
ARSteth: Enabling Home Self-Screening with
AR-Assisted Intelligent Stethoscopes

Kaiyuan Hou
Columbia University

New York, New York, USA
kh3119@columbia.edu

Stephen Xia
Columbia University

New York, New York, USA
sx2194@columbia.edu

Emily Bejerano
Columbia University

New York, New York, USA
eg3205@columbia.edu

Junyi Wu
Columbia University

New York, New York, USA
jw4173@columbia.edu

Xiaofan Jiang
Columbia University

New York, New York, USA
jiang@ee.columbia.edu

ABSTRACT
The stethoscope is one of the most important diagnostic tools used
by healthcare professionals, through a process called auscultation,
to screen patients for abnormalities of the heart and lungs. While
there are digital stethoscopes on the market which ease this pro-
cess, it still takes years of training to properly use these devices to
listen for abnormal sounds within the body. We present ARSteth,
an intelligent stethoscope platform that improves the accessibil-
ity of stethoscopes for the general population, allowing anyone
to perform auscultation in the comfort of their own homes. Our
platform utilizes a combination of augmented reality (AR), acous-
tic intelligence, and human-machine interaction to dynamically
guide users on where to place the stethoscope on di�erent parts
of the body (auscultation points), through visual and audio cues.
Through user studies, we show that ARSteth, on average, can guide
users within 13.2 mm from optimal auscultation points marked by
licensed physicians in 13.09 seconds for each auscultation point.
By guiding users towards more e�ective auscultation points, make
preventative health screening more accessible and e�ective for ev-
eryone we are able to achieve higher con�dence on classifying
heart murmurs.

CCS CONCEPTS
• Human-centered computing! Human computer interac-
tion (HCI); • Computer systems organization! Embedded and
cyber-physical systems.
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Figure 1: Currently, screening for heart related diseases re-
quire physical doctor visits, which is costly. Digital stetho-
scopes are widely accessible, but still often cost hundreds of
dollars and require years of training to use properly. ARSteth
enables users to self-screen at home by following intuitive
AR-assisted guidance.
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1 INTRODUCTION
Inaccessibility to health care, more speci�cally preventative ser-
vices, is a major problem in the United States and around the world.
It is recommended to have a comprehensive physical examination
at least once per year [15]. However, preventative care is often
prohibitively expensive, with more than 26,000 Americans dying
each year due to lack of health insurance [26]. This problem is
exacerbated in developing countries where more people are unable
to pay the high cost of medical expenses, leading to worse out-
comes as diseases are often not detected until later stages [1, 25].
Many systems have been developed to improve and enable user
safety [33, 34], privacy [32], and preventative health screenings
from both the mental [19, 21–23] and physical [12, 13] perspectives
to improve quality of life and reduce the strain on healthcare in-
frastructure. There are also many commercial devices that provide
quick medical insights include mercury and infrared thermometers,
blood pressure monitors, and glucometers. However, household
devices to monitor one’s heart condition are lacking. With cardiac
disease being a leading cause of death worldwide, a widely accessi-
ble solution is needed to allow everyone to monitor heart health
without requiring access to a trained medical professional [35].
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The stethoscope is the hallmark non-invasive tool used by health-
care providers to examine a person’s circulatory and respiratory
systems by listening to the sounds produced internally by the body
in a process called auscultation. During a typical examination, the
physician places the diaphragm of the stethoscope at various loca-
tions on the patient’s body (typically areas on the chest, abdomen,
and back) and listens for sounds that indicate abnormal functioning,
such as heart murmurs, �uid in lungs, or abnormal bowel move-
ments. The results from this examination, along with the patient’s
medical history and other provided information, are used by the
healthcare provider to determine if further examination and/or
treatment is necessary.

There are several professional-grade digital stethoscopes on the
market which can interface with smartphones and laptops, allowing
anyone to perform auscultation. Even though digital stethoscopes
are widely accessible, an average non-licensed person would not
be able to screen themselves because it takes years of professional
training to learn what sounds are ab/normal and where to place
and adjust the stethoscope.

We propose and design a non-invasive digital stethoscope plat-
form, ARSteth, powered by arti�cial intelligence (AI) with the goal
of enabling the general population to screen themselves for abnor-
mal heart. ARSteth utilizes computer vision and acoustic algorithms
to identify e�ective auscultation points where machine learning de-
tectors can better distinguish between normal and abnormal heart
sounds. Additionally, ARSteth guides users on where to place the
stethoscope, through visual and audio cues, using live video from
the user’s computer camera and the sounds recorded by the stetho-
scope. ARSteth represents a step towards enabling universal health
screening, allowing underserved and low-resource communities
access to a powerful health screening tool without requiring access
to a medical professional.

In this paper, we make the following contributions:

• We propose ARSteth, an AI-based stethoscope platform that
improves accessibility to low-cost health screening. ARSteth
guides users in placing the stethoscope at di�erent ausculta-
tion points through real-time audio-visual feedback. ARSteth
analyzes sounds recorded from the stethoscope at each aus-
cultation point using signal processing and machine learning
techniques to screen for heart murmurs.

• We introduce a method to locate auscultation points by com-
bining the advantages of both video and audio to overcome
the constraints of either sensing modality alone. Mimicking
a physician, ARSteth leverages sight (computer vision) to es-
timate the coarse location of one’s heart and then �ne-tunes
the location with the sounds recorded by the stethoscope in
real-time. In doing so, ARSteth compensates for variations
due to di�erent body shapes from di�erent users.

• We suggest modeling the auscultation points from a quali-
tative description to a quantitative representation. We de-
termine the location of auscultation points with respect to
the coordinates of the shoulder positions of the user. This
allows us to �nd initial auscultation points quickly.

• Through user studies, we demonstrate that ARSteth, on aver-
age, can guide users within 13.2 mm from optimal ausculta-
tion points marked by licensed physicians in 13.09 seconds,
without the presence of a medical professional.

• We show that ARSteth greatly improves the usability com-
pared to existing state-of-art stethoscopes, scoring 12.6%
higher rated on the Likert scale across on four aspects of
usability through a usability study.

2 RELATEDWORKS
Stethoscopes are perhaps one of the most well-known health screen-
ing tools used by primary care physicians to listen for abnormal
sounds, indicative of illness, coming from the within the body.
Recently, there has been a growth of digital stethoscopes on the
market, as part of an e�ort to provide both doctors and the general
population easy access to a powerful health screening tool.

There are several stethoscopes on the market that provide auto-
matic heart murmur detection and ampli�ed auscultation sounds
with arti�cial intelligence, including the 3M Littman Core Digital
Stethoscope [7]. However, our own experiments with this stetho-
scope yielded a high rate of false positive murmur detections. There
are also several stethoscopes and that help guide users on where
to properly place a stethoscope [3]. However, none of these works
dynamically guide users in real-time and only display an image
showing where to place the stethoscope on a static model.

An alternative method for monitoring the heart is to use devices
other than stethoscopes, which can assist in virtual visits (tele-
health) [14, 15]. However, this approach still presents a challenge
regarding the placement of the stethoscope. [4, 11]. However, this
approach still presents a challenge regarding the placement of the
stethoscope. Properly using a stethoscope requires years of train-
ing to understand where to place the stethoscope and which types
of sounds to listen for.

The goal of our work is to improve the usefulness of stethoscopes
for the general population besides virtual visits (telehealth). By
incorporating dynamic AR guidance, an untrained person can easily
and quickly screen his/her health with limited assistance from a
healthcare provider. The bene�ts of incorporating AR and vision-
based guidance has been shown to improve accessibility in other
areas of medicine [2].

Manyworks haven been done to classify various sounds recorded
from a stethoscope into di�erent types of heart murmurs and lung
ailments [5, 9, 10, 16, 27–29].In this work, we show that by incor-
porating dynamic AI-driven AR guidance that aids users in where
to properly place the stethoscope during the examination, we can
more quickly obtain higher quality heart that improve the perfor-
mance of algorithms for detecting heart murmurs ailments.

3 AUSCULTATION POINTS MODELING
The �rst task to address is to identify the auscultation points on the
body. As shown in Figure 2, physicians routinely auscultate four
points to listen to four heart valves: Aortic, Pulmonary, Tricuspid,
Mitral [31]. The identi�cation of auscultation points is typically
dependent on the subject’s individual body structure. During aus-
cultation, physicians �rst assess the subject’s body to determine the
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Figure 2: Typical auscultation points. Aortic (A): right side of
the sternum; Pulmonary (P): left-hand side of the sternum;
Tricuspid (T): in the fourth intercostal space, along the lower-
left border of the sternum;Mitral (M): in the �fth intercostal
space, along the mid-clavicular line[14].

location of the sternum and intercostal muscles, which are associ-
ated with the auscultation points. They then palpate the chest area
around these locations to locate the auscultation points and place
the stethoscope accordingly. However, due to the presence of bones
and unique body structures, standard auscultation locations may
not always yield the best quality sounds. Therefore, physicians of-
ten make slight adjustments to the stethoscope position to enhance
the quality of the sounds.

The standard procedure for auscultation involves physicians
relying on information from visual, tactile, and auditory senses to
locate the speci�c points on the body where they need to place the
stethoscope to hear relevant sounds. ARSteth leverages multiple
sensing modalities to replicate this procedure while guiding users.
However, identifying the precise location of auscultation points
is challenging due to their variability among individuals, making
it heavily reliant on the physician’s expertise. Thus, one of the
most challenging aspects of self-screening with a stethoscope is the
di�culty associated with �nding the auscultation points. A purely
computer-vision-based approach is insu�cient because clothing
commonly obstructs details of the body.

3.1 Determining Coarse Auscultation Locations
In most auscultation tutorials and guides, the location of ausculta-
tion points is typically shown on a skeleton diagram, with a spatial
relationship between the points and the skeleton indicated. Apart
from the sternum and intercostal spaces, the positions of the left
and right shoulders can also be used as reference points. We can
adopt computer vision-based method to quantitatively determine
the locations of auscultation points on a person’s body by establish-
ing a coordinate system with the left and right shoulder positions
as references.

Using the shoulders to locate the auscultation points has several
advantages. First, there has been signi�cant research on locating
the shoulders in the context of augmented reality, which provides
a well-established foundation for our approach. Second, since the

shoulders represent the outline of the body, movements of the
upper body forward or backward do not a�ect the detection of the
auscultation points whenwe anchor them to this plane. On the other
hand, if we were to use a landmark that is not on the body’s outline
as a reference for locating the auscultation points, the coordinate
system would be distorted by variations in the person’s sitting
position, leading to errors in the estimation of the auscultation
points. Finally, the shoulder information can be used to determine
the subject’s sitting position, which can aid in the auscultation
process.

Assume that the right shoulder is located at (GA , ~A , IA ) and
the left shoulder is located at (G; , ~; , I; ) in 3D space. We create a
coordinate system where the origin is the right shoulder, the x-axis
points from the right shoulder to the left shoulder, and the y-axis
points downwards and is perpendicular to the x-axis. We represent
the locations of the auscultation points as follows:

G8 = GA + (⇠8G/⇠) ⇤ (GA � G; )
~8 = (~A + ~; )/2 + (⇠8~/⇠) ⇤ (GA � G; ) ⇤ ./-

(1)

Here, (G8 ,~8 ) represents the coordinates of the 8th auscultation point.
⇠8G and ⇠8~ are parameters for each auscultation point that will be
explained in Section 3.1.1. ⇠ is a constant with an empirical value
of 1210, which represents the length of the shoulders. - and . are
the aspect ratio of the image.

3.1.1 Auscultation Point Parameters:
To estimate auscultation parameters in Equation 1 (⇠8~ , ⇠8~ ), we
recruited a group of individuals. A physician marked the locations
of four auscultation points on each subject using stickers. These
stickers were then detected by a program, and the center of the
resulting bounding boxes was computed. Using Equation 1, we
solved for parameters ⇠8~ and ⇠8~ across all auscultation points.
For each individual, there were four tuples representing the x and
y parameters for the four auscultation points.

Next, all combinations of these tuples from all individuals were
traversed, with each combination forming a new set of four tu-
ples. These sets of parameters were used to place stickers on a
subject, and the distance error between the auscultation points
found using the formula and the auscultation points marked by the
physician was measured. We integrated the set of parameters that
gave the minimum error across all subjects into ARSteth. This �nal
parameter resulted in an average distance error of 2.88 cm across
all subjects.

3.2 Fine-Tuning Auscultation Points
After the coarse location of auscultation points are obtained, we
discuss how to update the auscultation point parameters by ana-
lyzing the sound captured from the stethoscope. A logical question
that arises is: why are vision estimates not enough? First, we de-
termine the points of auscultation by referencing the position of
two shoulders, which has been discussed in the previous section.
Nevertheless, this introduces two potential sources of error: there
is a certain level of uncertainty with respect to the estimated land-
marks, and the equation used to derive auscultation points relies
on parameters that do not account for di�erences in body shape;
consequently, the estimated points obtained solely by computer
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(a) The Shannon Energy Envelope can identify the S2 peak in
normal heart sounds. We compute the average of systolic and
diastolic phases.

(b) S2 cannot be clearly found in severe heart murmurs.We com-
pute the average between two consecutive S1 sounds.

Figure 3: Shannon Energy Envelope, Envelope and Original
Phonocardiogram(PCG) with mild and severe murmur.

vision are frequently o� by a few centimeters. Second, the place-
ment of the stethoscope a�ects the quality of auscultation. Better
estimated auscultation points often signi�cantly increase the char-
acteristics of abnormal sounds. Due to radiation1, the auscultation
point for the heart is more crucial to detect heart murmur. We may
detect murmur at multiple locations, but we are mostly interested
in the location with the highest intensity; it is often di�cult to
detect abnormal sounds at locations far from optimal auscultation
points. This is due to their low signal-noise ratio (SNR) or due to
attenuation during propagation to the stethoscope.
1Murmurs are typically most prominent at a particular listening post. They frequently
radiate to other listening posts or body parts. For instance, aortic stenosis commonly
radiates to the carotid arteries, whereasmitral regurgitation radiates to the left auxiliary
region.

A murmur will introduce extra peaks or non-zero peaks in
the phonocardiogram (PCG) during the systolic phase or dias-
tolic phase. It will also cause an extra lobe in the Shannon Energy
Envelogram[17]. We compute the Shannon Energy ⇢ as:

⇢ = �G2 · ;>6(G2) (2)

Sound can be segmented using a Shannon Energy envelogram,
which accentuates medium-intensity signals and greatly reduces
the impact of low-intensity noise and artifacts. We then compute
the envelopes’ average Shannon Energy during the systolic phase
and diastolic phase, where the envelopes average Shannon Energy
⇢0E6 can be computed as:

⇢0E6 = � 1
#

#’
8=1

G28 · ;>6(G28 ) (3)

where # is the number of samples. The systolic and diastolic phases
can be easily found by locating the end and start of S1 and S2 sounds
which are always the highest peaks in envelopes as shown in Figure
3a. In this work, we are more interested in the start and end times
of the S1 and S2 sounds instead of the segments. S1 and S2 can be
found by setting thresholds. However in some cases with severe
heart murmur, the intensity of murmur sound can be greater than S2
sounds such as in Figure 3b. We then only focus on the occurrence
of S1 sounds and compute the average between two consecutive S1
sounds.

Algorithm 1 Fine-Tuning of Target Auscultation Point

Input: loc: array of locations (G,~), energy: array of corresponding
computed average energies

Output: position: tuple representing �nal location of target aus-
cultation point

1: while True do
2: if energy is ascending then
3: if arrive at target auscultation point then
4: Append a counterclockwise trajectory to path
5: else
6: Append current location to loc
7: end if
8: else
9: position loc[-1]
10: break
11: end if
12: end while
13: Compute the percentage change between the �nal (G,~) and

the initial (G,~) at this auscultation point
14: for each unexamined auscultation point do
15: Scale the initial (G,~) of the unexamined point with the

percentage change to re�ect the variance in body shapes
16: end for

Algorithm 1 details ARSteth’s auscultation point �ne-tuning
process. This algorithm computes the average Shannon Energy
when the stethoscope is in close proximity to the target ausculta-
tion point and leverages this to �ne-tune the location of the target
auscultation point in the same manner of a physician. This algo-
rithm takes an array of locations loc and an array of corresponding
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computed average energies energy as input. It �ne-tunes the target
auscultation point by repeating the process of sampling and com-
puting the recorded sample until a decrease in energy is observed.
It then reassigns the auscultation point to the previous location
that gives a higher value in terms of energy. If the energy is always
increasing and the user has positioned the stethoscope, the algo-
rithm extends the path with a counterclockwise trajectory until a
local maximum is found. This procedure ensures that we can �nd
the best auscultation points with limited known knowledge. Once
the �nal location of the target auscultation point is determined, the
algorithm computes the percentage change between the �nal and
initial (G,~) at this auscultation point. The initial (G,~) of the un-
examined auscultation points are then scaled with this percentage
change to re�ect the variance in body shapes.

4 IMPLEMENTATION
Figure 4 is ARSteth’s system architecture. ARSteth takes the cam-
era, stethoscope, and several user inputs. In this work, we employ
Mediapipe[20] to determine the landmarks of body such as the
shoulder coordinates in the image and the stethoscope location held
by thumb and index. The user inputs height, weight and gender,
which is used to generate the initial auscultation point parameters.
Sound observed by the stethoscope is used for updating the pa-
rameters or terminating the guidance to start recording. ARSteth
generates a detailed report that shows what and where the abnor-
malities are detected. We �rst illustrate how ARSteth assists in the
detection of auscultation points. We also examine the interaction
between ARSteth and humans. Furthermore, we introduce how
ARSteth calibrates auscultation points according to sitting posi-
tion, the disease classi�cation method, and our custom-designed
stethoscope.

4.1 Guidance and Human Interaction
The identi�cation of auscultation points requires human-computer
interaction which prompts the user to adjust the stethoscope as the
estimated auscultation points are dynamically updated according
to Algorithm 1.

4.1.1 Si�ing Position Regulation.
During a physical examination, patients are not required to assume
a particular position. However, during self-screening, the predicted
points of auscultation can vary depending on the sitting position,
as shown in Fig. 5. The green dots on the �gure represent the
estimated points of auscultation, and di�erent sitting positions can
signi�cantly a�ect the accuracy of the auscultation points. Our
preliminary experiments show that maintaining a stable position
and gesture during the test can improve sound quality. Therefore,
it is crucial to ensure that the user is sitting properly.

Two factors need to be considered to achieve this. First, we need
to determine whether the user is sitting upright, and second, we
need to determine whether the user is facing the camera. Since we
intend to use augmented reality to assist the user’s self-screening,
the user’s upper body is visible in the camera’s �eld of view, provid-
ing the necessary information to verify the user’s sitting posture.
Suppose the position of the right shoulder is (GA , ~A , IA ), and the
position of the left shoulder is (G; , ~; , I; ).

To determine if the user is sitting upright, we calculate the angle
displacement from the roll axis of the user with respect to the
horizontal line using arctan ~;�~A

G;�GA . If the resulting angle is less
than a speci�ed threshold, we prompt the user to lower their left
shoulder, as shown in Fig. 5a. Conversely, if the angle exceeds a
certain degree, we ask the user to lower their right shoulder.

To determine if the user is facing the camera, we �nd the angle
displacement from the yaw axis of the user with respect to the
normal direction of the camera. We calculate the di�erence in the
heights of the shoulders to estimate this displacement, i.e., I; � IA .
If the di�erence is less than a speci�ed value, we ask the user to
turn left, as shown in Fig. 5b. If the di�erence exceeds a certain
value, we ask the user to turn right. The threshold for both cases
will be presented in Section 5.2.

4.1.2 Stethoscope Positioning.
In some circumstances, individuals may cover the drum of the
stethoscope with their hand, resulting in the loss of tracking when
a model of the stethoscope directly trained for detection is used. To
mitigate this, we track the thumb and index �nger and approximate
the stethoscope as a circle with a diameter corresponding to the
distance between these two coordinates.

4.1.3 Logic of Guidance.
ARSteth provides two types of guidance. The �rst type is the sitting
position regulation, as discussed in Section 4.1.1. The second type
directs the user to move the stethoscope to �nd the auscultation
points, similar to how a physician would. To guide the user in how
to sit and adjust his/her body, the video stream from the camera
is mirrored. Once the user meets the requirements, an image of
the heart and four coarse auscultation points appear on the body,
which is comparable to a physician’s initial estimation. The user is
then guided to place the stethoscope at the four auscultation points
(in order): Aortic, Pulmonary, Triuspid, and Mitral.

During the process, ARSteth detects the stethoscope and shows
a �ashing red arrow from the stethoscope to the current targeted
auscultation point. ARSteth also samples the sound from the stetho-
scope and performs pre-processing on the acquired sounds. The
frequency spectrum of heart sounds is typically between 10 and
200 hertz. S1 has a lower pitch and is a longer-lasting sound, while
S2 is a shorter-lasting sound with a higher pitch. S1 dominates the
10-140 hz range, whereas S2 dominates the 10-200 hz band. S3 and
S4 have low amplitude and frequency, between 20 and 70 hertz. If
there is a dysfunction in the cardiac system, such as murmurs or
mitral valve stenosis, the spectral content may increase to 600-700
hz. To preserve information on heart features, ARSteth low-pass
�lters the signal with a cut-o� frequency of 1 kHz to remove envi-
ronmental noise and possible noise between the stethoscope, skin,
or clothes.

To monitor the movement of the stethoscope, ARSteth saves the
location of the center of the stethoscope in a queue for updating the
location of the auscultation points when Algorithm 1 terminates.
Once the algorithm �nishes, the locations of the remaining unex-
amined auscultation points are updated. Ideally, ARSteth wants the
user to move the stethoscope slowly. If the movement is too fast,
ARSteth will ask the user to move the stethoscope in a circular path
around the original location to obtain additional samples. This is a
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Figure 4: System Architecture block diagram. Three inputs (camera, user input and sound from the stethoscope) are used to
guide the user and assess the potential heart ailments.

(a) Left shoulder is too high (b) Turn left

Figure 5: Incorrect sitting position causes di�erence in coarse
estimation. Left: the left shoulder is too high. Right: the right
shoulder is too close to the camera.

dynamic procedure where the user follows the arrow to the next
targeted position displayed, and ARSteth updates this position until
the criteria are met.

The center of the stethoscope is transformed into the same co-
ordinate system as auscultation point. We compute the Euclidean
distance between the stethoscope and the �ne-tuned auscultation
points, if the distance is less than 30 pixels, ARSteth will start record-
ing the sound for 5 seconds. To guarantee the quality of the sample,
we ask the user to maintain the stethoscope’s position. During the
acquisition phase, if the distance between the stethoscope and the
target position exceeds the threshold, the sound collection will
terminate, and guidance will repeat.

4.2 Auscultation Point Calibration
The user’s sitting position can greatly a�ect the accuracy of the
auscultation points. To reduce errors in auscultation point locations
caused by di�erent positions, ARSteth guides users to sit straight
and upright, as discussed in Section 4.1.1. To further reduce errors
and variations caused by the plane of the body not being completely

parallel to the plane of the camera lens, we perform a projection
discussed below.

We model the auscultation points with respect to left and right
shoulders by Equation 1. The parameters for each point of ausculta-
tion of the heart are based on the real body, which may be rotated
with respect to the camera, but not the �attened 2D body in the
image. The variance in coarse location is coming from the lack of
depth in the 2D graph. In the case when the user’s body is tilted
with their right shoulder closer to the camera, one line segment
closer to the right shoulder will be shorter than a line segment
with the same length in image. This is why we need to perform
projection to the coordinate system whose x-axis is parallel to the
horizontal line as shown in Figure 6. We want to �nd the actual
length in the G~I coordinate system given the information in G 0~0I0
coordinate system. We modify the auscultation equation along the
x-axis to make it correlated with more information about the body.
There are two angles we need to consider, the angle between the
shoulder level and the horizontal line \ and the inclination angle
that is normal to the plane of the image q , they are calculated by:

\ = arctan(~; � ~A
G; � GA

)

q = arctan( I; � IAp
(G; � GA )2 + (~; � ~A )2

)
(4)

The length of the original vector in 3D space represents the visual
shoulder length in the 2D �atted plane which is GA � G; . However,
the actual shoulder length is greater than this visual length due to
the shoulder not being parallel to the x-axis. The auscultation point
parameter on the plane when the body is parallel to the camera.
The shrink factor : is calculated as : = 2>B (q) ⇤ 2>B (\ ). We assume
that the shoulder that is closer to the camera can allow for more
reliable measurements. If the right shoulder is closer, then we still
use the location of right shoulder to be the origin of the coordinate
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Figure 6: Auscultation point projection. The auscultation
point parameters are based on the ratio of shoulder length
as indicated with dashed lines. The new parameters are the
fraction that projected onto the x-axis which is parallel to
the horizontal line as indicated in the red line.

system. The new auscultation points will be:

G = GA +⇠G/⇠ ⇤ : ⇤ (GA � G; ) (5)

If the left shoulder is closer to the camera, with transformation, we
can have the calibrated parameter of x be:

G = GA + (⇠G/⇠ ⇤ : + 1 � :) ⇤ (GA � G; ) (6)

4.3 Disease Classi�cation
The �nal step of ARSteth involves detecting abnormal heart sounds.
Due to our lack of access to actual patients, we utilized a heart sound
dataset made available by the PhysioNet/CinC challenge 2016 [18].
This dataset comprises 3126 heart sound recordings that were cap-
tured in diverse clinical and non-clinical settings, and features both
healthy subjects and those with various heart conditions. The heart
sound recordings were gathered from the standard four ausculta-
tion points: aortic area, pulmonic area, tricuspid area, and mitral
area, and each recording was categorized as normal or abnormal.

4.3.1 Preprocessing.
We �rst downsample all the heart sound recordings to 1 kHz and
apply a Butterworth band-pass-�lter with cuto� frequencies of 25
Hz and 800 Hz to remove the undesired low-frequency artifacts
and high frequency noise such as background noises. The �ltered
heart sounds are then standardized by subtracting the mean and
dividing by the standard deviation. For each heart sound recording,
we segment the recording into short intervals of single heart beat
cycles by the provided annotations in the dataset. Finally, we use
zero-padding in the segments that have less than 1000 samples
and discard the segments with more than 1000 samples and use the
resulting dataset for training and testing our detector (Section 4.3.2).

Measuring Tape Tape

Aortic Tricuspid

Pulmonary
Mitral

Figure 7: White shirt and customized stethoscope for per-
forming evaluation. In each auscultation point, red dot rep-
resents the ground truth, yellow dot represents the initial
guess (baseline), purple dot represents the ARSteth without
projection, green dot represents ARSteth with projection.
Measuring tape is used for measuring the distances on the
shirt, and the tape is used to remove the slacks of shirt and
reduce the movements of the shirt during the test.

4.3.2 Neural Network Classifier.
Many studies have reported the use of neural networks for heart
disease classi�cation [5, 9, 10, 16, 27–29]. Since our focus is study-
ing how user guidance can improve ailment detection, we adopt
a standard detection model. Our model uses a two-dimensional
convolutional (2D-CNN) neural network that takes Mel-frequency
cepstral coe�cients (MFCC) of each segment after preprocessing
as input, and produces a prediction between two classes: normal or
murmur. The model achieves an accuracy of 87.18%, a sensitivity
of 86.08%, and a speci�city of 91.55% on our dataset (Section 4.3.1).

4.4 Customized Stethoscope
We created a custom designed stethoscope with a $7 dual-head
stethoscope and a $11 microphone from Amazon as shown in the
bottom-right corner in Figure 7. We cut the tubing of stethoscope
and remove the eartube and eartip, but retain the diaphragm and
tubing. We then inserted the microphone partially in the tubing
with diaphragm from the drum2.

5 SYSTEM EVALUATION
In this section, we evaluate the performance of ARSteth from three
perspectives. First, we assess the e�ectiveness of ARSteth in guid-
ing non-professional users through auscultation. Since ARSteth is
intended for use at home, its ability to guide users is critical to its

2Completely inserting the microphone in the tubing would result in the microphone
receiving no sound. We observed no correlation between sound quality and insertion
depth after testing various insertion depths.
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out projection at Pulmonary:
all (13.4 mm), male only (12.8
mm), female only (28.0 mm)
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(h) Acoustic calibrationwithout
projection at Mitrial: all (19.5
mm), male only (18.1 mm), fe-
male only (34.8 mm)
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(i) Acoustic calibration with
projection at Aortic: all (12.6
mm), male only (11.5 mm) fe-
male only (21.8 mm)
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Figure 8: Distance (error) to the actual auscultation points provided by physician. Baseline: coarse estimation only. Acoustic
calibration but no projection: coarse estimation + �ne tune. Acoustic calibration with projection: coarse estimation + �ne tune
+ projection.

success. Second, we examine the margin of error in the guidance to
determine the extent to which ARSteth can tolerate variations in
sitting position. This enables us to determine the extent to which
ARSteth can guide users accurately and precisely in typical situ-
ations. Finally, we present an end-to-end evaluation of ARSteth
using simulated abnormalities on a manikin. Prior to conducting
the experiments, we obtained Institutional Review Board (IRB) ap-
proval and informed consent from 35 participants between the ages
of 18 and 44, representing 5 di�erent races. We took measures to
protect the privacy of the participants and erased all user activity
data after the completion of the study.

5.1 Performance of Auscultation Guidance
The primary goal of this study is to develop an augmented reality
(AR) platform that dynamically guides users to the most e�ective
auscultation points. Thus, the system’s ability to provide accurate
guidance is of paramount importance. This section evaluates the
system’s performance in terms of timing and accuracy regarding
auscultation guidance.

5.1.1 Experiment Setup.
In this section, we describe the setup for our experiment to evaluate
the precision of auscultation guidance provided by ARSteth in a
quiet room with an environment noise level of 43.6 dB in order to

simulate the intended usage of ARSteth in a home environment. To
determine the accuracy of the system, we measure the geometric
distance between the actual auscultation points and the locations
identi�ed by ARSteth. We asked a licensed physician to mark the
ground truth locations for all subjects using a standard auscultation
procedure as described in Section 3. We provided a shirt and the
physician marked the ground truth locations with a red sticker,
as shown in Figure 7.

Each subject used our platform twice while sitting upright and
with minimal shoulder rotation, with and without projection
calibration, as described in Section 4.2. First, we guided the subjects
using ARSteth without projection calibration, then marked the
identi�ed locations with a purple sticker, and marked the initial
locations found by computer vision only with a yellow sticker as
the baseline. Then, we enabled projection calibration and repeated
the test, marking the new locations with a green sticker.

To minimize measurement error caused by shifts in clothing, we
tightly secured the shirt around the waist using tape. We measured
the distances between the green and red stickers, and between the
purple and red stickers, for each cluster representing an auscultation
point of the heart. These distances were measured using a tape
measure after the subject’s shirt was removed and the surface was
�attened.
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In addition to placing stickers, we recorded the time it took for
each subject to �nd the auscultation points. The timer was started
when the subject picked up the stethoscope and began moving and
was stopped when the acoustic calibration was terminated.

5.1.2 Precision of Auscultation.
In Figure 8, it is clear that the baseline method performed the worst,
while the acoustic calibration with projection method performed
the best. The distance errors for all four auscultation points are
consistently lower for bothmale and female patients when using the
acoustic calibration with projection method. The average distance
error for all gender is reduced from 24.7 mm in the baseline method
to 13.2 mm in the acoustic calibration with projection method, a
signi�cant improvement of about 50% (46.57%).

We can also observe that the distance error is consistently smaller
for the pulmonary auscultation point compared to the other three
points in all methods and for both genders. This could be because
the pulmonary valve is closer to the skin surface, making it easier
to detect using a stethoscope. We also found that the performance
on male patients is generally better than on female patients, which
could be due to anatomical di�erences in the chest wall or other
physiological factors a�ecting the propagation and detection of
heart sounds.

We consulted with licensed physicians to validate the accuracy
of the auscultation points identi�ed by our system. The physicians
found the sounds collected at those points to be acceptable and
within the range of corresponding main heart valve areas. However,
it is important to note that the diameter of an auscultation point can
vary from person-to-person, and there is no absolute number that
describes the correct location for each point. Overall, our results
suggest that our system has the potential to guide users to locate
their auscultation points using AR guidance, which can advance
preventative care by enabling the general public to self-screen.
In our evaluation of distance error, we considered subjects from
�ve di�erent races, including Asian, White, American Indian or
Alaska Native, and Black or African American. However, our study
did not �nd a signi�cant relationship between race and distance
error. This suggests that the performance of our system, in terms
of distance measurement accuracy, is consistent across individuals
from di�erent racial backgrounds.

Figure 9a is the cumulative distribution function (CDF) on var-
ious age groups, it appears that the performance of ARSteth im-
proves with increasing age group, with the 35-44 age group show-
ing the best performance. There could be a variety of factors that
lead to this outcome, including changes in chest wall structure
as people get older [8]. We plan to explore this further in future
work.Additionally, the improvement in performance with increas-
ing age group could also be attributed to di�erences in the physical
characteristics of the subjects, such as bodymass index (BMI), which
can a�ect the quality of sound transmission and detection. BMI
was found to be a signi�cant predictor of the quality of heart sound
recordings [30]. As such, the older age group, which tends to have
a higher BMI on average, may have more favorable physical char-
acteristics for sound transmission and detection, leading to better
performance.

5.1.3 Timing.
In this section, we evaluated the time required by users to position
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Figure 9: (Left)Distance error on di�erent age groups.
(Right)Time required for identifying the auscultation points.

the stethoscope correctly on the auscultation points using ARSteth.
This study measured the time taken from the start of movement
until the stethoscope was placed in the correct position for each
auscultation point. The results showed that the �rst auscultation
point, i.e. Aortic, took the most time to locate, and this is due to the
need to update and �ne-tune the coarse estimation of the ausculta-
tion points along the trajectory of the movement at the beginning
of the screening. However, in the next three target points, the cali-
bration time was generally shorter because the coarse estimation
had been improved while �nding the Aortic point. On average,
users were able to locate the other auscultation points in about
21.61 seconds when there was no projection enabled. However, the
projection-based calibration of the auscultation point signi�cantly
reduced the time for users to �nd the auscultation points. The
projection-based calibration ensured that the predicted points were
closer to the actual target auscultation point, which resulted in less
time spent on the initial auscultation point. The projection-based
calibration reduced the time to locate each auscultation point to
about 13.09 seconds. While it may take longer for users to locate the
auscultation points using ARSteth compared to physicians, ARSteth
requires less time to detect murmurs. During a standard physical
examination, physicians normally listen to the heart for 30 to 60
seconds to determine the pace and rhythm of the heartbeats and
to detect any abnormal sounds. On the other hand, ARSteth takes
about one minute to identify all four auscultation points and "listen"
at each point for 5 seconds.

5.1.4 Usability.
Table 1 compares the evaluation results of two di�erent systems,
ARSteth and a state-of-the-art intelligent stethoscope, the Eko
3MTM Littmann® CORE Digital Stethoscope [7]. These evalua-
tions are based on four factors: simplicity, guidance, con�dence,

Simplicity Guidance Con�dence Aesthetics

Group 1 ARSteth 4.1 (± 0.33) 4.6 (± 0.49) 4.6 (± 0.48) 4 (± 0.29)
Eko 4.2 (± 0.41) 3.7 (± 0.84) 4.2 (± 0.41) 4.3 (± 0.47)

Group 2 ARSteth 4.3 (± 0.75) 4.5 (± 0.50) 4.7 (± 0.44) 4 (± 0.60)
Eko 4.6 (± 0.48) 4.3 (± 0.75) 3.6 (± 1.15) 4.4 (± 0.48)

Table 1: Survey responses from two groups (averaged) and one
standard deviation on four aspects of usability for ARSteth
and Eko. Scores range from 1 (worst) to 5 (best).
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Figure 10: Error due to angle displacement. Blue (X) curve
shows up and down displacement, green (Z) curve shows
forward and backward displacement. The red dashed line
represents the maximum error value ARSteth tolerates (1.0
cm).

and aesthetics. Simplicity refers to how easy the system is to use.
Guidance measures the system’s ability to direct users to the aus-
cultation points, without necessarily assessing the correctness of
the placement. Con�dence refers to how users feel about the sys-
tem’s ability to correctly identify the auscultation points. A system
that directs the stethoscope to an obviously incorrect location (e.g.
outside of the chest area) will result in a lower con�dence score.
Aesthetics refers to the system’s interface design. The test subjects
are divided into two groups:

• Group 1 (24 subjects), consisting of individuals with no prior
experience with digital stethoscope technologies.

• Group 2 (11 subjects), consisting of individuals with some
familiarity with technology or prior experience with similar
devices.

The results show that ARSteth provides more extensive guidance
for users in Group 1, suggesting that ARSteth provides suitable
guidance for individuals without any background. Furthermore, in
Group 2, ARSteth scored signi�cantly higher in con�dence, which
suggests that it may be more reliable in identifying auscultation
points. Overall, Table 1 indicates that both ARSteth and Eko are
relatively easy to use, but ARSteth provides additional guidance for
users who may not be familiar with the technology. Additionally,
ARSteth scored higher than Eko in terms of providing reliable
results. Therefore, the results suggest that ARStethmay be a suitable
option for the general public, particularly those who are not familiar
with technology, as it can provide reliable self-screening at home.

5.2 Flexibility of Auscultation
In Section 5.1.2, ARSteth was found to provide reasonable estimates
of auscultation points when users’ sitting positions were restricted.
However, maintaining an upright position for the duration of the
examination can be di�cult for users. Even though ARSteth ac-
counts for rotations in the body through projection (Section 4.2),
allowing users more �exibility while using the system is ideal. This
evaluation aims to determine the maximum angle displacement

Speaker

Stethoscope

Figure 11: Speaker is placed inside of the manikin. Stetho-
scope is used to listen and record the sound on the other side.

in the x-axis and z-axis caused by sitting position variance while
maintaining acceptable estimation of auscultation points.

The x-axis displacement is the angle between the line connecting
the left and right shoulders and the horizontal line as shown in Fig-
ure 5a. The larger the di�erence in altitude between the shoulders,
the greater the displacement in the x-axis. The z-axis displacement,
illustrated in Figure 5b, increases if one shoulder moves towards
the camera while the other moves farther away. In most cases,
when users sit and use ARSteth for routine self-screening, there are
typically three angles that describe their sitting position. Besides
the two angles mentioned earlier, there is also a tilt angle of the
upper body that should not a�ect the system since we model the
auscultation point directly on the plane.

The objective of the following experiment is to test the max-
imum capability of the system in tolerating angle displacement
in two directions, x-axis and z-axis. The subject is seated and the
displacement angles are adjusted by moving the shoulders, with
one angle being tested at a time. The maximum angle displacement
is set at 20� for the x-axis and 30� for the z-axis. The experiment is
performed on a male subject at the pulmonary auscultation point.
The results show that the system can tolerate angle displacement in
x-axis from about �10� to 10� and in z-axis from about �10� to 15�.
The maximum distance error is set to 1cm, which is an in�ection
point for both angle displacements. Beyond this threshold, the error
increases rapidly. Therefore, the limit for both displacements is set
to ±10� in the actual experiment. The experiment shows that angle
displacement beyond these ranges leads to a much larger error in
the distance.

5.3 Heart Murmur Detection
In Section 5.1, we evaluated ARSteth with subjects in normal health
and no heart murmurs present. However, to evaluate ARSteth’s
ability to detect heart abnormalities, we need to simulate such ab-
normalities. Given that it is di�cult to access patients with heart
abnormalities, we used a silicone-made medical manikin to simu-
late a human body. We stripped the internal Nylon-made support,
leaving only the 4.9 mm thick silicon skin, and attached a speaker
(Momoho BTS0011) to the inner side of the skin to emulate the body
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Murmur

(a) Time domain comparison. The playback sound preserves the
murmur sounds.

(b) Spectrogram of playback (left) and original (right) sounds. Two heart
beats can be clearly identi�ed in both �gures.

Figure 12: Comparison between the playback sound and the
original sound in both time domain and spectrogram.

surface, as shown in Figure 11. This is in line with existing tech-
niques using heart sound recordings for telemedicine and physician
training, which indicate that the errors introduced by the record-
ings can be tolerated. There are also existing works that use medical
manikins to simulate heart sounds and perform auscultations in a
lab environment [6, 24].

5.3.1 Fidelity of Recorded Heart Sound.
We �rst veri�ed the �delity of heart sounds recorded by the stetho-
scope by playing back sample heart sounds with heart murmurs
collected with an Eko Stethoscope in the open dataset (Section 4.3.1).
We continuously played back the sound with the speaker placed
inside the manikin and then used the Eko stethoscope on the other
side of the manikin at the same location. Figure 12 shows the orig-
inal and playback sounds and their corresponding spectrogram.
We used normalized cross-correlation to determine the time delay
between the original and playback samples and scaled the recorded
playback sound to eliminate the e�ect of intensity change due to
the volume of the speaker. Although the playback sound introduced
some high-frequency noise, the murmur was still present and iden-
ti�able in the playback sound. We con�rmed this by passing the
playback sound to the classi�er we created in Section 12b, which
successfully classi�ed the sound. Despite the noise around 1 kHz,
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Figure 13: Comparison between four di�erentmethods of the
detection con�dence on an abnormal sound versus distance
(error). The four methods are coarse estimation only (CV
only), �ne-tuned auscultation points (CV + audio), coarse
estimation with projection calibration (CV + projection) and
�ne-tuning with projection calibration.

the model’s ability to detect heart murmurs was una�ected because
heart murmurs are typically found between 600 and 700 Hz.

5.3.2 Manikin-based Experiment.
Our goal is to demonstrate how guidance can improve the quality
of auscultation for better classi�cation results. Speci�cally, we use
the con�dence of the model instead of the classi�cation result to
evaluate the e�ectiveness of our system. To simulate abnormal heart
sounds as realistically as possible, we placed the speaker on the
inner side of a manikin at the standard auscultation locations. We
selected and looped samples with murmur sounds from the dataset
that produced the highest con�dence in the model output, and ran
our system by following the steps provided by its guidance while
using a custom-designed stethoscope on the manikin. To document
the trajectory of the stethoscope, we marked the 4 auscultation
points and sampled 5 locations along each trajectory.

Since multiple auscultation points surround some areas of a real
body, sounds from di�erent sources are combined into one, making
it impossible to simulate accurately. To address this, we began
moving the stethoscope from a location far away from the other
three auscultation points, following standard procedures for how a
physician would move the stethoscope, to the target auscultation,
where we placed a speaker playing a recording at the end of the
trajectory to simulate heart sounds. Along each trajectory to the
target auscultation point, we sampled sounds from 5 locations.

The results of our experiment are presented in Table 2. The dis-
tance to the target auscultation point decreases as we follow the
guidance of our system, and the con�dence in classifying heart
murmurs increases monotonically. These �ndings support the relia-
bility of our system for self-screening. Note that the target referred
to here is the point where the acoustic calibration algorithm termi-
nates, rather than the actual location of the speaker.
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Point 1 Point 2 Point 3 Point 4 Point 5
(cm / %) Dist. Conf. Dist. Conf. Dist. Conf. Dist. Conf. Dist. Conf.
Aortic 5.7 1.3 3.4 16.7 2.1 65.1 1.2 89.5 0.4 98.2

Pulmonary 3.6 10.9 2.9 22.5 2.4 25.2 1.7 84.6 0.6 98.7
Tricuspid 6.5 0.8 4.4 8.7 3.1 19.7 2.5 22.3 0.9 94.5
Mitral 3.3 18.6 2.8 21.2 1.9 82.3 1.2 91.1 0.5 97.9

Table 2: The distance (error) to the target auscultation point and its corresponding con�dence on heart murmur.

To compare the performance of each component in ARSteth,
we repeated the experiment with coarse estimation using com-
puter vision only for coarse estimation, coarse estimation with
projection, and �ne-tuned position without projection. Figure 13
illustrates the results, which were obtained by collecting sounds at
the same distances as listed in Table 2 and obtaining corresponding
classi�cation con�dences. The blue line representing �ne-tuned
estimation by sound achieved the second-best result, indicating that
the �ne-tuned location obtained by analyzing the sound from the
stethoscope can help increase the chance of placing the stethoscope
closer to the target point. In particular, the projection was found to
be useful when the stethoscope was far away from the source of
sound.

6 DISCUSSION
6.1 Limitation on the Evaluation
The current evaluation methodology for ARSteth has several limi-
tations that should be acknowledged. One major limitation is that
the evaluation is conducted on manikins, which may not accurately
re�ect the actual conditions of human subjects. Manikins lack the
variety of human chest characteristics, such as chest size, shape,
and hair, which may impact the accuracy of murmur detection.
In addition, manikins may not fully simulate the respiratory and
circulatory systems, which may result in inaccurate representations
of real-world auscultation conditions.

Moreover, the use of public datasets has its own set of limita-
tions. Public datasets are usually recorded from a limited number of
subjects with speci�c medical conditions, which may not represent
the entire population. This can lead to biased evaluation results
and limit the generalizability of the �ndings. Furthermore, public
datasets often include inherent noise and artifacts.

Another limitation of the current evaluation methodology is the
error introduced from the playback of the public dataset through
the manikin. The use of a manikin as an intermediary introduces
additional error due to the di�erences between the manikin and
real human subjects. For example, the material of the manikin’s
chest may not be the same as that of a human chest, leading to
variations in sound transmission and attenuation. Additionally, the
use of a manikin may also introduce di�erent frequency responses,
which may a�ect the detection of certain types of murmurs.

Despite the limitations mentioned above, our evaluation has
shown that combining public datasets and playback through a
manikin can be an e�ective evaluation method for ARSteth. The
normalization and cross-correlation of the recordings and playback
demonstrate the �delity of the playback process. However, it is
important to note that the evaluation results obtained through this

method may not fully represent the performance of the intelligent
stethoscope during real subject tests.

In summary, the current evaluation methodology has limita-
tions that should be acknowledged. The use of manikins and public
datasets may not fully re�ect real-world auscultation conditions,
leading to biased and limited evaluation results. Additionally, the
playback through a manikin introduces additional error due to
the di�erences between the manikin and real human subjects. Fur-
ther research is needed to develop more comprehensive evaluation
methods that address these limitations and accurately re�ect the
performance of intelligent stethoscopes during real subject tests.

6.2 Acceptable accuracy and error tolerance
The probability density function in Figure 8 indicates that the Aortic,
Pulmonary, Tricuspid, and Mitral regions have the highest prob-
abilities at 12.6mm, 11.2mm, 13.1mm, and 16.7mm, respectively,
across all genders. However, these numbers may not be easily un-
derstood by non-medical professionals, and there is no established
range of acceptable auscultation points in the medical �eld. To
address this, we consulted with two cardiologists who con�rmed
that physicians typically place the stethoscope at the four standard
cardiac regions corresponding to the heart valves, and move it to
identify the best position for hearing heart sounds. Based on this
guidance, our collaborating physician validated the auscultation
points found by our system as acceptable because they were in the
range of the corresponding main heart valve areas and produced
high-quality heart sounds. Note that the diameter of an auscultation
point can vary from person to person. Furthermore, we plan to cre-
ate a benchmark to assess the distance error between auscultation
points identi�ed by physicians in a diverse group of test subjects,
which would further support our work.

7 CONCLUSION
In this paper, we introduce ARSteth, an AR-assisted home self-
screening system for cardiopulmonary diseases with a custom-
designed low-cost stethoscope. We implement ARSteth using aug-
mented reality to provide the user with real-time feedback in lo-
cating auscultation points. To further enhance the precision of
auscultation points without the presence of medical professionals,
we present a method to �ne-tune the locations by continuously
analyzing the sound from the stethoscope. Our results show that AR-
Steth utilizing our custom-designed stethoscope can provide quick
(about 13.09 seconds for each auscultation point) and accurate guid-
ance (13.2mm distance error on average) with less restrictions on
users’ sitting positions compared with 24.7mm distance error in our
baseline. We also demonstrate its ability to detect potential heart
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diseases by evaluating abnormal sounds with a medical manikin.
While further testing is required to assess the system’s accuracy
and feasibility for clinical applications such as murmur detection,
our preliminary results suggest that ARSteth has the potential to
enhance early detection for the general public.
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