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Abstract— We develop a resilient binary hypothesis testing
framework for decision making in adversarial multi-robot
crowdsensing tasks. This framework exploits stochastic trust
observations between robots to arrive at tractable, resilient
decision making at a centralized Fusion Center (FC) even
when i) there exist malicious robots in the network and their
number may be larger than the number of legitimate robots,
and ii) the FC uses one-shot noisy measurements from all
robots. We derive two algorithms to achieve this. The first is
the Two Stage Approach (2SA) that estimates the legitimacy
of robots based on received trust observations, and provably
minimizes the probability of detection error in the worst-case
malicious attack. Here, the proportion of malicious robots is
known but arbitrary. For the case of an unknown proportion
of malicious robots, we develop the Adversarial Generalized
Likelihood Ratio Test (A-GLRT) that uses both the reported
robot measurements and trust observations to estimate the
trustworthiness of robots, their reporting strategy, and the
correct hypothesis simultaneously. We exploit special problem
structure to show that this approach remains computationally
tractable despite several unknown problem parameters. We
deploy both algorithms in a hardware experiment where a
group of robots conducts crowdsensing of traffic conditions on
a mock-up road network similar in spirit to Google Maps,
subject to a Sybil attack. We extract the trust observations for
each robot from actual communication signals which provide
statistical information on the uniqueness of the sender. We show
that even when the malicious robots are in the majority, the
FC can reduce the probability of detection error to 30.5% and
29% for the 2SA and the A-GLRT respectively.

I. INTRODUCTION

We are interested in the problem where robots observe
the environment and estimate the presence of an event of
interest. Each robot relays their measurement to a Fusion
Center (FC) that makes an informed binary decision on the
occurrence of the event. An unknown subset of the system
are malicious robots whose goal is to increase the likelihood
that the FC makes a wrong decision [1], [2], [3], [4]. This
problem can be cast as an adversarial binary hypothesis
testing problem, with relevance to a broad class of robotics
tasks that rely on distributed sensing with possibly malicious
or untrustworthy robots. For example, robots might perform
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coordinated coverage to maximize their ability to sense
events of interest [5], [6], [7], [8], share target information
for coordinated tracking [9], [10], [11], [12], or merge
map information to provide a global understanding of the
environment [13], [14], [15], [16]. In crowdsensing tasks
such as traffic prediction, a server may use GPS data to
estimate if a particular roadway is congested or not [17] (see
Fig. 1). Unfortunately, this process is vulnerable to malicious
robots [1], [3]. For example, prior works have shown that a
Sybil attack can cause crowdsensing applications like Google
Maps to incorrectly perceive traffic conditions, resulting in
erroneous reporting of traffic flows [18], [19].

The problem of binary adversarial hypothesis testing has
been studied within the context of sensor networks [20],
[21], [22]. Many approaches use data, such as a history of
measurements and hypothesis outcomes, to assess the trust-
worthiness of the robots [23], [24], [25], [26]. For example,
if a robot consistently disagrees with the final decision of the
FC, then the FC can flag that robot as potentially adversarial.
However, the success of these methods often hinges upon
a crucial assumption that more than half of the network is
legitimate. A growing body of work investigates additionally
sensed quantities arising from the physicality of cyberphys-
ical systems such as multi-robot networks, to cross-validate
and assess the trustworthiness of robots [27], [5], [28], [29].
This could include using camera feeds, GPS signals, or even
the signatures of received wireless communication signals, to
acquire additional information regarding the trustworthiness
of the robots [30], [29], [31]. Importantly, this class of
trust observations can often be obtained from a one-shot
observation, independent of the transmitted measurement.
The work in [32] uses trust observations to recover resilient
consensus even in the case where more than half of the
network is malicious. In this paper we wish to derive a

Fig. 1. Malicious robots can perform a Sybil Attack to try to force a FC
to incorrectly perceive traffic conditions on a road. The FC can aggregate
measurements and trust values from robots to accurately estimate the true
traffic condition of the road despite the attack.
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framework for adversarial hypothesis testing that exploits
stochastic trust observations to arrive at a similar level
of resilience; whereby, a FC can conceivably reduce its
probability of error, even in the one-shot scenario and where
legitimate robots do not hold a majority in the network.

We derive algorithms for achieving resilient hypothesis
testing by exploiting stochastic trust observations between
the FC and a group of robots participating in event detection.
We derive a framework that exploits one-shot trust observa-
tions, hereafter called trust values, over each link to arrive
at tractable, closed-form solutions when the majority of the
network may be malicious and the strategy of the malicious
robots is unknown – a challenging and otherwise intractable
problem to solve in the general case [33].

For the case where an upper limit on the proportion
of malicious robots is known, we develop the Two Stage
Approach (2SA). In the first stage this algorithm uses trust
values to determine the most likely set of malicious robots,
and then applies a Likelihood Ratio Test (LRT) only over
trusted robots in the second stage. We show that this
approach minimizes the error probability of the estimated
hypothesis at the FC for a worst-case attack scenario. For the
case where an upper bound on the proportion of malicious
robots is unknown, we develop the Adversarial Generalized
Likelihood Ratio Test (A-GLRT) algorithm which uses both
stochastic trust values and event measurements to jointly
estimate the trustworthiness of each robot, the strategy of
malicious robots, and the hypothesis of the event. Our A-
GLRT algorithm is based upon a common approach for
decision making with unknown parameters, the General-
ized Likelihood Ratio Test (GLRT), which replaces the un-
known parameters with their maximum likelihood estimates
(MLE) [34]. We show that the addition of trust values
allows us to decouple the trustworthiness estimation from the
strategy of the adversaries, allowing us to calculate the exact
MLE of unknown parameters in polynomial time, instead
of approximating them as in previous works [33], [35]. Our
simulation results show that the A-GLRT empirically yields
a lower probability of error than the 2SA, but at the expense
of higher computational cost.

Finally we conduct a hardware experiment based on
crowdsensing traffic conditions using a group of robots
under a Sybil Attack. We show that the FC can recover a
performance of 30.5% and 29.0% error, for the 2SA and A-
GLRT respectively, even in the case where more than half
of the robots are malicious.

II. PROBLEM FORMULATION

We consider a network of N robots, where each robot
is indexed by some i ∈ N and N = {1, . . . , N}, that are
deployed to sense an environment and determine if an event
of interest has occurred. The event of interest is captured
by the random variable Ξ, where Ξ = 1 if the event has
happened and Ξ = 0 otherwise. Each robot i uses its sensed
information to make a local decision about whether the event
has happened or not, captured by the random variable Yi,
where its realization yi = 1 if robot i believes the event

has happened and yi = 0 otherwise. We denote the true
hypothesis by H1 if Ξ = 1 and H0 if Ξ = 0. Each robot
forwards its local decision to a centralized fusion center (FC).

We are concerned with the scenario where not all robots
are trustworthy, that is, some are malicious and may ma-
nipulate the data that they send to the FC by flipping their
measured bit with the goal of increasing the probability that
the FC makes the wrong decision. We denote the set of
malicious robots by M⊂ N . The set of robots that are not
malicious are termed legitimate robots, denoted by L ⊆ N ,
where L∪M = N and L∩M = ∅. Additionally, we define
the true trust vector, t ∈ {0, 1}N , where ti = 1 if i ∈ L
and ti = 0 if i ∈ M. We note that the true trust vector is
unknown by the FC, but it is defined for analytical purposes.
We are interested in estimating this vector.

We assume the following behavioral models for legitimate
and malicious robots:

Definition 1 (Legitimate robot). A legitimate robot i mea-
sures the event and sends its measurement Yi to the FC
without altering it. We assume for each legitimate robot
i ∈ L, the measured bit Yi is subject to noise with the
following false alarm and missed detection probabilities

PFA,i = Pr(Yi = 1|Ξ = 0, ti = 1) = PFA,L,

PMD,i = Pr(Yi = 0|Ξ = 1, ti = 1) = PMD,L,
(1)

where PFA,L ∈ (0, 0.5) and PMD,L ∈ (0, 0.5) without loss
of generality. We assume that all legitimate robots have
homogeneous sensing capabilities, i.e., they have the same
probability of false alarm and missed detection. Moreover,
we assume that the measurement of a legitimate robot is
independent of all other robots, and identically distributed
given the true hypothesis. Finally, we also assume that PFA,L

and PMD,L are known by the FC.

Definition 2 (Malicious robot). A robot is said to be a
malicious robot if it can choose to alter its measurements
before sending it to the FC. We assume that a malicious robot
i ∈ M can flip its measurement with probability pf ∈ [0, 1]
after making an observation, and that all malicious robots
flip their bit with the same probability. Let pFA,M, pMD,M ∈
[0, 0.5) be the probability of false alarm and missed-detection
of a malicious robot before altering the bit. We assume
that all malicious robots have the same probability of false
alarm and missed detection. The effective probabilities of
false alarm and missed-detection of a malicious robot after
altering the bit are given as:

PFA,M = Pr(Yi = 1|Ξ = 0, ti = 0) (2)
= (1− pf) · pFA,M + pf · (1− pFA,M),

PMD,M = Pr(Yi = 0|Ξ = 1, ti = 0) (3)
= (1− pf) · pMD,M + pf(1− pMD,M).

We assume that a measurement coming from a malicious
robot is independent of other measurements given the true
hypothesis. This implies that malicious robots do not coop-
erate with each other. Furthermore, we assume that pFA,M,
pMD,M, and the strategy of the malicious robots, which is the



flipping probability pf, are not known by the FC. This implies
that the FC does not know PFA,M and PMD,M either.

We use a common assumption in the literature which is
that the measurements coming from malicious robots are i.i.d
(see [2], [4], [21], [22]). In addition to the measurements Yi,
we assume that each Yi is tagged with a trust value αi ∈ R.
Specifically, we consider the class of problems where the
FC can leverage the cyber-physical nature of the network
to extract an estimation of trust about each communicating
robot.

Definition 3 (Trust Value αi). A trust value αi is a stochastic
variable that captures information about the true legitimacy
of a robot i. We denote the set of all possible trust values
(aka sample space) by A and denote a realization for robot
i by ai.

Assumption 1. We assume that the set A is finite and
that the trust value distributions are homogeneous across
all the legitimate robots i ∈ L. To this end, we denote
the probability mass function of the trust values of robots
by pα(a|t). We assume the probability mass functions are
known or can be estimated by the FC.1 We assume that the
trust values are i.i.d given the true legitimacy of the robot.
Moreover, the trust values are assumed to be independent
of the measurements, Yi, and the true hypothesis. Finally,
to omit trivial or noninformative cases, we assume that
pα(a|t = 0) · pα(a|t = 1) /∈ {0, 1} for all a ∈ A.

We do not impose any restrictions over the conditional
probability distributions pα(a|t = 1) and pα(a|t = 0).
However, for the trust values to be meaningful they should
have different probability mass functions, i.e., pα(a|t = 1) 6=
pα(a|t = 0). How distinguishable the two probability mass
functions are is termed the quality of the trust value, where a
better quality corresponds to a larger distinction between the
distributions pα(a|t = 1) and pα(a|t = 0). Based on these
definitions, we provide the objective of the FC.

A. The objective of the FC

Denote the vector of all measurements with Y =
(Y1, . . . , YN ) and its realization y = (y1, . . . , yN ), and the
vector of stochastic trust values by α = (α1, . . . , αN ) and
its realization by a = (a1, . . . , aN ). Let D0 and D1 be the
decision regions at the FC. That is, (a,y) ∈ D0 if the
FC chooses hypothesis H0 whenever it measures the pair
(a,y). Similarly (a,y) ∈ D1 if the FC chooses hypothesis
H1 whenever it measures the pair (a,y). To simplify our
notations we denote D := {D0,D1}.

Denote by PFA and PMD the false alarm and missed
detection probabilities of the decision rule used by the FC,

1 Example of a trust value αi: One example of such trust values comes from the
works in [32], [30], [31]. In these works, the trust values αi ∈ [0, 1] are stochastic
and are determined from physical properties of wireless transmissions. We use these
trust values in our hardware experiment in Section IV where we discretize the sample
space by letting A = {0, 1} and find the probability mass functions to be pα(ai =
1|ti = 1) = 0.8350 and pα(ai = 1|ti = 0) = 0.1691. Other examples of
observations can be found in [27], [36], [37].

that is

PFA(D, t, PFA,M)

=
∑

(a,y)∈D1

Pr(α = a,Y = y|H0, t, PFA,M), (4)

PMD(D, t, PMD,M)

=
∑

(a,y)∈D0

Pr(α = a,Y = y|H1, t, PMD,M). (5)

Note that the false alarm and missed detection probabilities
are affected by the strategy of the malicious robots, i.e.,
PFA,M and PMD,M.

If the FC knows the true trust vector, i.e., the vector t,
and the probabilities PFA,M and PMD,M, it could optimize the
decision regions D0 and D1 to minimize the expected error
probability:

Pe(D, t, PFA,M, PMD,M) =

Pr(Ξ = 0)PFA(D, t, PFA,M) + Pr(Ξ = 1)PMD(D, t, PMD,M).
(6)

In this case, the vector of trust values α would not affect
the optimal decision rule, and it would only depend on the
vector of measurements Y .

However, there are two main obstacles to the optimization
of the probability of error (6), namely:

1) The FC does not know the identity of the malicious
robots, and thus it does not know the correct vector t.
Therefore, the FC needs to estimate the true trust vector,
where the estimated trust vector is denoted by t̂.

2) The FC does not know how the malicious robots alter
their measurements before sending them. In our setup,
this means that the FC does not know the values PFA,M
and PMD,M. Therefore the FC needs to estimate PFA,M
and PMD,M, where the estimates are denoted by P̂FA,M
and P̂MD,M, respectively.

The FC needs to make a decision with these unknown pa-
rameters which is known as the composite hypothesis testing
problem. Since the minimization of (6) is not tractable, we
explore different ways to circumvent this issue. One way
is to start by estimating the legitimacy of the robots using
trust values only and assuming that the upper bound on the
number of malicious robots in the network is known in order
to make (6) tractable. Then, we can ignore the measurements
from robots deemed to be malicious and choose the decision
regions D0 and D1 using the measurements from the re-
maining robots. This approach leads us to the formulation in
Problem 1.

Problem 1. Assume that the FC first estimates the identities
of the robots in the network, i.e., it determines t̂, solely
using the vector of trust values α. Then, the FC makes
a decision about the hypothesis using only the vector of
measurements Y, from robots it identifies as legitimate.
Given an upper bound m̄ on the proportion of malicious
robots in the network, we wish to determine a strategy for the
FC that minimizes the following worst-case scenario under



these assumptions:

min
D

max
PFA,M,PMD,M,t:

∑
i∈N ti≤m̄N

Pe(D, t, PFA,M, PMD,M). (7)

The definition in Problem 1 requires an approach that
estimates the trustworthiness of a robot i using only the
trust value ai associated with that robot while assuming a
known upper bound on the proportion of malicious robots.
However, it is natural to seek additional information about
the trustworthiness of the robots that can be obtained from
the random measurement vector y. Following this intuition,
we seek a decision rule that estimates the unknown param-
eters in the system which are t, PFA,M, and PMD,M as well
as the hypothesis H0 or H1 jointly, without requiring any
known upper bound on the proportion of malicious robots.
A common approach to hypothesis testing with unknown
parameters is to use the generalized likelihood ratio test [34],
that is

p(z; θ̂1,H1)

p(z; θ̂0,H0)

H1

>
6
H0

Pr(Ξ = 0)

Pr(Ξ = 1)
, γAG, (8)

where θ̂1 is the maximum likelihood estimator (MLE) of
the unknown parameter θ1 assuming Ξ = 1 and θ̂0 is the
MLE of θ0 assuming Ξ = 0. For our problem, z = (a,y),
θ1 = (t, PMD,M), and θ0 = (t, PFA,M), which results in the
following formulation of the test

maxt∈{0,1}N ,PMD,M∈[0,1] Pr(a,y|H1, t, PMD,M)

maxt∈{0,1}N ,PFA,M∈[0,1] Pr(a,y|H0, t, PFA,M)

H1
>
6
H0

γAG. (9)

Note that in this setup the vector t is a parameter, thus, we
do not make any prior assumption on its distribution. Calcu-
lating the MLE in the numerator and denominator in (9) is
not trivial since the unknown t is a discrete multidimensional
variable while PMD,M and PFA,M are continuous variables.
Doing this in a tractable way leads us to the formulation in
Problem 2.

Problem 2. Find a computationally tractable algorithm that
calculates the GLRT given in (9).

In the next section we propose solutions to these problems.
Then, we investigate the performance of both methods in
Section IV, and conclude the paper in Section V.

III. APPROACH

In this section we present two different approaches: one
approach to solve Problem 1 and another to solve Problem 2.
The first approach, called the Two Stage Approach, finds the
optimum decision rule that solves Problem 1. The second ap-
proach, called the Adversarial Generalized Likelihood Ratio
Test (A-GLRT) uses both the trust values and measurements
simultaneously to arrive at a final decision while estimating
the unknown parameters using the maximum likelihood
estimation rule. The A-GLRT approach addresses Problem 2.
The Two Stage Approach is shown to be computationally
faster than the A-GLRT, but the A-GLRT attains a lower
empirical probability of error.

A. Two Stage Approach Algorithm

In this section we present an intuitive approach where we
separate the detection scheme into two stages where 1) a
decision is made about the trustworthiness of each individual
robot i based on the received value αi, and then 2) only the
measurements Yi from robots that are trusted are used to
choose H0 or H1.

a) Detection of Trustworthy Robots: We utilize the
Likelihood Ratio Test (LRT) to detect legitimate robots.
This test is guaranteed to have minimal missed detection
probability (i.e., detecting a legitimate robot as malicious)
for a given false alarm probability (i.e., detecting a malicious
robot as legitimate) [34, Chapter 3].

The FC decides which robots to trust using the LRT
decision rule

pα(ai|ti = 1)

pα(ai|ti = 0)

t̂i=1

≷
t̂i=0

γt, (10)

where γt is a threshold value that we wish to optimize. Note
that when γt = 1 (10) is equivalent to a maximum likelihood
detection.

The FC decides who to trust and stores it in the vector
t̂, where t̂i = 1 if the FC chooses to trust the robot, and
t̂i = 0 otherwise. In the case of equality a random decision
is made where the FC chooses t̂i = 1 with probability
pt and the FC chooses t̂i = 0 with probability 1 − pt,
where pt is another parameter to be optimized. This leads to
the following trust probabilities, where Ptrust,L(γt, pt) is the
probability of trusting a legitimate robot, and Ptrust,M(γt, pt)
is the probability of trusting a malicious robot:

Ptrust,L(γt, pt) = Pr

(
pα(ai|ti = 1)

pα(ai|ti = 0)
> γt|ti = 1

)
+ pt Pr

(
pα(ai|ti = 1)

pα(ai|ti = 0)
= γt|ti = 1

)
,

Ptrust,M(γt, pt) = Pr

(
pα(ai|ti = 1)

pα(ai|ti = 0)
> γt|ti = 0

)
+ pt Pr

(
pα(ai|ti = 1)

pα(ai|ti = 0)
= γt|ti = 0

)
.

(11)

The error probability Pe at the FC is affected by the
trustworthiness classification. That is, if a legitimate robot i
is classified as malicious the FC discards its measurement Yi,
which increases the error probability since fewer measure-
ments are used in the FC decision making. On the other hand,
if a malicious robot is classified as legitimate it can increase
the error probability by sending falsified measurements to the
FC. For that reason, we look to optimize the trustworthiness
classification to balance these two conflicting scenarios.
Determining the best γt and pt to minimize the overall error
probability of the hypothesis detection by the FC is the main
focus of this section.

b) Detecting the Event Ξ: To determine a hypothesis
H on the event Ξ, the FC only considers the measurements it
receives from robots that it classifies as legitimate in the first
stage, i.e., i : t̂i = 1. Equivalently, the FC discards all the



received measurements of robots it classifies as malicious.
Then, the FC uses the following decision rule:∏
{i:t̂i=1} P

1−yi
MD,L (1− PMD,L)yi∏

{i:t̂i=1}(1− PFA,L)1−yiP yiFA,L

H1

≷
H0

Pr(Ξ = 0)

Pr(Ξ = 1)
= exp(γTS),

(12)

where exp(γTS) is the exponential function with respect
to γTS, and it is a constant decision threshold. We set
Pr(Ξ=0)
Pr(Ξ=1) = exp(γTS) so that when we take the logarithm
in later expressions we can express the resultant decision
threshold as γTS for ease of exposition. This decision rule
is commonly used in standard binary hypothesis testing
problems where no malicious robots are present, and will be
referred to as the standard binary hypothesis decision rule.
The standard binary hypothesis decision rule is optimal in
a system with no malicious robots, i.e., M = ∅, and thus
we attempt to approximate the standard binary hypothesis
decision rule by first removing information from all robots
deemed to be malicious. However, since there may be detec-
tion errors in the first stage which classifies legitimate and
malicious robots, the threshold γt and tie-break probability
pt should balance the need to exclude malicious robots
from participating in the test (12) with the need to allow
legitimate robots to participate in the test (12) and contribute
their truthful measurements to decrease the probability of
error resulting from (12). In what follows we show how to
optimize the threshold γt and tie-break probability pt by first
computing the probability of error of the FC using the Two
Stage Approach.

Recalling the Neyman-Pearson Lemma [34], we have that
(10) minimizes the missed detection probability for a desired
false alarm probability of misclassifying robots. This false
alarm probability dictates the value of the threshold γt. After
the FC discards robot measurements that it does not trust,
the decision rule (12) leads to the following false alarm and
missed detection error probabilities,

PFA(γt, pt, t, PFA,M)

= Pr
( N∑
i=1

t̂i[w1,Lyi − w0,L(1− yi)] ≥ γTS

|H0, γt, pt, t, PFA,M

)
,

PMD(γt, pt, t, PMD,M)

= Pr
( N∑
i=1

t̂i[w1,Lyi − w0,L(1− yi)] < γTS

|H1, γt, pt, t, PMD,M

)
,

(13)

where

w1,L = log

(
1− PMD,L

PFA,L

)
, w0,L = log

(
1− PFA,L

PMD,L

)
.

(14)
Consequently, the overall error probability at the FC is:

Pe(γt, pt, t, PFA,M, PMD,M)

= Pr(Ξ = 0)PFA(γt, pt, t, PFA,M)

+ Pr(Ξ = 1)PMD(γt, pt, t, PMD,M).

(15)

We seek to minimize the probability of error (15) for the
decision rule (12) by minimizing the false alarm and missed
detection probabilities. Any sequence of 0’s and 1’s can
occur for the detected trust vector t̂, each yielding a different
error probability, so the error probability must be calculated
for each possible vector t̂, along with each possible vector
y. Unfortunately, this computation scales exponentially with
the number of robots, N . Furthermore, the true trust vector
t and the probabilities of false alarm and missed detection
of the malicious robots are unknown, i.e., PFA,M and PMD,M,
therefore, they cannot be used in minimizing (15).

To this end, we derive analytical guarantees regarding the
error probability of the overall detection performance of the
two-stage approach as follows. We minimize the worst-case
probability of error of the FC over all the possible trust
vectors t ∈ {0, 1}N and false alarm and missed detection
probabilities PFA,M and PMD,M, respectively, in the interval
[0, 1]. Then, we minimize this worst-case error probability
by choosing the best threshold γt, i.e., choose γt = γ∗t and
tie-break probability pt = p∗t where

(γ∗t , p
∗
t ) = argmin

γt,pt

max
t,PFA,M,PMD,M

Pe(γt, pt, t, PFA,M, PMD,M).

(16)
To this end, we must first determine the PFA,M, PMD,M, t

that maximize Pe. In the remainder of this section, we
assume that the proportion of malicious robots to expect in
the network, denoted by m, is known, or we choose an upper
bound for it (m̄).

Lemma 1. If PFA,L < 0.5 and PMD,L < 0.5, then the
probability of false alarm and missed detection of the FC
(13) is maximized for the two stage approach when malicious
robots choose PFA,M = PMD,M = 1, for any vector t ∈
{0, 1}N .

The proof of Lemma 1 can be found in Appendix A.

Lemma 2. Let t̄ be the worst-case vector t, i.e., the vector t
that maximizes the probability of error (15). If PFA,L < 0.5,
PMD,L < 0.5, and PFA,M = PMD,M = 1, then the probability
of error Pe(γt, pt, t̄, 1, 1) is maximized when t̄ contains the
maximum number of malicious robots, i.e.,

∑
i∈N t̄i = m̄N .

Proof. By Lemma 1 the probability of false alarm and
missed detection (13) are maximized when a robot is trusted
and its measurement reports the wrong hypothesis (Yi =
1|H0 or Yi = 0|H1). Since the optimal policy for malicious
robots is to report the wrong hypothesis with probability 1
(Lemma 1), any robot increases the false alarm and missed
detection probability of the FC when it is malicious instead
of legitimate. Thus, the probability of error Pe(γt, pt, t, 1, 1)
is maximized when the proportion of malicious robots, m,
is maximized, i.e., when t̄ has m̄N malicious robots, where
m̄ is the upper bound on the proportion of malicious robots
in the network.

Utilizing Lemma 2, we calculate the exact probability of
error for the FC for the worst-case attack where t = t̄ and
PFA,M = PMD,M = 1. In order to compute the probability of



error exactly, we must compute the probability of false alarm
and missed detection (13). Let kL ∈ KL be the number of
legitimate robots trusted by the FC, where KL = {0, . . . , (1−
m̄)N}. Similarly, let kM ∈ KM be the number of malicious
robots trusted by the FC, where KM = {0, . . . , m̄N}. Let
SN represent the left side of the inequalities in (13) given
by:

SN =
N∑
i=1

t̂i[w1,Lyi − w0,L(1− yi)].

Using the law of total probability, the false alarm probability
at the FC is given by

PFA(γt, pt, t̄, 1) =
∑
kL∈KL,kM∈KM

Pr(KL = kL) Pr(KM = kM)

· PFA(SN ≥ γTS|H0, kL, kM).
(17)

Similarly, the probability of missed detection of the FC is
given by

PMD(γt, pt, t̄, 1) =
∑
kL∈KL,kM∈KM

Pr(KL = kL) Pr(KM = kM)

· PMD(SN < γTS|H1, kL, kM).
(18)

The probability of false alarm for a particular instantiation
of kL and kM can be written as a function of the Binomial
Cumulative Distribution Function:

PFA(SN ≥ γTS|H0, kL, kM)

= Pr
(∑

i:{t̂i=1,ti=1} yi ≥
γTS−kMw1,L+kLw0,L

w0,L+w1,L
|H0, kL, kM,

)
,

= 1− Fb

(
dγTS − kMw1,L + kLw0,L

w0,L + w1,L
e;PFA,L, kL

)
,

(19)
where Fb(x; p, n) =

∑x
i=0

(
n
i

)
pi(1 − p)n−i is the Binomial

Cumulative Distribution Function evaluated at x for n vari-
ables and success probability p. Similarly, for the probability
of missed detection we have that

PMD(SN < γTS|H1, kL, kM) =

Fb

(
dγTS + kMw1,L + kLw0,L

w0,L + w1,L
e − 1; 1− PMD,L, kL

)
.

(20)

Recall (11). We note that these probabilities depend on the
distribution of the robot’s vector of trust values a. Then, we
have that

Pr(KL = kL) = Pr

(∑
i∈L

t̂i = kL

)
= fb(kL;Ptrust,L(γt, pt), (1− m̄)N),

Pr(KM = kM) = Pr

∑
i∈M̄

t̂i = kM


= fb(kM;Ptrust,M(γt, pt), m̄N),

(21)

where fb(x; p, n) =
(
n
x

)
px(1−p)n−x is the Binomial proba-

bility distribution function evaluated at x for n variables and
success probability p. Thus, the probability of false alarm

and missed detection are

PFA(γt, pt, t̄, 1)

=
∑

kL∈KL,kM∈KM

fb(kL;Ptrust,L(γt, pt), (1− m̄)N)·

fb(kM;Ptrust,M(γt, pt), m̄N)·
PFA(SN ≥ γTS|H0, kL, kM),

PMD(γt, pt, t̄, 1)

=
∑

kL∈KL,kM∈KM

fb(kL;Ptrust,L(γt, pt), (1− m̄)N)·

fb(kM;Ptrust,M(γt, pt), m̄N)·
PMD(SN < γTS|H1, kL, kM).

(22)

Therefore, we have the total error probability

Pe(γt, pt, t̄, 1, 1) = Pr(Ξ = 0)PFA(γt, pt, t̄, 1)+

Pr(Ξ = 1)PMD(γt, pt, t̄, 1),
(23)

and we can choose the thresholds γt and pt that minimize
the expression. Once we have chosen the thresholds γt and
pt, the rest of the two stage approach becomes a standard
binary hypothesis testing problem.

Lemma 3. Denote

Γt :=

{
pα(a|ti = 1)

pα(a|ti = 0)

}
a∈A

.

Then, the minimal value of (16) with respect to γt can be
achieved by γt ∈ Γt.

Proof. The proof follows directly from the finiteness of the
set A and since pt can take values in the interval [0, 1].

Algorithm 1 Two Stage Approach
Input: PFA,L, PMD,L, P̂FA,M = P̂MD,M = 1, Pr(Ξ = 0),
Pr(Ξ = 1), y, a, t̄, Γt, δp
Output: Decision H0 or H1

1: Set Γp = {0, δp, 2δp, . . . , 1}.
2: Set γt,temp = 0, pt,temp = 0, Pe,temp = 2.
3: for all γ̂t ∈ Γt, p̂t ∈ Γp do
4: Compute Ptrust,L(γ̂t, p̂t), Ptrust,M(γ̂t, p̂t) by (11).
5: Compute PFA(γ̂t, p̂t, t̄, 1), PMD(γ̂t, p̂t, t̄, 1) by (22).
6: Compute Pe(γ̂t, p̂t, t̄, 1, 1) by (23).
7: if Pe(γ̂t, p̂t, t̄, 1, 1) < Pe,temp then
8: Set (γt,temp, pt,temp) = (γ̂t, p̂t).
9: Set Pe,temp = Pe(γ̂t, p̂t, t̄, 1, 1).

10: end if
11: end for
12: Set (γt, pt) = (γt,temp, pt,temp).
13: Determine the vector t̂ using (10).
14: Determine decision using (12).
15: Return decision H0 or H1.

Algorithm 1 explains the two stage approach step-by-step.
Algorithm 1 takes a set Γt as input. Then, for each γ̂t ∈ Γt
and each p̂t ∈ Γp we compute Ptrust,L(γ̂t, p̂t), Ptrust,M(γ̂t, p̂t),
as well as PFA(γ̂t, p̂t, t̄, 1) and PMD(γ̂t, p̂t, t̄, 1). Then we



compute the probability of error at the FC for the given γ̂t
and p̂t. The γ̂t and p̂t that yields the minimum probability
of error is then used in the decision rule in (10) to determine
which robots to trust or not trust (vector t̂). Finally, we use
the chosen vector t̂ to make a decision using the standard
binary hypothesis decision rule (12).

Determining the threshold value γt and tie-break probabil-
ity pt requires computing the probability of error |Γt| · |Γp|
times, where |·| represents the cardinality of the set. However,
this only needs to be computed once, and then the returned
γt and pt can be used to run each subsequent hypothesis test.
With a given γt and pt, the hypothesis test requires O(N)
comparisons.

Theorem 1. Assume that the FC uses the decision rule in
(10) to detect malicious robots, and then uses the decision
rule (12). Then Algorithm 1 chooses the threshold value γt
and tie-break probability pt that minimize the worst-case
probability of error of the FC up to a discretization distance

d(δp) := min
pt∈Γp

Pe(γ
∗
t , pt, t̄, 1, 1)− Pe(γ

∗
t , p
∗
t , t̄, 1, 1).

Furthermore, d(δp)→ 0 as δp → 0.

Proof. The goal is to minimize the worst-case probability of
error of the FC, i.e.,

min
γt,pt

max
t,PFA,M,PMD,M

Pe(γt, pt, t, PFA,M, PMD,M). (24)

Let P̄e be the worst-case probability of error computed
using the worst-case probability of false alarm and missed
detection from (22). Furthermore, let t̄ be the worst-case
vector t. Using the results from Lemmas 1, 2 and (22) we
upper bound the error probability using the worst-case error
probability:

min
γt,pt

max
t,PFA,M,PMD,M

Pe(γt, pt, t, PFA,M, PMD,M)

= min
γt,pt

max
t
Pe(γt, pt, t, 1, 1),

= min
γt,pt

P̄e(γt, pt, t̄, 1, 1).

(25)

The equality in the first line directly follows from Lemma 1.
The second line follows from the first by inserting the worst-
case vector t as the one that maximizes the probability of
error Pe (Lemma 2).

Additionally, by Lemma 3, it is sufficient to optimize γt
over the set Γt. Now, since we optimize pt using a line
search, we may not necessarily find an optimal pair (γ∗t , p

∗
t ).

However, we can upper bound the distance from the optimal
solution for the worst case scenario by:

min
γt∈Γt,pt∈Γp

Pe(γt, pt, t̄, 1, 1)− Pe(γ
∗
t , p
∗
t , t̄, 1, 1)

≤ min
pt∈Γp

Pe(γ
∗
t , pt, t̄, 1, 1)− Pe(γ

∗
t , p
∗
t , t̄, 1, 1)

= d(δp). (26)

For every fixed γt, the function Pe(γt, pt, t̄, 1, 1) is a poly-
nomial function of pt, therefore, it is continuous in pt (over
the interval pt ∈ [0, 1]). Consequently, d(δp) → 0 as δp →
0.

B. A-GLRT Algorithm

The main purpose of this section is to construct an efficient
algorithm that implements the GLRT in (9). We can simplify
(9) by recalling that given the true trustworthiness of a robot
ti and the true hypothesis H, the trust value αi and the
measurement Yi are statistically independent. Thus,

Pr(a,y|H1, t, PMD,M)

= Pr(a|H1, t, PMD,M) Pr(y|H1, t, PMD,M), (27)
Pr(a,y|H0, t, PFA,M)

= Pr(a|H0, t, PFA,M) Pr(y|H0, t, PFA,M). (28)

Furthermore, the trust value αi is independent of the true
hypothesis H. Thus,

Pr(a|H1, t, PMD,M) = Pr(a|H0, t, PFA,M) = Pr(a|t). (29)

Hence, we obtain

maxt∈{0,1}N ,PMD,M∈[0,1] Pr(a|t) Pr(y|H1, t, PMD,M)

maxt∈{0,1}N ,PFA,M∈[0,1] Pr(a|t) Pr(y|H0, t, PFA,M)

H1
>
6
H0

γAG.

(30)

We choose γAG = Pr(Ξ=0)
Pr(Ξ=1) since we do not assume anything

about the the prior distribution of t. The challenging part of
using the GLRT in this problem is calculating the maximum
likelihood estimations for both numerator and denominator.
The unknown t is a discrete multidimensional variable while
PMD,M and PFA,M are continuous variables restricted to the
domain [0, 1]. Therefore, calculating the MLE is not trivial.
The main purpose of this section is to construct an efficient
algorithm that implements the GLRT. Due to the symmetry
in calculation of the numerator and denominator in (30), we
focus our discussion on the calculation of the numerator.

Using Assumption 1 about the trust values, we obtain the
following formulation of Pr(a|t):

Pr(a|t) =
N∏
i=1

pα(ai|ti).

Additionally, we obtain the following equations using the
i.i.d assumption about measurements:

Pr(y|H0, t, PFA,M) =
∏
i:ti=1

P yiFA,L · (1− PFA,L)1−yi

·
∏
i:ti=0

P yiFA,M · (1− PFA,M)1−yi , (31)

Pr(y|H1, t, PMD,M) =
∏
i:ti=1

(1− PMD,L)yi · P 1−yi
MD,L

·
∏
i:ti=0

(1− PMD,M)yi · P 1−yi
MD,M. (32)

Using these equations, we write the numerator as:

max
t∈{0,1}N ,PMD,M∈[0,1]

{ ∏
i:ti=1

pα(ai|ti)P 1−yi
MD,L (1− PMD,L)yi ·

∏
i:ti=0

pα(ai|ti)P 1−yi
MD,M(1− PMD,M)yi

}
.

(33)



Since the optimization problem over variables t and PMD,M
at the same time is difficult we can reformulate the problem
as two nested optimizations using the Principle of Iterated
Suprema [38, p. 515], that is:

sup{f(z, w) : z ∈ Z, w ∈ W} = sup
z∈Z
{ sup
w∈W
{f(z, w)}}

= sup
w∈W
{sup
z∈Z
{f(z, w)}},

where f : Z×W → R, and Z,W ⊆ Rd. By the Principle of
Iterated Suprema we can calculate the maximization in (8)
in two different ways. We rewrite the maximization problem
in (33) as:

max
t∈{0,1}N

{
max

PMD,M∈[0,1]

{ ∏
i:ti=1

pα(ai|ti)P 1−yi
MD,L (1− PMD,L)yi ·

∏
i:ti=0

pα(ai|ti)P 1−yi
MD,M(1− PMD,M)yi

}}
.

(34)
With this formulation, one possible way to calculate the

maximization is iterating over all vectors t in the set {0, 1}N ;
then for each t, calculating the inner maximization. We show
how to calculate this maximization in the following lemma.

Lemma 4. Let t and y be given vectors in {0, 1}N . Assume
that pα(ai|ti) is known both ti = 0 and ti = 1, and that∑
i:ti=0 1 > 0. Then,∏

i:ti=1

pα(ai|ti)P 1−yi
MD,L (1− PMD,L)yi ·∏

i:ti=0

pα(ai|ti)P 1−yi
MD,M(1− PMD,M)yi

(35)

is maximized by P̂MD,M =
∑
i:ti=0(1−yi)∑
i:ti=0 1 . Additionally, if∑

i:ti=0 1 = 0, i.e., |{i : ti = 0}| = 0, any choice P̂MD,M ∈
[0, 1] maximizes (35).

Proof. First, observe that given the vector t, (35) is max-
imized by MLE of

∏
i:ti=0 pα(ai|ti)P 1−yi

MD,M(1 − PMD,M)yi .
Furthermore, since∏

i:ti=0

pα(ai|ti)P 1−yi
MD,M(1− PMD,M)yi

=

( ∏
i:ti=0

pα(ai|ti)

)( ∏
i:ti=0

P 1−yi
MD,M(1− PMD,M)yi

)
,

(36)

it follows that (35) is maximized by the MLE of∏
i:ti=0 P

1−yi
MD,M(1− PMD,M)yi .

This is a well-known estimation problem [39, Problem 7.8],
that together with the invariance property of the MLE [39,
Theorem 7.2] leads to the optimal estimator

P̂MD,M =

∑
i:ti=0(1− yi)∑

i:ti=0 1
.

Note, that this estimator is equal to the empirical missed de-
tection probability of the measurements sent by the malicious

robots. Finally, it is easy to validate that if |{i : ti = 0}| = 0,
any choice P̂MD,M ∈ [0, 1] maximizes (35).

Unfortunately, since the set {0, 1}N exponentially with
the number of robots in the network, this approach is
computationally intractable for large robot networks. There-
fore, we look for an alternative solution. Another equivalent
formulation of the maximization problem that is obtained by
the Principle of Iterated Supremum is

max
PMD,M∈[0,1]

{
max

t∈{0,1}N

{ ∏
i:ti=1

pα(ai|ti)P 1−yi
MD,L (1− PMD,L)yi ·

∏
i:ti=0

pα(ai|ti)P 1−yi
MD,M(1− PMD,M)yi

}}
,

(37)
where the order of variables that the maximization is taken
over is flipped. Since the variable PMD,M belongs to an
uncountably infinite set, it is impossible to perform the
maximization with this formulation. However, assuming that
we have a given PMD,M, the inner maximization can still be
calculated. The following lemma shows how to calculate the
inner maximization.

Lemma 5. Let PMD,M, a, and y be given. Additionally,
assume that pα(ai|ti) is known for both ti = 0 and ti = 1.
Let

cL,i = pα(ai|ti)P 1−yi
MD,L (1− PMD,L)yi

and
cM,i = pα(ai|ti)P 1−yi

MD,M(1− PMD,M)yi .

If the estimated robot identity vector t̂ is constructed by
choosing t̂i = 1 if cL,i ≥ cM,i and t̂i = 0 otherwise, where t̂i
is the ith component of t̂, then, t̂ is a vector that maximizes
the expression (35).

Proof. First, we reformulate (35) as:

N∏
i=1

(pα(ai|ti)P 1−yi
MD,L (1− PMD,L)yi)ti ·

(pα(ai|ti)P 1−yi
MD,M(1− PMD,M)yi)1−ti , (38)

where the product is calculated by going through all robots
rather than going through legitimate and malicious robots
separately. We define

cL,i = pα(ai|ti)P 1−yi
MD,L (1− PMD,L)yi ,

and
cM,i = pα(ai|ti)P 1−yi

MD,M(1− PMD,M)yi .

Then, the expression in (38) becomes:

N∏
i=1

ctiL,i · c
1−ti
M,i . (39)

Let 0 log 0 = 1, thus 00 = 1. Then, the expression (39) is
maximized when choosing ti = 1 if cL,i ≥ cM,i and ti = 0
otherwise.



As we can see from Lemma 5, maximization with this
formulation can be calculated by performing O(N) compar-
isons. Now, we consider these two perspectives together to
introduce an efficient calculation of the numerator of the
GLRT given in (33). By Lemma 4, we can see that the
optimum value of PMD,M has a special structure. Exploiting
this knowledge, we can restrict the set that PMD,M belongs to
in (37). Then, the inner maximization can be calculated using
Lemma 5. The following theorem builds on this intuition to
provide an efficient calculation of (33).

Theorem 2. Assume that (t∗, P ∗MD,M) attains the maximiza-
tion in (33). Then, for each vector of measurements y and
trust values a, P ∗MD,M belongs to the set P where

P ,

{
Tn
Td

}
Tn∈{0,...,Td},Td∈{1,...,N}

,

and |P| ≤ N2 + 1. Moreover, the maximization in (33) can
be calculated by iterating over O(N2) different values in P
and performing O(N) comparisons.

Proof. First, we will approach the problem by rewriting it
as (37) using the Principle of Iterated Suprema:

max
PMD,M∈[0,1]

{
max

t∈{0,1}N

{ ∏
i:ti=1

pα(ai|ti)P 1−yi
MD,L (1− PMD,L)yi ·

∏
i:ti=0

pα(ai|ti)P 1−yi
MD,M(1− PMD,M)yi

}}
,

By Lemma 5, we can calculate the inner maximization for
a given PMD,M. Notice that, since the calculation requires a
comparison for each robot, O(N) comparisons need to be
performed for this maximization. Now, consider the other
formulation of the problem given by (34). From Lemma 4,
we can see that the optimum PMD,M only depends on the
number of ones and zeros of malicious robots for a given
t. Moreover, the permutation of ones and zeros of malicious
robots for a given t does not change the optimum and only
the total number of ones and zeros does. We will restrict the
set that the outer maximization process iterates over in (37)
based on this observation.
Denote

P ,

{
Tn
Td

}
Tn∈{0,...,Td},Td∈{1,...,N}

,

and observe that |P| ≤ N2 +1. It follows from the Lemma 4
that for each value t in the outer maximization of (34), except
the case where t consist of all ones, the optimum value of
PMD,M belongs to the set P . Moreover, in the case where
t consists of all ones, any choice of PMD,M maximizes the
expression. Hence, without loss of generality, it is suffices to
look for an optimizer PMD,M of (34) in the set P . Therefore,
there are only O(N2) possible values that optimum PMD,M

can take. Thus, we can reformulate (37) as:

max
PMD,M∈P

{
max

t∈{0,1}N

{ ∏
i:ti=1

pα(ai|ti)P 1−yi
MD,L (1− PMD,L)yi ·

∏
i:ti=0

pα(ai|ti)P 1−yi
MD,M(1− PMD,M)yi

}}
,

Therefore, this maximization can be calculated by iterating
over O(N2) different values of PMD,M and for each value,
performing O(N) comparisons. A similar approach can be
adapted for calculating the denominator as well.

Now, using Theorem 2, we introduce the algorithm
A-GLRT, which makes a decision based on the GLRT given
by (30).

Corollary 2.1. The GLRT given by (30) can be calculated
by Algorithm 2 which is referred as the A-GLRT algorithm.
The A-GLRT algorithm requires O(N3) comparisons.

Proof. Calculation of the maximization in the numerator can
be calculated in O(N2) iterations and performing O(N)
comparisons at each iteration as described by Theorem 2.
Therefore, it requires O(N3) comparisons in total. Similarly,
maximization of the denominator requires the same amount
of computation and can be calculated in a similar manner
using PFA,M instead of PMD,M. After that, a final comparison
is made by comparing the ratio of the numerator and denom-
inator with γAG = Pr(Ξ=0)

Pr(Ξ=1) . Algorithm 2 follows these steps,
therefore, it requires O(N3) comparisons in total.

Finally, we investigate how the measurements y and
stochastic trust values α are being used by the A-GLRT
algorithm. Considering (38), an equivalent decision rule to
the one derived in Lemma 5 is given as:

pα(ai|ti = 1)

pα(ai|ti = 0)

t̂i=1
>
<
t̂i=0

P 1−yi
MD,M(1− PMD,M)yi

P 1−yi
MD,L (1− PMD,L)yi

. (40)

With this new perspective, we can gain more insights about
the A-GLRT. First, we can see that the A-GLRT is essentially
performing a likelihood ratio test with α values for each
robot to decide if they are legitimate or not using different
threshold values based on the measurement coming from that
robot. For now, let’s assume that PMD,M is not 0 or 1. Then,
we can see that as α values become more accurate, meaning
that the ratio pα(ai|ti=1)

pα(ai|ti=0) approaches infinity if ti = 1 or
approaches zero otherwise, for all values that αi can take, the
finite threshold value becomes insignificant and the decision
is made using α values only. This situation agrees with the
intuition as well since α values would become true indicators
of robot identities.

IV. HARDWARE EXPERIMENT AND NUMERICAL RESULTS

We perform a hardware experiment with robotic vehicles
driving on a mock-up road network where robots are tasked
with reporting the traffic condition of their road segment to a
FC. The objective of the malicious robots is to cause the FC



Algorithm 2 A-GLRT
Input: y, a, PFA,L, PMD,L, Pr(Ξ = 0), Pr(Ξ = 1), pα(ai|t =
1), pα(ai|t = 0), N
Output: Decision H0 or H1

1: Set P =
{
Tn
Td

}
Tn∈{0,...,Td},Td∈{1,...,N}

.

2: Set γAG = Pr(Ξ=0)
Pr(Ξ=1) .

3: Set lnum,max = 0, ldenom,max = 0.
4: for all PM ∈ P do
5: Set PMD,M = PM , PFA,M = PM .
6: Set lnum = 1, ldenom = 1.
7: for i=0 to N do
8: Set cL,i = pα(ai|ti = 1)P 1−yi

MD,L (1− PMD,L)yi .
9: Set cM,i = pα(ai|ti = 0)P

(1−yi)
MD,M (1− PMD,M)yi .

10: if cL,i ≥ cM,i then
11: Set lnum = lnum · cL,i.
12: else
13: Set lnum = lnum · cM,i.
14: end if
15: end for
16: if lnum > lnum,max then
17: Set lnum,max = lnum.
18: end if
19: Repeat the steps 7-18 for the denominator.
20: end for
21: if lnum,max

ldenom,max
> γAG then

22: Return decision H1

23: else
24: Return decision H0

25: end if

to incorrectly perceive the traffic conditions (see Fig. 2). A
numerical study further demonstrates the performance of this
scenario with an increasing proportion of malicious robots.

We compare the performance of the 2SA and A-GLRT
against several benchmarks including the Oracle, where the
FC knows the true trust vector t and discards malicious
measurements, (this serves as a lower bound on the prob-
ability of error), the Oblivious FC, where the FC treats
every robot as legitimate, and a Baseline Approach [26]
where the FC uses a history of T measurements to develop
a reputation about each robot. The Baseline method ignores
information from robots whose measurements disagree with
the final decision at least η < T times. The Oracle, Oblivious
FC, and Baseline Approach use the decision rule in (12).
Malicious robots perform a Sybil attack where they spoof
additional robots into the network. We use the opensource
toolbox in [40] to obtain trust values from communicated
WiFi signals by analyzing the similarity between different
fingerprints to detect spoofed transmissions. The works in
[32], [30], [31] model these trust values αi ∈ [0, 1] as a
continuous random variable. We discretize the sample space
by letting A = {0, 1} and setting ai = 1 if the measured
trust value is ≥ 0.5 and ai = 0 otherwise.

Fig. 2. Robots drive along a roadmap comprised of six road segments to
get from point A to point B. While traversing the roadmap, robots estimate
the congestion on their current road segment as either containing traffic
(red) or not (green), and relay their estimates to the FC. All robots relay
messages to the FC, but only a few are depicted on the figure for ease of
readability.

a) Hardware Experiment: A group of N = 11 mobile
robots drive in a loop from a starting point A to point B,
approximately 4.5 meters apart, by traversing one of four
possible paths made up of six different road segments. As
the robots drive between points A and B they are given
noisy position information for themselves and neighboring
robots from an OptiTrack motion capture system with added
white Gaussian noise with a variance of 1m2. This serves as
a proxy for GPS-reported measures used in crowdsourcing
traffic estimation schemes like Waze, Google Maps, and
others. A road segment is considered to have traffic (yi = 1)
if the number of robots on the segment is ≥ 2. Of the 11
robots in the group, 5 robots are legitimate, 3 are malicious,
and 3 are spoofed by the malicious robots (making them also
malicious). Malicious robots know the true traffic conditions
and report the wrong measurement with probability 0.99,
i.e., PFA,M = PMD,M = 0.99. The empirical data from
the experiment is stated in Table I, where Baseline1 and
Baseline5 refer to the Baseline Approach from [26] with
parameters T and η set to (T = 1, η = 0.5) and (T = 5,
η = 2.5). We determined the parameters in Table I by first
running an experiment without performing hypothesis tests
and observing the behavior of the system compared to ground
truth. The trust values gathered using the toolbox in [40] led
to the empirical probabilities pα(ai = 1|ti = 1) = 0.8350
and pα(ai = 1|ti = 0) = 0.1691 (see Fig. 3).

In our hardware experiment the 2SA and A-GLRT out-
perform the Oblivious FC and the Baseline Approach. The
Baseline Approach exhibits a high percent error due to the
fact that it relies on the majority of the network being
legitimate. Since 6 out of 11 robots are malicious, it is
likely that many hypothesis tests are conducted where the
majority is malicious. This points to a common vulnerability
of reputation based approaches that assume only a small
proportion of the network is malicious.



Parameters
PFA,L 0.0800 PMD,L 0.2100

Pr(Ξ = 0) 0.6432 Pr(Ξ = 1) 0.3568
Percent Error

2SA (Sec. III-A) 30.5 % A-GLRT (Sec. III-B) 29.0 %
Oracle 19.5 % Oblivious FC 52.0 %

Baseline1 50.8 % Baseline5 49.1 %

TABLE I
EXPERIMENTAL RESULTS

Fig. 3. Empirical distribution of the trust values gathered during the
hardware experiment for legitimate and malicious robots. The trust value is
thresholded to a = 1 if it is ≥ 0.5, and a = 0 otherwise.

b) Numerical Study: Next, we perform a numerical
study on the performance of each approach when the pro-
portion of malicious robots is varied. In the numerical study
we use N = 10 robots with Pr(Ξ = 0) = Pr(Ξ = 1) = 0.5,
PFA,L = PMD,L = 0.15, and PFA,M = PMD,M = 0.99 and
perform hypothesis tests over 1000 trials for each proportion
of malicious robots. In the simulation study the trust value
distributions are fixed at pα(ai = 1|ti = 1) = 0.8,
pα(ai = 1|ti = 0) = 0.2, and the proportion of malicious
robots varies from 0 to 1. The results of the simulation
study are plotted in Fig. 4. From the plot it can be seen
that the 2SA and the A-GLRT perform well even after the
number of malicious robots exceeds majority since they use
additional trust information independent of the data, whereas
the Baseline Approaches fail since they use only the data to
assess the trustworthiness of the robots. Additionally, there
exists a critical proportion of malicious robots, beyond which
the 2SA chooses to ignore most of the measurements it
receives and the decision rule becomes more dependent on
the prior probabilities Pr(Ξ = 0) and Pr(Ξ = 1).

V. CONCLUSION

In this paper we present two methods to utilize trust values
in solving the binary adversarial hypothesis testing problem.
The 2SA uses the trust values to determine which robots
to trust, and then makes a decision from the measurements
of the trusted robots. The A-GLRT jointly uses the trust
values and measurements to estimate the trustworthiness of
each robot, the strategy of malicious robots, and the true
hypothesis.

Fig. 4. The percent error for multiple hypothesis test approaches when the
proportion of malicious robots is varied. The 2SA and A-GLRT outperform
the Oblivious FC and Baseline Approaches when the majority of the network
is malicious.

APPENDIX

A. Proof of Lemma 1

Proof. Recall the false alarm and missed detection probabil-
ities for the FC using decision rules (10) and (12) that lead
to the overall false alarm and missed detection probabilities
stated in (13).

Next, we show that the false alarm probability (13) is
maximized when PFA,M = 1. The proof for PMD,M is
analogous. In order to maximize PFA in (13) the summation
must be maximized. We rewrite the summation by separating
it into the terms affected by legitimate robots that were
trusted and those affected by malicious robots that were
trusted ∑

i:{t̂i=1,ti=0}

[w1,Lyj − w0,L(1− yj)]+∑
i:{t̂i=1,ti=1}

[w1,Lyi − w0,L(1− yi)].
(41)

Any robot j ∈ {L̂ ∩M} can maximize (41) by maximizing
[w1,Lyj − w0,L(1 − yj)]. Note that when PFA,L < 0.5 and
PMD,L < 0.5 then w1,L > 0 and w0,L > 0. Thus, [w1,Lyj −
w0,L(1− yj)] is maximized when yj = 1 since Yj ∈ {0, 1}.
Given the true hypothesis is H0, the measurement Yj = 1
occurs when robot j reports a false alarm. Therefore, the
probability that robot j reports Yj = 1 is maximized when
the probability of false alarm is maximized:

Pr(Yj = 1|H0) = PFA,M = 1. (42)
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