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In this paper, we present, Wi-Mesh, a WiFi vision-based 3D hu- 
man mesh construction system. Our system leverages the advances 
of WiFi to visualize the shape and deformations of the human 
body for 3D mesh construction. In particular, it leverages multiple 
transmitting and receiving antennas on WiFi devices to estimate 
two-dimensional angle of arrival (2D AoA) of the WiFi signal reflec- 
tions to enable WiFi devices to “see” the physical environment as 
we humans do. It then extracts only the images of the human body 
from the physical environment, and leverages deep learning models 
to digitize the extracted human body into 3D mesh representation. 
Experimental evaluation under various indoor environments shows 
that Wi-Mesh achieves an average vertices location error of 2.81cm 
and joint position error of 2.4cm, which is comparable to the sys- 
tems that utilize specialized and dedicated hardware. The proposed 
system has the advantage of re-using the WiFi devices that already 
exist in the environment for potential mass adoption. It can also 
work in non-line of sight (NLoS), poor lighting conditions, and 
baggy clothes, where the camera-based systems do not work well. 
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1 INTRODUCTION 
Recent years have witnessed tremendous progress in 3D mesh con- 
struction for human bodies and in adapting 3D human mesh in var- 
ious emerging applications. Indeed, 3D human mesh parameterizes 
the 3D surface of the human body, which represents how individuals 
vary in height, weight, somatotype, body proportions, and how the 
3D surface deforms with articulation. It describes the fine-grained 
3D human body shape as well as the human poses and activities. 
3D human mesh construction thus has been increasingly involved 
in the applications such as VR/AR content creation [27], virtual 
try-on [6], and exercise monitoring [35]. It is also a fundamental 
building block for various downstream tasks, such as animation [5], 
clothed human reconstruction [11], and rendering [45]. 

Traditional approaches for 3D human mesh construction pri- 
marily rely on computer vision technique that requires the installa- 
tion of optical cameras in the environment, or wearable technique 
that requires dedicated sensors worn by human subjects. These 
approaches, however, require either significant infrastructure in- 
stallation or diligent usage of wearable devices [17]. In addition, 
the computer vision-based systems cannot work well in NLoS or 
poor lighting conditions [19]. They also incur large errors when 
subjects wear baggy clothes [16]. Recently, Radio Frequency (RF) 
sensing offers an appealing alternative. It analyzes the reflections 
of RF signals off the human body for human activity sensing. As the 
RF signal can traverse occlusions/clothes and illuminate the human 
body, the RF-based approach works well under NLoS, poor lighting 
conditions, and baggy clothes. It also does not require a user to 
wear any dedicated sensors. As such, two RF-based systems have 
been proposed to construct 3D human mesh by using either FMCW 
RADAR or mmWave RADAR [56, 60]. These systems, however, rely 
on specialized and dedicated hardware as well as the RF signals 
that are specifically designed for providing accurate ranging or 
spatial shape of objects. These systems thus are less attractive to 
consumer-oriented use or mass adaptation due to their high cost. 

In this paper, we ask whether it’s possible to re-use commodity 
WiFi, originally designed for communication, to construct 3D hu- 
man mesh for potential mass adaptation in smart environments. 
Earlier work has shown that the commodity WiFi is able to clas- 
sify a set of pre-defined human body activities [50] and detect 
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subtle movements, such as vital signs [24]. Recently, systems like 
WiPose [15] and Winect [32] are proposed to track more detailed 
3D human poses for either pre-defined or free-form activities. 
However, none of these systems are able to provide fine-grained 
3D human mesh that consists of thousands of vertices, which is 
several orders of magnitude larger than the number of body 
joints defined in 3D poses or activities. In addition, prior systems 
mainly feed the amplitude/phase or the Doppler frequency shifts 
of the WiFi signals into deep learning models for activity or pose 
tracking. They would require more quality training data and 
deeper neural networks to ensure better system robustness, since 
their input signal metrics are sensitive to several factors, such as 
the propagation environments, WiFi devices, and various people 
and activities. This limitation renders them less practical across 
different environments and for unseen people. 

In our work, we demonstrate that the commodity WiFi can be 
leveraged to construct 3D human mesh, which has not been 
possible before. In particular, we propose a WiFi vision-based 
approach for 3D human mesh construction across different 
environments and for unseen people. We leverage the advances in 
WiFi technology to help WiFi devices “see” and visualize the 
human body as we humans do. Our system, Wi-Mesh, helps WiFi 
devices see a person by leveraging the fairly large number of 
antennas on the next-generation WiFi devices. Indeed, the new 
generation of WiFi 6 or 7 supports up to 8 or 16 antennas [8], 
respectively. These spatially distributed antennas at the WiFi 
receiver can be used to disentangle the signal reflections from the 
3D surface of the human body, enabling the WiFi device to 
visualize the body shape and deformations. To realize such an 
approach, we propose to estimate the 2D AoA of the WiFi signal 
reflections off the human body. In particular, we propose to 
estimate incident angles of the signal received at the WiFi 
receiver in the azimuth-elevation plane, where azimuth is an 
angular measurement of the horizon direction for the received 
signal, and elevation is the angular measurement of the same 
signal in the vertical direction. Given the intensity and the 
corresponding signal reflected from each direction, we could derive 
a visualization or a 2D AoA image of the human body together 
with the static objects in the environment, similar to a gray-scale 
image captured by a camera. In addition to diversities of receiving 
antennas and subcarriers used in SpotFi [20], we further leverage 
the spatial diversity of transmitting antennas and the time diversity 
of WiFi packets to improve the spatial resolution of 2D AoA esti- 
mation. Unlike SpotFi only estimates two-dimensional information 
(i.e., azimuth and time of flight), in our work, the combination of all 
the diversities and joint estimation of four-dimensional information 
(i.e., azimuth, elevation, time of flight, and angle of departure) of 
WiFi signals significantly improve the resolution [55] and thus offer 
a better illustration of the shape and deformation of the human 
body for 3D human mesh construction. 

The estimated 2D AoA image, however, contains information 
on both the human body and the surrounding static objects, such 
as walls and furniture in the same environment. We propose to 
eliminate reflections off static objects and focus on only the human 
body, making the 3D human mesh construction independent of the 
environment. As the reflections from the static objects don’t change 
over time, we propose to extract the human body by subtracting 
the static components in consecutive 2D AoA estimation frames 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1: 3D human mesh estimation using WiFi signals. 

to eliminate the static reflections. Furthermore, we address the 
issue of human body specularity, in which WiFi signals may be 
reflected towards or away from the receiver depending on the 
surface orientation of different body parts. As a result, a single 2D 
AoA image can only capture a subset of the human body, but missing 
the parts that deflect the WiFi signals away from the receiver. To 
address this issue, we incorporate multiple 2D AoA estimations over 
time to capture a complete picture of the human body. Specifically, 
we design our deep learning model to focus on multiple consecutive 
2D AoA estimations that involve the signal reflected from different 
parts of the human body. 

For 3D human mesh construction, we leverage the most popular 
Skinned Multi-Person Linear (SMPL) model [25], which factors the 
3D surface of the human body into thousands of vertices to repre- 
sent the shape and pose deformations. To fit the SMPL model, we 
design deep learning models to extract both the spatial body shape 
and temporal body deformations from 2D AoA images. In particular, 
our designed deep learning models include the convolutional neural 
network (CNN), Gated Recurrent Unit (GRU), and self-attention 
mechanism. The CNN is utilized to extract the static spatial infor- 
mation of the human body (e.g., spatial body shape), whereas the 
GRU is used to analyze dynamic deformations of the human body 
under various poses. And the self-attention mechanism is leveraged 
to dynamically learn the contributions of each frame and highlight 
the important frames in the final representation. Finally, both the 
extracted spatial body shape and temporal body deformations are 
fitted into the SMPL model to obtain the 3D mesh representation 
of the human body. 

We evaluate the Wi-Mesh system with twenty people in various 
indoor environments including the home, classroom, and laboratory. 
We perform 3D mesh construction across different environments, 
as well as for unseen people or the same people with different 
activities. We also compare our system to the prior WiFi-based 
approaches that leverage raw CSI measurements or Doppler fre- 
quency shift of WiFi signals. Figure 1 shows one example of our 
constructed 3D human meshes when the subject is walking and 
turning around. The first row shows the human body captured 
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by the video camera, whereas the second row illustrates how the 
constructed 3D human meshes match the ground truth. As we can 
see that the generated dynamic 3D human meshes align very well 
with the subject, demonstrating the effectiveness of our system. 
The main contributions of our work are summarized as follows. 

• We propose a WiFi vision-based approach for 3D human 
mesh construction. As the WiFi signal can traverse occlu- 
sions and clothes, our system works well under NLoS, poor 
lighting conditions, and baggy clothes. It also does not re- 
quire a user to wear any dedicated sensors. 

• We estimate the 2D AoA of the signal reflections off the 
human body to visualize the body shape and deformations. 
We then digitize the extracted human body images into 3D 
SMPL model by leveraging the deep learning techniques. 

• Experimental results show that our Wi-Mesh system is highly 
accurate and robust across different environments and for 
unseen people, which is comparable to prior specialized 
and dedicated hardware-based systems. Our system has the 
advantage of reusing WiFi devices for potential mass adap- 
tation. 

2 RELATED WORK 
We divide the techniques for 3D human mesh construction into 
three categories: computer vision-based, RF-based, and wearable 
sensor-based approaches. 

 

2.1 Computer Vision-based Approach 
With the development of deep learning algorithms and annotated 
datasets, 3D human mesh construction is a popular topic in the 
computer vision community. There exist systems that utilize only 
a single image to construct 3D human mesh. For example, some 
researchers [2, 37] made pioneer work to reconstruct 3D human 
mesh by leveraging silhouette and joint information in an image 
by optimizing a statistical body model. More recently, Kanazawa et 
al. [16] presented an adversarial learning framework to recover 3D 
human mesh directly from image pixels. Whereas Bogo et al. [7] 
proposed a fully automatic method to fit the 2D joints in the image 
to the SMPL model [25]. There are also approaches that utilize 
video to recover 3D human mesh. In the early stage, Hogg et al. [12] 
mapped a simple 3D human mesh to a walking person based on 
video frames. Some later systems [34] constructed the 3D human 
mesh by leveraging multi-view videos. For example, Tung et al. [46] 
proposed a method to predict SMPL parameters by using optical 
flow, silhouettes, and joints from video frames. However, computer 
vision-based approaches have fundamental limitations. They cannot 
work well in NLoS or poor lighting conditions, and incur large errors 
when subjects wear baggy clothes [16, 19]. 

 

2.2 RF-based Approach 
Recently, many RF sensing systems have been explored to predict 
3D human mesh [38]. For example, RF-Avatar presented by Zhao et 
al. [60] is a sensing system that utilizes FMCW RADAR [1] to infer 
3D human mesh based on an adversarial training network. Xue 
et al. proposed mmMesh [56], which constructed the dynamic 3D 
human mesh by using point clouds data directly exported from the 
mmWave RADAR. However, these systems all require dedicated 

and specialized hardware, and thus are not scalable for a large num- 
ber of users due to their high cost. Moreover, Huang et al. [13] did 
primiparity work to image a simple object using specialized WiFi 
devices. Particularly, they require the use of the customized device 
of USRP. And their image resolution is too low to visualize the 3D 
surface of the human body as no spatial or frequency diversity was 
exploited. On the other hand, there exists work re-using commodity 
WiFi devices that already exist in the environment to build various 
sensing applications, such as large-scale human activities recogni- 
tion [41, 50, 51, 54, 58], small-scale human motion detection [39, 40], 
vital sign monitoring [23, 24], indoor localization [57, 61], person 
identification [47], and object sensing [31, 42]. Recent highly re- 
lated work explored commodity WiFi to estimate 2D or 3D human 
pose [15, 32, 33, 48]. For example, Wang et al. [48] estimate 2D hu- 
man pose by using deep learning as a purely data-driven black-box 
solver. Moreover, WiPose [15] is proposed to track 3D pose of a 
set of pre-defined activities, whereas Winect [32] is developed to 
estimate 3D pose for free-form activities. These systems, however, 
only track the locations of a few body joints (less than 20), which 
are too cores-grained to generate the 3D human mesh that consists 
of thousands of vertices. 

 

2.3 Wearable Sensor-based Approach 
Wearable sensors have been widely using for human sensing [49, 
52, 53]. Specifically, wearable sensor-based 3D human mesh con- 
struction systems require the user to wear dedicated sensors. For 
instance, Tautges et al. [43] reconstruct the human pose by utilizing 
the calibrated readings of four 3D accelerators attached to the arms 
and legs. Some other 3D human mesh estimation systems [14, 26] 
reconstruct full-body motions with the help of inertial measure- 
ment units (IMUs) sensors attached to different positions of the 
body. Additionally, Kaufmann et al. [17] fitted the measurements 
of electromagnetic sensors attached to the human body to generate 
the 3D human mesh. However, wearable sensor-based systems are 
cumbersome and incur non-negligible costs [17]. 

 

3  PRELIMINARY 

3.1   WiFi Sensing 
The applications of WiFi are rapidly evolving, and WiFi can do more 
than just communicate. Indeed, researchers have developed tech- 
niques to make sense of WiFi signals, particularly in sensing human 
activity. As WiFi signals travel through the air, the human body 
and static objects will reflect, diffract, or absorb the signal energy, 
which results in reflections, diffraction, and scattering, creating 
multipath propagation. The received signals thus carry information 
about human activity and the surrounding environment. Earlier 
work primarily focuses on utilizing Received Signal Strength (RSS), 
which is a single quantity per packet that represents the Signal to 
Interference & Noise Ratio (SINR) over the entire channel band- 
width, for device-based localization [22] or device-free intrusion 
detection [59]. However, RSS is a coarse-grained metric. Only lim- 
ited information can be inferred regarding human activity based 
on RSS. 

Recently, researchers shift the focus to CSI provided by IEEE 
802.11 WiFi devices for human sensing. CSI contains amplitude 
and phase measurements for each orthogonal frequency-division 
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Figure 2: WiFi vision based on Figure 3: Vertices and joints of SMPL model. 

multiplexing (OFDM) subcarrier. For example, it includes ampli- 
tude and phase for each of the 56 OFDM subcarriers on a standard 
20MHz channel. Due to frequency diversity, different subcarriers 
experience different multipath fading. While such effects are often 
averaged out for RSS measurement, the amplitude and phase of indi- 
vidual subcarrier are more likely to change when small movements 
have altered the multipath environment. The CSI exported from 
commodity WiFi devices thus provides fine-grained information 
to characterize the human activity and the multipath environment. 
Researchers have devoted significant efforts to build WiFi sensing 
applications leveraging CSI, such as large-scale activity recogni- 
tion [29, 50, 54], small-scale motion detection [3, 24, 39], and object 
sensing [31, 42]. 

Existing work in WiFi sensing mainly uses a black-box approach 
by directly inputting the CSI or the Doppler frequency shifts into 
deep learning models for activity recognition and tracking [15, 48, 
50]. It is based on the assumption that similar activities will reflect, 
diffract, or absorb the signals similarly, resulting in similar signal 
change patterns. However, the CSI or its Doppler frequency shifts 
are more or less sensitive to different multipath environments, het- 
erogeneous WiFi devices, and various people and activities. These 
systems normally work well for pre-defined activities in pre-trained 
multipath environments, but require more training data and deeper 
neural networks to have better system robustness. This largely 
limits their applicability across different environments and for a 

can be used to separate the signal reflections from different direc- 
tions/locations, providing spatial information about the physical 
environment. Thus, the 2D AoA of the WiFi signal reflections pro- 
vides spatial information of the objects that reflect the WiFi signals 
and can be used to visualize the shape and the poses of the human 
body, similar to a gray-scale image captured by a camera. 

diverse set of people and activities. In addition, CSI or the Doppler 
frequency shifts cannot directly provide any spatial information 

 

about the physical environments (e.g., the shape of the human body 
or static objects) as that of the FMCW RADAR or mmWave RADAR. 
Existing WiFi sensing systems thus cannot be directly used to con- 
struct fine-grained 3D human mesh, which requires the 3D spatial 
information of the human body and poses. 

 

3.2 2D AoA-based WiFi Vision 
In our work, we propose a concept of 2D AoA-based WiFi vision, 
which leverages the advances in WiFi technology to help WiFi de- 
vices “see” and visualize the physical environment as we humans 
do. We estimate the 2D AoA of the WiFi signal reflections to enable 
WiFi devices to visualize the shape and deformations of the human 
body for 3D mesh construction. In particular, the new generation of 
WiFi 6 devices can support up to 8 antennas, whereas it is increased 
to 16 antennas for WiFi 7 [8]. These spatially distributed antennas 

where a is called the steering vector. With the steering vector, the 
2D AoA of the signal reflections can be derived by using the MUSIC 
algorithm [36]. And we refer to the estimated 2D AoA spectrum as 
a 2D AoA image in our work. 

Figure 2(b) shows an example of the estimated 2D AoA image. 
The X-axis shows the azimuth direction, whereas the Y-axis repre- 
sents the elevation direction. The color dots in the figure illustrate 
the intensity of the signal reflected from corresponding azimuth- 
elevation directions. From Figure 2(b), we can observe the direction 
of the LoS (i.e., with the strongest intensity) and the spatial infor- 
mation of the human body that reflects WiFi signals. This serves as 
the basis of our proposed WiFi vision-based 3D human mesh con- 
struction. However, since N antennas can only resolve up to N − 1 

distinct signal reflections. With 8 to 16 antennas on next-generation 
WiFi devices, the corresponding 2D AoA spatial resolution is still 
insufficient to describe the surface of the human body (e.g., head, 
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Figure 4: Wi-Mesh system overview. 

torso, and limbs). Thus, we need to further improve the spatial 
resolution in order to construct the 3D human mesh. 

 

 

 

 

3.3 SMPL Model 

 
Figure 3 illustrates one example of 3D point cloud of the SMPL 

model, which includes 6890 vertices and 23 joints. In particular, the 
big red dots are these 23 joints, which are used to represent the 
motions or poses of the human body. The thousands of small blue 
dots are the surface vertices, which describe the 3D surface of the 
human body, and can be used to represent the height, weight, soma- 
totype, and body proportions of the human body. Compared with 
3D human pose [15, 32] that only consists of a few (e.g., less than 
15) body joints, a 3D human mesh contains thousands of vertices, 
which are more complicated and require spatial information of the 
human body. Therefore, the prior WiFi-based activity and 3D pose 
tracking systems cannot be directly leveraged to construct accurate 
3D human mesh. 

4 SYSTEM DESIGN 

4.1 System Overview 
The key idea of our work is to leverage the advances of WiFi and 
2D AoA estimation of the signal reflections to visualize the shape 
and deformations of the human body for 3D mesh construction. As 
illustrated in Figure 4, the system takes as input time-series CSI 
measurements at multiple antennas of two WiFi receivers when a 
person is moving around in the environment. The system can reuse 
existing WiFi devices and take advantage of CSI measurements 
from existing traffic or the system-generated probing packets for 
measurement purposes. The WiFi signals reflected from different 
parts of the human body and surrounding objects will arrive at the 
receiver in various directions (i.e., azimuth and elevation angles). 

The CSI measurements then go through preprocessing to remove 
the random phase offsets. Then, our system estimates the 2D AoA of 
the signals reflected from the human body and static objects. In con- 
trast to existing work, SpotFi [20], which only uses spatial diversity 
of receiving antennas and frequency diversity of subcarriers, we 
further leverage spatial diversity of transmitting antennas and time 
diversity of the WiFi packets to jointly estimate four-dimensional 
information instead of two-dimensional information in SpotFi and 
thus greatly improve the resolution of the 2D AoA estimation. Next, 
our system conducts human image extraction to filter out the sig- 
nals reflected by the static objects in the environment (e.g., walls 
and furniture) and only focus on only the human subject. As each 
2D AoA image can only capture a subset of the human body due 
to human body specularity, we further combine multiple 2D AoA 

images to have a full picture of the human body. 
Next, we design a deep learning model to extract both spatial 

information and temporal deformation of the human body from 
the 2D AoA images to construct the 3D human mesh. The deep 
learning model has three components: CNN, GRU, and the self- 
attention module. Among them, CNN is used to parse the static 
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spatial information of the whole human body. The GRU is utilized 
to extract the dynamic deformation of the body in the temporal 
dimension. And the self-attention mechanism is used to adaptively 
learn the contributions of features and highlight the important ones 
in the final representation. Finally, the extracted spatial body shape 
and temporal body deformations are fitted into the SMPL model to 
obtain the 3D mesh representation. 

Our system could benefit from the prevalence of WiFi signals and 
re-use the WiFi devices that already exist in the environment for 
potential mass adoption. It thus presents tremendous cost savings 
when compared with dedicated and specialized hardware-based sys- 
tems. In addition, as the WiFi signals can traverse occlusions/clothes 
and can illuminate the human body, our system can work under 
NLoS, poor lighting conditions, or baggy clothes, where the camera- 
based systems do not work well. 

4.2 CSI Preprocessing 
Due to the hardware imperfection of the commodity WiFi device, 
the CSI measurements suffer random phase offsets incurred by sam- 
pling time offset (STO) and packet detection delay (PDD) across 
packets. As the AoA information will be derived from the phase 
shifts at multiple antennas of the receiver, we first need to perform 
CSI preprocessing to remove the CSI random phase offsets. Specifi- 
cally, we adopt a linear fit method proposed in [20] to sanitize the 
random phase shift. The optimal linear fit method is described as 
follows: 

the azimuth and the time of flight (ToF). In our work, we further 
extend the MUSIC algorithm to the 4D MUSIC algorithm which 
can estimate four-dimensional information including azimuth, ele- 
vation, ToF, and angle of departure (AoD). Thus, the resolution can 
be significantly improved by jointly exploiting information from 
four signal dimensions [55]. 

In particular, the 2D AoA estimation is to leverage the phase 
shifts of the received signals at spatially separated antennas of the 
L-shaped antenna array of the WiFi receiver. First, the spatially 
separated antennas at the receiver will observe phase shifts for 
the signal reflected from each direction. Moreover, the spatially 
separated transmitting antennas on the transmitter will also intro- 
duce the phase shifts. In addition, different OFMD subcarriers will 
cause phase shifts for the same reflection as well due to frequency 
differences. Multiple consecutive packets can also provide time 
diversity. All of these diversities can be incorporated to improve 
the resolution of the 2D AoA estimation. 

 

  as follow: 

 ) 
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4.3 Fine-grained 2D AoA Estimation 
� (�,� ) ] , 

Besides the spatial diversity of receiving antennas and the frequency a(�, �, �, � ) = [�̄(�, �, � ), Ψ� �̄(�, �, � ), ..., Ψ� −1
 �̄(�, �, � ) � ,   (7) 

diversity of OFDM subcarriers utilized in the previous work (i.e., 
SpotFi [20]), our work further leverages the spatial diversity of 
transmitting antennas and time diversity of WiFi packets to achieve 
the fine-grained 2D AoA estimation. Specifically, SpotFi utilizes 3 
receiving antennas and 30 subcarriers, which result in 90 sensing 
elements in total. In our work, we utilize 3 transmitting antennas, 9 
receiving antennas, and 30 subcarriers, which result in 810 sensing 
elements on each receiver. In addition, we leverage the spatial 
diversity of receivers by placing two receivers at different locations 
which can capture the environment and human body from different 
angles. Thus, the number of sensing elements in our system is an 
order of magnitude larger than that of SpotFi. Also, the time domain 
WiFi packets can provide time diversity which helps to optimize 
the 2D AoA estimation. 

Moreover, the previous work, SpotFi, applies the 2D MUSIC al- 
gorithm to estimate only two-dimensional information including 

where a(�, �, �, � ) is the steering vector formulated by phase 
dif- ference across each of the sensing elements, Ω� , Ψ� and Φ(�,� ) 
are the abbreviations of Ω(� ), Ψ(�) and Φ(�, �). 

After incorporating the spatial and frequency diversities to con- 
struct the sensing elements, we next combine multiple consecutive 
WiFi packets (i.e., time diversity) to further improve the quality of 
2D AoA estimation. On the contrary, SpotFi merely utilizes one 
WiFi packet to estimate the AoA. The intuition is that the estima- 
tion variance for the covariance matrix in the MUSIC algorithm 
will decrease as more WiFi packets are used, resulting in sharper 
peaks in the AoA spectrum. This improves the quality of the 2D 
AoA image as it is easier to differentiate different signal reflections 
from different body parts or subjects. In our work, we combine 
multiple WiFi packets to generate thirty 2D AoA spectrums per 
second to synchronize with the sampling rate of the vision-based 
ground truth. 



 

 

 

 

 

 
Wi-Mesh: A WiFi Vision-based Approach for 3D Human Mesh Construction SenSys ’22, November 6–9, 2022, Boston, MA, USA 

� 

 

 

 

 

 

 
Receiver Receiver Receiver 

 
Signal reflected 

from human body 
Signal reflected from 

static objects 

 
Signal reflected from 

static objects 

 
 

Signal reflected 
from human body 

 
LoS signal 

 

LoS signal 
 
 

Transmitter Transmitter Transmitter 

(𝒂𝒂𝟏𝟏) Multipath signal propagation. (𝒃𝒃𝟏𝟏) Signal reflection from the static objects. (𝒄𝒄𝟏𝟏) Signal reflection from the human body. 
 

LoS signal 
Signal reflected 
from human body LoS signal 

 
Signal reflected from 
static objects 

Signal reflected 
from human body 

 
 
 
 
 
 
 
 

Signal reflected from 
static objects 

(𝒂𝒂𝟐𝟐) The 2D AoA image of the subject and 
the static objects. 

 
(𝒃𝒃𝟐𝟐) The 2D AoA image of the static objects. (𝒄𝒄𝟐𝟐) The 2D AoA image of the human body. 

Figure 5: Illustration of human motion extraction. 

Unlike SpotFi that only utilizes 2D MUSIC to estimate azimuth 
and ToF, we extend it into a 4D MUSIC algorithm which can achieve 
joint estimation for parameters of azimuth, elevation, AoD, and 
ToF as increasing the dimension improves the resolution signifi- 
cantly [55]. The estimation is presented as follows by maximizing 
the spatial spectrum function: 

1 

from static objects could make our system independent of different 
multipath environments or heterogeneous WiFi devices. 

Since the reflections from the static objects remain the same 
over time, we can extract the human body and eliminate the static 
reflections by subtracting the static components in consecutive 2D 
AoA estimation frames. For example, we show the signal reflections 
of the static objects in Figure 5, and the corresponding 2D AoA 
estimation in Figure 5. As these objects are static, their 2D 

� (�, �, �, � ) = 
��

 (�, �, �, � )�� �� �(�, �, �, � ) 
. (8) 

AoA estimation does not change over time. We refer to this as the 
static component. We could thus estimate such a static component 

Finally, we accumulate the 2D AoA values in the ToF and AoD 
dimensions to generate fine-grained 2D AoA spectrums, which 
contain the spatial information of both the human body and the 
surrounding static objects.  

 

4.4 Human Image Extraction 
As the estimated 2D AoA contains the information about both the 
human body and the surrounding static objects (i.e., LoS propaga- 
tion from the transmitter, walls, and furniture), we need to extract 
only the human body for 3D mesh construction by removing the re- 
flections off static objects and LoS propagation. Figure 5 shows the 
LoS and multipath propagation when the subject is performing 
activities. We can observe LoS signals, signal reflections from static 
objects, and signals bounced off the human body. The correspond- 
ing 2D AoA estimation is shown in Figure 5, from which we can 
differentiate various signal reflections or LoS signals based on 
their incident angles. Moreover, we can observe that compared to 
the LoS signals, the signals reflected from the human body are rela- 
tively weaker. Eliminating the LoS signals and the signal reflections 

in consecutive 2D AoA images and subtract it to eliminate the 
reflections from the static objects. 

After eliminating the signal reflections from static objects, we 
obtain the reflections mainly from the human body. This is because 
some human body reflections will bounce off the static objects 
again and then reach the receiver. We call these bounce-off signals 
indirect reflections. In contrast to the signal directly reflected from 
the human body, the indirect reflections are very weak as they 
propagate longer paths and experience more attenuation. Although 
they cannot be fully removed, we can mitigate the impact of the 
indirect reflections by filtering out weak reflections with an adaptive 
threshold. Figure 5 shows an environment with human body 
reflection only, whereas Figure 5 illustrates the 2D AoA of the 
human body after we extract human body reflections and perform 
indirect reflection mitigation. From Figure 5, we can observe a 
rough shape of a human body. 

As we all know that the human body reflects WiFi signals. But 
the human body is considered specular with respect to WiFi signals 
because the wavelength of the WiFi signal is much larger than the 
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Figure 6: Combining multiple frames to recover the whol 
body. 

Figure 8: Recovering the 3D mesh information with two re- 
ceivers. 
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Figure 7: Some example 2D AoA images related to different 
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granularity of the surface of the human body. As a result, when the 
human body is probed by WiFi signals, some parts of the human 
body may reflect the signals directly to the receiver, whereas other 
parts may scatter the signals away from the receiver. Therefore, a 
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single frame of 2D AoA image may only capture a subset of the 
human body, but misses other parts that disperse the signals away. 
As shown in Figure 6, the first frame only captures the head and legs 
of the human body, while the second frame only has information 
about the middle part of the torso and arms. To address this issue, we 
can assemble a sequence of 2D AoA spectrums to recover all parts of 
the human body. The last frame in Figure 6 is an intuitive example 
showing the full picture of the human body after combining the 
previous two frames. In our system, we leverage the deep learning 
model to learn such aggregation of multiple frames to handle the 
problem of the specularity of the human body. 

Figure 7 shows some examples of the 2D AoA images extracted 
for the human body. The first row shows the ground truth of the 
human body and the poses, whereas the second row shows the 
extracted human body from the 2D AoA spectrums. We can observe 
that the extracted human body images match the ground truth. 
For example, we can see the silhouettes of the human body and 
differentiate different poses. Since one 2D AoA image can only 
describe the 2D spatial information, we will need at least 2D AoA 
images at two different angles to recover the 3D human mesh. 
We thus leverage two receivers at two different viewpoints in our 
system to construct the 3D mesh of the human body, as shown in 
Figure 8. 

 

4.5 Deep Learning Model 
4.5.1 Tensor Input. We transfer the 2D AoA images to the 4D 
tensors with the size of 15 × 2 × 180 × 180 as the input of our 
deep learning model. Specifically, the first dimension is the number 
of frames, the second dimension is the number of receivers, the 
third and fourth dimensions are the ranges of the elevation and 
azimuth angles of the 2D AoA image. As we combine 2D AoA 
images of multiple frames and receivers, the 4D tensor possesses 

Figure 9: Deep learning model. 

enough spatial and dynamic information to enable the deep learning 
network to estimate the 3D human mesh. 

4.5.2 Model Structure. Our deep learning model is shown in Fig- 
ure 9. The first stage of our model is a CNN-based feature extractor 
which can extract spatial features of each frame. Specifically, we 
use CNN to learn the human silhouettes and human shapes in 2D 
AoA images. After the CNN layer, a max-pooling operation is used 
to remove redundant information and focus on the most relevant 
features. Then, a high-level vector of human body representation 
can be derived. 

After the feature extraction, we need to find an appropriate 
way to tackle the problem about specularity of the human body 
as aforementioned, and also relate the representation vectors of 

each frame. When the subject is performing dynamic motions, 
there exist high temporal dependencies between the consecutive 
frames since human motion changes are continuous and the next 
motion is closely related to the previous motion. And the past 
information can help fix and constrain the current motion state. 
Therefore, we feed a sequence of the above-extracted representation 
vectors to a multi-layer GRU to model the temporal coherence of the 
sequence and infer the missing parts based on previous frames. The 
recurrent networks update their hidden states as they process data 
in sequence. Then, we concatenate the hidden states corresponding 
to each frame and output a sequence elements. After that, a dropout 
layer is encoded to prevent the model fall into the local minimum. 
However, each previous frame has varying degrees of influence on 

the current result over time toward dynamic motions. Thus, we 
implement the self-attention mechanism to dynamically learn the 
contributions of each frame in the sequence elements, assign corre- 
sponding weights to the hidden state at each frame for highlighting 
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the contribution of the important ones, and generate the final rep- Z 
resentation. After getting the output from the self-attention layer, 
we further map the result vector into the shape and pose represen- 
tation of the SMPL model by utilizing a multi-layer fully connected 
neural network. The length of the result vector is 82, including 72 
pose vectors and 10 shape vectors. Then, we input the shape and 
pose vectors to the gender-neutral SMPL model [25] that consists 
of 6890 vertices to represent the 3D human mesh. 

4.5.3 Model Loss. We encode the SMPL model in our system to 
represent the 3D human mesh, which utilizes shape and pose pa- Y 
rameters as input and outputs a 3D human mesh consisting of

 X 
thousands of vertices. Thus, our problem can be considered a re- 
gression problem that regresses the shape and poses parameters 
of the SMPL model. In our work, the loss function has two compo- 
nents: the shape losses �� and pose losses �� . We use the �1 norm 
to evaluate differences between the predicted param 
ground truth.  

We leverage the standard adversarial training sche 
adversarial loss term that is backpropagated to our mo 
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1 ∑︁ 
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∥ � − � ∥�1

 

(a) The L-shaped antenna array. (b) The shared antenna 
connected to a signal 
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where �� and �̄� are the predicted parameters and the corr 

ground truth, and � is the number of frames in the inp 
The overall loss of our model is a weighted sum of 

and shape losses, which can be written as follow: 

������ = �� �� + �� ��, 
where �� and �� are the weights assigned to pose and s 
respectively. 
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5 EXPERIMENTS 

5.1 Experimental Setup 
5.1.1 Devices. In our experiments, we leverage the commodity 
WiFi devices, Dell LATITUDE laptops, as the WiFi transmitter and 
WiFi receivers. We deploy one WiFi transmitter and two WiFi 
receivers at each experimental site. Specifically, the transmitter 
contains three linearly-spaced antennas. And the WiFi receiver has 
nine antennas in L-shape. The L-shaped antenna array has two 
subarrays in the orthogonal direction which both consist of two 
Intel 5300 Network Interface Cards (NICs), as shown in Figure 10(a). 
We also utilize the signal splitter shown in Figure 10(b) to stitch NICs 
with shared antennas to simulate possible antenna configuration of 
the new generation WiFi devices. The cost of each Intel 5300 NIC is 
around ten dollars. The antennas on the receiver are equally spaced, 
where each antenna is half a wavelength apart (2.8 cm). The WiFi 
channel used is at 5.32 GHz with 40 MHz bandwidth, and the default 
transmitting packet rate is 1000 packets per second. We utilize Linux 
802.11 CSI tools [9] to capture CSI measurements of 30 OFDM 
subcarriers for each packet. Also, we utilize the camera to record 
the ground truth of the human body and activities. In addition, we 
use the vision-based approach in [18] to obtain high-resolution 
ground truth of the pose information and utilize the VideoAvatar 
[4] to capture the body shape information as the ground truth. The 
network time protocol (NTP) is used to enable synchronization for 
all devices. 

Figure 11: Layout of experiment environments. 
 

5.1.2 Data Collection. In the experiments, we recruit 20 volunteers 
(12 males, 8 females) of different heights and weights. Each volun- 
teer is asked to perform everyday activities, including walking in 
a circle, walking in a straight line, walking with arm motions (i.e., 
any arm motions like lifting arms, swinging arms, waving hands, 
etc), lifting the legs in the place, random arm motions in the place, 
and rotating torso. The experiments are conducted in four different 
real-world environments including a classroom, two laboratories, 
and a living room. Figure 11 shows the detailed layout of these 
environments. the default distance between the transmitter and the 
receivers is 2m. The size of the two laboratories is similar (i.e., at 

around 4.5m × 4.5m), but with different furniture. The sizes of the 

classroom and living room are 8.5m × 5.5m and 6m × 6m, respec- 
tively. In total, we collect around sixty million WiFi CSI packets to 
train and test our system for 3D human mesh construction. The 
data collection was approved by the IRB of the authors’ institution. 

 
5.1.3 Model Settings. We utilize the ResNet-18 framework [10] as 
our feature extractor in our deep learning model, where €i  ∈ R2048

 

is the max pooled features of the last layer. We then implement 
2 layers of GRU as the residual model. The number of the hidden 
state is set as 2048. The dropout rate of the dropout layer is 0.5. For 
the self-attention module, we utilize two fully-connected layers of 

size 2048 and tanh(·) activation. 
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Figure 12: The examples of the constructed 3D human mesh. 

During the training period, we split the data with 20 subjects 
into two non-overlapping datasets, which consist of a training 
set with 80% of the data, and a testing set with the rest of 20% 
data, making sure that the testing data is not seen by the model 
while training. Moreover, we conduct 5-fold cross-validation to 
test the robustness of our model. We set the initial learning rate 
to 0.0001 with periodical decay, and the batch size is set to 16. The 
weights assigned to the loss function are set to 1 and 0.05 
respectively. We implement our deep learning network in 
PyTorch. And we leverage Adam optimizer to train our model on 
NVIDIA RTX 3090 GPU. 

 

 
5.1.4 Baselines. To study the effectiveness of our proposed WiFi 
vision-based approach, we compare the results of our system with 
the results of using raw CSI measurements (i.e., CSI-based), Doppler 
frequency shift of WiFi signals (Doppler-based), and 1D AoA (1D 
AoA-based) as input data based on the same deep learning model of 
Wi-Mesh. In particular, the CSI-based baseline utilizes the CSI mea- 
surements of 30 OFDM subcarriers as input, whereas the Doppler- 
based baseline leverages the frequency-time Doppler profiles as 
system input. These two traditional input metrics are widely used in 
prior WiFi sensing systems [15, 48, 50]. The 1D AoA-based baseline 
uses two 1D AoA spectrums at each receiver (i.e., elevation and 
azimuth are estimated separated as the 1-dimensional metric) as the 
system input. It is worth noting that all of these input metrics are 

extracted from the same subjects and data collected in Section 5.1.2 
for a fair comparison. 

 

5.1.5 Evaluation Metrics. We leverage the commonly used per ver- 
tex error (PVE) and mean per joint position error (MPJPE) for our 
evaluation. Among them, MPJPE is the average Euclidean distance 
between the predicted joint locations of the human mesh and the 
ground truth, and PVE is the Euclidean distance between the pre- 
dicted human mesh vertices and the corresponding vertices on the 
ground truth mesh. 

 

5.2 Overall Performance 
We first evaluate the overall performance of our system and com- 
pare it with other baselines. We note that the training and testing 
data are non-overlapping and the testing data includes unseen en- 
vironments and subjects, and the same subjects under different 
activities. The overall results are shown in Table 1. As we can 
see, Wi-Mesh significantly outperforms other baselines and can 
estimate the vertices and joint locations of the 3D human mesh 
accurately. Specifically, the average PVE and MPJPE of Wi-Mesh 
are only 2.81cm and 2.4cm, respectively. Among the other three 
baselines, the CSI-based method performs the worst as the raw CSI 
measurements are very sensitive to different multipath environ- 
ments, the configuration of the WiFi devices (e.g., power, layout, 
etc.), and various people and activities. The Doppler-based method 
is better than the CSI-based but still has very large errors. This is 
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Table 1: Overall system performance comparison. 

 
 

PVE (cm)  MPJPE (cm) 
 

 

CSI-based 12.14 9.75 
Doppler-based 6.01 4.51 
1D AoA-based 4.10 3.51 

Wi-Mesh 2.81 2.40 

Table 2: System performance comparison for unseen envi- 
ronments. 

 
 

PVE (cm)  MPJPE (cm) 
 

 

CSI-based 18.67 14.61 
Doppler-based 9.94 7.71 
1D AoA-based 5.56 4.42 

Wi-Mesh 3.02 2.61 

Table 3: System performance for different unseen environ- 
ments. 

 

 PVE (cm) MPJPE (cm) 

Classroom 2.78 2.36 
Living room 2.92 2.56 

Lab1 3.12 2.63 
Lab2 3.04 2.64 

 
 

 

 

 
Figure 13: The examples of dynamic 3D human meshes gen- 
erated by Wi-Mesh. 

 

because the Doppler shift measures dynamic changes in the signals, 
which is less sensitive to the multipath environment, but still got 
affected by the configuration of the WiFi devices and various people 
and activities. The AoA-based approaches perform better than the 
prior two metrics as both 1 AoA and 2 AoA can capture the intrinsic 
spatial information of the human body, which is independent of 
propagation environments, heterogeneous WiFi devices, or various 
people and activities. Nevertheless, the proposed 2D AoA-based 
approach performs the best since 2D AoA jointly estimates azimuth 
and elevation, and thus can uniquely identify the body shape and 
deformations in 2D space, whereas two 1D AoAs of the body shape 
or deformations experience ambiguity in 2D physical space. 

Two recent RF-based 3D human mesh estimation systems, mmMesh 
and RF-Avatar [56, 60], reported slightly better or similar perfor- 
mance when compared to Wi-Mesh. In particular, the PVE and 
MPJPE of mmMesh are 2.47cm and 2.18cm [56], respectively, while 
they are 1.65cm and 5.75cm for RF-Avatar [60], respectively. These 
two systems, however, utilize specialized and dedicated hardware 
(i.e., mmWave RADAR or FMCW RADAR) as well as the RF signals 
that are specifically designed for sensing. Thus, they can obtain 
either accurate ranging or 3D point cloud of objects for 3D mesh 
construction. Instead, our system leverages commodity WiFi, which   
is orinasally designed for communication. Our system thus could 
benefit from the WiFi devices that already exist in pervasive WiFi 
networks for potential mass adaptation. 

To qualitatively evaluate the Wi-Mesh, we illustrate the 3D 
meshes generated by our system for different subjects performing 
various activities in Figure 12. The first column in each subfigure 
shows the reference video frame recorded by the camera when the 
subject is performing the activity. While the second column shows 
the ground truth of human mesh produced by the vision-based 

method. And the third column presents the result generated by Wi- 
Mesh. We use red dotted boxes to highlight the mispredicted and 
distorted body parts. We find that most incorrect constructions are 
at the ends of the arms or legs. This is because the signal reflections 
from these body parts are relatively weak. Nevertheless, we can 
easily observe that the overall constructed 3D meshes match the 
ground truth very well. 

Figure 13 further shows a sequence of video frames that a subject 
is walking with arm motions. The ground truth and the meshes 
generated by our system are shown in the first and second columns, 
respectively. We can observe that our system constructs dynamic 
3D human meshes over time smoothly and accurately. This is be- 
cause our system could extract the temporal relationship between 
consecutive frames, which helps the dynamic 3D human mesh con- 
struction. The above results demonstrate that our system could 
construct 3D human mesh accurately under various environments, 
humans, and activities. 

 

5.3 Impact of Unseen Environments 
Adapting to different and unseen indoor environments is important 
for the system to be practical. We thus specifically evaluate the per- 
formance of our system under unseen environments. In particular, 
we first train our system in the classroom setting and then test the 
system in the other three unseen environments (i.e., Living room, 
Lab1, and Lab2). We compare the results of Wi-Mesh with the other 
three baselines in Table 2. We observe that the performance of the 
CSI-based and Doppler-based approaches decreased dramatically 
under unseen environments. This is because both the CSI and the 
Doppler shifts are sensitive to different unseen environments, such 
as the multipath propagations and the device configurations. For 
Wi-Mesh, it achieves an average vertices location error of 3.02cm 
and a joint position error of 2.61cm. Our system thus is robust to 
different unseen indoor environments. This is because our system 
leverages 2D AoA images of the human body to extract intrinsic fea- 
tures for 3D mesh construction, which is independent of different 
environments. 

In addition, we show the performance of Wi-Mesh for each of 
these unseen environments in Table 3. Specifically, we collect WiFi 
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Table 4: System performance compari 

 

 PVE (cm) 

CSI-based 16.12 
Doppler-based 8.26 
1D AoA-based 4.92 

Wi-Mesh 3.01 

Table 5: System performance f 
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5.4 Impact of Unseen Subjects 
In practical scenes, Wi-Mesh should be able to deal with subjects 
that our model has never seen in the training period, which places 
high demands on the scalability of the system. Therefore, we also 
investigate the performance of our system when handling unseen 
subjects. Specifically, we split our dataset into two non-overlapping 
datasets, including 15 people in the training set and the other 5 
non-overlapping people in the testing set. The results are shown 
in Table 4. We can see that our system can handle unseen subjects 
effectively with an average PVE of 3.01cm and MPJPE of 2.73cm, 
which dramatically outperforms the other three baselines. It is 
mainly because our system could leverage the 2D AoA image of 
the human body to directly extract features of the body shape and 
deformation for 3D mesh construction. The above results demon- 
strate the robustness of our proposed system to unseen people or 
activities. 

 

5.5 Impact of NLoS and Baggy Clothes Scenarios 
To evaluate the NLoS scenarios, we place wood panels with a thick- 

ness of 2.5cm between the subjects and the WiFi devices (one trans- 
mitter and two receivers). In this configuration, the WiFi signals 
which are emitted from the transmitter and reflected from the hu- 
man body will be blocked by the wood panels. We also place the 
WiFi transmitter and receivers in one room and let the subjects 
perform activities in another adjoining room to test our system 
under the through-wall scenarios. The trained Wi-Mesh model un- 
der the LoS scenario is directly utilized to test the NLoS scenarios. 
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Figure 14: The examples of NLoS and baggy clothes scenarios. 

 
Table 5 presents the results of the shape and pose estimation un- 
der both LoS and NLoS scenarios. The PVE and MPJPE are 3.65cm 
and 3.08cm for wood panels block scenarios, respectively. And the 
PVE and MPJPE are 4.39cm and 3.97cm for through-wall scenarios, 
respectively. In the NLoS scenarios, our system can still construct 
accurate 3D human mesh but performs slightly worse than that of 
LoS scenarios. The reason for the slight performance degradation 
under NLoS is that when the signal traverses the occlusions, the 
signal strength is attenuated, resulting in lower SNR of the WiFi 
signals. 

Figure 14 shows some examples of the 3D mesh construction 
under NLoS and baggy clothes scenarios. In Figure 14(a), the WiFi 
devices are blocked by the wood panels placed behind the human 
body. Figure 14(b) and (c) show two 3D human mesh constructed 
when the subjects wear baggy clothes. We can observe that the con- 
structed 3D human mesh for the blocked subject is aligned with the 
ground truth. In addition, our system can accurately construct the 
3D human mesh when subjects wear baggy clothes. These results 
show that our system works well for both NLoS and baggy clothes 
scenarios, where the traditional computer vision-based system will 
not work. 

 

5.6 Impact of Distance Between Transmitter 
and Receiver 

In this subsection, we evaluate how the system performs under 
different distances between the transmitter and the receiver. Specif- 
ically, we evaluate different distances between the transmitter and 
receiver including 1.5m, 2.5m, and 3.5m, which can roughly produce 
the reflection path length corresponding to 4m, 6m, and 8m, respec- 
tively. In Table 6, we can observe that the PVE are 2.67cm, 3.15cm, 
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Table 6: System performance under different distances be- 
tween transmitter and receiver. 

 

 

 

 

 
Table 7: System performance for different numbers of re- 
ceivers. 

 

 PVE (cm) MPJPE (cm) 

Two receivers system 2.81 2.40 
Single receiver system 3.80 3.51 

 

3.71cm, and MPJPE are 2.25cm, 2.69cm, 3.07cm for these three re- 
flection path lengths, respectively. It shows that the performance 
decreases as the reflection path length increases. This is because 
the longer reflection path length results in lower received signal 
strength, especially after the signals are reflected by the human 
body. Still, our system provides considerable accuracy even when 
the reflection path length is 8m, which could cover the area of a 
typical room. We anticipate that a smart home environment will 
include a variety of smart and IoT devices with WiFi interfaces. 
Therefore, the high density of smart and IoT devices provides us 
with the opportunity to achieve good system performance. 

 

5.7   Impact of Number of Receivers 
In this subsection, we compare our system performance utilizing 
two receivers and a single receiver. Specifically, we use the collected 
data from two receivers and one receiver to test our system sepa- 
rately. And the overall data process pipeline remains unchanged. 
The results are shown in Table 7, we can see that the PVE and 
MPJPE for two receivers are 2.81cm and 2.40cm separately. And 
the PVE and MPJPE are 3.80cm and 3.51cm for a single receiver 
system. The accuracy increases when two receivers are utilized. 
This is because two receivers at two different viewpoints provide 
more dimensional information than only one receiver. While our 
system could still have considerable performance when utilizing 
data from only one receiver, which demonstrates that the overall 
data processing method of our system is effective and efficient. 

 

6 DISCUSSION 
The experiment results show that Wi-Mesh achieves promising 
results. However, the current system still has some limitations. 

Multiple Subjects. Our current system only supports one per- 
son in the environment. Constructing 3D human mesh for multiple 
persons simultaneously, especially in a crowded space (e.g., train 
stations and shopping malls), is still an open problem. This is also 
a challenging problem for camera-based systems in the computer 
vision community. One promising direction to address this is to first 
segment each person in the 2D AoA images, and then perform 3D 
human mesh construction one by one. Still, it is an open question 
of how many persons can be supported simultaneously with the 
proposed WiFi vision-based approach due to the limited resolution 
of the 2D AoA estimation. 

Sensing Range. Although we have demonstrated our system 
can work at several meters range, it is still limited when compared to 
the communication range of the WiFi. This is because our approach 
relies on the signal reflections, whose signal power is several orders 
of magnitude weaker than that of the LoS signals. The sensing range 
of our approach is thus much shorter than the communication range. 
This limitation could be potentially addressed by leveraging the 
ubiquitous WiFi networks (i.e., having close WiFi devices to cover 
each area collaboratively), or by leveraging powerful directional 
antennas. 

Computation Cost. In our work, we utilize one desktop to per- 
form the 2D AoA estimation with one-degree angular resolution 
in order to obtain fine-grained 2D AoA images and achieve good 
results for the 3D human mesh. Thus, our system is not optimized 
for the computational cost or for the real-time 3D human mesh 
estimation. The computational cost of our 3D human mesh con- 
struction consists of two parts. The first part is the computational 
complexity of the 4D MUSIC algorithm and the second part is the 
cost of human mesh estimation using the model. We note that once 
the model is trained, the time to estimate the human mesh could be 
negligible. The majority of the computational cost is the 2D AoA 
estimation using the 4D MUSIC algorithm. While the eigenvalue 
decomposition of MUSIC has the complexity of � (� 2 � ) 
(where 
� is the number of incident wireless signals, � is the number of 
sensors), the major computational complexity of current implemen- 
tation is searching in 4D space, which is � (�4), where � is th 
resolution at each dimension. In particular, the current resolution 
of azimuth and elevation in our system is 180. However, our sys- 
tem may reduce the computation cost from two aspects. First, we 
could reduce the resolution of each dimension while still maintain 
a good system performance. Second, we could leverage dimension 
reduction-based MUSIC algorithms [21] to simplify the 4D estima- 
tion problem into two separate 2D estimation problems. We could 
also apply low-complexity algorithms [28, 30] to infer the incident 
signals without searching the 4D space. 

 
7 CONCLUSION 
In this work, we propose a WiFi vision-based 3D human mesh 
construction system, Wi-Mesh, which could benefit from the preva- 
lence of WiFi signals and reuse the WiFi devices that already exist in 
the environment. In particular, we exploit the advances of WiFi and 
2D AoA estimation of the signal reflections to visualize the shape 
and deformations of the human body for 3D mesh construction. 
Our system leverage deep learning models to digitize the 2D AoA 
image of the human body into SMPL model-based 3D mesh rep- 
resentation. Extensive experiments demonstrate that Wi-Mesh is 
highly effective and robust in 3D human mesh construction across 
different environments and for unseen people. Our system can also 
work under NLoS, poor lighting conditions, or baggy clothes, where 
the camera-based systems do not work well. 
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