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Abstract—Distracted driving has become a serious problem
for driving safety with the growing number of fatalities each
year. Existing mobile and wearable based distracted driving
detection systems have shortcomings of requiring additional
hardware or explicit user involvement for training. Moreover,
the excessive use of various sensors can cause fast battery drain
and overheating which is less practical for daily use. In this
work, we present a wearable-based distracted driving detection
system leverages Bluetooth. Our system exploits already in-
vehicle Bluetooth compatible devices to track the driver’s hand
position and infer unsafe driving behaviors. The proposed system
doesn’t require explicit user cooperative for training, and involves
low energy consumption. Experiments show our system can
achieve over 95% distracted driving detection accuracy under
various scenarios.

Index Terms—Bluetooth, driving safety, wearable, mobile sens-
ing

I. INTRODUCTION

In the recent years, much effort had been done to improve

driving safety, yet a large number of accidents at various scales

still occurred which lead to serious injuries or casualties as

well as economic loss [1]. Many of the accidents are caused by

distracted driving behavior which is defined as doing other ac-

tivities that takes the driver’s attention away from driving [2].

A few examples of distracted driving behaviors include: using

mobile devices, eating/drinking, operating onboard systems,

searching in-vehicle items, and applying makeup/grooming.

Recent studies show distracted driving have become one of

the fast-growing factors that lead to fatal accidents and serious

injuries [3]. Every year, distracted driving causes about 2.5

million car crashes in US alone. In 2019, it cause over 3000

fatalities that account for over 9% of the total fatal crashes [4].

Many policies and infrastructure support have been pro-

posed to mitigate the risk of distracted driving. For example,

several states have passed laws to prohibit all drivers from

using handheld cellphones while driving [5]. Moreover, in

different areas, billboards or signs have been setup around

the roadway to remind driver of dangerous distracted driving

behavior and its consequences [6]. Meanwhile much research

effort have been dedicated to develop different techniques that

can detect distracted driving behavior. Traditionally, computer

vision based approaches utilize cameras to achieve unsafe ges-

ture recognition of drivers [7]. But such a solution cannot work

under poor lighting conditions or none-line-of-sight(NLOS)

scenarios which greatly limit its applicable scenarios. Addi-

tionally, it often involves user privacy concerns.

With the recent advancement of wearable technologies,

several systems [8], [9] have been proposed to achieve driver

gesture recognition using motion sensors embedded in wear-

able devices. However, the sensory data extracted from the

wearable device contains the vehicle’s motion which can be

difficult to separate. Similar system proposed by Karatas et
al. [10] can achieve driver gesture recognition by separating

the vehicle’s motion data from the wearable device. It is

done by utilizing the smartphone motion sensor that mainly

contain vehicle’s motion information. However, because of the

hardware limitation on mobile and wearable devices, such sys-

tem require continuous calibration to maintain accuracy [11].

Moreover, the excessive use of various sensors can cause fast

battery drain and possible device overheating problems [12].

Another body of work leverage acoustic or RF signals

to recognize driver gestures. CARIN [13] utilized RF-based

technology to recognize activity of driver in the presence

of passenger interference. V2iFi [14] can achieve in-vehicle

vital sign monitoring using Channel State Information data.

Those systems can achieve high detection accuracy but require

additional hardware installation and extensive training. Steer-

Track, DriverSonar and D3-Guard [15]–[17] utilize acoustic

signals emitted and captured by smartphone to track the

driver’s gestures. However, those systems require constant

profile/model update once the placement of the phone changes

and explicit user involvement during the training phase which

can be less practical for daily use scenarios.

Fig. 1. Illustration of the typical use case of our system.
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In this paper, we propose a wearable-based distracted

driving detection system utilizing Bluetooth. This work take

advantage of already in-vehicle Bluetooth compatible devices

to infer unsafe driving behaviors. Using only the smartwatch

Bluetooth probe signals, our system can achieve distracted

driving behavior recognition by detecting if the driver’s hand

is on/off the steering wheel. It is done by sensing the hand po-

sition of the driver with respect to the steering leveraging only

Bluetooth prob signal and implicit user profile construction.

In particular, our system exploits a Bluetooth ranging ap-

proach that leverages wearable device along with in-vehicle

Bluetooth compatible devices to infer the hand position with

respect to the steering wheel. Although the basic Bluetooth

based ranging techniques suffers from the uncertainty and low

accuracy of position estimation due to the poor stability and

small bandwidth of Bluetooth signal. Our system overcome

such shortcomings by utilizing multiple Bluetooth compatible

devices within the vehicle which can reduce the uncertainty of

the received signal and further improve the ranging accuracy.

Additionally, our system leverage the time period where the

vehicle pull out of the park area for profile construction and

update. Such an approach can achieve the training implicitly

without user active cooperation or awareness.

Fig 1 illustrates the typical use case of our system (i.e., one

driver where he/she carries his/her own smartphone). The key

idea underlying our system is to perform Bluetooth ranging

using multiple devices. The system will be triggered by the

moving of the vehicle which can be inferred leveraging the

smartphone motion sensors (e.g., accelerometer). Then, all

the available Bluetooth compatible devices including onboard

Bluetooth system and smartphones will probe the wearable

device worn by the driver. The wearable device records the

received signal strength indicator (RSSI) and processes the

data to infer its current position. Instead of localizing the

absolute position of the wearable device in 3D space which

can be easily obscured by unknown processing delay and

unstable Bluetooth signal, our system relies on the Bluetooth

signals from multiple devices to infer the relative position of

the driver’s hand with respect to the steering wheel. Here, we

define the hand placement on the surface of the steering wheel

as safe zone which highlighted using the light blue color in

Fig 1. For example, when the user uses mobile devices, the

inferred position of the user’s hand will be too far from the

safe zone. If the user’s hand does not return to the safe zone

for a prolonged period of time(e.g., more than 3s), our system

will deem the driver is conducting unsafe driving behaviors

and alert the driver.

Different from existing solutions, our system does not re-

quire explicit user involvement in training and consumes much

less battery power compared to other approaches, therefore can

be easily adopted for daily usage. To evaluate the performance

of our system, we conduct experiments in different road

conditions and under various distracted driving behaviors. We

also evaluate our system using different phone placements and

various number of in-vehicle bluetooth compatible devices.

Experimental results show that our system is highly effective

in detecting distracted driving behaviors. The contribution of

our work are summarized as follows:

• We propose a distracted driving detection system to

improve driving safety by utilizing only Bluetooth of the

wearable device.

• We utilize multiple in-vehicle Bluetooth compatible de-

vices to further improve the accuracy and reduce the

instability of Bluetooth ranging.

• We leverage the car backing out of the parking time

period to achieve implicit user profile construction and

update without user awareness.

• Our experimental results show that the proposed system

can achieve over 95% distracted driving detection. Re-

sults also show that our system can work under different

phone placement and various road conditions.

II. RELATED WORK

There are many research efforts have been dedicated to

enhance driving safety, especially for the distracted driving

behaviors [18]–[20]. Existing driving safety systems can be

divided into three categories: computer vision based systems,

motion sensor based systems, RF and acoustic based systems.

Computer Vision based Systems. This category of work

aim to sense the driver behavior utilizing cameras. For ex-

ample, Zhang et al. [7] proposed a cellphone use behavior

detection system utilizing camera mounted above the dash

board. Such an approach can not work well under NLOS or

poor lighting condition. It also raises user privacy issues.

Motion Sensor based Systems. This body of work focuses

on sensing the driver’s hand gestures and infer the dangerous

driving behavior using motion sensors embedded in wearable

devices. System proposed by Wang et al. [19] is one of

the early work that uses motion sensors to distinguish driver

from passenger for driving safety improvement. For instance,

Safedrive [8] and Safewatch [9] achieve distracted driving

detection using wrist-worn devices. However, the sensory data

extracted from the wearable device contains the vehicle’s

motion which can be difficult to separate. System proposed by

Karatas et al. [10], [10] can achieve driver gesture recognition

by separating the vehicle’s motion data from the wearable

device. However, because of the hardware limitation on mobile

and wearable devices, such system require continuous calibra-

tion to maintain accuracy [11]. Thus, the motion sensor based

approaches are not practical for everyday use.

Acoustic or RF based Systems This type of systems

utilize acoustic/RF signals to sense the user’s gesture for

driver behavior recognition. Systems proposed by Yang et
al. [18], [20] are among the first work to use acoustics

signals to detect driver phone use and improve driving safety.

CARIN [13] can recognize activity of driver in the presence

of passenger interference using Channel State Information.

V2iFi [14] can achieve in-vehicle vital sign monitoring using

similar techniques. However, those systems require additional

hardware installation and extensive training to achieve high

accuracy. On the other hand, SteerTrack, DriverSonar and D3-

Guard [15]–[17] utilize inaudible acoustic signals emitted and
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Fig. 2. Overview of the system flow.

captured by the smartphone to track the driver’s hand gestures

and infer driver’s behavior. But those system can only work

when smartphone is placed at the position where directly

facing the driver and the excessive use of various sensors

can cause fast battery drain and possible device overheating

problems [12].

III. SYSTEM DESIGN

The basic idea of our system is to infer the driver’s hand po-

sition with respect to the steering wheel leveraging Bluetooth

RSSI from multiple devices in the vehicle during the driving

period. Fig 2 shows the overview of our system. At first, our

system will perform Bluetooth collection, in which all the

available Bluetooth compatible devices in the vehicle(e.g., car

Bluetooth, smartphone Bluetooth) continuously send out probe

signals and the wearable devices worn by the user extract RSSI

measurements from each received probe signal packet. For our

system the default sampling frequency is set at 100Hz and the

Bluetooth collection process will persist during the driving

period. Note that it is possible to further improve the detection

accuracy by increasing the sampling frequency.

As shown in Figure 2, our system consists of three ma-

jor components: Data Calibration, Vehicle Motion Sensing,

and Distracted Driving Detection. The collected Bluetooth

measurements first go through RSSI Processing to mitigate

the interferences and noises caused by hardware imperfection.

This step is necessary because the channel propagation per-

formance between signal transmitters and receivers fluctuates

drastically during the transmission process. Such interference

caused by fluctuation of the propagation is indeterminate and

unpredictable even in a LOS environment [21]. Thus, it is

difficult to achieve accurate Bluetooth ranging by simply ap-

plying raw Bluetooth RSSI. To resolve this issue, we leverage

a Wavelet filter based approach to mitigate the noises and

stabilize the RSSI value [22]. It is done by breaking the

original signal into its wavelets with different frequencies then

applying different levels of thresholds to mitigate the noises

while maintaining the distance information. Meanwhile, our

system also go through Vehicle Motion Sensing process that

takes in motion sensor data and GPS information extracted

from in-vehicle mobile devices and infer the current status of

the vehicle (e.g, the current speed or if the vehicle is making

a turn).

After the calibration process, our system will conduct

safe zone construction and update utilizing the de-noised

RSSI measurements. Unlike many existing wearable-based

approaches that require explicit user involvement or active

user cooperation for profile construction or update, we take

advantage of the time period where the vehicle pull out of

the parking area to conduct profile construction and update.

In order to pull the vehicle out of parking area, the user’s

hand is usually on the steering wheel during that time period

and our system leverage the RSSI measurements collected

to construct or update the safe zone for that trip implicitly

without user awareness. We can infer the duration of car

pulling out of park area by leveraging the motion sensors

and GPS information acquired from the previous step. For

example, during this period, the car will go through a series of

backing and turning motion which can be easily derived using

the accelerometer, gyroscope and GPS data extracted from the

mobile devices in vehicle. In general, it takes 10s to 30s to

pull out of the parking area depends on the parking location

and traffic which is more than enough to achieve safe zone

construction or update for each trip. The processed Bluetooth

RSSI measurements collected during the profile construction

or update period will be used as safe zone data.

It is worth noticing our current system assume the placement

of user’s phone stay consistent during the process. However,

there still exists possible scenarios where the user might pick

up the phone and place it in a different position during the

trip (e.g., check the phone when car is stopped and put it back

when the car is in motion again). To handle this situation, we

could use the phone’s motion sensor data (i.e., accelerometer,

gyroscope, and magnetometer) to infer the trajectory change

of the phone movement and derive the new position of the

phone or determine if the phone has been placed back to its

original position. If not, our system can just rely on the car

Bluetooth for distracted driving detection. We would like to

incorporate this into future work that allows our system to

handle additional phone position change scenario.

Next, our system will go through Distracted Driving De-
tection to determine if driver is conducting distracted driving

behavior. To achieve that, we first utilize the results from

Vehicle Motion Sensing process to determine the current

vehicle motion status such as if the car is moving or making

a turn. If the car is not in motion, then we assume the car

is temporarily stopped at the traffic light or parked in the

parking area. For both scenarios, there is no need to activate

the detection process since distracted driving behaviors are

only considered during the driving period. On the other hand,

if the results from Vehicle Motion Sensing indicate the car is

in motion, our system will go through Hand on/off Estimation
process to determine if the driver’s hand is off the steering

wheel. In order to achieve that, we estimate relative position

driver’s hand with respect to the safe zone we construct from

previous step. It is done by using one-class Support Vector

Machine (SVM) based classification module. We choose the

following features to characterize the safe zone: normalized

standard deviation, the offset of signal strength, the median
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absolute deviation, and the interquartile range. In the process

of construct classification model. For the training, we took

over 30 minutes data from real world driving scenario, which

consists of eight participants keep their hands on the steering

wheel while making turns or keeping static. The rest is used

for testing and each user’s data is used for his/her own training

model.

Our system currently only uses empirically selected thresh-

olds to achieve better detection accuracy leveraging existing

data sets. This could potentially affect system performance

especially when the proposed system is under the massive

deployment scenarios. Additionally, we only use SVM as the

classification module for distracted driving behavior detection

which is highly depend on current data sets. Thus, we propose

to utilize more sophisticated machine learning/deep learning

techniques (e.g., CNN, RNN) to achieve better adaption with

different data sets. We will explore this as our future work to

improve the robustness and performance of the system under

various scenarios.

IV. EVALUATION

A. Experiment Setup

Devices and Vehicles. We implement our system on a

Moto 360 3rd Gen smartwatch with Quad-core 1.2 GHz

Cortex-A7 CPU, 1GB RAM. The device runs Wear OS H-

MR2 and is compatible with Bluetooth 4.2. For this study,

we recruited eight participants - 4 female and 4 male from

age 22 to 47. The participants are encouraged to use their

own vehicles and smartphones for this study. There are four

different types of vehicles used in this experiment including

a Nissan Sentra(sedan), Honda Civic(compact sedan), Ford F-

150(pick up truck), Toyota RAV4(SUV). All the vehicles are

equipped with in-car Bluetooth. The smartphones involved in

the study are Google Pixel 4a, Google Pixel 6, OnePlus 8,

Samsung Galaxy S5 and Samsung Galaxy Note5. We asked

the participants to put their smartphone at the locations where

they are commonly placed on the vehicle.

Real-World and Simulated Driving Scenarios. To fully

evaluate the effectiveness of our system, we conduct the

experiments with both real-world driving and simulated driv-

ing. The real-world driving is used to represent the safe

driving where participants are asked to keep their hands on

the steering wheel all the time. For safety reasons, only the

simulated driving is used to mimic the unsafe driving where

participants can take their hands off the steering wheel and

conduct five distracted driving behavior discussed before. We

conduct the simulated driving under two scenarios. For the first

scenario, the participant is asked to conduct different distracted

driving behaviors while the car is stopped at the parking lot.

For the second scenario, the participant is asked to conduct

different distracted driving behaviors in a lab environment

including the steering wheel simulator (i.e., Logitech G920

Driving Force Racing Wheel and Floor Pedals) resemble the

real driving environment. We acknowledge that the simulated

driving is different from real-world driving especially for the

lab simulation scenario. Specifically, there are psychological

and physical differences between the real driving on road and

the simulated experiments, which could affect participants’

behavior. However, it is considered dangerous and possibly

illegal to ask a participant to perform any unsafe behavior

under real-world driving scenario. To resolve this issue, we

will recruit participants for a long-term study to monitor and

record their daily driving behavior in the future work.

TP TN
0

0.2

0.4

0.6

0.8

1

Fig. 3. Overall performance.

Data Collection. There are five different distracted driving

behaviors are studied in the experiment including: A) using

mobile devices, B) eating/drinking, C) operating on-vehicle

system, D) searching onboard item and E) Grooming. They

are considered because they are the most common distracted

driving behavior found in everyday driving scenario [23].

During the driving period, a camera is used to record the

ground truth and all the data collected are labelled manually.

We record over 100 minutes of real-world driving data and 75

minutes of simulated driving data. In the real-world driving

scenario, we select three different routes including campus

route, suburban route and highway route.

Metrics. We use the following metrics to evaluate the

performance of our systems. True positive rate (TP) is the

proportion of distracted driving behavior that are correctly

identified. True negative rate (TN) is the proportion of the

non-distracted driving behavior that are correctly not identi-

fied as distracted driving behavior. Detection accuracy is the

proportion of correctly identified distracted driving behavior.

B. Overall Performance

Fig 3 shows the TP and TN for distracted driving detection

under all driving scenarios. We can observe that the rate of

our system to successfully detect the distracted driving is over

95%. This shows that our system is highly effective and accu-

rate to detect various distracted driving behaviors. Meanwhile,

the TN of our system is over 94% which shows our system

could achieve high detection accuracy while maintain low false

alert rates.

C. Impact of Number of Bluetooth Devices

Next, under the simulated driving scenario in the stopped

car, we study the impact of number of Bluetooth devices on

system performance. Specifically, we evaluate the performance

of our system using up to four Bluetooth devices. It is worth

noticing, our system will always have at least one Bluetooth
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device from the vehicle available during the driving period.

Driver and passengers can also bring their own devices on the

vehicles. As shown in Fig 4, our system can achieve around

90% detection accuracy even there is only one Bluetooth

device available and the detection accuracy can be increased to

99% when four Bluetooth devices are being used(One driver

phone and two passenger phones). This is because with more

Bluetooth compatible devices, the Bluetooth ranging accuracy

can be further improved which will lead to better detection

accuracy.

1 2 3 4 5
Number of Bluetooth Devices

0
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Fig. 4. Detection accuracy under number of Bluetooth devices.

D. Impact of Different Smartphones

As the users will use their own devices during the driving

period which could vary in sizes, hardware, and OSs, we then

study the performance of our system using different smart-

phone models. For this study, there are only two Bluetooth

devices in the vehicle(car Bluetooth and driver phone) and

the smartphone is placed at the cup holder. Fig 5 shows the

detection accuracy results under different smartphones. We can

obverse that all the smartphone models achieve around 95%

detection accuracy with no discernable difference between

devices. Such observations show that our system is robust and

compatible with different models of smartphones.

E. Impact of Different Phone Placement

We then evaluate the performance of our system under dif-

ferent phone placement in the vehicles since users might place

their smartphones at different locations within the vehicle. We

study four different phone placements including dashboard,

pocket, cup holders, and driver door, which represents the

typical locations of phone that commonly stored in real-world

driving scenarios. Fig. 6 shows the detection accuracy results

for different placements. We can observe that, the longer

distance of the phone with respect to the steering wheel,

the better detection accuracy our system will achieve. As

we can see the dashboard placement has the lowest accuracy

which is around 88% because it is too close to the steering

wheel which provides less distance diversity compare to other

placement. One exception is the pocket with accuracy around

90%, although the pocket placement provide enough distance

diversity but due to the fact that leg is moving around during

the driving period, it reduce the stability of the Bluetooth

reading.

0

0.2

0.4

0.6

0.8

1

D
et

ec
tio

n 
A

cc
ur

ac
y

  Google Pixel 4a
  Google Pixel 6
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  Samsung Galaxy S5
  Samsung Galaxy Note5

Fig. 5. Detection accuracy for different smartphone models.
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Fig. 6. Detection accuracy for different phone placement.

F. Impact of Different Routes

Campus Suburban Highway
Routes
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Fig. 7. Detection accuracy for different routes.

Next, we evaluate the performance of our system in different

routes including campus, suburban route and highway route

to represent different road conditions and driving scenarios in

real life. The campus route represents the route with frequent

full stops and corner turns; the suburban route represents the

route with moderate stops and turns and the highway route

represent the route with almost no stop and smooth turn. The

detection accuracy results is shown in Fig 7. We can observe

that the campus route has the lowest detection accuracy which

is around 94% and highway route has the highest detection

accuracy which is around 97%. This is because the campus

route involves more sharp turns and hand motion which could

cause more false alert that can reduce the accuracy. On the

other hand, the highway route almost has no stop and much

less hand motion involvement which could lead to better

detection accuracy. Additionally, drivers usually stay more
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alert on the highway compare to the local route which could

potentially contribute to the detection accuracy difference.

G. Performance over Different Distracted Driving Behaviors

We then study the performance of our system when driver

is conducting 5 distracted driving behaviors discussed in Data
Collection to have a better understanding over those behaviors.

For each of the action we build a separate profile for the

participant which is only for this detailed study and not

required for our system to work. The confusion matrix for

the 5 different actions is shown in Fig 8. As we can see

the detection accuracy is over 96% for all distracted driving

behaviors while grooming and using mobile devices have the

lower detection accuracy compare to others. This is because

the time period of grooming action is usually shorter compare

to other actions which make it more difficult to detect.

A B C D E

A
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E
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0.01

0.01
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0.01

0
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0.97

0.99

0.94

Fig. 8. Confusion matrix for different distracted driving behaviors.

H. Power Consumption

According to existing work [24], the energy consumption

rate for devices utilizing Bluetooth 4.2 is less than 40mW per

ms which means the total energy consumption when using

our system is amounted to 326.4μA per day. Considering

the battery capacity of regular smartphones is more than

2500mAh, our system only consumes less than 1% of the total

battery capacity even if it is being used all day.

V. CONCLUSIONS

In this work, we propose a wearable-based distracted driving

detection system leveraging Bluetooth. By sending the probe

signals from multiple Bluetooth compatible devices on the

vehicle to the smartwatch worn by the driver, our system can

infer the hand position with respect to the steering wheel and

recognize the hands off events for distracted driving detection

during the driving period. Our system achieves implicity

profile construction and update leveraging the time period

where the vehicle pull out of the park area without user

active cooperation or awareness. Additionally, the proposed

system utilizes only Bluetooth sensors to achieve low energy

consumption compare to other wearable-based approaches.

The experimental evaluation demonstrates that the proposed

system can achieve over 95% accuracy in detecting distracted

driving behaviors. Results also show that our system can work

with different phone models and limited number of Bluetooth

compatible devices on the vehicle.
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