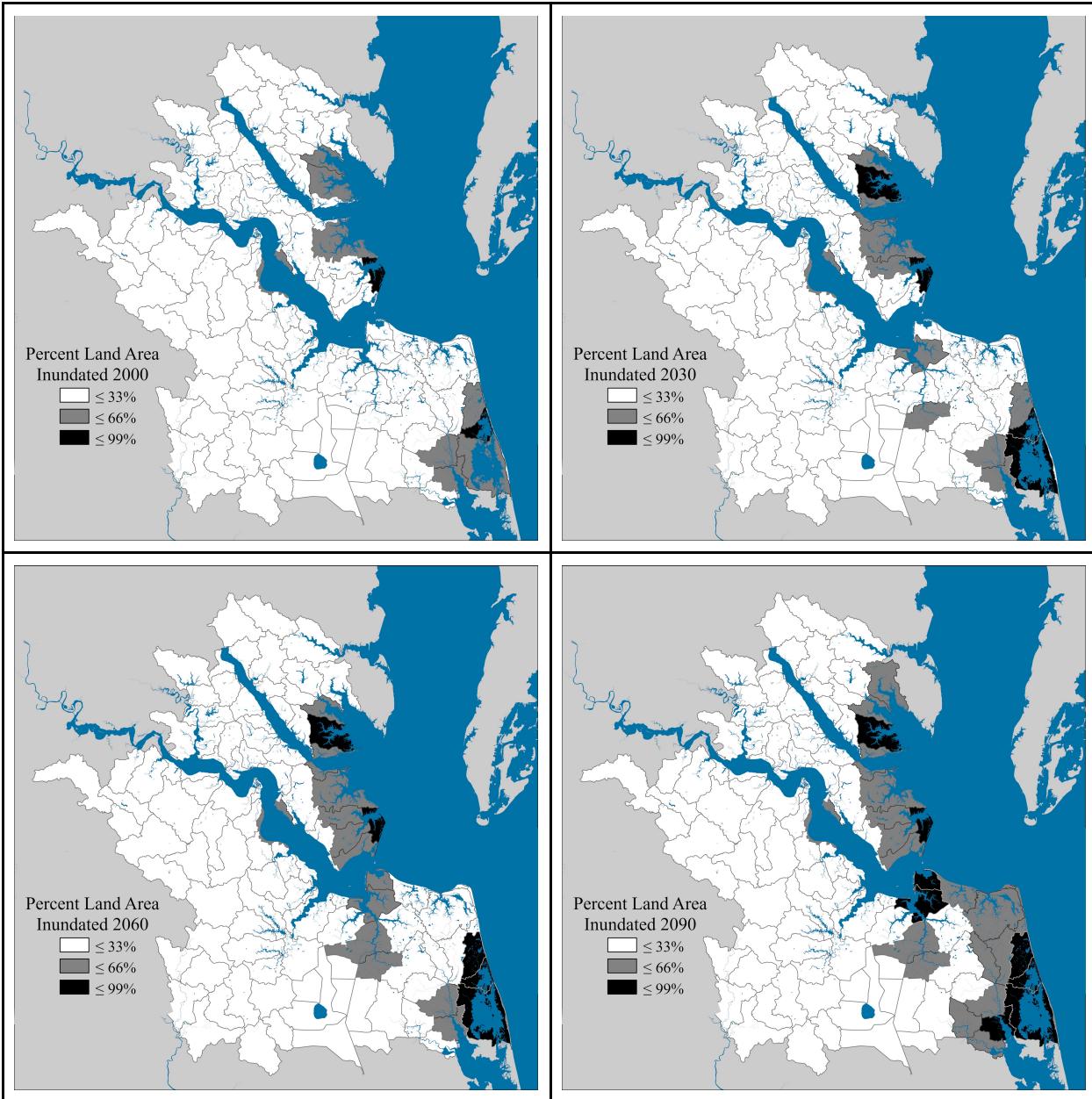
223 considered for these estimations. The inundated area was further broken down by parcel-level
224 land use type to determine the dominated land use category affected by flooding under each
225 scenario within each watershed. Parcel level data in Hampton Roads for the land use types comes
226 from the Hampton Roads Geospatial Exchange Online (Hampton Roads Planning District
227 Commission 2019a). These data are categorized in a uniform manner, ensuring land use
228 categorization is consistent across the boundaries.

229
230 Surry County was not included in the land use analysis due to lack of available data. The land use
231 data were resampled into a 30-meter resolution raster layer to estimate land use areas within
232 the same resolution of the inundation corridor. The land cover data in appropriate format and
233 resolution (USGS NLCD 2011) within the inundation corridors were estimated for each scenario.
234 This procedure is based on the methodology used in the Hampton Roads Climate Report
235 (McFarlane 2012), which assumes uniform distribution of population within each census block
236 and multiplies the percentage area inundated by the population, yielding a rough estimate of
237 how many people live within the inundation corridors. Similar to the estimation of flooded areas
238 within each watershed, zonal statistics were used to determine the percentage of each block
239 group inundated in each SLR scenario.


240
241 The case study watershed was selected based on the percentage of land area inundated, the
242 change in area inundated after SLR, and existence within two or more municipalities. The impacts
243 described above were analyzed in more detail within the case study watershed. Additionally,
244 critical facilities within the inundation corridors were summarized from the USGS National
245 Structures Dataset (USGS NSD 2020). The structures are typed according to the Homeland
246 Security Infrastructure Program (HSIP; U.S. Geological Survey 2006). Structures considered
247 critical by the HSIP fall under the categories of banking and finance, energy, emergency response
248 and law enforcement, government and military, information and communication, health and
249 medical, transportation, and water supply and treatment.

250

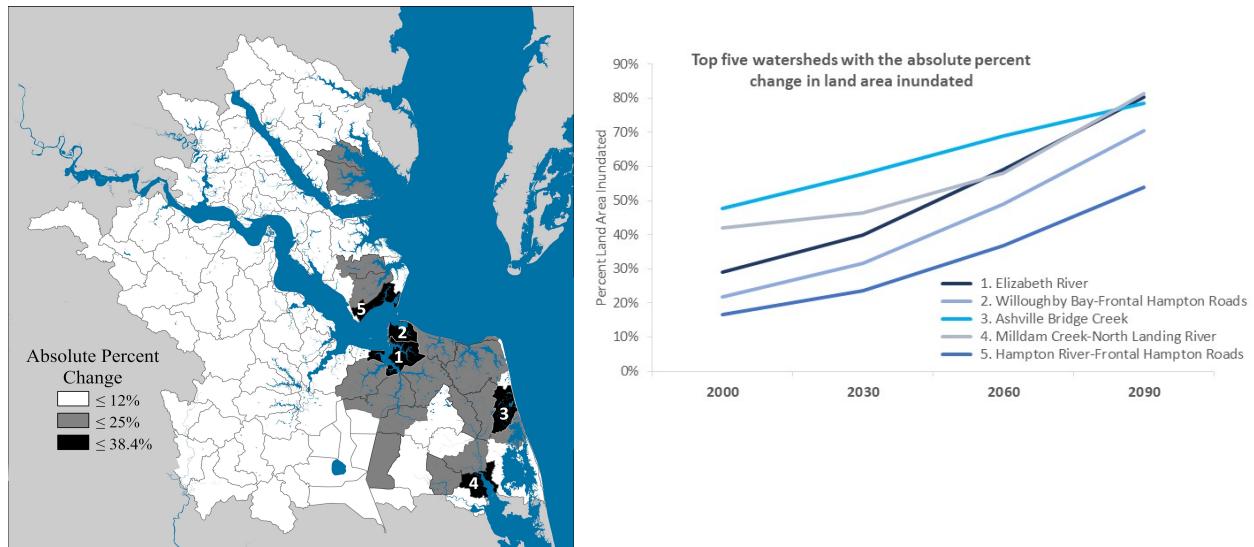
251 **3. Results**


252 **Coastal flooding at the watershed scale.** Watersheds around the Back Bay and in Hampton will
253 have 63% of the area permanently inundated by 2090 SLR (**Figure 2**). This type of flooding would
254 lead to permanent land loss or the loss of functions due to saltwater submergence. The areas of
255 highest SLR exposure include watersheds in the City of Hampton (i.e., Fox Hill and Grandview
256 residential neighborhoods), parts of the Plum Tree Island National Wildlife Refuge in Poquoson,
257 and areas around the Back Bay in Virginia Beach (i.e., mostly open space within the Natural Area
258 Preserves, National Wildlife Refuge, and the State Park). Even though SLR serves as a valid
259 indicator of permanent spatial impacts, it only represents a water level baseline. Focusing solely
260 on this climatic driver would underestimate the comprehensive flood risk stemming from the
261 compounding effects of high tides, storm surge, and fluvial inundation (Moftakhari et al. 2017).
262 Therefore, we are using combined storm surge and SLR flooding for a more detailed impacts
263 analysis on land use and land cover in selected case study areas.

264

265
266 **Figure 2.** Percent watershed area permanently inundated under the 2090 SLR scenario of 1.2m.
267

268 The majority (71 out of 98) of the watersheds within our study area, including the ones adjacent
269 to the ocean and other waterways, have less than 33% of area within the 2% AEP flood hazard
270 area, even with the addition of 2090 sea level projections (**Figure 3**). Other watersheds have more
271 extensive flood exposure, even for current conditions. For the 2000 baseline scenario, the 2%
272 AEP inundation corridors indicate that five watersheds in the southeastern region of Hampton
273 Roads would experience flooding in more than 33% of area, as well as two low lying watersheds
274 in York County, Poquoson, and Hampton (Middle Peninsula region). By 2090, the majority of the
275 watersheds in Virginia Beach, Norfolk, Hampton, and Poquoson will have 33% of the area within
276 the inundation corridor, making these municipalities at the highest risk of flooding in Hampton
277 Roads. The watershed with the highest proportion of inundated land area across all four
278 scenarios was the Back-River Frontal Chesapeake Bay watershed in Eastern Hampton and
279 Poquoson. Under current-day conditions, this watershed would be nearly 81% within the
280 inundation corridor and would reach 98% after 2090 projected SLR. High exposure to inundation
281 from SLR and storm surge is not exclusive to coastal watersheds. Inland watersheds along the
282 Elizabeth River in Portsmouth and Chesapeake exhibit inundation exposure levels between 33-
283 66% for the 2060 and 2090 scenarios. Even though these watersheds have the highest
284 percentage of area within the 50-year floodplain, they have low levels of permanent inundation,
285 even with 1.2m of SLR.
286



287
288
289
290
291
292
293
294
295
296
297
298

Figure 3. Percent of watershed area within the inundation corridor (50-year floodplain) before SLR (2000) and after SLR for the 2030 (0.3 m), 2060 (0.7 m), and 2090 (1.2 m) scenarios for Hampton Roads watersheds (12digit HUC).

Moreover, some watersheds have almost 99% of the area within the 50-year floodplain by 2090, with the substantial portion of this area that will be permanently inundated. Five watersheds have the highest change in the percent land area prone to storm surge flooding compared to other watersheds (**Figure 4a**). Even though the Back River- Frontal Chesapeake Bay watershed exhibited the highest proportion of flooded area, the percentage of land area inundated did not change much over time. In contrast, the Elizabeth River watershed, located in Norfolk and Portsmouth (watershed 1 in Figure 4a), is the watershed with the highest absolute percent change between 2000 and 2090 at 38.4%. **Figure 4b** shows that the change in percent of land area inundated is not consistent over time and is not even across the watersheds. The Ashville

299 Bridge Creek watershed is the only watershed of this group to increase at the constant rate in
 300 percent land area inundated with each scenario. The other four watersheds show acceleration
 301 after 2030. The Milldam Creek- North Landing River watershed, shows the most dynamic rate of
 302 change among the five watersheds, with a noticeable difference in slope for each segment of
 303 time. Additionally, watershed four, located in Virginia Beach, reaches the highest proportion of
 304 inundated land at 81%. Many of the watersheds with large increases in absolute percent change
 305 in inundation overlap multiple municipalities.
 306

307 **Figure 4.** Absolute change in percent of watersheds within 50-year floodplain from 2000 to 2090 (4a map on the
 308 left) and the change in inundation over time for the five watersheds with the largest increases in area subjected to
 309 storm surge: increases: 1. Elizabeth River; 2. Willoughby Bay-Frontal Hampton Roads; 3. Ashville Bridge Creek; 4.
 310 Milldam Creek-North Landing River; and 5. Hampton River-Frontal Hampton Roads. (4b on the right).
 311

312 **Land use-specific flood impacts.** As for the land use impacts in the Hampton Roads region,
 313 excluding Surry County, the land use category most impacted by SLR-driven storm surge flooding
 314 is military. Before SLR, 24% of all military land is situated in the inundation corridor (**Table 2**). This
 315 impact increases to 38% (9% permanently inundated) by 2090. Residential areas will be also
 316 significantly impacted by storm surge with 31% area affected by 2090 (3% permanently
 317 inundated) and also with the sharpest increase in percent of land inundated from 2000 to 2090.
 318 Institutional land is the least affected land use category, with only 7% within the inundation
 319 corridor, even after the 2090 SLR scenario. Although vacant and open space land uses may have
 320 similar extent of impacts, the vacant land still has the potential to be developed while open space
 321 is designated as an open area and valued as such.
 322

323 Even though as much as 34% of open space will be within the inundation corridor by 2090 (25%
 324 permanently inundated), damage to structures is not a concern. However, flood-driven physical
 325 loss of open space and its utility may still have significant adverse effects on the communities.
 326 For example, open space provides many benefits, especially in waterfront coastal settings (Dahal
 327 et al. 2018), such as esthetic appeal, ecosystem services, environmental and flood control

328 protection, mitigation of heat island effect, health and recreational opportunities, and
329 psychosocial support (Lee et al. 2015). Conversely, 18% of vacant land within the inundation
330 corridor by 2090 may have structures that could be damaged if not converted to designated open
331 space.

332

333

334 **Table 2.** Percent area impacted by storm surge (i.e., within the 50-year floodplain) and permanently inundated
335 percent from SLR alone [in brackets] for each major land use category before SLR (2000) and after SLR for NOAA
336 intermediate projections for Norfolk, VA in 2030 (0.3m), 2060 (0.7m), and 2090 (1.2m).

50-Year Floodplain [Permanently inundated]				
HRPDC Land Use Category	2000 (%)	2030 (%)	2060 (%)	2090 (%)
Vacant	12	14 [1]	16 [5]	18 [7]
Open Space	27	29 [2]	31 [19]	34 [25]
Residential	16	19 [0]	24 [2]	31 [3]
Military	24	28 [0]	33 [5]	38 [9]
Institutional	7	7 [0]	7 [2]	7 [3]
Mixed Use	6	8 [0]	10 [0]	14 [0]
Agricultural	7	8 [1]	9 [4]	11 [5]
Commercial and Industrial	10	11 [0]	14 [1]	17 [2]

337

338 **Table 3** shows the percent area inundated for different land cover types in Hampton Roads. This
339 analysis offers a different perspective from land use impact assessment because it shows a 30 m
340 resolution of what type of land is actually in a space, and not just the assigned land uses to parcels
341 based on the administrative categories. The land cover type that would have the highest
342 proportion of its land area within the inundation corridors in 2090 includes developed areas with
343 low to high intensities. This is not surprising given the level of urbanization of this region.
344 However, across the first three SLR scenarios, the most affected land cover is mixed wetlands
345 (woody wetlands, herbaceous wetlands, and shrub/scrub). With 2000 baseline inundation
346 estimates, 20% of wetlands in Hampton Roads are located within the inundation corridors with
347 very little change over time. Given that wetlands in this area are generally located along the
348 shoreline and rivers, it is not surprising that the propagation of flooding further inland would not
349 have an increased effect. However, the depth of inundation could increase, which would change
350 the impact of flooding on the existing wetlands. The land cover types most affected by permanent
351 inundation with SLR are developed open space (up to 10%) and mixed wetlands (up to 25%).

352

353 **Table 3.** Percent of area impacted by storm surge (i.e., within the 50-year floodplain) and permanently inundated
354 percent from SLR alone [in brackets] for different land cover types before SLR (2000) and after SLR for NOAA
355 intermediate projections for Norfolk, VA in 2030 (0.3 m), 2060 (0.7 m), and 2090 (1.2 m).

50-Year Floodplain [Permanently inundated]				
NLCD Land Cover Category	2000 (%)	2030 (%)	2060 (%)	2090 (%)
Developed, Open Space	10	13 [5]	17 [8]	21 [10]
Developed, Low-High Intensity	11	15 [0]	21 [0]	31 [1]
Mixed Agriculture	3	4 [0]	6 [0]	8 [2]
Non-Wetland Vegetated	2	3 [0]	4 [0]	5 [1]
Mixed Wetlands	20	20 [3]	23 [18]	24 [25]

356 **Elizabeth River Watershed Case Study.** To further illustrate the benefits of watershed-level
357 analysis of flood impacts, the additional analysis of impacts on the land use, land cover, and
358 critical facilities was conducted in the Elizabeth River watershed. This watershed was chosen
359 because it had the largest absolute change in the percent land area inundated at 38.4% and the
360 highest projected flood impacts. Approximately 80% of this watershed is projected to be within
361 the inundation corridor by 2090, making it one of the most vulnerable watersheds to both the
362 land area inundated and the absolute percent change in land area impacted. Further, its overlap
363 with two neighboring municipalities, Norfolk and Portsmouth, highlights how watershed-scale
364 assessments can inform cross-boundary adaptation planning.

365

366 The land use category that will be impacted the most in this watershed is open space (48-84%
367 from 2000 to 2090), closely followed by the vacant areas and residential land at 82% and 80% by
368 2090 respectively (**Table 4**). Before SLR, only 22% of the commercial and industrial land is within
369 the inundation corridor. However, by 2090, this proportion will increase to 74%. On the Norfolk
370 portion of the watershed, the land use category with the most area at risk of flooding is open
371 space at 89% in 2090, followed by residential at 85%. On the Portsmouth side of the watershed,
372 vacant land is the most impacted land use throughout all four SLR scenarios with 81% of areas
373 within the inundation corridor by 2090. Further, 57% of residential land and 72% of commercial
374 and industrial land will be in the inundation corridor by 2090.

375

376 In the Elizabeth River watershed, 46% of its wetlands will be located within 2000 inundation
377 corridor, making it the most impacted land cover type before SLR. However, by 2090, developed
378 land would experience the largest extent of flood-prone area at 78%. When compared between
379 municipalities, 67% of wetlands in Norfolk will be flooded under the 2000 inundation scenario
380 and only 31% of Portsmouth's wetlands, meaning potential wetland impacts are a much more
381 immediate threat on the Norfolk side of the Elizabeth River. In terms of developed land, both the
382 Norfolk and Portsmouth sections of the watershed show similar trends over time with Norfolk
383 having a higher proportion of its developed land inundated by 2090 at 81% versus 71% in
384 Portsmouth.

385

386 **Table 4.** Percent of impacted land area per land use and land cover categories within the 50-year floodplain before
387 SLR (2000) and after SLR for NOAA intermediate projections for Norfolk, VA in 2030 (0.3 m), 2060 (0.7 m), and
388 2090 (1.2 m) for the Norfolk and Portsmouth sections of the watershed, and the whole Elizabeth River watershed.

Land Use Category	Norfolk Section				Portsmouth Section				Whole Watershed			
	2000	2030	2060	2090	2000	2030	2060	2090	2000	2030	2060	2090
Vacant	31%	39%	58%	82%	34%	46%	70%	81%	31%	41%	62%	82%
Open Space	51%	60%	77%	89%	22%	30%	43%	49%	48%	56%	73%	84%
Residential	28%	39%	60%	85%	22%	29%	43%	57%	27%	38%	58%	80%
Military	15%	21%	35%	81%	31%	40%	50%	61%	29%	38%	48%	64%
Institutional	29%	44%	65%	82%	22%	29%	43%	57%	27%	39%	58%	75%
Mixed Use	8%	17%	24%	34%	22%	27%	30%	30%	12%	20%	26%	33%

Commercial & Industrial	22%	33%	51%	76%	22%	31%	50%	72%	22%	32%	51%	74%
Land Cover Category	2000	2030	2060	2090	2000	2030	2060	2090	2000	2030	2060	2090
Developed, Open Space	36%	46%	63%	80%	17%	25%	35%	47%	30%	40%	55%	71%
Developed, Low-High Intensity	23%	34%	56%	81%	26%	39%	57%	71%	24%	35%	56%	78%
Non-Wetland Vegetated	52%	66%	76%	81%	29%	35%	46%	56%	41%	51%	62%	69%
Mixed Wetlands	67%	70%	75%	77%	31%	35%	44%	69%	46%	50%	57%	72%

389

390 Out of the 19 critical facilities within this watershed, only two facilities would not be directly
 391 impacted by the storm surge flooding with the 2090 SLR scenario: a police department in Norfolk
 392 and a fire and rescue squad in Portsmouth. The majority of 17 critical facilities directly impacted
 393 by flooding in this watershed are medical services. Without SLR, the Tidewater Navy emergency
 394 medical services and a Norfolk fire station would be impeded by floodwaters on their properties
 395 with a 50-year storm surge event. By 2030, the Naval Medical Center in Portsmouth, Sentara
 396 Norfolk Medical Hospital, Sentara Heart Hospital, Norfolk Criminal Justice Services, and three
 397 other medical services in Norfolk would be impeded by flooding. By 2090, the remaining seven
 398 fire rescue and emergency services would have their properties impacted by storm surge
 399 flooding. Based on a visual evaluation, the emergency services that could assist the impeded
 400 facilities are scarce in areas outside of the floodplain, leaving many areas underserved by vital
 401 emergency response assistance. Addressing the infrastructure needs of the city are listed as a
 402 priority for Norfolk, which plans to pursue those improvements and build new fire and rescue
 403 stations in less vulnerable areas (City of Norfolk 2016). Similarly, Portsmouth aims to prevent the
 404 construction of new critical infrastructure in floodplains (U.S. Army Corps of Engineers, Norfolk
 405 Division 2015). New construction of critical infrastructure presents the opportunity for the
 406 municipalities to work together to strategically select locations to serve the most people in the
 407 vulnerable areas.

408

409 4. Discussion

410 Our analysis shows that watershed-scale flood impact assessment is an effective approach to
 411 generate policy-relevant information to support adaptation of coastal communities based on the
 412 spatial movement of water and its implications for the municipalities and region as a whole. The
 413 differences in percent land area inundated across different time horizons and between
 414 watersheds shows that the effect of SLR is location dependent. This methodology is consistent
 415 with one of the resiliency goals for the Commonwealth of Virginia of identifying which geographic
 416 areas should have a priority for coastal resilience interventions (Commonwealth of Virginia
 417 2020). While the Elizabeth River watershed was selected for further impact analysis in this report,
 418 there are several other watersheds where transboundary adaptation planning would be vital for
 419 effective flood resilience. Many of these watersheds are hydrologically connected by the
 420 Elizabeth River. This presents the opportunity for Norfolk, Portsmouth, and Chesapeake to work
 421 together to reduce the impact of flooding along this waterway. The municipalities may be limited
 422 in what they can achieve individually with their financial resources and political pressures
 423 (Hampton Roads Planning District Commission 2017). Overlooking the political boundaries in

424 favor of hydrological ones would allow municipalities to leverage their fiscal and technical
425 capabilities and strengthen partnership between communities.

426
427 Even though this paper is not focused on assessing the impact of flooding on residents, a report
428 from the Hampton Roads Planning District Committee (McFarlane 2012) found high rates of
429 impacted populations in Hampton and Norfolk. Out of the three municipalities where watersheds
430 are most affected (Virginia Beach, Norfolk, and Hampton), Hampton has the highest population
431 density, highest rate of poverty, and highest proportion of minority residents, making its
432 residents highly vulnerable to the impact of flooding. Vulnerability studies have previously
433 identified Hampton as a more vulnerable city than the surrounding localities on the peninsula
434 (Kleinovsky et al. 2007; Liu et al. 2016). Further, with the exception of southern Virginia Beach, the
435 overall vulnerability calculated by Kleinovsky et al. (2007) shows that much of the flooded area
436 identified by this study has socially vulnerable populations. Within the Elizabeth River watershed,
437 the Norfolk side has more people at higher densities. Thus, it makes sense that the local officials
438 want to discourage any new development/redevelopment within the floodplain and rather invest
439 in the neighborhoods at lower risk of flooding (City of Norfolk 2016). Conversely, Portsmouth
440 wants to increase its population and has prioritized improvements of the stormwater
441 management and other infrastructure to attract investors, new development, and more people
442 (City of Portsmouth 2018). These policies are especially relevant given that roughly 80% of vacant
443 land (18% region-wide), which could potentially be developed, would be within the 50-year
444 floodplain by 2090.

445
446 The flooding of military land is a critical threat for this region, with up to 38% of military land
447 located within the inundation corridor by 2090. Not only do these facilities employ many
448 Hampton Roads residents, but they also provide a labor force for the retirees who decide to stay
449 in the region and military families (Hampton Roads Planning District Commission 2017). In
450 Norfolk, Naval Station Norfolk is their largest employer (City of Norfolk 2016). Should the federal
451 government decide to either relocate or scale back operations in response to persistent or
452 permanent inundation, there would be a significant impact on the Hampton Roads economy
453 (Union of Concerned Scientists 2016). Therefore, municipalities have the incentive to work
454 together with the military to develop adaptation and resilience strategies to protect this land use.
455 One such example of effective partnership is evident from the cooperation between Chesapeake,
456 Portsmouth, Norfolk, and Virginia Beach and the military on evaluating the impact of SLR on
457 assets critical to military operations. The Norfolk-Virginia Beach Joint Land Use study focused on
458 five main challenges associated with SLR and recurrent flooding: commuting, accessibility to
459 facilities and services, stormwater infrastructure, utilities, and region national security
460 coordination (Hampton Roads Planning District Commission, 2019b). The Portsmouth-
461 Chesapeake JLUS is ongoing but also focuses on transportation and land use impacts surrounding
462 military installations (Hampton Roads Planning District Commission 2021).

463
464 While the inundation of commercial and industrial land is of concern for the whole region, it is
465 particularly troubling for the Elizabeth River Watershed. This watershed contains major shipping
466 and transportation hubs such as a shipping port, Virginia International Gateway, and the Norfolk
467 Southern Lambert's Point Yard. These and other industries could face a major economic impact

468 from the sea level rise and storm surge. Additionally, the location of industries within the
469 inundation corridors can lead to Na-tech events where natural hazards lead to technological
470 disasters (e.g., accidental releases of hazardous materials) to the surrounding community. The
471 Virginia Coastal Resilience Master Planning Framework (Commonwealth of Virginia 2020) states,
472 “Heavily industrialized areas along the Elizabeth River and other tidal rivers in the region create
473 another layer of risk to flooding – environmental contamination.” (pg. 40). The Norfolk Vision
474 2100 (2016) divides the city into different zones based on the flood risk and location of assets
475 with many major industrial areas being located within the “red zone”, the highest threat area.
476 Norfolk’s plan to decrease vulnerability in this zone is to diversify the economy and increase flood
477 protections. The Portsmouth comprehensive plan (City of Portsmouth 2018), however, does not
478 address these risks. Given Portsmouth’s goal of increasing population in waterfront areas, steps
479 need to be taken to protect these populations from potential dangers caused by the flooding of
480 commercial and industrial sites.

481
482 Flooding impacts to wetlands in Hampton Roads could mean potential stress to or even loss of
483 specific wetland types and their flood protection and other ecosystem services. The
484 disproportionate effect on wetlands found in this research is consistent with the findings from
485 Kleinosky et al. (2007), which estimated that 39% of wetland area would be impacted with 90cm
486 of SLR and a category one hurricane storm surge. However, storm surge extents reported in this
487 study do not mean the permanent loss of wetlands. The dynamics of wetland loss and migration
488 include many factors that were not addressed in this study. For example, salt marsh wetlands
489 may be able to recover from a storm event, but saltwater from a storm surge could lead to
490 conversion of freshwater, particularly forested, wetland types. Further, the preservation of
491 wetlands is reliant on their ability to migrate inland, which is often restricted by the developed
492 land (Kirwan and Gedan 2019). In highly developed watersheds, like the Elizabeth River
493 watershed, inland migration would be substantially limited, highlighting the value of adjacent
494 open space there and in other flood-prone watersheds.

495
496 **5. Conclusions**
497 Many of the watersheds in Hampton Roads that will see the most change in flood exposure within
498 the 2% AEP hazard area and different SLR scenarios overlap with more than one municipality.
499 This finding reinforces the importance of impact assessment at a watershed-scale that can help
500 identify transboundary flooding issues and foster cross-jurisdictional collaboration among local
501 governments on adaptation and resilience planning. Such an approach will ensure that adaptive
502 interventions in one municipality do not exacerbate flooding conditions in the neighboring
503 communities and increase their vulnerability. Watershed-scale flood assessments are not only
504 useful for studying flood-related impacts but are also helpful for identifying specific hydrologic
505 systems at risk and the most effective regional adaptation strategies with co-benefits for all
506 neighboring municipalities.

507
508 The main impacts identified in this study include episodic inundation of military assets, which will
509 experience the highest rate of storm surge inundation throughout the Hampton Roads region. In
510 urban watersheds, such as within the Elizabeth River watershed, the commercial and industrial
511 land is also at high risk of repetitive flooding. The protection of these assets is key to maintaining

512 the economic status of Hampton Roads. Among land cover types, wetlands will have the highest
513 exposure to flooding throughout the region. Sea level rise can affect wetlands' important role as
514 an ecological resource and flood buffer and eventually lead to their permanent loss (Blankespoor
515 et al. 2014). However, wetlands can adapt to SLR if there is sufficient sediment input and
516 accommodation space to support their landward migration (Schuerch et al. 2018; Borchert et al.,
517 2017). Otherwise, wetlands risk becoming permanently submerged subtidal ecosystem or
518 experiencing conversion to either mangrove or pond environments (Andres et al. 2019). Despite
519 the efforts to identify the long-term risks of sea level rise on a regional scale and establish a
520 framework for adaptation, there are notable disparities between municipalities in their progress
521 towards the implementation of adaptation measures. While Norfolk has produced advanced
522 resilience plans over long-time horizons, neighboring Portsmouth is still in the flood risk
523 evaluation stage. Implementation at a watershed scale would be more effective and equitable
524 than the neighborhood-scale adaptation planning. Policy at this scale would not only align with
525 the Virginia Coastal Resilience Master Planning Framework's (2020) goal of regional cooperation
526 but would be also consistent with the growing body of research centered on the watershed scale
527 (Cheng et al. 2017; Dudula and Randhir 2016; Shannon et al. 2019, Choden et al. 2020). While
528 this research focuses on the impacts specific to Hampton Roads, Virginia, the approach used is
529 transferable to other coastal communities to inform transboundary collaboration and resiliency
530 planning.

531

532 **Acknowledgements**

533 The probabilistic flood hazard and sea level 768 nonlinearity data used herein are publicly
534 available via the U.S. Army Corps of Engineers North Atlantic Coast Comprehensive Study's Coastal
535 Hazards System (<https://chswebtool.erdc.dren.mil/>).

536

537 **Funding**

538 This material is based upon work supported by the National Science Foundation under Grants
539 Nos. 1920478 and 1735139.

540

541 **References**

542 Andres K, Savarese M, Bovard B, Parsons M (2019) Coastal wetland geomorphic and vegetative change:
543 Effects of Sea-level rise and water management on brackish marshes. *Estuaries and Coasts*
544 42(5): 1308-1327. <https://doi.org/10.1007/s12237-019-00538-w>

545 Atkinson L, Ezer T, Smith E (2013) Sea Level Rise and Flooding Risk in Virginia. *Sea Grant Law and Policy*
546 Journal 5(2): 3–14.

547 Balica S, Dinh Q, Popescu I, Vo TQ, Pham DQ (2013) Flood impact in the Mekong Delta, Vietnam. *Journal*
548 *Maps* 10: 257–268. <https://doi.org/10.1080/17445647.2013.859636>

549 Blankespoor B, Dasgupta S, Laplante B (2014) Sea-level rise and coastal wetlands. *Ambio* 43(8): 996–
550 1005. <https://doi.org/10.1007/s13280-014-0500-4>

551 Boon JD (2012) Evidence of sea level acceleration at U.S. and Canadian tide stations, Atlantic Coast,
552 North America. *Journal of Coastal Research* 28(6): 1437–1445.
<https://doi.org/10.2112/JCOASTRES-D-12-00102.1>

553 Borchert SM, Osland MJ, Enwright NM., Griffith KT (2018) Coastal wetland adaptation to sea level rise:
554 Quantifying potential for landward migration and coastal squeeze. *Journal of Applied Ecology*
556 55(6): 2876–2887. <https://doi.org/10.1111/1365-2664.13169>

557 Bukvic A (2015). Identifying gaps and inconsistencies in the use of relocation rhetoric: a prerequisite for
558 sound relocation policy and planning. *Mitigation and Adaptation Strategies for Global Change*,
559 20(7): 1203–1209. <https://doi.org/10.1007/s11027-013-9532-5>

560 Bukvic A and Harrald J (2019) Rural versus urban perspective on coastal flooding: The insights from the
561 U.S. Mid-Atlantic communities. *Climate Risk Management* 23: 7–18.
562 <https://doi.org/10.1016/j.crm.2018.10.004>

563 Bukvic A, Rohat G, Apotsos A., de Sherbinin A (2020) A systematic review of coastal vulnerability
564 mapping. *Sustainability* 12(7): 1–26. <https://doi.org/10.3390/su12072822>

565 Cheng C, Yang YCE, Ryan R, Yu Q, Brabec E (2017) Assessing climate change-induced flooding mitigation
566 for adaptation in Boston's Charles River watershed, USA. *Landscape and Urban Planning* 167:
567 25–36. <https://doi.org/10.1016/j.landurbplan.2017.05.019>

568 Choden K, Keenan RJ, Nitschke CR (2020) An approach for assessing adaptive capacity to climate change
569 in resource dependent communities in the Nikachu watershed, Bhutan. *Ecological Indicators*
570 114: 106293. <https://doi.org/10.1016/j.ecolind.2020.106293>

571 Cialone MA, Massey TC, Anderson ME, Grzegorzewski AS, Jensen RE, Cialone A, ... McAlpin TO (2015).
572 North Atlantic Coast Comprehensive Study (NACCS) coastal storm model simulations: Waves
573 and water levels. TR-15-14, U.S. Army Engineer Research and Development Center, Vicksburg,
574 MS.

575 City of Norfolk (2014) Coastal Resilience Strategy. Retrieved from:
576 <https://www.norfolk.gov/DocumentCenter/View/16292/Coastal-Resilience-Strategy-Report-to-Residents-?bidId=>

577 City of Norfolk (2016) Norfolk Vision 2100. Retrieved from:
578 <https://www.norfolk.gov/DocumentCenter/View/27768/Vision-2100---FINAL?bidId=>

579 City of Portsmouth (2018) Portsmouth 2018 Comprehensive Plan. Retrieved from:
580 <https://portsmouthva.gov/DocumentCenter/View/7623/Build-One-Portsmouth-Adopted-11-27-2018-PDF>

581 Commonwealth of Virginia (2020) Virginia Coastal Coastal Resilience Master Planning Framework.
582 Retrieved from: <https://www.governor.virginia.gov/media/governorvirginiagov/governor-of-virginia/pdf/Virginia-Coastal-Resilience-Master-Planning-Framework-October-2020.pdf>

583 Considine C, Covi M, Yusuf JE (2017) Mechanisms for Cross-Scaling, Flexibility and Social Learning in
584 Building Resilience to Sea Level Rise: Case Study of Hampton Roads, Virginia. *American Journal
585 of Climate Change* 06(02): 385–402. doi:10.4236/ajcc.2017.62020

586 Dahal RP, Grala RK, Gordon JS, Petrolia DR, Munn IA (2018) Estimating the willingness to pay to preserve
587 waterfront open spaces using contingent valuation. *Land Use Policy* 78: 614–626.
588 <https://doi.org/10.1016/j.landusepol.2018.07.027>

589 Dietrich JC, Zijlema M, Westerink JJ, Holthuijsen LH, Dawson C, Luettich Jr RA, ... Stone GW (2011)
590 Modeling hurricane waves and storm surge using integrally-coupled, scalable computations.
591 *Coastal Engineering* 58(1): 45–65. <https://doi.org/10.1016/j.coastaleng.2010.08.001>

592 Dinh Q, Balica S, Popescu I, Jonoski A (2012) Climate change impact on flood hazard, vulnerability and
593 risk of the Long Xuyen Quadrangle in the Mekong Delta. *International Journal of River Basin
594 Management* 10(1): 103–120.

595 Dudula J, Randhir T (2016) Modeling the influence of Climate Change on Watershed Systems:
596 Adaptation through Targeted Practices. *Journal of Hydrology* 541(6): 703–713.
597 <https://doi.org/10.1016/j.jhydrol.2016.07.020>.

598 Engelhart SE, Peltier WR, Horton BP (2011) Holocene relative sea-level changes and glacial isostatic
599 adjustment of the U.S. Atlantic Coast. *Geology* 39(8): 751–754.
600 <https://doi.org/10.1130/G31857.1>

601 Enríquez-de-Salamanca Á (2019) Vulnerability reduction and adaptation to climate change through
602

605 watershed management in St. Vincent and the Grenadines. *GeoJournal* 84(4): 1107–1119.
606 <https://doi.org/10.1007/s10708-018-9914-z>

607 Ezer T (2018) The increased risk of flooding in hampton roads: On the roles of sea level rise, storm
608 surges, hurricanes, and the gulf stream. *Marine Technology Society Journal* 52(2): 34–44.
609 <https://doi.org/10.4031/MTSJ.52.2.6>

610 Federal Emergency Management Agency (2019) Special Flood Hazard Area. Retrieved from:
611 <https://www.fema.gov/special-flood-hazard-area>

612 Habete D, Ferreira CM (2017) Potential Impacts of Sea-Level Rise and Land-Use Change on Special Flood
613 Hazard Areas and Associated Risks. *Natural Hazards Review* 18(4): 04017017.
614 [https://doi.org/10.1061/\(asce\)nh.1527-6996.0000262](https://doi.org/10.1061/(asce)nh.1527-6996.0000262)

615 Hampton Roads Planning District Commission (2017) Hampton Roads Hazard Mitigation Plan. Retrieved
616 from:
617 <https://www.hrpdcva.gov/uploads/docs/2017%20Hampton%20Roads%20Hazard%20Mitigation%20Plan%20Update%20FINAL.pdf>

618 Hampton Roads Planning District Commission (2019a) Hampton Roads Regional Parcels [Data file].
619 Retrieved from: <https://www.hrgeo.org/pages/regional-parcels>

620 Hampton Roads Planning District Commission (2019b) Norfolk and Virginia Beach Joint Land Use Study.
621 Retrieved from:
622 <https://www.hrpdcva.gov/uploads/docs/JLUS%20NOVB%20Exec%20Summary.pdf>

623 Hampton Roads Planning District Commission (2021) Portsmouth and Chesapeake Joint Land Use Fact
624 Sheet. Retrieved from:
625 <https://www.hrpdcva.gov/uploads/docs/Portsmouth%20%26%20Chesapeake%20Joint%20Land%20Use%20Fact%20Sheet2.pdf>

626 Hino M, Belanger ST, Field CB, Davies AR, Mach KJ (2019) High-tide flooding disrupts local economic
627 activity. *Science Advances* 5(2): 1–10. <https://doi.org/10.1126/sciadv.aau2736>

628 IPCC CZMS (1990) Strategies for Adaptation to Sea Level Rise. Report of the Coastal Zone Management
629 Subgroup, Response Strategies Working Group of the Intergovernmental Panel on Climate
630 Change. Ministry of Transport, Public Works and Water Management, The Hague, Netherlands

631 IPCC (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the
632 Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team,
633 R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.

634 John BS, Yusuf JE (2019) Perspectives of the Expert and Experienced on Challenges to Regional
635 Adaptation for Sea Level Rise: Implications for Multisectoral Readiness and Boundary Spanning.
636 Coastal Management 47(2): 151–168. <https://doi.org/10.1080/08920753.2019.1564951>

637 Kirwan ML, Gedan KB (2019) Sea-level driven land conversion and the formation of ghost forests. *Nature
638 Climate Change* 9(6): 450–457. <https://doi.org/10.1038/s41558-019-0488-7>

639 Kleinosky LR, Yarnal B, Fisher A (2007a) Vulnerability of hampton roads, Virginia to storm-surge flooding
640 and sea-level rise. *Natural Hazards* 40(1): 43–70. <https://doi.org/10.1007/s11069-006-0004-z>

641 Kolok AS, Beseler CL, Chen XH, Shea PJ (2009) The Watershed as a Conceptual Framework for the Study
642 of Environmental and Human Health. *Environmental Health Insights* 3(402): EHI.S1925.
643 <https://doi.org/10.4137/ehi.s1925>

644 Kriebel DL, Geiman JD, Henderson GR (2015) Future Flood Frequency under Sea-Level Rise Scenarios.
645 *Journal of Coastal Research* 315: 1078–1083. <https://doi.org/10.2112/jcoastres-d-13-00190.1>

646 Lee ACK, Jordan HC, Horsley J (2015) Value of urban green spaces in promoting healthy living and
647 wellbeing: prospects for planning. *Risk Management and Healthcare Policy* 8: 131.

648 Lein JK, Abel LE (2010) Hazard vulnerability assessment: How well does nature follow our rules?
649 *Environmental Hazards* 9(2): 147–166. <https://doi.org/10.3763/ehaz.2010.0027>

650 Lindsey R (2019) Climate Change: Sea Level Rise. Retrieved from:
651

653 <https://www.climate.gov/news-features/understanding-climate/climate-change-global-sea-level>
654 Liu H, Behr JG, Diaz R (2016) Population vulnerability to storm surge flooding in coastal Virginia, USA.
655 Integrated Environmental Assessment and Management 12(3): 500–509.
656 <https://doi.org/10.1002/ieam.170>
657 McFarlane B (2012) Climate Change in Hampton Roads: Phase III: Sea Level Rise in Hampton Roads,
658 Virginia. Retrieved from: <https://www.hrpdcva.gov/library/view/230/climate-change-in-hampton-roads:phase-iii-sea-level-rise-in-hampton-roads-july-2012>
659
660 McFarlane B (2013) Coastal Resiliency: Adapting to Climate Change in Hampton Roads. Retrieved from:
661 https://www.hrpdcva.gov/uploads/docs/HRPDC_ClimateChangeReport2012_Full_Reduced.pdf
662 Moftakhi HR, Salvadori G, AghaKouchak A, Sanders BF, Matthew RA (2017) Compounding effects of
663 sea level rise and fluvial flooding. Proceedings of the National Academy of Sciences 114(37):
664 9785-9790.
665 Mousavi ME, Irish JL, Frey AE, Olivera F, Edge BL (2011) Global warming and hurricanes: the potential
666 impact of hurricane intensification and sea level rise on coastal flooding. Climatic Change 104(3):
667 575-597.
668 Multi-Resolution Land Characteristics (MRLC) Consortium (2011) National Land Cover Dataset by State
669 [Data file]. Retrieved from: <https://datagateway.nrcs.usda.gov/GDGOrder.aspx>
670 Nadal-Caraballo NC, Melby JA, Gonzalez VM, Cox AT (2015) Coastal storm hazards from Virginia to
671 Maine. Engineer Research and Development Center Vicksburg MS Coastal and Hydraulics Lab.
672 Retrieved from: <https://apps.dtic.mil/sti/citations/ADA627157>
673 NOAA (2018) What is High Tide Flooding? Retrieved from:
674 <https://oceanservice.noaa.gov/facts/nuisance-flooding.html>
675 NOAA (2021) How to Map Open Space for Community Rating System. Retrieved from:
676 <https://coast.noaa.gov/data/digitalcoast/pdf/crs-gis-workflow.pdf>
677 Nicholls RJ (2011) Planning for the impacts of sea level rise. Oceanography 24(2): 144–157.
678 <https://doi.org/10.5670/oceanog.2011.34>
679 Oppenheimer M, Glavovic BC, Hinkel J, van de Wal R, Magnan AK, Abd-Elgawad A, ... Sebesvari Z (2019)
680 Sea level rise and implications for low-lying islands, coasts and communities. In: IPCC Special
681 report on the ocean and cryosphere in a changing climate [Pörtner HO, Roberts DC, Masson-
682 Delmotte V, Zhai P, Tignor M, Poloczanska E, ... Weyer NM (eds.)]. In press.
683 Parris A, Bromirski P, Burkett V, Cayan D, Culver M, Hall J, ... Weiss J (2012) Global Sea Level Rise
684 Scenarios for the US National Climate Assessment. NOAA Tech Memo OAR CPO-1. pp.37
685 Resio DT, Irish JL (2015) Tropical cyclone storm surge risk. Current Climate Change Reports 1(2): 74-84.
686 Rezaie AM, Ferreira CM, Walls M, Chu Z (2021) Quantifying the Impacts of Storm Surge, Sea Level Rise,
687 and Potential Reduction and Changes in Wetlands in Coastal Areas of the Chesapeake Bay
688 Region. Natural Hazards Review 22(4): 04021044.
689 Rufat S, Tate E, Emrich CT, Antolini F (2019) How Valid Are Social Vulnerability Models? Annals of the
690 American Association of Geographers 109(4): 1131-1153.
691 <https://doi.org/10.1080/24694452.2018.1535887>
692 Schuerch M, Spencer T, Temmerman S, Kirwan ML, Wolff C, Lincke D, ... Brown S (2018) Future response
693 of global coastal wetlands to sea-level rise. Nature 561(7722): 231-234.
694 Shannon PD, Swanston CW, Janowiak MK, Handler SD, Schmitt KM, Brandt LA, Butler-Leopold PR, Ontl T
695 (2019) Adaptation strategies and approaches for forested watersheds. Climate Services 13: 51–
696 64. <https://doi.org/10.1016/j.ciser.2019.01.005>
697 Siverd CG, Hagen SC, Bilskie MV, Braud DH, Gao S, Peele RH, Twilley RR (2019) Assessment of the
698 temporal evolution of storm surge across coastal Louisiana. Coastal Engineering 150: 59-78.
699 <https://doi.org/10.1016/j.coastaleng.2019.04.010>
700 Smith JM, Cialone MA, Wamsley TV, McAlpin TO (2010) Potential impact of sea level rise on coastal

701 surges in southeast Louisiana. *Ocean Engineering* 37(1): 37-47.

702 Stafford SL, Renaud AD (2019) Developing a Framework to Identify Local Business and Government
703 Vulnerability to Sea-Level Rise: A Case Study of Coastal Virginia. *Coastal Management* 47(1): 44-
704 66. <https://doi.org/10.1080/08920753.2019.1526011>

705 Union of Concerned Scientists (2016. The US Military on Front Lines of Rising Seas. Retrieved from:
706 <https://www.ucsusa.org/sites/default/files/attach/2016/07/front-lines-of-rising-seas-key-executive-summary.pdf>

708 U.S. Army Corps of Engineers, Norfolk District (2015) City of Portsmouth, Virginia 2015 Floodplain
709 Management and Repetitive Loss Plan Update. Retrieved from:
710 <https://www.portsmouthva.gov/DocumentCenter/View/564/2015-Floodplain-Management-and-Repetitive-Loss-Plan-Update-PDF?bidId=>

712 U.S Census Bureau (2019a) TIGER/Line Shapefiles [Data file]. Retrieved from:
713 <https://www.census.gov/cgi-bin/geo/shapefiles/index.php>

714 U.S. Census Bureau (2019b) 2019: ACS 5-Year Estimates Detailed Tables [Data File]. Retrieved from:
715 <https://data.census.gov/>

716 U.S. Geological Survey (2013) Watershed Boundary Dataset (v2.3) [Data file]. Retrieved from:
717 <https://datagateway.nrcs.usda.gov/GDGOrder.aspx>

718 U.S. Geological Survey (2014) National Elevation Dataset 30 meter [Data file]. Retrieved from:
719 <https://datagateway.nrcs.usda.gov/GDGOrder.aspx>

720 U.S. Geological Survey (n.d.) National Hydrography Dataset 1:24,000 [Data file]. Retrieved from:
721 <https://datagateway.nrcs.usda.gov/GDGOrder.aspx>

722 U.S. Geological Survey (2011) National Land Cover Database [Data file]. Retrieved from:
723 <https://datagateway.nrcs.usda.gov/GDGOrder.aspx>

724 U.S. Geological Survey, National Geospatial Technical Operations Center, 20201210, USGS National
725 Structures Dataset (NSD) for Virginia 20201210 State or Territory Shapefile: U.S. Geological
726 Survey.

727 U.S. Geological Survey (2006) The Best Practices Data Model – Structures. Retrieved from:
728 https://services.nationalmap.gov/bestpractices/model/acrodocs/Poster_BPStructures_03_01_2_006.pdf

730 USGCRP (2018) Impacts, Risks, and Adaptation in the United States: Fourth National Climate
731 Assessment, Volume II [Reidmiller, D.R., C.W. Avery, D.R. Easterling, K.E. Kunkel, K.L.M. Lewis,
732 T.K. Maycock, and B.C. Stewart (eds.)]. U.S. Global Change Research Program, Washington, DC,
733 USA, 1515 pp. doi: 10.7930/NCA4.2018.

734 Wright LD, Nichols CR (Eds) (2019) Tomorrow's Coasts: Complex and Impermanent. Springer
735 International Publishing. <http://link.springer.com/10.1007/978-3-319-75453-6>