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Abstract

The mass-loss rates from single massive stars are high enough to form radio photospheres at large distances from
the stellar surface, where the wind is optically thick to (thermal) free—free opacity. Here we calculate the far-
infrared, millimeter, and radio band spectral energy distributions (SEDs) that can result from the combination of
free—free processes and synchrotron emission, to explore the conditions for nonthermal SEDs. Simplifying
assumptions are adopted in terms of scaling relations for the magnetic field strength and the spatial distribution of
relativistic electrons. The wind is assumed to be spherically symmetric, and we consider the effect of Razin
suppression on the synchrotron emission. Under these conditions, long-wavelength SEDs with synchrotron
emission can be either more steep or more shallow than the canonical asymptotic power-law SED from a
nonmagnetic wind. When nonthermal emission is present, the resultant SED shape is generally not a power law;
however, the variation in the slope can change slowly with wavelength. Consequently, over a limited range of
wavelengths, the SED can masquerade as approximately a power law. While most observed nonthermal long-
wavelength spectra are associated with binarity, synchrotron emission can have only a mild influence on single-star
SEDs, requiring finer levels of wavelength sampling for the detection of the effect.

Unified Astronomy Thesaurus concepts: Non-thermal radiation sources (1119); Early-type stars (430); Stellar

magnetic fields (1610); Stellar mass loss (1613); Stellar winds (1636); Radio continuum emission (1340)

1. Introduction

Massive stars are an important part of the story of cosmic
evolution (e.g., Bromm & Larson 2004; Heger & Woosley
2010; Madau & Dickinson 2014), due to their luminous but
short lifetimes (e.g., Langer 2012), their explosive endings
(e.g., Woosley et al. 2002), the extreme remnants that they
produce (e.g., Heger et al. 2003), and their strong influence on
galactic evolution (e.g., Hopkins et al. 2012). Our developing
understanding of massive star evolution is informed by factors
such as stellar rotation, magnetism, and mass-loss rates.
Ongoing observational and theoretical investigations continue
to refine our ability to measure and interpret these properties for
massive stars.

Radio studies are a foundational approach for determining
the relatively high mass-loss rates (M) from massive stars,
which can be large enough to produce radio photospheres that
form in the stellar wind (Panagia & Felli 1975; Wright &
Barlow 1975; Abbott et al. 1980, 1981, 1986; Bieging et al.
1989; Leitherer et al. 1995, 1997). The radio flux (F,) is
typically attributed to thermal (free—free) emission, and is
proportional to both the mass-loss rate of the star and the
terminal velocity of the wind (v.), via F, o< (M/v)*/3
(Lamers & Cassinelli 1996). However, additional factors such
as globally structured magnetic fields (e.g., Owocki & ud-
Doula 2004; Daley-Yates et al. 2019), nonthermal emission
from gyrosynchrotron processes (e.g., White 1985; Chen &
White 1994; Van Loo et al. 2006), and the existence of
structured wind flows (“clumping”; e.g., Blomme &
Runacres 1997; Nugis et al. 1998; Fullerton et al. 2006; Puls
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et al. 2006; Ignace 2016), have presented challenges for how
radio measures can be used to infer M values. An improved
understanding of how these processes affect the shape of the
spectral energy distribution (SED), and thus interpretations of
the stellar mass-loss rate, is therefore required.

The discussion of nonthermal radio emission from massive
stars has often focused on synchrotron emission in massive
colliding wind binaries (CWBs; e.g., Williams et al. 1994;
Pittard et al. 2006; Falceta-Goncalves & Abraham 2012; Parkin
et al. 2014; Benaglia et al. 2015; De Becker et al. 2017).
Electrons are accelerated at the shocks formed from the
collision of highly supersonic wind flows, and the in situ
magnetism where synchrotron emission is generated derives
from a stellar magnetic field. A tremendous advantage of a
CWB system is the opportunity to observe cyclical variations
in the nonthermal spectrum. This variability provides diag-
nostic leverage to produce globally self-consistent models for
the wind properties, shock properties, magnetism, and the
physics underlying particle acceleration (e.g., Blomme et al.
2017; De Becker 2018).

Although CWB systems have considerable potential to
describe the nonthermal emission from massive star binaries,
they cannot be used to fully characterize the nonthermal
emission from (purportedly) single early-type stars. In recent
years, an increasing number of these have been detected, in no
small part due to the successes of the spectropolarimetric
surveys that have provided direct measurements of large-scale,
nearly dipolar' surface magnetic fields in massive stars
(e.g., MiMeS, BOB; Alecian et al. 2014; Fossati et al. 2015;

' The assumption of a (nearly) dipolar magnetic topology is generally

appropriate (e.g., Donati & Landstreet 2009). However, there are some notable
exceptions, including 7 Sco (HD 149438, B0.2 V; Donati et al. 2006), HD
37776 (B2V; Kochukhov et al. 2011), and o> CVn (B9p; Silvester et al. 2014),
which have fields with significantly more complex magnetic topologies.



THE ASTROPHYSICAL JOURNAL, 932:12 (10pp), 2022 June 10

Morel et al. 2015; Wade et al. 2016; Grunhut et al. 2017). The
magnetic fields of O- and B-type stars channel the stellar wind
into a structurally complex magnetosphere, which can provide
the conditions necessary for synchrotron emission (e.g.,
Trigilio et al. 2004; Leto et al. 2006, 2021; Shultz et al.
2022). Nonthermal radio spectra of single magnetic massive
stars have been observed in several instances (e.g., Kurapati
et al. 2017; Leto et al. 2017, 2018).

White (1985) published a seminal paper exploring the
modeling and application of radio synchrotron emission for
massive star winds. The work was later expanded by Chen &
White (1991), White & Chen (1992), Chen & White (1994),
and White & Chen (1994), both in terms of including
additional physical processes (e.g., inverse Compton cooling),
and for the consideration of very-high-energy emissions. Two
developments emerged from this series. First, it appeared that
the majority of sources displaying nonthermal radio emission
were in binaries, hence the increased focus on the modeling of
CWB systems (e.g., Dougherty et al. 2003; Pittard et al. 2021).
Second was the recognition that there are challenges to
understanding how relativistic electrons can survive and/or
be energized at large radii in the wind (Van Loo et al.
2004, 2005, 2006). While these challenges remain, nonthermal
radio emission has been observed in a few nonmagnetic,
purportedly single, early-type stars (e.g., Dougherty &
Williams 2000). There is thus a need to further develop the
theoretical description of how free—free and nonthermal
emission jointly affect the SED, in order to provide bench-
marks for these data.

In this paper, we present several new models of far-infrared,
millimeter, and radio band spectral energy distributions (SEDs)
resulting from the combination of thermal (free—free) and
nonthermal (synchrotron) emissions. Section 2 develops the
model components. In particular, our goal is to examine general
trends for single-star winds, and to this end we consider
spherical winds and adopt scaling relations for the magnetic
field strength and the density of high-energy electrons.
Section 3 reports the results of our analysis. Finally, in
Section 4, we discuss these results in light of the current data
and interpretation of radio SEDs for massive-star winds.

2. Modeling Radio SEDs
2.1. Thermal Free—Free Emission

Our model is based on a smooth, spherically symmetric
wind. While it is clear that magnetism can alter the wind
density and vector flow from a spherical geometry, a spherical
wind is appropriate for a qualitative exploration of how
synchrotron emission can influence radio SED shapes.
Additionally, unlike numerically intensive MHD simulations
and detailed radiative transfer, the semi-analytic approaches
afforded by simplifying assumptions (such as a spherical wind
density) allow for a rapid exploration of the parameter space.

The emission coefficient for thermal free—free processes,
expressed in terms of the power per unit frequency per unit
volume per steradian, is written as (e.g., Rybicki &
Lightman 1986)

JT =545 x 107 Z2 nen; T1/2 g e=/KT ¢))

where Z; is the root-mean-square charge of the ion, 7T is the gas
temperature, 1, and n; are respectively the free electron and ion
densities, v is the observation frequency, and gyff is the
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free—free Gaunt factor (e.g., Brussaard & van de Hulst 1962;
Hummer 1988). In the exponential, 4 and k are the usual Planck
and Boltzmann constants. The numerical constant has been
evaluated in cgs units.

In the Rayleigh—Jeans limit appropriate at long wavelengths
where hv < kT, the expression for the emission coefficient
becomes

. nen; \( 10* 172
JT a2 5.45 x 10—1423(—1526)(7) g, 2

where we have scaled the temperature and ion number densities
by fiducial values similar to those found in massive star winds.

The absorption coefficient, written here as the product of the
opacity coefficient and the mass density, is given by (e.g.,
Rybicki & Lightman 1986)

(ky p)T =37 x 10322 nen; T-1/2 173 gl,ff(l — e /KTy,

3
which, in the Rayleigh—Jeans limit, is approximated as
(104)?
Ky p)T A 0.0020 22 2L | 2 gl 4
(K p) e e 8 )

Note that we now express the absorption coefficient in terms of
the observation wavelength A. The source function for free—
free radiation is therefore

. ff
S,,ff _ Jv _ Bu
Ry p

LT _ (L)

2 28 x 10712 X o) ®))

We can estimate the extent of the radial photosphere
(Cassinelli & Hartmann 1977), assuming that the wind is
optically thick to the free—free opacity (Equation (4)), with the
speed v(r) ~ v... The optical depth of a location in the wind is
given by the integral of the free—free opacity along the
observer’s line of sight (LOS),

T = f () dz. (6)

where z = @ cot 0, w is the impact parameter for a ray through
the wind, and 6 gives the angle between the radial direction and
the observer’s LOS.

We introduce R, as the radius at which an optical depth of
unity is achieved, defined through

= [ G dr = 1. M
R,

For an isothermal wind with T= 10* K, setting Z; = 1, along
with n, = n;, the effective radius R,,, expressed in terms of the
stellar radius R,, is

2/3
Ry ~ 405 A / o i R 1/3( fy1/3 (8)
Ry Xo 103 o) &0

Here, we scale the wavelength by a fiducial value of Ay =1 cm,
and the stellar radius by 10'! cm ~ 1.5R... The number density
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scale constant n,, where

M
ny = ——————, ©)
47 p, muRy v

is derived from mass continuity (assuming spherical symme-
try), where M is the mass-loss rate, v is the terminal velocity
of the wind, and p. is the mean molecular weight per free
electron. With n.=n;, a wind of entirely ionized hydrogen
would have p. =1, whereas a wind of entirely singly ionized
helium would have p. = 4.

Equation (8) shows that the extent of the radio photosphere
increases with wavelength, although the increase is more
shallow than that from a linear dependence on A. The radio
photosphere at Ay = 1 cm, assuming ny = 10" cm ™, is exten-
sive:;? however, ion abundances, the temperature and ionization
state of the gas, and the stellar radius will realistically alter the
value of R,, even assuming that n, does not change.
Furthermore, the presence of clumping (structured wind flows
believed to result from the intrinsic instabilities associated with
the wind-driving physics; see, e.g., Lucy & White 1980;
Owocki et al. 1988) in the wind would also extend the radio
photosphere (Ignace 2016).

Radio SEDs purely from free—free opacity have been well
studied. Wright & Barlow (1975) and Panagia & Felli (1975)
derived the canonical SED power-law result, with the radio flux
F, o< 706 for a spherical wind, at long (~1 cm) wavelengths
for which the extent of the radio photosphere is much greater
than the stellar radius. Schmid-Burgk (1982) found that under
the assumption of power-law distributions for the wind density
and temperature, axisymmetric winds have SED slopes with
the same power-law dependence of the frequency (oxv~"%) as
from spherically symmetric winds (although the luminosity
level is different from the spherical result). This highlighted the
idea that the SED slope is governed by the isophotal growth
rate as a function of wavelength. Power-law SEDs result for
isophotes whose shapes are invariant with wavelength.
Ultimately, the expanding radio photosphere with wavelength
provides an opportunity for mapping the wind density and
geometry as a function of wavelength. For example, the
canonical result of 7, o< #~%°, while not unique, can generally
be taken as evidence of a spherically symmetric wind
expanding at a constant speed.

Free—free radio SEDs have been evaluated for a variety of
additional considerations. A change in the SED power-law
slope can result from a change in the geometry of the
circumstellar medium. The study of Be stars performed by
Klement et al. (2017) provides a useful example. The authors
found that disk truncation can lead to an SED slope that
steepens toward JF;, oc #~2, which is suggestive of an as yet
undetected binary companion. The influence of clumping for
free—free radio SEDs has also been considered (e.g., Abbott
et al. 1981; Blomme & Runacres 1997; Ignace et al. 2003;
Ignace 2016). Clumping affects the opacity, impacting the
location of the effective radius R,. Clumping also increases the
emissivity, which scales as the square of density. The end result
is that mass-loss rates derived from radio luminosities will be
overestimated if clumping is not taken into account.

2 A wind density scale of np = 10"* cm 3 is applicable to WR stars, which
have a very dense wind environment. For OB supergiants, a wind density scale

of ny = 10'° em™ would be more appropriate. See also Appendix C.

Erba & Ignace
2.2. Synchrotron Emission

For a single electron, the specific luminosity of synchrotron
emission is (Rybicki & Lightman 1986; Dougherty et al. 2003)

L,=+3 w Fw/v), (10)
me C
where B is the magnetic field strength, m, is the electron mass,
q is the electron charge, « is the pitch angle, and F(x) gives the
spectral slope as a function of frequency. The quantity v, is the
cutoff frequency, given by
Vo= 3y2 ¢ B sina’ (11
47 me ¢
where  is the Lorentz factor of the relativistic electrons. For an
electron, v,=4.2 MHz 72B sin «, or in terms of wave-
length, A\, = 0.071 km(y2 B sina) .

The synchrotron spectrum can be derived from a power-law
distribution of free electrons. At a given location in the wind,
the energy distribution of the electron number density can be
represented as

dn,(r, E)
dE
where E is the energy, Cg is a scale constant, and p is the

power-law exponent for the distribution. This can be recast in
terms of the Lorentz factor for the relativistic electrons, with

dE = Cg(r)E~P" dE, (12)

dn.(r, y)

dy = C,(r)y " d, (13)
dvy i

where C, is the corresponding scale constant. Note that with
respect to units, C,~number density, but Cg has units of
energy that depend on the value of p. The ratio of the scale
constants is thus

o'
)

= (me )P (14)
E
The value of the scale constants C,, and Cg can vary with pitch
angle (Rybicki & Lightman 1986), but we ignore such pitch-
angle effects for this study.
The number density of the relativistic electrons associated
with the production of synchrotron emission is then

n() = C,0) [y (15)

Yoo
/min

The power-law index p can vary with radius (e.g., Van Loo

et al. 2005), but we choose’ a constant value of p(r) = p = 2,

which is commonly adopted for strong shocks (see Ellison &
Eichler 1985; Eichler & Usov 1993, and sources therein).

If we assume v, ~ 1 and ~ > 1 for all locations in the
wind, the number density of relativistic electrons becomes

m—+2

ny(r) = Cy(r) = C*(&) R

r

(16)

where m is a power-law exponent that is a free parameter of our
model. The case of m =0 corresponds to an inverse-square

3 Other values could certainly be used: Van Loo et al. (2004) suggest a

steeper value, with po between 2 and 3. We adopt here the choice of py = 2 to
facilitate our quantitative examples.



THE ASTROPHYSICAL JOURNAL, 932:12 (10pp), 2022 June 10

decline of the density of the high-energy elections C.,, matching
the scaling of the gas density with radius in the asymptotic
constant expansion portion of the wind.

Simplifyin§ for the specific case of po=2, we find that
Cg= C,mec”. Assuming equipartition, the scale constant for
the particle distribution is expressed as (Dougherty et al. 2003)

2 m+2
c, = w(&) , (17

In “Ymax r

where u, is the energy density of the relativistic particles, and
Ymax 1S the largest value of ~y achieved by any particle.

The emission coefficient for synchrotron processes,
expressed as power per unit frequency per unit volume per
steradian, is (Rybicki & Lightman 1986)

3
. 3¢B C, F(p+19)r(p 1)

" dmmect p+ 1 \4 0 12) \4 12
(1-p)/2
« 27 M C V ’ (18)
3gB

where we choose o =90° for the pitch angle.
The absorption coefficient for synchrotron processes is given
by Rybicki & Lightman (1986)

3 p/2
(kyp)® = @ _ 31 Br+2)/2 1, ~(p+4)/2
87 me \ 27 m; 3

1 11
x Cg r(ﬁ + —)F(£ + —). (19)
4 6 4 6

The source function for the synchrotron emission is then

.S

S ‘]V

v = (20)
(kyp)®
:2 mpP ¢ 1372 (27r Me c)l/zﬁ T'(p) , @1
c? 34B Ce p+1
where
= I'(anI'(as)
I = —— = 22
P = T Tan @2
with
a = Gp +19)/12, (23)
a =@p —1)/12, 24)
as = GBp +2)/12, (25)
as = (Bp +22)/12. (26)

Using po=2 and Equation (14), the expressions for the
synchrotron emission coefficient, opacity, and source function
reduce to

C,
s —151 &~ | p3/2 /2
jS=123x10 (1010)3 N/2, Q27
c,
(hp)* = 5.1 % IOII(FO) B, (8)
Sy =45 x 1075 B~1/2 Xx5/2, (29)

It is possible to develop an “effective photosphere” analysis
for pure, optically thick synchrotron radiation, following the
approach of Cassinelli & Hartmann (1977). Details of the full
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solution and the approximation of an effective photosphere are
given in Appendix A. With Equation (16), and a field strength
that declines like a toroid* with

B(r) = B(&) (30)

r

1522

where the notation indicates a value at the base of the stellar
wind, the extent of the radio photosphere will then scale as
R, o \/G+m™  The corresponding specific radio luminosity
becomes L, S, R? oc X3m/©+2m) For a choice of m =2 in
C,,, the photospheric radius will grow as R, ~ A€ close to the
value for free—free emission. However, the SED slope is
somewhat steeper than the case of free—free emission, with
L, x A~!. We note that for large values of m, the radius of the
synchrotron radio photosphere approaches a constant with
wavelength, and the SED steepens to L, ~ A\~>>. However,
there are other factors that influence the SED, such as Razin
suppression, addressed below.

2.3. The Razin Effect

The Razin effect (e.g., Dougherty et al. 2003) refers to the
suppression of synchrotron emission due to the refractive index
of the plasma. It is dependent on the plasma frequency, and the
frequency at which the effect becomes important is given by
(e.g., Van Loo et al. 2004):

n
v = 20 —=. 31
R 3 (3D

The suppression of the synchrotron emission scales as
re "/ = e~ where \g = c/vg. At frequencies lower than
Vg (or wavelengths longer than \g), the synchrotron emission is
strongly reduced.

It is useful to develop a scale of where in the wind the Razin
effect becomes significant. To provide an estimate, we assume
the electron density decreases as r~ 2, and the field strength
decreases as ', With a wind density of ny = 10%cm™3, and a
stellar field strength of B, =100 G, Equation (31) gives
Ag = lcm at a radius of rg ~ 70R,. At larger radii, the Razin
wavelength will be greater. Consequently, for an observation
wavelength of 1 cm, the Razin effect will suppress synchrotron
emission for r < rg, but not for r > rg.

3. SEDs from Winds with Free—Free and Synchrotron
Emission

We now consider an ionized and magnetized wind that is
spherically symmetric, with both free—free and synchrotron
opacities. The source function is

-ff N
+
= T (32)
(kvp)" + (Kyp)
Except for very long wavelengths or very large distances in the
wind, it is reasonable to expect that the synchrotron opacity is
considerably smaller than the free—free opacity (Appendix A),

* With flux freezing for highly ionized winds, rotation generally leads to a
toroidal field topology (e.g., Ignace et al. 1998).
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so that the source function reduces to

=S

Jy

SI/ = Bl/(T) +
(Kup

)t (33)
with the free—free opacity (x, p) (Equation (4)) as the sole
contributor to the absorption coefficient.

From Equation (6), the optical depth of the thermal absorption
is the LOS integral of the free—free opacity, along a constant
impact parameter. The expression is analytic, and integrates to

2 .
T’f/f — 70,3 gff A (W), (34)
2 Y\ \o sin’ 6

where cos 8 = ji, sin @ = wu, and u = R,./r. The angle 6 varies
over a range of [0, ], with § < 7r/2 describing the hemisphere of
the observer. For simplicity, we have defined the constant

2 2 4\3/2
=2 x 108 2 (R*)(”") L0 (35)
i e L1011\ 1013 T

With these quantities, and ignoring any radio emission from
the star itself, the formal solution for a radio SED from an
isothermal wind is

L,= 87r2R£{B,,f [1 — e @] @ dw
0

S

00 ATio (@) j "
+ f f e e w dT,f,f dwy, (36)
o Jo (ko p)"

where Tio; = 7 (w, § — 7), and we have ignored any
contribution from the stellar disk. Note that we ignore Razin
suppression of the synchrotron emission in this expression,
which will be discussed below.
The first integral in Equation (36) can be evaluated
analytically as
[o¢]
L,=87’R} B, [1 — e @] w dw
0

2 o =
= 87T2R* B, [l — e lwdw
0

1 A Y)Y
= 47°R2 B, F(—) I el i (37)
302 ",

where in the second equality we have used

T (@) = [ )z

_7TT0(>\)2 (38)

23 )\_0

with ¢ = 779 \2/2)3. Using the appropriate approximation for
B, in the Rayleigh—Jeans limit, this expression can be recast as

-2/3
A
L,= Lyl — , 39
() o

with

2/3
Lo=135 x 10'8 z ( 2o )4/3( Ry )8/3 (40)
e i 1013 10"
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Table 1
Model Parameters for the SEDs Shown in Figure 1
m 0.0, 0.5, 1.0
Ky(m =0.0) 1
Ko(m =0.5) 100
Ko(m =1.0) 30,000
ap 0 (no Razin),
1, 3,9, 27,81

Note. The dimensionless constant ao is used to parameterize the Razin
wavelength, as A\g = /\g /ao (see also Equation (47)). Choosing a value of
B, =100 G, Ky~ 100 for typical WR star parameters, and Ky~ 20 for the
typical parameters associated with an O supergiant.

as the scaling for the specific luminosity, with units of erg s~
Hz~'. For the sake of illustrative models, we ignore the
wavelength dependence of the free—free factor and set g,,ff =1,
yielding L, x A\"?/3. The inclusion of g,ff would produce the
canonical L,, < A% result,

The second integral in Equation (36) can be recast as

2 p3: LA 12 m—1/2 ,—7if
L, =87 R*joflj(; =) e Vdudu, (41)
- 0

where we have applied Equation (27), assuming p = 2, and the
constant j, = 2.3 x 1025 B}/2C,.

For the case of m=1/2, for an optically thick wind
(o> 1), Equation (41) can be solved analytically to express
the wavelength dependence of the SED:

A 172 00 I
L,=812R;} jo(—) f f e rdu du
)\0 -1 J0

~1/6 173
_ 1 Ko(i) (3) F(i)Ao, 42)
)\0 T0 3

where
+1 sinf 372/3
A ::LI‘ = , 43
0 -1 (0 — cos@ sin®)'/3 a 4 (43)
and the constant K is equal to
Ky — 872y Ry
Ly
1/3 3/2
=135 x 105( C )( Ry ) ( By )
10" J\ 10" 100 G
2 \2/3 —4/3
« | & (ﬂ) : (44)
He Hy 1013

Here, we have applied a fiducial scaling for the surface
magnetic field B,.. We note that K, is dependent on a number of
parameters, especially considering that n, (Equation (9)) also
depends on the stellar M, R,., and v... Thus, a given K, may
apply to a wide combination of observables. Table 1 lists the
values of K considered for our model SEDs.

The formal solution is then

~2/3 1/3 “1/6
Lo (A} pak2] (2] . (45)
Ly Ao 70 Ao

While this result is essentially unphysical, since at
sufficiently long wavelengths the luminosity integrated over
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2 C7~ 1/!'2

C, ~ 1/r28

o
—
™S 0
—
o)1}
S
—2
0.2 .
< 0 —
o7} _
(o} i
— _0.2 -]
FU .
~ )
1—0.4 N
— _
() ]
L -06 .
© i d
—0.8 " 1004 1cm 1m 100w lem 1m 100k lem 1m <l
H 1 | 11 1 | 11 1 | 11 1 | 111 1 | 11 1 | 11 1 | 11 1 | L1411 1 | 11 1 | 11 1 | 11 1 | 1_H
2 0 2 4 -2 0 2 4 -2 0 2 4
log A (cm) log A (cm) log A (cm)

Figure 1. The upper panels show model SEDs; the lower panels show logarithmic slopes of the SEDs with wavelength, representing the instantaneous power-law
exponent. At short wavelengths, where the slope is —2/3 (the dotted lines), the SED is dominated by the free—free emission. Deviations from that value signify the
influence of synchrotron emission. The rows from left to right show different radial distributions of the relativistic electron population density, as represented by C.,.
The red curve in each case indicates a model that does not include the Razin effect (corresponding to the model parameter ay = 0). Each successive curve below is a
model with a larger value of ag, corresponding to increasingly more suppression of the synchrotron emission. The model parameters are provided in Table 1.
Consistent with the discussion in Section 2.2, we have used a power-law index of p(r) = pg = 2.

wavelength is unbounded, Equation (45) is useful for
illustrating the transition of the SED from a thermal to a
nonthermal spectrum. Model SEDs without the Razin suppres-
sion of the synchrotron emission (i.e., agp = 0) are shown as the
red curves in Figure 1. These models show that the radio
spectrum follows the curve expected from thermal emission at
short wavelengths, but then becomes modified by the
synchrotron emission at long wavelengths.

Including the Razin effect (suppressing synchrotron emis-
sion) in the formal solution yields

~2/3 172
L, A A
Lo Ao Ao

1l
% f f W12 T oM M) gy dyy (46)
“1Jo

where A\g(u) = /\OR /u is the Razin wavelength (Equations (30)
and (31)). The Razin wavelength scale constant is defined as
By 108
0 G no ’

Ay = 0.015cm 47)

Figure 1 also shows model SEDs that include the Razin
effect (the black curves). The inclusion of Razin suppression
significantly diminishes the synchrotron component at long
wavelengths.

4. Discussion

The synthetic SEDs shown in Figure 1 indicate that the
inclusion of synchrotron emission can have a significant impact
on the shape of the long-wavelength SED, even when Razin
suppression is considered. In this regime, the SED is no longer
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dominated by thermal free—free emission, and so deviates from
the canonical power-law slope. This change is most pro-
nounced when there is a fixed, constant ratio between the wind
density and the number density of relativistic electrons (left
column).

For steeper distributions of relativistic electrons, the
wavelength at which the free—free emission ceases to dominate
the SED decreases. Razin suppression of the synchrotron
emission becomes more pronounced, producing an SED with a
slope that closely resembles the thermal power-law result. This
implies that a sufficiently steep distribution of relativistic
electrons may produce an SED with a power-law slope that
mimics the result for thermal emission, particularly in a given
wave band.

Our results indicate that, in the absence of other factors,
synchrotron emission can influence single-star SEDs, although
a relatively fine degree of wavelength sampling may be needed
for the detection of the effect owing to the gradual change in
SED slope. Although we do not directly consider magnetic
massive stars as part of this analysis, we briefly explore the
effect of a latitudinally dependent toroidal field on the shape of
the SED in Appendix B.

The models reported here explore different distributions for
the population of relativistic electrons using a power-law
prescription for C., although we offer no model for either how
or where electrons are accelerated or transported throughout the
wind. Indeed, the processes through which nonthermal
synchrotron emission is produced in single massive stars are
still unclear. For stars with sufficient mass-loss rates to produce
radio excesses in the wind, but with only modest surface
magnetic fields (well below 1kG), the radio photosphere is
relatively extended compared to where synchrotron emission
would typically form in the inner wind. As a result, little of the
nonthermal component should escape to be observable. In
order for nonthermal emission to compete in amplitude with the
thermal component, electrons would need to be accelerated at
relatively large radii of ~10' — 10°R,.

Wind clumping may provide one pathway to achieving
nonthermal emission in the extended stellar wind of a single
massive star. The wind instabilities commonly understood to be
associated with clumping give rise to shocks that are spread
throughout the wind outflow. Such shocks have generally been
associated with X-ray production (e.g., Berghoefer et al. 1997;
Nazé et al. 2011), and thus are a natural environment where
electrons could be accelerated to relativistic energies (e.g.,
White 1985; Chen & White 1994). For example, XMM-
Newton and Chandra observations of the Wolf—Rayet star
WR 6° show evidence for X-ray-emitting hot plasma emerging
from ~ 30R,, in the wind (Oskinova et al. 2012; Ignace et al.
2013; Huenemoerder et al. 2015), suggesting that shocks could
form or persist to large radii.

More work will be needed to determine the role of wind
instabilities in the production of nonthermal emission. Fully 3D
simulations of the wind-driving instability mechanism have not
yet been performed, although 2D simulations have been
reported (e.g., Dessart & Owocki 2003; Sundqvist et al.
2018). A recent study by Sundqvist & Puls (2018) has

> Schmutz & Koenigsberger (2019) have claimed that WR 6 may have a

binary companion, which then could account for X-rays from large radii. In an
independent analysis, St-Louis et al. (2020) have not been able to confirm the
claim. Moreover, the resolved X-ray line profile shapes observed by
Huenemoerder et al. (2015) are consistent with predictions for a spherically
symmetric terminal speed flow (Ignace 2001).
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suggested that porosity effects do not impact the radio
photosphere of O-type stars. However, as Van Loo et al.
(2006) point out, the results of 2D simulations inform our view
of how shocks form and propagate outward in the wind. In
particular, the 2D simulations indicate that round structures can
form,® which stands in opposition to the frequently invoked
“pancake” shock geometry, referring to a shell that breaks up
into multiple fragments of modest or small solid angle.

It is not yet clear how fully 3D simulations of the time-
dependent wind flow would alter the expectations for particle
acceleration. However, Ignace (2016) considered how porosity
could impact the thermal radio emission in dense winds by
including spherical clumps. Although it presents a simplistic
model in some respects, that study determined that porosity
with spherical clumps implied that the radio photosphere forms
deeper in the wind, as compared to the pure microclumping
scenario. This may alleviate, to some extent, the distance to
which relativistic electrons must survive or be accelerated in
order for synchrotron emission to be significant.

The magnetospheres of single magnetic massive stars
provide another environment in which nonthermal emission
can be produced. The confinement and channeling of the stellar
wind by the magnetic field leads to the production of X-ray
emission from shocks (e.g., Babel & Montmerle 1997a; ud-
Doula & Owocki 2002; Gagné et al. 2005; Oskinova et al.
2011a, 2011b; Nazé et al. 2014; ud-Doula & Nazé 2016),
which can accelerate electrons to the energies necessary for
synchrotron emission. Babel & Montmerle (1997b) used their
model for magnetically confined wind shocks (MCWSs) to
describe the X-ray emission of IQ Aur (HD 34452; AOp), and
suggested that the model could also be generally applied to the
nonthermal radio emission from chemically peculiar A- and
B-type (ApBp) stars. In this scenario, relativistic electrons are
produced via a second-order Fermi acceleration mechanism,
leading to the observed synchrotron emission. Trigilio et al.
(2004) reported an alternate model for magnetic chemically
peculiar stars, suggesting that electrons are accelerated to
relativistic speeds in current sheets that develop in the “middle
magnetosphere” (where the stellar wind breaks open the
magnetic field loops), while thermal-emitting plasma is trapped
in the “inner magnetosphere” (the region within the closed
magnetic field loops).

Recently, Leto et al. (2021) and Shultz et al. (2022) have
proposed an alternate mechanism for the production of
nonthermal emission in massive star magnetospheres. In
contrast to the model developed by Trigilio et al. (2004), these
authors argue for the production of synchrotron emission from
a shellular “radiation belt” within the inner magnetosphere. The
existence of such a structure appears to be supported by
observational evidence (Shultz et al. 2022).

The theoretical framework for how electrons are accelerated
to relativistic energies in single massive stars will need to be
refined. Yet there is observational evidence for free—free and
nonthermal emission in single massive stars, particularly
among the magnetic early-type star population. Thus, there is
a pressing need for additional multiwavelength observations of
radio SEDs, in order to further characterize this population.

The models reported here can be used to help predict and
interpret the behavior of radio SEDs from single massive stars.
In terms of the emissive model, future developments of this

6 Formally, these are rings in the 2D simulations; one may naturally expect
spheroidal structures to form in fully 3D models.
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work would include exploring the effects of an aspherical wind
density, plus a consideration of the pitch-angle effects for the
relativistic electrons. Also needed is further work on the
acceleration of electrons to relativistic energies and their
distribution throughout the wind. These improvements are
necessary to produce more quantitative predictions for SEDs
involving both free—free and synchrotron contributions.
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C.E. and R.I. gratefully acknowledge that this material is
based upon work supported by the National Science Founda-
tion under grant number AST-2009412.

Appendix A
Approximation of an Effective Photosphere for
Synchrotron Emission

We develop here an “effective photosphere” analysis for
pure, optically thick synchrotron radiation, using the method
outlined in Cassinelli & Hartmann (1977).

The optical depth of a location in the wind is given by the
integral of the synchrotron opacity (Equation (28)) along the
observer’s line of sight. From Section 2.2, the field strength is
described by Equation (30), and we apply a constant power-law
index of p(r) =po =2, so that the expression for the optical
depth is written as

T?/ = f ("fu[))s dz,

3 .0 (@) (i 2+m
= Ri*”l(i) [T e, an
)\0 0 (o

where, in the second equality above, we have applied the
change of variable z = wcotf, where w is the impact
parameter, and 6 gives the angle between the radial direction
and the observer’s LOS. For simplicity, we also define the
quantity

=50 x 101 B2 R -E5 (A2)

0o— - * * 1010 .

Under the assumption that R, > R,,, 6, = 7, and the expression
for the optical depth can be evaluated analytically,

3 3+m F(M)
B 73(1) = (A3)

)\0 w 1—\(4-&2-;71).

For the choice of m = 0, this yields

3 3
="l Tg(i) (&) . (A4)
2 )\0 w

Using Equations (34) and (35) for the free—free optical
depth, Equations (A2) and (A4) for the synchrotron optical
depth, the fiducial values given throughout this paper, and a
choice of § =7/2, we find 75, /7! ~ 107%.

Equation (A3) shows that the optical depth from pure
synchrotron radiation increases more strongly with wavelength
than the optical depth from free—free radiation (Equation (34))
alone. As discussed in Section 2.2, the synchrotron radio
photosphere will vary as RS oc X/G™_ For m=0, RS < A,
with a stronger dependence on wavelength than the free—free
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radio photosphere, which grows as R, 2\2/3 (Equation (8)).
However, for m=2, the synchrotron effective radius of
RS ~ X% has a similar scaling to that for pure free—free
radiation.

Appendix B
Solution for a Latitudinal Dependence of the Toroidal Field

There are three primary effects that can lead to deviations
from spherical symmetry in relation to the approach adopted in
this paper:

1. the magnetic field has both a latitudinal and an azimuthal
dependence for strength and direction;

2. the pitch angles of the relativistic electrons are not
random; and

3. the wind density itself is not spherically symmetric.

Here, we only address the first point. Although this condition
likely implies the third point, we assume that the wind density is
spherically symmetric, in order to isolate the effects of the field
topology.

For synchrotron radiation formed in a wind that is thick to
free—free opacity (Appendix A), at a radius far from the stellar
surface, a toroidal component of the magnetic field is most
relevant, due to its slow decline with radius as »~'. One may
reasonably expect a latitudinal dependence of the field, with

Ry

B, = +B; sinz?(
,

) = £Bysind X u, (B1)
where + B, is the magnetic field strength at the stellar surface,
and ¢ and ¢ are spherical angular coordinates defined by the
axis of symmetry for the toroidal field.

We define the observer’s coordinates (6, «) with respect to the
LOS view that is inclined by angle i to the field symmetry axis.
Thus, i = 0° gives a magnetic pole-on view, and i = 90° gives an
“edge-on” view of the magnetic equator. The coordinate
transformation between the observer’s (A, «) and the latitude %
for the field is given by spherical trigonometry, with

cos ) = cos# cosi + sinf sini cos c. (B2)

The free—free optical depth to a point (r, ) in the wind is given
by Equation (34):

3 2 - .
T, ) = ouw (A (0 C?SQ 51n0). (B3)
2 o sin® 6

The Razin wavelength now becomes
Ae(u, 1) = Ao sind) u—, (B4)

where the constant \3 is given by Equation (47).

The luminosity of the radio emission, including both free—
free and synchrotron processes, for a toroidal magnetic field
with a latitudinal component, is then

L _(A) K(A)”
LO )\0 27 )\0

% f W12 (sin9)3/2 e~ ¢ M dy dy de,  (BS)

where ¥ = ¥(u, a)) and A\g = Ag(u, p, ). The evaluation of the
integral requires the elimination of ¢ in terms of € and «, using
Equation (B2). The result will therefore depend on the viewing
inclination, giving a luminosity that depends oni. Figure 2
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Figure 2. The luminosity of the radio emission from both free—free and
synchrotron processes, assuming a toroidal magnetic field with latitudinal
dependence. The model assumes Ky = 200, m = 0.5, and a = 3. We show the
resultant SEDs for inclinations of 0° (a pole-on view; red curves) and 90° (an
edge-on view; blue curves).

shows the results for calculations with K, =200, m = 0.5, and
a = 3, contrasting a pole-on view of i = 0° (the red curves) with
an edge-on view of i =90° (the blue curves).

Figure 2 reveals that including a latitudinal dependence of
the toroidal field has a fairly minimal impact on the SED shape
or the brightness level. However, if considered in conjunction
with a nonspherical density, the effects could more substantial.
An adjustment of the model to include a nonspherical density
will be challenging. An axisymmetric density will introduce at
least two more free parameters: a density contrast and a
distribution of density with latitude. Additionally, the free—free
optical depth would no longer be generally analytic, meaning
that a greater computational expense would be required to
explore the range of outcomes with multiple model parameters.

Appendix C
Applicability of Constant Expansion

This contribution has explored how synchrotron emission can
alter the SED shape formed by a wind that is optically thick to
thermal free—free opacity. As discussed above, high opacity
results from a combination of dense winds and long-wavelength
radiation, and the canonical SED shape is a power law with
f,oc A3 (using the assumption for the Gaunt Factor of gpff =1
adopted throughout this work). This result assumes a spherical,
constantly expanding wind. Here, we comment on the applic-
ability of this assumption.

Consider a canonical wind velocity law with 3= 1, such that
v(r) =vyo(l — R, /r). In normalized form, applying the sub-
stitution u =R, /r, the velocity law can be expressed as w
(u) =1 — u. The optical depth to any location u in the wind
(Equation (6)) is then

() = 1 — (1 —uw+2In(d —w|, (@D

(1 = u
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Figure 3. Contour plot of the percent error in optical depth (Equation (C4)).
The axes are the wind density scale ng and wavelength A.

with
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We note that while 7 is an analytic function of u, the
determinate of u(7™) is implicit, requiring root finder methods
for a solution.

For constant expansion, the characteristic radius of the free—
free photosphere (Equation (8)) is then

1/3
Uy, = % = (?) , (C3)

where the location u, has been defined by the condition of
optical unity (Equation (7)).

One way to assess the applicability of our assumptions is to
evaluate 7'ff(u,,) using Equation (C1). We define the relative
error in the approximation for the optical depth as

() — 1)

= (C4)

Error = 100% x (
Figure (3) provides a contour plot of this error. For
simplicity, we assume a constant stellar luminosity L., and
have adopted the scaling relations for hot massive star winds
from Vink (2021), with M Lf‘z M>,jl'3 T, for stellar mass
and effective temperature M, and T,, respectively (see
Equation (4) of that paper). We assume for massive stars that
M, L, and constant luminosity implies T, o< Ry 172, For
the wind terminal speed, vy, o< Ve < MY/% R'/2. We apply
these scaling relations to Equation (9) to obtain the wind
density scale ng in terms of these quantities,

M L>|(<J9 L>‘94

o< x . (C5)
Rive RiM?  Rg

ny o



THE ASTROPHYSICAL JOURNAL, 932:12 (10pp), 2022 June 10

Since the most luminous stars tend to have the highest wind
mass-loss rates, the assumption of a constant L, implies
Ry o< nd’?, and thus 79 oc X2 ngd’/?. This is the scaling relation
used in Figure 3. While crude, the relation indicates that lower
wind densities correspond to larger stars. For example, a wind
density scale of no=10"cm™ and a stellar radius R, =
10" ecm~ 1.5R.., is appropriate to describe a WR star. In
contrast, under our assumptions, a density scale of ng=
10cm™ (appropriate for an O supergiant) would have a
corresponding stellar radius of R, ~ 45 R, (which, in reality, is
about a factor of 2 too large). Overall, Figure 3 reveals that across
the span of wind density scales appropriate to stars ranging from
O supergiants to WRs, at wavelengths from around 10cm to
1 mm, the approximation of constant expansion is quite good. We
find a maximum error in the optical unity assumption of ~5%, for
A= 1mm with no=10""cm>.
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