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ABSTRACT

Sensing the liquid level in a container is critical to building many
smart home and mobile healthcare applications. This paper presents
a liquid level sensing system that is low-cost, high accuracy, widely
applicable to different daily liquids and containers, and can be easily
integrated with existing smart home networks. Our system uses
an existing home WiFi network and a low-cost transducer that is
attached to the container to sense the resonance of the container
for liquid level detection. We evaluate our system in home envi-
ronments with various containers and liquids. Preliminary results
show that our system achieves an accuracy of 97% for continuous
prediction and an F-score of 0.968 for discrete prediction.
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1 INTRODUCTION

In recent years, Internet-of-Things (IoT) is becoming more and more
intergraded into our daily life and is revolutionizing the way we live.
By connecting everyday objects together, it provides a variety of
emerging services to improve the quality of our life, especially in a
smart home environment [3-6, 8]. Among those emerging services,
sensing the liquid level in the containers has gained increasing
attention as it provides information on when and how much the
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Figure 1: System overview.

liquid has been consumed each day. Such information is critical to
building smart homes and mobile healthcare applications.

The challenge in liquid level sensing lies in finding low-cost and
highly accurate solutions that are widely applicable and can be
easily integrated with smart home networks. Existing commercial
products are too expensive to be widely deployed. There are active
research efforts in liquid level sensing. However, the capacitive
sensor-based approach [7] requires the sensors to be immersed in
the liquid. The camera-based approach [1] only works for transpar-
ent containers that are filled with opaque liquid.

In this paper, we introduce a new approach for sensing the lig-
uid level that is low-cost, high accuracy, and widely applicable to
different daily liquid containers. As shown in Figure 1, our sys-
tem uses existing home WiFi networks and a low-cost transducer
that is attached to the container to sense the inherent vibration
characteristic (i.e., resonance) of the liquid in the container. The
resonance of the liquid in the container is closely associated with
the liquid level and can be applied to a wide range of liquids as
well as containers of different materials. As the increase of liquid
volume leads to the increase of mass, both the power and the value
of the resonance frequency should decrease. Reusing existing home
WiFi networks for sensing liquid levels allows the system to be
integrated with existing smart home networks without additional
communication hardware, which can directly support a variety of
smart home applications.

2 SYSTEM DESIGN

The basic idea of our system is to use the home WiFi networks to
sense the resonances of the container stimulated by the attached
transducer for liquid level detection. The transducer generates an
excitation from 0Hz to 1000Hz, which is one sweep. While the trans-
ducer sweeps the frequency, the wireless signals sense the vibration
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Figure 2: A transducer is Figure 3: Overall accuracy for Figure 4: Overall confusion Figure 5: Performance for dif-
matrix for discrete prediction. ferent containers and liquids.

mounted on a container. continuous prediction.

of the container and our system extracts the Channel State Informa-
tion (CSI) to detect resonance frequency for liquid level prediction.
Specifically, we adopt Principal Component Analysis (PCA) to com-
bine the 30 subcarriers’ information of CSI to capture the subtle
vibration of a container. Then, our system applies STFT to extract
all the frequency components in the CSI and chooses the frequency
with the strongest energy as the detected resonance frequency of
the liquid container. Given the detected resonance frequency, we
predict the liquid level based on the relationship between the liquid
level and the resonance frequencies. Note that with an increase in
liquid level, the resonance frequency will decrease.

To obtain the relationship between the liquid level and the reso-
nance frequencies, we first collect the training data which includes
different liquid levels in containers and the corresponding reso-
nance frequencies. Then, we use both discrete and continuous man-
ners to model the relationship. In particular, for discrete one, we
adopt a Support Vector Machine (SVM) based approach to model
the frequencies and the corresponding liquid levels. Moreover, we
leverage the curve fitting to construct the model for the relationship
between frequency and liquid level for continuous prediction.

3 PERFORMANCE EVALUATION

We conduct experiments with two laptops (i.e., one transmitter and
one receiver) and both laptops are equipped with Intel 5300 WiFi
NICs for extracting CSI [2]. As shown in Figure 2 the transducer is
mounted on the container. To evaluate the performance, we choose
three commonly used containers and they are made up of metal,
glass, and ceramic. The experiments are conducted in a typical home
environment with two categories of liquids: thin liquids (water,
coke, vegetable oil) and thick liquids (milk, dishwashing liquid,
laundry detergent). We collect 100 data samples for one container
with one type of liquid. For continuous prediction, the training
dataset contains 50% data samples and the other data are used for
testing. The accuracy is the error to container capacity ratio. For
discrete prediction, we label the liquid levels from low to high with
1 to 10 and randomly select half of the data for training. We use a
confusion matrix and F-score to evaluate the performance.

Figure 3 shows that the accuracy of continuous prediction is great
than 97% under different numbers of sweeps. This demonstrates
our system can already achieve high accuracy with only one round
of sweep. Figure 4 shows the confusion matrix of discrete liquid
level prediction and the F-score is 0.968. The majority of the errors
occur when the container has a lower liquid level. This is due to
that with less liquid, the resonance frequency changes at a slower
pace. On the other hand, when the container has a higher liquid
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level, our system can achieve better performance. We then evaluate
the impact of different container materials. Both categories (i.e.,
thin and thick) of liquids are considered. As shown in Figure 5, our
system achieves over 96.3% accuracy for three containers while
filled with thin and thick liquids respectively. We train different
models for containers of different materials and sizes. However,
different liquids belonging to the same category can share the same
model as we found that the liquids with similar densities have
similar resonance frequencies.

4 CONCLUSION

This paper presents a low-cost, high accuracy, widely applicable
liquid level sensing system. The proposed system leverages only
one transducer and commodity WiFi devices to achieve liquid level
sensing, which can be easily integrated with a smart home envi-
ronment. Preliminary experiments under different types of liquids
and containers of different materials demonstrate that the proposed
system is effective in predicting a number of liquid levels.
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