L))

Check for
Updates

LegoSENSE: An Open and Modular Sensing Platform for
Rapidly-Deployable loT Applications

Minghui Zhao, Stephen Xia, Jingping Nie, Kaiyuan Hou, Avik Dhupar, Xiaofan Jiang
Columbia University
USA, {mz2866, stephen.xia, jn2551, kh3119, ad3910}@columbia.edu, jiang@ee.columbia.edu

Temperature, Humidity, ~ Raspberry Pi
Pressure, Wind Speed

End-To-End Deployent Time Comparison

LegoSENSE

e ak®
.
Custom System @

M4 (12C)

(a) (b) P Foat (©) (d)

« Toluene, Acetone,

Ambient Light Color, . HW
Light Intensity 120 A ’ . sw
Proximity, Microphone BN Deploy
Motion (IMU) 100 +
Thermocouple] ’ B egoSENSE
re s 804
E v (S:uslnm
Particulate Slot 1 | Slot 2 £ e
Matter (PM1, = 604
P25, PBIO) Slot 3 [Slot 4 g 1
coz, =
Volatile Organic Carrier Board 10 /]
Compound
12C ‘Analog 20
Gas Density SPI Digital . l
(5 varients)
« Aleohol UART vo 0 T .l -l .'
+CO & Flammable Sensor Module Home Home Subway Vehicle &
+ Benzene & Smoke [Semor 1 semserz] -]
« Hydrogen Sulfide [] Health Safety Stations Drone

Figure 1: (a) Comparison between LegoSENSE and existing custom sensing solutions. (b) Eight LegoSENSE modules with a total
number of 16 different types of sensors using four different communication protocols. (c) LegoSENSE’s hardware architecture.
(d) End-to-end time comparison of LegoSENSE vs. custom systems for four applications. The graph shows the time spent in
four user studies on setting up the sensing system. The blue bar represents the average time consumption of people without
embedded system background using LegoSENSE, and the orange, green and red bars represent the time consumption of people
experienced with embedded system building and deploying same system without the use of LegoSENSE. It shows that on
average even professionals would take 5.4 longer to deploy a system than beginners using LegoSENSE.

ABSTRACT

Domain-specific sensor deployments are critical to enabling various
IoT applications. Existing solutions for quickly deploying sensing
systems require significant amount of work and time, even for expe-
rienced engineers. We propose LegoSENSE, a low-cost open-source
and modular platform, built on top of the widely popular Raspberry
Pi single-board computer, that makes it simple for anyone to rapidly
set up and deploy a customized sensing solution for application
specific IoT deployments. In addition, the ‘plug and play’ and ‘mix
and match’ functionality of LegoSENSE makes the sensor modules
reusable, and allows them to be mixed and matched to serve a
variety of needs. We show, through a series of user studies, that
LegoSENSE enables users without engineering background to de-
ploy a wide range of applications up to 9x faster than experienced
engineers without the use of LegoSENSE. We open-source the hard-
ware and software designs to foster an ever-evolving community,
enabling IoT applications for enthusiasts, students, scientists, and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

IoTDI °23, May 09-12, 2023, San Antonio, TX, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0037-8/23/05...$15.00
https://doi.org/10.1145/3576842.3582369

367

researchers across various application domains with or without
prior experiences with embedded platforms or coding.

CCS CONCEPTS

« Computer systems organization — Embedded hardware;
Embedded software; « Hardware — PCB design and layout; Wire-
less devices; Sensor devices and platforms; Sensor applications
and deployments.

KEYWORDS
sensor, platform, plug and play system, IoT, rapid deployment

ACM Reference Format:

Minghui Zhao, Stephen Xia, Jingping Nie, Kaiyuan Hou, Avik Dhupar,
Xiaofan Jiang. 2023. LegoSENSE: An Open and Modular Sensing Platform
for Rapidly-Deployable IoT Applications. In International Conference on
Internet-of-Things Design and Implementation (IoTDI °23), May 09-12, 2023,
San Antonio, TX, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/
10.1145/3576842.3582369

1 INTRODUCTION

Embedded sensing systems have gained popularity in recent years
as they provide some of the most important aspects of the Internet
of Things (IoT): detecting an object and/or event in the environ-
ment, allowing for the capture of relevant data in real-time and
data analytics. With information perceived from surroundings by
deploying embedded sensor systems, a wide range of domains can

https://doi.org/10.1145/3576842.3582369
https://doi.org/10.1145/3576842.3582369
https://doi.org/10.1145/3576842.3582369
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3576842.3582369&domain=pdf&date_stamp=2023-05-09

10TDI ’23, May 09-12, 2023, San Antonio, TX, USA

Industrial | Open-Source

Systems | DIY Systems LegoSENSE
Cost High Low Low
Set-up . :
time Quick Slow Quick
Customizability Low High High
Ease of use Easy Difficult Easy
Inexperienced-user . . .
friendliness Friendly | Not Friendly | Friendly
Repairability & . .
Reusability Low High High

Table 1: Comparison between LegoSENSE and existing ap-
proaches: LegoSENSE combines the pros of both existing
category of approaches.

be enhanced, including transportation, supply chain, healthcare,
smart environments, and personal and social interactions [7]. Users
in many of these domains, such as building managers, construction
workers, scientists, or doctors may need to deploy sensing systems
to enable a wide range of applications (e.g.,configurable robots
and drones [26, 52, 56], intelligent buildings [19, 22, 24, 51], urban
safety [10, 50, 53], digital health [8, 13, 20, 25, 33, 34, 49], etc.). How-
ever, many of these users do not have the technical, programming,
or embedded systems background required to efficiently build and
deploy these systems. Despite the growth in embedded sensing and
IoT, there is a lack of flexible and easy-to-deploy sensing systems
that can satisfy a broad range of IoT applications.

There are currently two broad approaches to deploying sens-
ing systems. The first category involves custom-made industrial
sensing solutions bundled with software to access data [42]. Such
systems are simple to deploy, but usually cost several thousands of
dollars for each bundle for sensors, and lack the flexibility to tailor
sensor combinations and data for specific use cases. This means
that different applications and user groups need to purchase and
learn separate products and systems. For example, a multi-channel
readout gas detection devices may cost upwards of $5K [39], and
a fire and flame detector costs $2K. [40]. The second category in-
volves connecting and programming inexpensive sensor break-out
boards on microcontrollers (MCUs) or microprocessors [12, 21].
These custom do-it-yourself (DIY) systems are typically low-cost
and offer users the most flexibility. However, sourcing the right
components and putting the system together not only require engi-
neering skills, but can also be time consuming and very unwieldy.
This is because these systems typically support only one type of
common communication protocol in each slot (e.g., I2C), and users
still need to program and write their own sensor drivers to read and
process data, therefore further increasing the difficulty for people
unfamiliar with such platforms. As shown in Figure 1(a), these cus-
tom systems often combine many parts and modules haphazardly,
which affects even small scale deployments since these systems are
prone to connection failures and damages.

In this paper, we present the design, implementation, and experi-
mentation of LegoSENSE, a modular and flexible platform for rapidly
deploying sensing systems in a diverse range of IoT applications
and domains, such as digital health, smart homes, and urban safety.
LegoSENSE provides an easy-to-use interface for any end user, such
as building managers, middle school students, or doctors, regard-
less of their programming or embedded systems background, thus
allowing them to most efficiently deploy sensing systems for their
own needs. Additionally, building on top of one of the most well-
known single-board computers, Raspberry Pi, LegoSENSE enables

368

Zhao et al.

simple-to-design add-ons for developers to introduce new sensors
into the LegoSENSE ecosystem, all while being low-cost. As shown
in Table 1, LegoSENSE fills an unmet need for allowing anyone,
particularly those with limited embedded systems background, to
quickly and inexpensively deploy sensing systems in a diverse
range of IoT applications.

To summarize, we make the following main contributions:

(1) We design and build LegoSENSE, a Raspberry Pi-based inte-
grated hardware and software platform that enables anyone regard-
less of his/her technical background to easily and quickly deploy
sensing systems for a diverse range of IoT applications. We iterated
and improved the hardware and software design, aiming for ease-
of-use through a series of prototypes and surveys with a large user
group with diverse background.

(2) We design and implement a modular hardware architecture
with (sensor) modules inserted into a multiplexed carrier board.
We design (i) a uniform interface for modules that incorporates all
common communication protocols (I2C, SPI, UART, and Analog), al-
lowing modules to be easy to plug-and-play and mix-and-matched;
and (ii) a software system to automatically scan for hot-plugged
modules and identify, load and run respective sensor drivers, and
stream sensor outputs to an easy-to-use web dashboard, API, and/or
local filesystem without any configuration from users. As such,
users can use modules with “one-click”, and let LegoSENSE handle
all the complexity.

(3) We build and test the carrier board and eight different module
boards, with a total number of 16 different types of sensors (Fig-
ure 1(a, b)). We open-source both the software and hardware designs
of LegoSENSE to the community at https://github.com/Columbia-
ICSL/LegoSENSE. This allows companies, developers and enthusi-
asts to easily and inexpensively design and incorporate new sensors
into the LegoSENSE ecosystem.

(4) We conduct a series of case studies to showcase examples of the
diverse range of IoT applications that can be enabled and supported
by LegoSENSE. We also conduct extensive user studies comparing
LegoSENSE against custom built systems, and show that users of
LegoSENSE, on average, take 5.4X less time to set up the system
end-to-end. Our user studies encompass a group of diverse end
users from various background, including adults with and without
technical background, as well as middle school students.

2 RELATED WORKS

IoT is envisioned to be capable of incorporating a vast number of dis-
parate and heterogeneous end systems transparently and smoothly,
while offering open access to specified subsets of data to develop a
plethora of digital services. Thus, creating a generic architecture
for the IoT is an arduous endeavor, owing to the enormous range of
devices, link layer technologies, and services that may be included
in such a system [55]. Businesses constantly invest in research and
development in order to innovate and create new products and
services and improve their offerings. Numerous research projects
have built modular sensor platforms readily available to the com-
munity. Each, however, addresses distinct issues, resulting in subtle
but significant distinctions, which we go into detail next.

There are many modular platforms that are based on the Berke-
ley TinyOS [23]. These platforms [9, 11, 18, 30, 31, 35] are often

https://github.com/Columbia-ICSL/LegoSENSE
https://github.com/Columbia-ICSL/LegoSENSE

LegoSENSE: An Open and Modular Sensing Platform for Rapidly-Deployable loT Applications

small and consume little power, allowing long network lifetimes
and inconspicuous node dispersal. A low-power microprocessor
and a wireless radio transceiver are used in these sensor nodes. In
one such modular platform, MASS [11], each module board has
its own dedicated processing unit instead of having a single main
processing unit controlling all resources. Although this design style
is adaptable in terms of both software and hardware, it adds a sig-
nificant amount of hardware and software overhead to each sensor
node. Mica and its derivatives are other popular wireless sensor net-
works (WSN) devices, with a form factor of plug-in sensor boards
and Atmega processor [9]. However, Mica devices target the users
with a decent amount of knowledge in embedded platform and cod-
ing, which doesn’t provide layperson-friendly services, including
web-based dashboard and sensor auto-configuration. In addition,
Atmega processor is not as popular as Raspberry Pi platforms.

Apart from TinyOS platforms, certain modular sensor systems
are purely microcontroller-based without real operating systems.
[54] is a plug-and-play sensor system for monitoring urban air
pollution. However, it is limited in the types of sensors that can be
communicated over the Serial Peripheral Interface (SPI). This has a
significant impact on the platform that lowers its scalability. All of
these designs either made incremental improvements without sig-
nificantly increasing scalability and modularity, or they addressed
specific issues without providing a holistic solution.

In addition, there are numerous modular sensor systems on the
market. [41, 42] provide numerous separate plugs and encapsulate
a range of sensors for connecting commercially available devices to
a node. However, they often cost several thousand dollars, making
them unaffordable to the majority of people. Developing a new
custom module for this platform is also difficult.

Open-source electronics vendors such as SparkFun [12] and
Adafruit [21] also developed their sensor ecosystem to enable rapid
hardware prototype by using a unified connector interface. While
their users could connect the sensors with development boards
through a cable without the need of building any circuits, their
system is based on 3.3V Inter-Integrated Circuit (I2C) communica-
tion bus, which limits the selection of sensors. Moreover, from the
user’s perspective, their connector system only eliminates the need
to build the hardware circuit. They do not address the challenges
in sensor driver/software development and integration.

In this paper, we present the design and implementation of an
open and modular sensing platform for rapidly-deployable IoT ap-
plications, called LegoSENSE, which combines the pros of existing
systems shown in Table 1. To the best of our knowledge, LegoSENSE
is the first system that provides a complete and easily extensible hard-
ware and software suite that supports all major sensor communication
protocols (I2C, SPI, UART, analog), while keeping end-user simplicity
and ease of use as the top design priority.

3 SYSTEM DESIGN

The primary goal of LegoSENSE is to save users time and effort
in obtaining the data they want. Thus, LegoSENSE is designed
around the concept of user-friendliness, while still meeting the
design goals outlined in Table 1. LegoSENSE aims to abstract away
implementation details, providing users with the bare minimum
necessary to configure the system in any manner they desire. In

369

10TDI *23, May 09-12, 2023, San Antonio, TX, USA

3

Module

12c | ADC
SPI
Slot 1

Sensor 1

MUX
Slot 2

Carrier Board

Sensor 2

=
%
3
2
5

10 | Slot 3

Raspberry Pi

<7

() LegoSENSE carrier board with modules (b) LegoSENSE’s hardware architecture

Figure 2: LegoSENSE’s carrier board and module architecture.

End User Access

Pseudo Filesystem

|1——:-D| GET /data/sensor
g
Browser
Web Server '

__ R A e

Terminal

HTTP API

| [Plug and Play

' Controller

| Module
Changed

Dashboard

Figure 3: LegoSENSE’s software architecture.

this section, we will present the overall architecture of LegoSENSE,
the various design choices made, and the reasons behind them.

3.1 Hardware Design

LegoSENSE functions on top of one of the most popular open-
source Linux-based single board computer — Raspberry Pi [14]. As
a central component of LegoSENSE, we designed a carrier board,
as a hat (shield) inserted into Raspberry Pi’s 40-pin header, and
an expandable list of modules with various sensors on board, as
module boards to be inserted into carrier board and interfaced by
Raspberry Pi. LegoSENSE’s carrier board and an example module
are shown in Figure 2.

3.1.1 Carrier Board. Systems such as Raspberry Pi and Arduino
[5, 14] are frequently used in both prototyping and custom-designed
systems, because of their low-cost and abundant community sup-
port. On such systems, manufacturers commonly package sensors
and actuators onto hats (shields) — expansion boards that directly
stack on top of the main board’s expansion header/pins, abstract-
ing away efforts of circuit building, while ensuring a correct, solid
connection. LegoSENSE follows this practice by designing its car-
rier board into a Raspberry Pi hat, allowing users to assemble the
system by simply plugging the carrier board into Raspberry Pi.

To enable users to mix and match different modules, we create
four interchangeable slots with a uniform interface. As different
sensors may use a variety of communication protocols and power
levels, we need to further consider including common protocols
and different power supplies to the interface. Thus, LegoSENSE
carefully divides and groups the Raspberry Pi’s general purpose
input & output (GPIO) pins into four groups, each of which con-
nects to one of the four identical slots for modules. With additional
circuits on the carrier board, each group (slot) is connected with
all the common sensor interfaces (IZC, SPI, UART, analog inputs,
digital I/0) and with two common voltage levels (5V and 3.3V). The
implementations are detailed in Section 4.1.1.

3.1.2 Module. In LegoSENSE’s architecture, a module is the com-
ponent that connects sensor(s) to the carrier board. Following a
standard dimension, each module contains one or more sensors,
their peripheral circuits, and a male connector that can be hot-
plugged into its female counterpart on a carrier board slot. As such,
LegoSENSE eliminates the need for the user to fiddle with cables or

10TDI ’23, May 09-12, 2023, San Antonio, TX, USA

other peripheral components. LegoSENSE envisions a community
and ecosystem that adopts this carrier board-to-module interface
standard. However, an issue that arises is that the user has to log
into the Raspberry Pi and register the type of module and the slot
it was inserted into. This defeats our “beginner-friendly” require-
ments. To tackle this issue, LegoSENSE further simplifies the user’s
setup process by including a non-volatile memory chip on the mod-
ules, which can be used to support plug-and-play. The memory
would be factory-programmed with the carrier board’s type, along
with any calibration information for the sensor(s). In this way, the
carrier board can read from the memory and automatically register
and set up the sensor as soon as it is plugged in.

3.2 Software Design

Our top design goal is that the system needs to be easy enough
for users in various background to use, and at the same time flexi-
ble enough for various applications. To fulfill such a requirement,
the software system for LegoSENSE is built around three major
components: a web server, various sensor drivers, and a module
manager that manages sensor drivers and connects with system
interfaces. The module manager contains a plug and play controller
that detects hardware changes and manages a list of worker threads
running the sensor drivers. This architecture is shown in Figure 3.

3.2.1 Web Server. LegoSENSE employs a web server on the Rasp-
berry Pi, and makes all data flow in its pipeline through HTTP. First,
the web server serves a web-based dashboard via which users may
examine system status and sensor data in real time, and adjust
sensor configurations. The dashboard makes the system beginner-
friendly by allowing the user to control the system by just clicking
buttons on any web browser, even on smartphones.

However, such basic graphical user interfaces make customiza-
tion difficult. When building a cluster of LegoSENSE systems, open-
ing web pages to configure each is obviously very cumbersome.
Thus, we also implement RESTful Application Programming In-
terface (API) within the web server. Not only does the dashboard
utilize such API to obtain sensor data, but an advanced user is also
able to programmatically access the system via API calls. We further
develop a command line application that makes use of such APIs
for users with scripting needs.

The third advantage of the web server (HTTP) architecture is
its high compatibility and scalability. For advanced users to control
the system programmatically, they can utilize LegoSENSE’s API in
any programming language they prefer. We also note that since the
system can be controlled via API calls, in an application scenario
where the user chooses to deploy a cluster of LegoSENSE, they
can use the IP addresses to easily control the system in the way
they want. In addition, in an outdoor deployment with limited Wi-
Fi or Ethernet access, we have also made the system compatible
with LTE network cards via USB, to offer Internet connectivity via
cellular data, and the HTTP-based architecture would keep the
rest of the pipeline the same. As shown in Figure 3, LegoSENSE’s
software system interfaces with users via a web server hosted on
the Raspberry Pi that serves both web pages and API calls. The
web server is wrapped into a service daemon process that manages
sensor drivers and data acquisition.

370

Zhao et al.

3.2.2 Sensor Drivers. The core idea for LegoSENSE is to read
the data from the various sensors and deliver to the user. However,
there are different types of sensors on the market, and they need to
be interfaced in different ways. For example, some sensors output
data over different digital communication buses such as SPI and
I2C, whereas some other sensors output data as analog voltages.
LegoSENSE needs to be carefully designed so that the system is
flexible enough to automatically load a variety of drivers, adapting
different implementations.

We note that many common sensors have an abundance of com-
munity support with their drivers and code examples. We would
like developers to spend as little time as possible developing sensor
drivers by taking advantage of existing code. In other words, we
want developers to be able to easily transform example programs
into LegoSENSE’s system with minimal modifications. To address
the above challenges, LegoSENSE begins with a generic template
that imposes a set of uniform software interfaces to work with the
rest of the software system. Using the template, LegoSENSE devel-
opers define and fill out the bare minimum of code. Specifically,
developers need to define the name of the module and sensors on
the module, initialization code for sensor drivers, the code to obtain
a sensor reading, when to expect the next reading, and the code to
read and parse user configurations. More details about the template
will be described in Section 4.2.1.

3.2.3 Plug-and-play Controller. One core motivation of
LegoSENSE is to simplify the workflow for end users as much as
possible. Specifically, we want users to plug in the sensor and obtain
the data without having to configure anything or execute any com-
mand. Hardware-wise, as mentioned in Section 3.1.2, LegoSENSE in-
cludes a non-volatile memory chip on each module in order to store
their identifier. In LegoSENSE’s software system, a background ser-
vice, the plug-and-play controller, periodically pulls data out of the
non-volatile memory chips to identify the type of the module, and
obtains the driver for the module from a repository automatically.

3.24 Worker Threads for Drivers. Now that we have the sensor
drivers written in a format that has uniform interface, someone
needs to automatically run the drivers, obtain the data, and pass
the data to the end user. After LegoSENSE detects the presence of a
module, its plug-and-play controller recognizes the type of module,
and starts a thread running its driver (worker thread). As seen in
Figure 3, each worker will execute its respective module’s driver,
and contains an interface to take in updated sensor configuration,
and output sensor data to the user.

3.2.5 End User Access. In order for end users to access the data,
LegoSENSE provides three different methods targeting both ad-
vanced and beginner users. As seen in Figure 3, the software ser-
vice follows the Unix design philosophy, in that “everything is a
file”. It maintains an in-memory pseudo filesystem to temporar-
ily store sensor data obtained from worker threads. This allows
advanced end users who are familiar with UNIX commands to inte-
grate LegoSENSE into their workflow, namely, writing scripts to
obtain sensor data, or simply previewing data in the terminal.
Next, as mentioned in Section 3.2.1, LegoSENSE takes advantage
of its web server and adds two more approaches for users to in-
terface with the system: (1) RESTful API through which advanced

LegoSENSE: An Open and Modular Sensing Platform for Rapidly-Deployable loT Applications

I’C SPI UART (TX, RX) | GPIO | ADC
Module1 | IC1 | SPI0, CSO | UARTO (14, 15) 24 | ADCI1
Module2 | IC1 | SPI0, CS1 | UART2 (0, 1) 25 | ADC2
Module3 | IC6 | SPI1,CSO | UARTS3 (4, 5) 26 | ADCI1
Module4 | IC6 | SPI1, CS1 | UARTS (12, 13) 27 | ADC2

Table 2: Carrier board - module interface configuration.

users can interact with the system using their preferred program-
ming language; (2) web dashboard allowing users to configure the
system, acquire sensor data, and visualize it in real time.

4 SYSTEM IMPLEMENTATION

In this section, we describe the detailed hardware and software
implementation of LegoSENSE.

4.1 LegoSENSE Hardware

As described in Section 3.1, the architecture of LegoSENSE includes
a carrier board as a Raspberry Pi hat and modules with a standard-
ized interface that works with the carrier board.

4.1.1 Carrier Board as a Raspberry Pi Hat. LegoSENSE’s Rasp-
berry Pi hat carrier board allocates the communication buses and
pins from Raspberry Pi’s 40-pin connector, divides them into four
functionally-equivalent groups, and connects each to one module
slot. The allocation is shown in Table 2.

Besides allocating and utilizing the data buses provided by Rasp-
berry Pi’s 40-pin connector, LegoSENSE also adds two ADS1115[47]
16-bit 4-channel analog-to-digital converters (ADCs) onto the car-
rier board. The two ADCs are connected to Raspberry Pi through
I2C bus, and the 8 available analog channels are connected to the
4 slots, with 2 channels per slot, to support modules with analog
sensors in both single-ended and differential mode.

One potential hardware issue that arises when interfacing be-
tween microcontrollers and sensors is the mismatched input/output
(I/O) voltage levels. For example, many analog sensors operate at
5V, whereas most microcontrollers, including the Raspberry Pi, only
tolerate 3.3V I/O. To accommodate 5V analog sensors, we power
the two ADCs from a 5V supply so that it can safely read outputs
from 5V analog sensors, and add level shifter circuits to the ADC’s
I2C interface to match the voltage to Raspberry Pi’s 3.3V.

To support module plug-and-play, LegoSENSE adds non-volatile
memory onto each module to store module’s information. We can
monitor the module slot allocation by continuously attempting to
find and read from the memory at each slot. If the memory is not
present, it indicates that the module is not installed. If we were able
to read the module’s information from the memory, the software
performs automated actions to set up that module. However, a
challenge that we came across is that, assuming all four module
slots are taken, we have four memory chips to read from. There
are not enough I/O pins to be allocated to four separate memory
chips. To resolve this, we connect all four memory chips onto the
same I2C bus, through an I?C multiplexer (MUX), TC9548A [48],
to access the memory chips in a round robin manner.

As seen in Figure 4a, the carrier board contains 4 module slots,
each with dimension 32mm x 28mm. We chose this size for each

371

1oTDI °23, May 09-12, 2023, San Antonio, TX, USA

Figure 4: (a): LegoSENSE’s carrier board (left), module (mid-
dle) vs a US quarter (right). (b): LegoSENSE’s module attached
to carrier board.

module in order to have four of them on the carrier board to sat-
isfy the need for various sensors in the common deployment tasks
(Table 3), as well as to be big enough to fit in the majority of sensor
chips on the market. To support high current-consuming sensors
such as analog gas sensors which rely on resistive heating elements,
each slot contains a dedicated 1A low-dropout voltage regulator
(LDO), AMS1117-3.3V [1], to regulate the 5V from Raspberry Pi
power supply to 3.3V. As shown in Figure 4b, each slot uses a pair of
21-pin polar mezzanine board-to-board connectors to mate the car-
rier board with module. The connectors used are 91931-31121LF [3]
(receptacle used on carrier board) and 91911-31321LF [2] (plug used
on module).

4.1.2 Modules. LegoSENSE’s module contains one or more sen-
sors that has corresponding software in the system. Each module
can be snapped onto one slot on the carrier board with a connector
as shown in Figure 4b. The modules have a standard size of 30mm x
26mm with two holes on both sides of the connector for fastening
the module to the carrier board with stand offs and M3 screws. Note,
as mentioned in Section 4.1.1, the dimension of a carrier board slot
is 32mm x 28mm, which is 2mm longer on each dimension as com-
pared to the size of module. The extra 2mm tolerance ensures that
all modules can fit easily onto the carrier board.

To implement plug-and-play, each module also includes a
M24C02 [44] 2Kb I2C bus electrically erasable programmable read-
only memory (EEPROM) to store an identifier for LegoSENSE’s
software system to recognize the presence and type of module.
We have developed 8 different modules (see Figure 1(b)) to evalu-
ate LegoSENSE with four common communication protocols for
sensors (I2C, SPI, UART, and analog), as shown in Figure 1(b).

M1 Ambient Environment: Temperature & Humidity (AHT20) [6],
Pressure (SPL06) [17], Wind Speed (Modern Device) [32]
Ambient Light: RGB (TCS34725FN) [4], Light Intensity (pho-
toresistor)

Human Activity: Distance (VL53L1X) [43], Microphone (ICS-
40180) [45]

Motion: Accelerometer & Gyroscope (MPU6050) [46]
Thermocouple: -200°C to +1350°C thermocouple
(MAX31855KASA) [29]

Particulate Matter (PM): PM1 & PM2.5 & PM10 Sensor
(PMS5003) [36]

Indoor Air Quality: Volatile Organic Compounds & CO2
(SGP30) [38]

Gas Sensor: Alcohol (MQ-3), Carbon Monoxide & flammable
gas (MQ-9), Benzene & Alcohol & smoke (MQ-135), Hydrogen
Sulfide (MQ-136), Benzene & Toluene & Alcohol & Acetone &
Propane & Formaldehyde gas (MQ-138)

M2

M3

M4
M5

M6

M7

M8

10TDI ’23, May 09-12, 2023, San Antonio, TX, USA

4.1.3 Community and Module Developers. The carrier board
and module design and assembly files, along with their complete
software stack are open sourced ! . We also release design tem-
plates for modules adhering to LegoSENSE’s module standard for
developers to promptly get started with their module designs. 5
developers with different backgrounds participated in this study
and their evaluation and feedback are described in Section 6.

4.2 LegoSENSE Software

For ease of modification, LegoSENSE’s software system is based on
Python. As discussed in Section 3.2, LegoSENSE’s software service
is a daemon process that runs automatically in the background
at boot time. The service daemon starts with a module manager
that manages the execution of sensor drivers and passes the data
to two interfaces for users to access - a web server, and a pseudo
in-memory file system. In this section, we dive into the details of
each component in the software stack.

4.2.1 Module Drivers. As discussed in Section 3.2.2, to fulfill
the requirement of minimal coding for developers, module drivers
follow a predefined template so that developers only need to fill
in the minimum code necessary. We implemented a base driver
class to which each module driver must inherit from. It contains
the following sections that module developers need to override:
(1) Declaration of what sensor(s) exist on the module, and for each
sensor, what data columns are expected. For example, our ambient
environment module contains “Temperature Humidity Sensor” with
[“temperature”, “humidity”], “Pressure Sensor” with [“pressure”], and
“Wind Sensor” with [“wind speed”].

(2) Loading and parsing the user configuration file. Most sensors
don’t simply output readings — they need to be configured in dif-
ferent modes, to measure different ranges, or to vary the sampling
frequency etc. While we want to abstract all implementation details
away from end users, we also want them to have access to such
configurations. Thus, we allow module developers to optionally
define a separate .conf file for end users to modify sensor configu-
rations. The .conf format configuration file is parsed and displayed
on the web dashboard for end user. In the sensor driver, the same
.conf file is loaded into program to allow developers to use those
configuration values in their sensor drivers.

(3) Initialization of sensor driver(s). After the configuration .conf
file is parsed, driver developers need to fill this section to initialize
their sensors with the configuration values. Since the module can
be plugged in different slots that are connected to different protocol
buses, a data structure is passed in by the worker thread which
runs the driver. The data structure defines what protocol bus the
current module is connected to. module driver developers can take
the bus from the data structure and initialize the sensor(s) on the
module through the given protocol bus.

(4) Code to read sensor readings. Once sensors are initialized, driver
developers need to fill the code to obtain sensor readings and return
the readings to worker threads.

4.2.2 Module Manager. At system initialization, the module
manager first starts the plug-and-play controller that detects during
run-time what modules are plugged in, and creates worker threads

Lhttps://github.com/Columbia-1CSL/LegoSENSE

372

Zhao et al.

Module Manager Pseudo
— on_data > [File System
| Plug and Pla

Worker Threads |||« & y

_ Controller Web Server
l’ —= =<
F ______________________ ~ "

Module X Worker Thread
Init(module_name)
Module X Interface

ModuleDriver =
I2C: /dev/i2c-X

SPI: /dev/spidevX.X
UART: /dev/ttyX
ADC, GPIO Driver

download or_ import (module_name)

driver = ModuleDriver (interface)

thread.run ()

while True:

Resource Manager
I2C: { "bus1": Lock(),
"bus6": Lock() }
SPI: {..}

if (driver.data_available()):

lock = ResourceManager (bus)
lock.acquire ()

data = driver.read()

lock.release ()

1
1
1
1
1
1
1
1
1
1
1
1
1
. Run
1
1
1
1
1
1
1
1
1
1
1
: ModuleManager.on_data (data)

Figure 5: Module manager implementation.

that execute the respective module driver. The structure of the
module manager is illustrated in Figure 5, with the implementation
details listed below.

4.2.3 Plug-and-play Controller. To automatically detect mod-
ules once they are plugged in, we add EEPROM:s to each module and
have them preprogrammed with the name of the modules, along
with a MUX on the carrier board to switch between the EEPROMs
on each module. On the software side, we implement a background
service to check the presence of EEPROM on each slot by first con-
trolling the MUX to switch to the respective channel, and write the
EEPROM’s fixed I2C address to the I?C bus and check if it receives
an acknowledgement (ACK) from the EEPROM. If so, it reads the
content in EEPROM to identify the module. The service performs
this action in a round-robin manner and checks all four module
slots once per second. The service runs on a thread continuously
in the background as part of the module manager. If the service
detects any module change, either new module(s) plugged in or an
existing module being removed, it reports to the module manager,
which is responsible for starting and/or stopping respective worker
threads running the module’s driver. As such, when the user mod-
ifies the hardware during run-time, the system detects and loads
the respective driver for the module automatically.

4.2.4 Worker Threads for Drivers. As described in Section 3.2.4,
we implement a generic worker thread that is started for each
module in order to execute the module’s driver code. The life-cycle
of a worker thread starts from the plug-and-play (PnP) controller
recognizing the module, either when the system starts, or after a
hardware change by the user. Once the module manager receives

https://github.com/Columbia-ICSL/LegoSENSE

LegoSENSE: An Open and Modular Sensing Platform for Rapidly-Deployable loT Applications

the information of the new module from the PnP controller, it starts
a worker thread passing in the name of the module.

The worker thread initialized by the module manager is passed
in with the name of the module and its slot number. The name helps
identify the correct module driver to load, and the slot number helps
in identifying the hardware interface to be allotted to the driver.
The pseudo-code for the initialization can be found in Figure 5.

First, the worker thread checks if the driver for the module exists
in the system locally. If the driver does not exist, it downloads the
driver from an online git repository automatically. Once the driver
is ready, it obtains the hardware interface corresponding to its slot
number. As seen in Figure 5, the interface contains the path to
I2C, SPI, and UART protocols, as well as the driver for ADC and
corresponding GPIO pins. The worker thread then initializes the
module driver, passing in the interface. Finally, an infinite loop is
started, where the worker thread waits for the next sensor reading
to be available from the module driver. It then reads the data and
passes it back to the module manager.

In rare cases, certain modules may experience hardware faults
(such as connection problems, sensor overheating, etc), or the driver
software may malfunction and crash or freeze. The design decision
to use threads for each module gives us the freedom to implement
a software watchdog to protect a malfunctioning module from
adversely affecting the rest of the system, and ease of resetting a
module to recover it.

Now a natural question is, as the sensor data will propagate
through the software system — being sent to the API server, to the
dashboard for real-time visualization, and to log files, how do we
standardize the format of a “generic” sensor reading in the system?
Since a generic module could contain multiple sensors that may be
sampled at different rates, and not all sensors produce an output at
the same time, a strictly structured data structure for the sensor data
would be difficult to work with. We define the data structure to be a
dynamic hash table, with the keys being the names of the available
data columns, and the values being their data. When the hash table
is being returned from the driver, the system adds an addition entry
to the hash table for the timestamp. Such a flexible data structure
not only solves the challenge of arbitrary data arriving at arbitrary
time, but also makes itself easy to be converted to JSON and CSV
format, that are used in API/ web dashboard and in log files.

4.25 Potential Multiple-access Issue. With the worker threads
and drivers, we can now start to run the sensor drivers and acquire
data. However, an issue quickly arises during our testing: the analog
reading of a sensor sometimes shows up as the actual reading from
a different analog sensor connected to the same ADC. It turns out
that this is because although threads will not truly run in parallel,
they can be context switched at any time, leaving potential race
conditions and multiple access issues to the communication buses.

To avoid drivers interfere with each other, we need to implement
a mechanism to make our sensor drivers “thread-safe”. The com-
mon practice is to add software “locks” to grant mutual exclusive
access to the resource, in our case, the communication bus that the
drivers share. To do so, we add a resource manager class that is a
singleton (in other words, restricted to be instantiated only once).
The resource manager contains locks for each bus that is shared
between multiple modules. With the locks in the resource manager,

373

10TDI *23, May 09-12, 2023, San Antonio, TX, USA

a natural thought one would come up with is to pass the them to
each module driver so they can use it. This is a bad idea for multiple
reasons. First, this adds complexity to the driver developers as they
have to worry about adding those locks into appropriate places and
not to miss any. Further, badly developed drivers may easily inter-
fere other drivers by not using a lock when accessing the shared
bus, or holding the lock for too long, which results in a dead-lock
in the system. Thus, by default, we leave the work of appropriate
locking to the worker thread. Before the worker thread calls the
driver to read data, it acquires the respective lock (if any) for the
bus that will be used. In this way, all that the driver developers need
to add is to declare what communication bus(es) their driver will be
using, and then the worker thread will handle the rest accordingly.

This is the default behavior. We do note that some drivers need
to perform sleep for an arbitrary amount of time before data is
available - in this case sleeping with a lock acquired is a bad practice,
and slows down the entire system. Thus, we still leave the option
for the module drivers to handle the locking themselves.

4.2.6 End User Access via Pseudo In-memory File System. As
discussed in Section 3.2.5, the first method that end users can access
LegoSENSE data is through a pseudo in-memory file system. The in-
memory file system is maintained using Linux kernel’s “Filesystem
in Userspace (FUSE)” framework [15], with “fusepy” library [16].

First, we implement a background service that utilizes FUSE to
maintain the pseudo file system (FS). The service runs in parallel
with the module manager (Section 4.2.2). As seen in Figure 6(c),
we structure the pseudo FS in a tree format — it first mounts to a
directory, and creates up to four directories representing the four
modules. The directories will be named after each module. Within
each directory, there would be multiple files named after each sensor
on the module. These names are defined by the module drivers as
discussed in Section 4.2.1. Each file would contain a stream of the
data from the sensor it belongs to.

To implement this, we need to implement several callbacks de-
fined by FUSE, with the two most important ones as: list directory,
and read files. As our module manager keeps track of the list of
modules currently running and their corresponding worker threads,
in the list directory callbacks, if the user is at the root level, we
would call module manager to retrieve the list of modules. If the
user is within the module’s folder, we would retrieve the list of
sensors within that module from its driver. In the read file callback,
we would identify the file and have module manager find its corre-
sponding worker thread, and retrieve the data from its in-memory
buffer that stores the latest data. The data would then be returned
in a csv format, so that it is easy for users to read, plot, or compare.

4.2.7 End User Access via Web Server. LegoSENSE’s web
server is built using Flask([37], a lightweight Python web framework,
where we implement a series of RESTful APIs:

(1) API to obtain system status, which returns run-time information
and statistics from the plug-and-play controller and worker threads
that run sensor drivers;

(2) API to obtain sensor data, which retrieves and returns the data
from the corresponding worker thread that runs the driver for the
specific sensor;

10TDI ’23, May 09-12, 2023, San Antonio, TX, USA

ece light
SensorHub Dashboard

Control sensors within clicks

C' Refresh Blue

sLoT MODULE NAME SENSOR STATUS
Ambient Luminance

1 & light RGB Running —
Light1 Running
Light? Running Photoresistor 2
2 & ambient_env temp_hum Running
ressure R
P unning RGB Sensor
wind Running SamplingFrequency
3 & particle Particle Matter Running
(a) Dashboard homepage

Red Green

IR Luminance

Photoresistor 1

(b) Realtime data visualization &
configuration

Zhao et al.

(shenv) pi@SensorHub:~/workspace/SensorHub/src $ tree fuse
fuse
ambient_env

pressure

temp_hum

wind
light

Light1

Light2

RGB

particle
L— particle Matter

3 directories, 7 files
(shenv) pi@SensorHub:~/workspace/SensorHub/src $ tail fuse/
ambient_env/pressure

1649781182.4490886 1007.6996
1649781182.9492414 1007.6886
1649781183.449665 1007.6788
1649781183.950048 1007.6761

(c) File system containing data via terminal

Figure 6: End user access via (a, b) web dashboard and (c) file system through terminal.

(3) API to edit sensor configuration, which updates the sensor
configuration file stored locally and tells the worker thread to reload
and restart sensor driver;

(4) API to start or stop sensor, which tells worker thread to perform
the corresponding operation.

As seen in Figure 6(a,b), a dashboard is implemented in the web
server to allow users to monitor system status, visualize sensor data
in real-time, and edit sensor configurations. To carry out these func-
tionalities, the dashboard makes use of the aforementioned APIs.
In addition, to display live sensor data to users, the dashboard’s
JavaScript code subscribes to server-sent events (SSE) containing
live data, from the web server. The data flow in the backend is as
follows: first, we set up a Redis in-memory pub-sub message broker.
Then, we set up each worker thread that is running sensor driver
to publish the data to Redis as soon as they become available, and
have the web server subscribe for those sensor data. When the user
accesses the dashboard page that streams live data for a particular
sensor, the JavaScript code opens a persistent HTTP connection to
an endpoint in the web server that serves SSE. When data becomes
available, the web server receives the data through its subscription
to Redis and sends the data to user’s browser through SSE in the
corresponding channel. As the browser receives the data, it then
uses plot.js to plot the data in real time for the user.

4.2.8 User Bootstrapping. A common issue with wireless sys-
tems is user bootstrapping. In other words, how does a user deploy
the wireless system on the first execution? To resolve this, we first
scan for any available wireless access points that LegoSENSE can
connect to. These could be pre-configured in a text file in the Rasp-
berry Pi’s SD card. However, in the scenarios when there is no
available network, LegoSENSE hosts a Wi-Fi Access Point, with
a known Service Set Identifier(SSID) and password. The user can
now connect to this access point using any of his or her devices.
Once connected, the user can access the web dashboard, where
he can start using the system right away, or configure the Wi-Fi
setting directly on the dashboard. The user enters the SSID and

374

password of the Wi-Fi access point. LegoSENSE then disables its
own access point and tries latching to the provided SSID. If the
connection succeeds, the user can access the device through the
network. In case the connection fails using the given credentials,
it hosts the WiFi access point again, and the user could repeat the
steps to reconfigure the Wi-Fi credentials.

Another challenge on the user side is obtaining the IP address
of the LegoSENSE device. If we had to ask user every time to either
hook up LegoSENSE to a monitor and keyboard, or log onto the
router to retrieve the IP address, it would defeat our objective of
easy-to-use. To solve this, we first note that each Raspberry Pi has
a unique media access control address (MAC address) associated
with its network interface. This MAC address can serve as a unique
identifier for the device. With this, we have the LegoSENSE software
service automatically post its IP address, along with its own unique
ID, to an external server that maintains a lookup table between
the unique ID and its IP address. Then, we set up an external web
server that takes in the unique ID and returns an HTTP redirect to
the IP address corresponding to the unique ID in the lookup table.
We call this our “web redirect server”. Now, for each LegoSENSE
device, since its unique ID is fixed, we embed a link to the web
redirect server, including the unique ID, into a QR code printed
on the device. As such, when the user scans the QR code, the web
redirect server redirects the user’s browser to the IP address of the
LegoSENSE device, on which the dashboard will then be present.
By doing so, we hide all the networking details from the user. The
user can always scan the QR code or bookmark the link in the QR
code to access the dashboard directly.

5 EVALUATION

In this section, we evaluate LegoSENSE by performing user studies
with four distinct application scenarios to demonstrate how the de-
sign of LegoSENSE enables people from diverse domains to rapidly
build sensing systems for a variety of tasks.

We recruited two groups of users to build and deploy sensor
systems for the four applications scenarios (A1 to A4). We obtained

LegoSENSE: An Open and Modular Sensing Platform for Rapidly-Deployable loT Applications

1oTDI °23, May 09-12, 2023, San Antonio, TX, USA

- LegoSENSE Setup Off_,t he-shelf Componef)ts Average
Application + Microcontroller Solution X
§ - Time Saved
Component Avg. Time Avg. Time with LegoSENSE
Modules Used Cost + Std Configuration (cost) + Std (Percentage)
(Non-Expert) (Expert)
Smoke Habit M6 Particulate Matter, $45.1 PMS5003 ($26)
Inference M7 Indoor Air Quality : SGP30 Breakout ($17.5)
0.41 SGP30 Breakout ($17.5) 213 + 1.72 Hour
Home - Health
Drink Habit M7 Indoor Air Quality, $13.4 +0.12 Hour | MQ-3 + Adapter ($2.3) 1.56 Hour (81%)
Inference M8 Gas (Alcohol)) ADS1115 ADC ($5.3)
BSS138 Logic Level Converter ($0.8)
PMS5003 ($26)
Cooking and M6 Particle Matter, MQ-9 + Adapter ($2.3)
Eating Habit M8 Gas (flammable), $40.9 MQ-135 + Adapter ($3)
Inference M8 Gas (smoke) ADS1115 ADC ($5.3)
BSS138 Logic Level Converter ($0.8)
Social Activities M3 .Human Activity $146 USB Microphone ($15)
Inference (microphone)
Sleep Temperature MAX31855K Breakout ($5.8)
Monitoring M5 Thermalcouple $105 Thermocouple Type-k ($7)
MQ-9 + Adapter ($2.3)
. M8 Gas (flammable), MQ-136 + Adapter ($35)
Home -Safety Gas Leak Detection | o o ¢ (hdrogen sulfide) $138 021 ADS1115 ADC (§5.3) 132 1.11 Hour
+0.07 Hour | BSS138 Logic Level Converter ($0.8) | + 1.22 Hour (84%)
Intrusion Detection MS_ Human Activity $14.6 VL53L1x Breakout ($15)
(distance)
Fall Detection M4 Motion (IMU) $6.7 MPUG6050 Breakout ($3.3)
BME680 Breakout ($18)
M1 Ambient Environment Wind Sensor ($22)
Ambient Environment (temperatur_e, humidity, $29 0.16 TCSS472_5 Breakout ($4.3) 1.61 1.45 Hour
Subway pressure, wind speed) +0.06 Hour Photoresistor ($0.1) +1.34 Hour (90%)
M2 Ambient Light : ADS1115 ADC ($5.3) :
BSS138 Logic Level Converter ($0.8)
. . M6 Particulate Matter, PMS5003 ($26)
Air Quality M7 Indoor Air Quality $45.1 SGP30 Breakout ($17.5)
) Ambient Environment | | Ambient Environment $6.8 0.25 BMEG80 Breakout ($18) 1.08 Hour 0.83 Hour
Vehicle (temperature, humidity, pressure) +0.11 Hour + 045 Hour 77%)
Air Quality M6 Particulate Matter, $45.1 : PMS5003 ($26) :
M7 Indoor Air Quality i SGP30 Breakout ($17.5)

Table 3: Evaluation setup and comparison with a custom solution built with off-the-shelf components and microcontrollers.
Most of the components cost tens of dollars, which is comparable with putting together custom solutions using widely-available

low-cost discrete components.

1: Smoke Sensor 2: PM10

1: Alcohol Sensor 2: VOC

1: Flammable Gas 2: Smoke 3: PM10

Microphone Energy

1.0 1.0 1.0 1.0
on — 50 50 o0
£ £ £ £
< 0.8 2 v‘k/\ T 0.8 T 0.8 T 0.8
& L @] ©
3 3 3 51
& 0.6 & 0.6 £ 0.6 0.6
- ! Bl Bl o
@ 54 3 o
2044 i S 0.4+ = 0.4 = 0.4+
< < < <
E 2 E 2 E 2 E)2
S S S S
z z z z
0.0 0.0 0.0 _# 0.0
T T T T T T T T T T T T T T T T T
0 100 200 300 400 500 0 50 100 150 0 100 200 300 400 500 0 1000 2000 3000
Time (s) Time (s) Time (s) Time (s)
(a) Smoke (b) Alcohol (c) Cooking (d) Social Activity
Bed Temperature 1: Flammable Gas 2: Hydrogen Sulfide Distance Sensor IMU-AccelerationZ
1.0 1.0 1.0 1.0
o0 o — 50 o0
£ £ £ £
S 0.8 5 0.8 5 0.8 5 0.8
I+ o]) I+
3 3 3 3
& 0.6 & 0.6 & 0.6 & 0.6
=] o = =]
3 2 5 3
= 0.4+ =044 = 0.4+ = 0.4+
< o < o
£ 024 £ (24 £ 02 £ (24
z z /\ z z
0.0 004 ===+ 0.0 0.0
T T T T T T T T T T T T T T
0 5000 10000 15000 20000 0 30 100 150 0 1 2 3 0.0 0.2 0.4 0.6
Time (s) Time (s) Time (s) Time (s)
(e) Sleep Temperature (f) Gas Leak (g) Intrusion (h) Fall

Figure 7: Sensor data collected by LegoSENSE in our home deployment that shows home safety-related events and potential
activities that may indicate mental health problems. Highlighted area denotes the time where the corresponding event occurs.

approval from the Institutional Review Board (IRB) prior to the
experiments. We recruited 10 people between the ages of 20 and
30 to use LegoSENSE and obtained their informed consent. Sensor
data obtained from user activities were anonymized and deleted

after the study.

375

The first group of users consists of five individuals who have no
background in sensor deployment or coding, including therapists,
civil engineers, and data analysts. The second group contains five
experienced users who have coding, electrical engineering, or sensor

10TDI ’23, May 09-12, 2023, San Antonio, TX, USA

deployment background. We denote the first group as the “non-
expert group” and the second group as the “expert group”. We had
the non-expert group deploy LegoSENSE for the four application
scenarios, A1 to A4, listed in this section, and as a comparison,
had the experienced users complete the same setup with custom
systems based off of Raspberry-Pi.

For each deployment task, we measure the end-to-end time it
takes both groups from learning the application requirements to
constructing the system and deploying it to a point where it is ready
to collect data. We also display plots and figures detailing the events
that LegoSENSE can detect in each scenario of the application. We
summarize our application scenarios, deployment setup, and user
study results in Table 3.

5.1 Application Scenarios

5.1.1 Home Monitoring System. In the first two applications, we
used LegoSENSE to deploy a variety of sensors to monitor home
safety (A1) and mental health (A2) in ten participant’s home for
two weeks. For each home, we used LegoSENSE to deploy two
particulate matter (PM) sensors in the living room and kitchen
to detect cooking and smoking; MQ3, MQ9, MQ135, MQ136, and
VOC / CO2 sensors to detect gas leaks; a distance sensor near the
entrance of the home to detect intruders; a temperature sensor in
the bedroom to monitor sleep quality; a microphone in the living
room to detect social activities; and a vibration sensor in the living
room to detect falls.

Participants recorded all activities and the time the activities took
place in their home. Figure 7 shows the sensor readings for several
events. For example, we see an increase in the amount of flammable
gas and smoke measured at 100 s, when the participant began to
cook, and an increase in particulate matter reading starting 250 s.
We trained and evaluated a classifier that differentiates between
four daily activities as shown in Figure 8c. We see that we are able to
identify most events accurately with low error using data collected
from LegoSENSE.

5.1.2 Subway Study. A third important application is monitoring
the PM level in subway stations or other areas with heavy traffic
(A3). Inhaling dangerously high amounts of particles can trigger
heart attacks, exacerbate asthma, or even cause early death [28].
Sensing particulate matter across a wide area can inform the gen-
eral public about areas that may be dangerous for health. For this
application, we chose New York City, a busy urban city, and de-
ployed LegoSENSE in 20 subway stations to sense the PM2.5 levels
at each station for a 4-hour period.

Figure 8a shows the plot of PM2.5 readings across subway sta-
tions in Manhattan, New York City. It can be seen that subway
stations in lower Manhattan have lower levels of PM2.5, potentially
due to better ventilation or larger spaces in these stations. Our ini-
tial hypothesis was that more people passing through each station
should result in higher PM levels. We see that the PM level (dark-
ness of circle) at each station is largely uncorrelated with how busy
each station is (size of circle). Although this deployment produced
a negative result, it narrows down the list of major factors that
could cause poor air quality in some stations. An extension to this
deployment could be to estimate the fine-grained traffic flow and
population density of people within stations themselves to inform

376

Zhao et al.

Non-Experts: | Non-Experts: Experts: Experts:
‘ LegoSENSE RPi LegoSENSE ‘ RPi
Clarity 8.6 4.1 9.4 7.3
Usability 9.1 4.7 8.3 7.7
Customizability 8.9 6.5 6.2 7.4
Reliability 8.3 5.6 8.1 7.7
Aesthetics 85 4.1 8.8 6.0

Table 4: Survey responses from “non-expert” and “expert”
groups (averaged) across four different applications using
both LegoSENSE and creating a custom platform using a
Raspberry Pi (RPi). Scores range from 1 (worst) to 10 (best).

subway riders which parts of the station may have better air quality
(less particles) and are more suitable for waiting for the next train.

5.1.3 Sensing and Intelligence in Vehicles. Another class of applica-
tions is using vehicles as powerful mobile sensing platforms (A4).
As a vehicle passes by districts and neighborhoods, it can sense
factors such as traffic flow, air quality, or noise level, which home-
owners or commercial business owners may be interested in when
purchasing real estate. We integrate LegoSENSE into a vehicle and
use a PM2.5 module to sense particulate matter.

We chose to drive around Manhattan due to its diverse environ-
ments and record the levels of particulate matter (PM), shown in
Figure 8b. Here, we see that areas around Columbus Circle and mid-
town (Times Square) have high levels of PM (light yellow), while
all other areas have moderate levels (dark purple). Those areas are
among the busiest areas in the upper and midtown Manhattan area,
and as such, we can expect to see higher particulate matter readings
due to the large traffic of vehicles that are in these areas.

5.2 LegoSENSE User Study

To evaluate the convenience that LegoSENSE brings users, we
measure the time it took both groups to build the hardware, pro-
gram the software, and deploy the system to collect data while
implementing their application scenarios (A1 to A4).

Figure 1(d) shows the average time it took for both groups of
users to set up each application using LegoSENSE and custom
platforms. We see that because LegoSENSE does not require users
to perform coding and because of its modularity, the non-expert
user group completed the task relatively quickly, although they lack
experience and expertise. The expert group took much longer to
deploy a solution using a custom-built platform, mainly due to the
wiring and coding involved. The average end-to-end deployment
time needed by the non-expert user group is shorter than the time
taken by the experienced user group to build only the hardware.
On average, we see that the novice user group took up to 5.4 less
time using LegoSENSE than the experienced users. This comparison
shows that LegoSENSE speeds up and greatly simplifies sensor
deployments for a variety of applications.

We also surveyed each participant across five dimensions: clarity
of instructions, ease-of-use, customizability, reliability, and aesthet-
ics. The results are tabulated in Table 4. We see that both groups
scored LegoSENSE higher across most dimensions. We also see
that users scored the usability and clarity of LegoSENSE signifi-
cantly higher. This shows that LegoSENSE greatly improves the
clarity and ease of deploying sensing systems over custom solutions
for anyone, regardless of background. Customizability was scored
poorly for LegoSENSE compared to discrete components in the

LegoSENSE: An Open and Modular Sensing Platform for Rapidly-Deployable loT Applications

i / PM2.5
v (ug/m3)

T 0
L . Me
nion !
70
o @) 0
@ 50
40
°®
n ty 30
Y,
7/ 20
NewYork
prockiy o
()

expert group. This is because of the limited number of sensors that
seasoned developers had access to at the moment compared to the
suite of available sensors compatible with Raspberry Pi. However,
tapping into the vast number of sensors compatible with Raspberry
Pi requires more knowledge and is more time consuming, as shown
in Table 3. To help increase the library of sensors compatible with
LegoSENSE and mitigate the customizability issue, we open-source
our designs, allowing the community to contribute new compatible
sensors into the LegoSENSE ecosystem.

6 EDUCATION AND COMMUNITY

In addition to the scenarios described in Section 5, we have begun
to distribute LegoSENSE to a diverse set of users and research
groups for a variety of projects. There are three groups (G1 to
G3) of researchers we have distributed LegoSENSE to incorporate
into their own projects. G1 is groups of researchers in the school
of engineering who are working on creating systems for smarter
homes and monitoring mental health using ambient sensors. These
end users have extensive experience in programming and embedded
platforms design. G2 is researchers in the school of arts and sciences
who are deploying LegoSENSE into numerous nursing homes to
monitor the health of elderly citizens and the spread of COVID-19.
These users come from a scientific background, but do not have any
experience in embedded platform design. G3 includes 4 developers
(graduate school students and researchers) who are interested in
designing their own module in addition to M1 to M8 provided by
LegoSENSE.

Additionally, during several workshops within our local com-
munity, we used LegoSENSE to teach middle school students the
basics of programming, IoT, and machine intelligence (G4). During
each 40 minute workshop, we allowed students to program several
applications, including detecting changes in temperature, fall de-
tection, and air quality monitoring. In total, so far, approximately
50 students have used LegoSENSE to develop various of applica-
tions. We also measured the average number of applications each
student was able to successfully program in 40 minutes, with no
prior background, which was 1.4. This is on average faster than an

(b)
Figure 8: (a) PM2.5 levels sensed by LegoSENSE across 20 subway stations across Manhattan, New York City. Larger circles
denote larger number of subway riders; darker color denotes higher levels of PM2.5. (b) Number of particle between 0.3ym and
10pm per 0.1 liter of air measured by LegoSENSE integrated into a vehicle. Bright colors indicate high levels of particle density
in the area. (c) Classification accuracy for four daily activities from data obtained by LegoSENSE placed in multiple real homes.

3717

1oTDI °23, May 09-12, 2023, San Antonio, TX, USA

Accuracy for Activity Detection

of Particles

0.3pm~10pm

(Per 0.1L3)
1200

[re——

type I error
== type |l error

1000

800

Number of Events

Cooking Sudden Fall Drinking Smoking
Activities

(©

Engineers | Scientists | Middle School | Developers
‘ Students
Clarity 9.3 8.9 8.1 9.4
Usability 8.9 9.2 8.4 9.0
Customizability 8.0 9.0 9.3 8.9
Reliability 8.7 8.6 9.1 9.2
Aesthetics 8.4 8.8 8.2 8.3

Table 5: Survey responses from four groups of users who have
independently used LegoSENSE for their own applications.
Scores range from 1 (worst) to 10 (best).

experienced user deploying an application using discrete sensors
(Section 5).

We surveyed all four groups (engineers, scientists, middle
school students, and developers) about their experience in using
LegoSENSE for their use cases using the same matrices described
in Section 5.2. The average results are tabulated in Table 5. We see
that even among middle school students, LegoSENSE was very easy
to use and reliable, averaging close to 8.7 in all areas. We see that
the engineers (G2) scored customizability the lowest out of the
three groups because LegoSENSE only supports eight sensors, and
their work focuses heavily on exploring a wide range of sensing
modalities in a variety of contexts.

However, the developers, G4, finds it’s easily to follow
LegoSENSE’s open-source documentation to design and develop
their own sensor modules. For example, one developer customized
a soil moisture and a soil pH sensor for her smart irrigation re-
search. And she continuously operated 4 sets of LegoSENSE with
M1, M5, and her sensors boards for 6 weeks. Two developers came
up with sensor modules for assembly line quality monitoring. The
sensor module development time for every developer varies ac-
cording to their previous experiences in circuit design. But they all
agree that “instructions are easy to follow” and “way quicker than
building from scratch”. We are currently expanding our library of
available sensors and have open-sourced the design of LegoSENSE
to allow anyone from the community to make any additional sen-
sors compatible with LegoSENSE. In light of the aforementioned
scenarios, it is possible to continuously and organically expand the
number of sensors and actuators that integrate with LegoSENSE,

10TDI ’23, May 09-12, 2023, San Antonio, TX, USA

while simultaneously ensuring that the software and hardware of
the open-sourced platform remain up-to-date.

7 DISCUSSION

Yet another Hardware Platform? Many hardware systems in our
research community are built on open-source hardware designs
provided by electronics retailers such as SparkFun [12] and Adafruit
[21]. Some of them also have their own “plug and play” connec-
tion system to simplify the hardware connection and hands-on
tutorials to help users set up the sensors. However, as discussed in
Section 2, these systems have limited support for simultaneously
active sensors and still require users to program. On the other hand,
LegoSENSE is designed to be expandable and highly integrated.
LegoSENSE is a generic platform that works for most existing sen-
sors in the market by supporting most common communication
protocols. We also designed and implemented complete hardware
and software for LegoSENSE to support “plug and play” and “mix
and match” right out of the box. By adopting an open-source ap-
proach, we hope to encourage the community to contribute to the
platform’s hardware capabilities and software functionalities. We
believe that our open-source initiative have the potential to create
an ecosystem of collaborative innovation, allowing for more rapid
progress and wider adoption.

LegoSENSE Ecosystem. As we open-source LegoSENSE, we en-
vision people and/or companies designing and publishing their
own modules. The more modules developed, the more versatile
LegoSENSE is, and the more applications LegoSENSE can serve.
With LegoSENSE ecosystem developed, users can access/sense the
world by developing their own, or purchasing the desired modules
and snapping them onto the carrier board. LegoSENSE lowers the
barrier for lay persons and researchers in other fields, who don’t
have expertise in IoT and sensing platform deployment, for their
own applications and research. In addition, we are working on cre-
ating an online forum for developers and users to exchange their
designs and brainstorm on new modules.

Integration with Other Applications. LegoSENSE can be directly
applied to other applications as a tool and can be used as a data
acquisition platform as described in Section 5. Moreover, since
LegoSENSE is based on Raspberry Pi [14] with Raspberry Pi OS
(formerly Raspbian, a Debian-based operating system for Raspberry
Pi), people can also run software application with just LegoSENSE.
Web dashboard for end user is an example that benefits from the real
OS platform. Besides general-purpose input/output, Raspberry Pi
also offers several other ports such as USB and HDMI. LegoSENSE
can be further used for prototyping IoT edge devices. For exam-
ple, by connecting a thermal camera and Google accelerator [27],
it is possible to reproduce a LegoSENSE-version of temperature
monitoring system for COVID.

Power Consumption. The increased power consumption of
LegoSENSE on top of a system built with discrete components on a
Raspberry Pi comes entirely from additional circuitry to enable the
plug-and-play functionality: the multiplexer on the carrier board
and EEPROMs on the modules (both 10s of yA). The Raspberry Pi
draws current on the order of Amps. Because both the multiplexer
and EEPROM on the carrier board are orders of magnitude less
than the current draw from the Raspberry Pi, the increased power

378

Zhao et al.

consumption is negligible compared to the benefits that LegoSENSE
provides. Even lower power-consuming microcontrollers, such as
those from the Arduino ecosystem, draw on order of tens of mA
when active; if LegoSENSE was implemented on these lower-power
microcontrollers, it would still add negligible power consumption.
However, the primary goal of LegoSENSE is to enable ease of use for
any person, regardless of their technical background. As such, the
benefits provided by Raspberry Pi, a hardware platform with a real
OS that can support the software system in Section 3, outweighs
its high power consumption.

Limitations and Future Work (i) Support for actuators.: The cur-

rent LegoSENSE ecosystem supports and can be easily expanded
to a wide variety of sensors. We also plan to support modules
with different actuators, and add interfaces for users to control
them with minimum setup. We also plan to implement easily pro-
grammable connections and triggers between sensors and actua-
tors for fully automated systems. (ii) Coexist with other shields: Al-

though LegoSENSE ecosystem supports a wide variety of sensors,
in order to build on the modular nature of LegoSENSE, users may
have existing Raspberry Pi hats/shields with sensors they want to
use. There are multiple reasons a user may still want to use the
hat/shield: the module for the same sensor may not exist yet; users
simply do not want to invest in additional funds; the device, such
as a network adapter or a GPS receiver, does not fit in the surface
area designated to a module. We plan to support the configuration
where LegoSENSE carrier board coexists with other shields. Specif-
ically, a configuration where the hat sits on top of the Raspberry Pi,
and the LegoSENSE carrier board sits on top of the hat. We plan to
integrate various Raspberry Pi shields into LegoSENSE’s software
system and treat them the same as a LegoSENSE module.

8 CONCLUSION

The Internet of Things has led to the tremendous growth in intel-
ligent sensors and their applications in a wide range of domains.
However, designing and deploying such sensing systems are of-
ten expensive, time-consuming, and/or require a strong technical
background. In this work, we present LegoSENSE, an open and
modular platform for enabling rapid deployment of customized
sensing solutions. LegoSENSE does not require users to perform
coding, hardware design, or wiring, which greatly improves its
usability and accessibility over existing modular sensing solutions.
Through a series of real-world deployments and user studies, we
show that LegoSENSE reduces the development time of applica-
tions and sensor deployments, compared to configuring existing
sensing solutions, by up to nine times.

ACKNOWLEDGMENTS

This research was partially supported by the National Science
Foundation under Grant Numbers CNS-1704899, CNS-1815274,
CNS-1943396, CNS-1837022, and CMMI-2218809, as well as COG-
NISENSE, one of seven centers in JUMP 2.0, a Semiconductor Re-
search Corporation (SRC) program sponsored by DARPA. The views
and conclusions contained here are those of the authors and should
not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of Columbia University,
NSF, SRC, DARPA, or the U.S. Government or any of its agencies.

LegoSENSE: An Open and Modular Sensing Platform for Rapidly-Deployable loT Applications

REFERENCES

(1]

[2

[

[3

[4

=

o=

=

8

=

[9

=

[10

(1]

[12]

[13]

[14

=
)

[16]

[17

(18]

[19]

[20]

[21]

[22

[23]

[24]

[25]

Advanced Monolithic Systems, Inc. August 2009. Datasheet: AMS1117 1A Low
Dropout Voltage Regulator. Advanced Monolithic Systems, Inc. http://www.
advanced-monolithic.com/pdf/ds1117.pdf

Amphenol ICC August 2020. Datasheet: Amphenol FCI 91911-31321LF. Amphenol
ICC. https://cdn.amphenol-cs.com/media/wysiwyg/files/drawing/91900.pdf
Amphenol ICC August 2020. Datasheet: Amphenol FCI 91931-31121LF. Amphenol
ICC. https://cdn.amphenol-cs.com/media/wysiwyg/files/drawing/91900.pdf
ams OSRAM January 2020. Datasheet: TCS3472FN Color Light-to-Digital Converter
with IR Filter. ams OSRAM. https://ams.com/documents/20143/36005/TCS3472_
DS000390_3-00.pdf

Arduino. 2022. Arduino. https://www.arduino.cc/. Accessed: 2022-01-25.
ASAIR 2020. Datasheet: AHT20 Temperature and Humidity Sensor.
ASAIR. https://cdn-learn.adafruit.com/assets/assets/000/091/676/original/
AHT20-datasheet-2020-4-16.pdf

Luigi Atzori, Antonio Iera, and Giacomo Morabito. 2010. The Internet of Things:
A survey. Computer Networks 54, 15 (2010), 2787-2805. https://doi.org/10.1016/j.
comnet.2010.05.010

Ingrid V. E. Carlier, Denise Meuldijk, Irene M. van Vliet, Esther M. van Fenema,
Nic J.A. van der Wee, F.G. Zitman, Frans Zitman, and Frans G. Zitman. 2012.
Routine outcome monitoring and feedback on physical or mental health status:
evidence and theory. Journal of Evaluation in Clinical Practice (2012). https:
//doi.org/10.1111/j.1365-2753.2010.01543.x

David Culler, Jason Hill, Mike Horton, Kris Pister, Robert Szewczyk, and Alec
Wood. 2002. Mica: The commercialization of microsensor motes. Sensors (Apr. 1,
2002) (2002), 1-5.

Daniel de Godoy, Bashima Islam, Stephen Xia, Tamzeed Islam, Rishikanth Chan-
drasekaran, Yen-Chun Chen, Yen-Chun Chen, Yen-Chun Chen, Shahriar Nirjon,
Peter R. Kinget, and Xiaofan Jiang. 2018. PAWS: A Wearable Acoustic System for
Pedestrian Safety. null (2018). https://doi.org/10.1109/i0tdi.2018.00031

N. Edmonds, D. Stark, and]J. Davis. 2005. MASS: modular architecture for sensor
systems. In IPSN 2005. Fourth International Symposium on Information Processing
in Sensor Networks, 2005. 393-397. https://doi.org/10.1109/IPSN.2005.1440955
SparkFun Electronics. 2022. Sparkfun Sensors. https://www.sparkfun.com/
categories/23. Accessed: 2022-01-25.

Noura Farra, Bilal El-Sayed, Nadine Moacdieh, Hazem Hajj, Ziad Hajj, and Rachid
Haidar. 2011. A Mobile Sensing and Imaging System for Real-Time Monitoring
of Spine Health. Journal of Medical Imaging and Health Informatics (2011). https:
//doi.org/10.1166/jmihi.2011.1034

Raspberry Pi Foundation. 2022. Raspberry Pi. https://www.raspberrypi.com/.
Accessed: 2022-01-25.

FUSE. 2020. FUSE - The Linux Kernel documentation. https://www.kernel.org/
doc/html/latest/filesystems/fuse.html. Accessed: 2022-04-25.

fusepy. 2018. fusepy: Simple ctypes bindings for FUSE. https://github.com/
fusepy/fusepy.

Goertek March 2016, Revised January 2018. Datasheet: SPL06-001 Digital pressure
sensor. Goertek. https://datasheet.lcsc.com/lcsc/2101201914_Goertek-SPLO06-
001_C2684428.pdf

Sean Harte, Brendan O’Flynn, Rafael V. Martinez-Catala, and Emanuel M.
Popovici. 2007. Design and implementation of a miniaturised, low power wire-
less sensor node. In 2007 18th European Conference on Circuit Theory and Design.
894-897. https://doi.org/10.1109/ECCTD.2007.4529741

Kaiyuan Hou, Yanchen Liu, Peter Wei, Chenye Yang, Hengjiu Kang, Stephen
Xia, Teresa Spada, Andrew Rundle, and Xiaofan Jiang. 2022. A Low-Cost In-situ
System for Continuous Multi-Person Fever Screening. International Symposium
on Information Processing in Sensor Networks (2022). https://doi.org/10.1109/
ipsn54338.2022.00009

Kaiyuan Hou, S. Xia, Junyi Wu, Minghui Zhao, Emily Bejerano, and Xiaofan
Jiang. 2022. Al Stethoscope for Home Self-Diagnosis with AR Guidance. ACM
International Conference on Embedded Networked Sensor Systems (2022). https:
//doi.org/10.1145/3560905.3568082

Adafruit Industries. 2022. Adafruit Sensors. https://www.adafruit.com/category/
35. Accessed: 2022-01-25.

Blaise Kelly, Danilo Hollosi, Philippe Cousin, Sergio Leal, Branislav Iglar, and
Andrea Cavallaro. 2014. Application of Acoustic Sensing Technology for Im-
proving Building Energy Efficiency. Procedia Computer Science (2014). https:
//doi.org/10.1016/j.procs.2014.05.474

P. Levis, S. Madden,]. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay,
J. Hill, M. Welsh, E. Brewer, and D. Culler. 2005. TinyOS: An Operating System
for Sensor Networks. Springer Berlin Heidelberg, Berlin, Heidelberg, 115-148.
https://doi.org/10.1007/3-540-27139-2_7

Yanchen Liu, Jingping Nie, Stephen Xia, Jiajing Sun, Peter Wei, and Xiaofan Jiang.
2022. SoFIT: Self-Orienting Camera Network for Floor Mapping and Indoor
Tracking. International Conference on Distributed Computing in Sensor Systems
(2022). https://doi.org/10.1109/dcoss54816.2022.00029

Yanchen Liu, S. Xia, Jingping Nie, Peter Wei, Zhan Shu, Jeffrey Andrew Chang,

and Xiaofan Jiang. 2022. AiMSE: Toward an Al-Based Online Mental Status
Examination. IEEE pervasive computing (2022). https://doi.org/10.1109/mprv.

379

[26

[27

[28

[30

[31

[32

[33

[34

[35

[36

[38

[39

[40

(41

[42

[43

[44

[45]

[46]

[47

[48

[49

1oTDI °23, May 09-12, 2023, San Antonio, TX, USA

2022.3172419

Yanchen Liu, Minghui Zhao, Stephen Xia, Eugene Wu, and Xiaofan Jiang. 2022.
A sensorless drone-based system for mapping indoor 3D airflow gradients: demo
abstract. In Proceedings of the 20th Annual International Conference on Mobile
Systems, Applications and Services. 634-635.

Google LLC. 2022. USB Accelerator. https://coral.ai/products/accelerator/. Ac-
cessed: 2022-01-25.

David G Luglio, Maria Katsigeorgis, Jade Hess, Rebecca Kim, John Adragna, Amna
Raja, Colin Gordon, Jonathan Fine, George Thurston, Terry Gordon, et al. 2021.
PM 2.5 concentration and composition in subway systems in the Northeastern
United States. Environmental health perspectives 129, 2 (2021), 027001.

Maxim integrated January 2015. Datasheet: MAX31855 Cold-Junction Compen-
sated Thermocouple-to-Digital Converter. Maxim integrated. https://datasheets.
maximintegrated.com/en/ds/MAX31855.pdf

Konstantin Mikhaylov and Martti Huttunen. 2014. Modular wireless sensor and
Actuator Network Nodes with Plug-and-Play module connection. In SENSORS,
2014 IEEE. 470-473. https://doi.org/10.1109/ICSENS.2014.6985037

Konstantin Mikhaylov, Tomi Pitkadho, and Jouni Tervonen. 2013. Plug-and-
Play Mechanism for Plain Transducers with Wired Digital Interfaces Attached
to Wireless Sensor Network Nodes. Int. J. Sen. Netw. 14, 1 (sep 2013), 50-63.
https://doi.org/10.1504/I)SNET.2013.056336

Modern Device 2022. Modern Device Wind Sensor. Modern Device.
//moderndevice.com/product/wind-sensor/ Accessed: 2022-01-25.
Jingping Nie, Yanchen Liu, Yanchen Liu, Yigong Hu, Yuanyuting Wang, Stephen
Xia, Matthias Preindl, Xiaofan Jiang, and Xiaofan Jiang. 2021. SPIDERS+: A
light-weight, wireless, and low-cost glasses-based wearable platform for emotion
sensing and bio-signal acquisition. Pervasive and Mobile Computing (2021). https:
//doi.org/10.1016/j.pmc;j.2021.101424

Jingping Nie, Minghui Zhao, Stephen Xia, Xinghua Sun, Hanya Shao, Yuang Fan,
Matthias Preindl, and Xiaofan Jiang. 2022. Al Therapist for Daily Functioning
Assessment and Intervention Using Smart Home Devices. In Proceedings of the
20th ACM Conference on Embedded Networked Sensor Systems. 764-765.
Brendan O’Flynn, S. Bellis, K. Delaney, J. Barton, S. C. O’Mathuna, Andre Melon
Barroso, J. Benson, U. Roedig, and C. Sreenan. 2005. The Development of a Novel
Minaturized Modular Platform for Wireless Sensor Networks. In Proceedings of
the 4th International Symposium on Information Processing in Sensor Networks
(Los Angeles, California) (IPSN °05). IEEE Press, 49—es.

Plantower June 2016. Datasheet: PMS5003 Digital universal particle concen-
tration sensor. Plantower. https://www.aqmd.gov/docs/default-source/aq-
spec/resources-page/plantower-pms5003-manual_v2-3.pdf

Armin Ronacher. 2022. Flask Documentation. https:/flask.palletsprojects.com/
en/2.1.x/. Accessed: 2022-01-25.

Sensirion The Sensor Company August 2017. Datasheet: SGP30 Sensirion Gas
Platform. Sensirion The Sensor Company. https://www.mouser.com/pdfdocs/
Sensirion_Gas_Sensors_SGP30_Datasheet_EN-1148053.pdf

JJS Technical Services. 2022. Honeywell Analytics AirAlert 96d Multi-Channel
Readout Gas Detection Controller with Data Logger - AA96D-DLC. https://www.
jjstech.com/aa96d-dlc.html.

JJS Technical Services. 2022. Honeywell Analytics FS7 Multi-Spectrum Fire and
Flame Detector, Non-Latching Alert and Alarm Relays,Viton O-ring - FS7-2173-
2RP. https://www.jjstech.com/fs7-2173-2rp.html.

Shimmer. 2022. Shimmer Consensys. https://shimmersensing.com/. Accessed:
2022-01-25.

Libelium Comunicaciones Distribuidas S.L. 2022. Libelium IoT Solutions. https:
//www.libelium.com/. Accessed: 2022-01-25.

STMicroelectronics April 2022. Datasheet: VL53L1X, A new generation, long
distance ranging Time-of-Flight sensor based on ST’s FlightSense™ technology.
STMicroelectronics. https://www.st.com/resource/en/datasheet/vI5311x.pdf Ver-
sion 7.0.

STMicroelectronics October 2017. Datasheet: 1-Kbit and 2-Kbit serial I°C bus
EEPROMs. STMicroelectronics. https://www.st.com/resource/en/datasheet/
m24c02-r.pdf

TDK April 2015. Datasheet: ICS-40180 RF-Hardened, Low-Noise Microphone with
Bottom Port and Analog Output. TDK. https://invensense.tdk.com/wp-content/
uploads/2015/02/DS-000021-v1.22.pdf

TDK February 2015. Datasheet: MPU-6050 Six-Axis (Gyro + Accelerometer)
MEMS MotionTracking™ Devices. TDK. https://invensense.tdk.com/wp-content/
uploads/2015/02/MP U-6000-Datasheet1.pdf

Texas Instruments January 2018. Datasheet: ADS111x Ultra-Small, Low-Power,
12C-Compatible, 860-SPS, 16-Bit ADCs With Internal Reference, Oscillator, and Pro-
grammable Comparator. Texas Instruments. https://www.ti.com/lit/ds/symlink/
ads1115.pdf

Texas Instruments November 2019. Datasheet: TCA9548A Low-Voltage 8-Channel
I2C Switch with Reset. Texas Instruments. https://www.ti.com/lit/ds/symlink/
tca9548a.pdf

Meélodie Vidal, Jayson Turner, Andreas Bulling, and Hans Gellersen. 2012. Wear-
able eye tracking for mental health monitoring. Computer Communications (2012).
https://doi.org/10.1016/j.comcom.2011.11.002

https:

http://www.advanced-monolithic.com/pdf/ds1117.pdf
http://www.advanced-monolithic.com/pdf/ds1117.pdf
https://cdn.amphenol-cs.com/media/wysiwyg/files/drawing/91900.pdf
https://cdn.amphenol-cs.com/media/wysiwyg/files/drawing/91900.pdf
https://ams.com/documents/20143/36005/TCS3472_DS000390_3-00.pdf
https://ams.com/documents/20143/36005/TCS3472_DS000390_3-00.pdf
https://www.arduino.cc/
https://cdn-learn.adafruit.com/assets/assets/000/091/676/original/AHT20-datasheet-2020-4-16.pdf
https://cdn-learn.adafruit.com/assets/assets/000/091/676/original/AHT20-datasheet-2020-4-16.pdf
https://doi.org/10.1016/j.comnet.2010.05.010
https://doi.org/10.1016/j.comnet.2010.05.010
https://doi.org/10.1111/j.1365-2753.2010.01543.x
https://doi.org/10.1111/j.1365-2753.2010.01543.x
https://doi.org/10.1109/iotdi.2018.00031
https://doi.org/10.1109/IPSN.2005.1440955
https://www.sparkfun.com/categories/23
https://www.sparkfun.com/categories/23
https://doi.org/10.1166/jmihi.2011.1034
https://doi.org/10.1166/jmihi.2011.1034
https://www.raspberrypi.com/
https://www.kernel.org/doc/html/latest/filesystems/fuse.html
https://www.kernel.org/doc/html/latest/filesystems/fuse.html
https://github.com/fusepy/fusepy
https://github.com/fusepy/fusepy
https://datasheet.lcsc.com/lcsc/2101201914_Goertek-SPL06-001_C2684428.pdf
https://datasheet.lcsc.com/lcsc/2101201914_Goertek-SPL06-001_C2684428.pdf
https://doi.org/10.1109/ECCTD.2007.4529741
https://doi.org/10.1109/ipsn54338.2022.00009
https://doi.org/10.1109/ipsn54338.2022.00009
https://doi.org/10.1145/3560905.3568082
https://doi.org/10.1145/3560905.3568082
https://www.adafruit.com/category/35
https://www.adafruit.com/category/35
https://doi.org/10.1016/j.procs.2014.05.474
https://doi.org/10.1016/j.procs.2014.05.474
https://doi.org/10.1007/3-540-27139-2_7
https://doi.org/10.1109/dcoss54816.2022.00029
https://doi.org/10.1109/mprv.2022.3172419
https://doi.org/10.1109/mprv.2022.3172419
https://coral.ai/products/accelerator/
https://datasheets.maximintegrated.com/en/ds/MAX31855.pdf
https://datasheets.maximintegrated.com/en/ds/MAX31855.pdf
https://doi.org/10.1109/ICSENS.2014.6985037
https://doi.org/10.1504/IJSNET.2013.056336
https://moderndevice.com/product/wind-sensor/
https://moderndevice.com/product/wind-sensor/
https://doi.org/10.1016/j.pmcj.2021.101424
https://doi.org/10.1016/j.pmcj.2021.101424
https://www.aqmd.gov/docs/default-source/aq-spec/resources-page/plantower-pms5003-manual_v2-3.pdf
https://www.aqmd.gov/docs/default-source/aq-spec/resources-page/plantower-pms5003-manual_v2-3.pdf
https://flask.palletsprojects.com/en/2.1.x/
https://flask.palletsprojects.com/en/2.1.x/
https://www.mouser.com/pdfdocs/Sensirion_Gas_Sensors_SGP30_Datasheet_EN-1148053.pdf
https://www.mouser.com/pdfdocs/Sensirion_Gas_Sensors_SGP30_Datasheet_EN-1148053.pdf
https://www.jjstech.com/aa96d-dlc.html
https://www.jjstech.com/aa96d-dlc.html
https://www.jjstech.com/fs7-2173-2rp.html
https://shimmersensing.com/
https://www.libelium.com/
https://www.libelium.com/
https://www.st.com/resource/en/datasheet/vl53l1x.pdf
https://www.st.com/resource/en/datasheet/m24c02-r.pdf
https://www.st.com/resource/en/datasheet/m24c02-r.pdf
https://invensense.tdk.com/wp-content/uploads/2015/02/DS-000021-v1.22.pdf
https://invensense.tdk.com/wp-content/uploads/2015/02/DS-000021-v1.22.pdf
https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf
https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf
https://www.ti.com/lit/ds/symlink/ads1115.pdf
https://www.ti.com/lit/ds/symlink/ads1115.pdf
https://www.ti.com/lit/ds/symlink/tca9548a.pdf
https://www.ti.com/lit/ds/symlink/tca9548a.pdf
https://doi.org/10.1016/j.comcom.2011.11.002

10TDI ’23, May 09-12, 2023, San Antonio, TX, USA

[50]

[51

[52

[53]

Tianyu Wang, Giuseppe Cardone, Antonio Corradi, Lorenzo Torresani, and An-
drew T Campbell. 2012. Walksafe: a pedestrian safety app for mobile phone users
who walk and talk while crossing roads. In Proceedings of the twelfth workshop
on mobile computing systems & applications. 1-6.

Peter Wei, Stephen Xia, and Xiaofan Jiang. 2018. Energy saving recommendations
and user location modeling in commercial buildings. In Proceedings of the 26th
Conference on User Modeling, Adaptation and Personalization. 3-11.

Stephen Xia, Rishikanth Chandrasekaran, Yanchen Liu, Chenye Yang, Tajana
Rosing, Xiaofan Jiang, and Xiaofan Jiang. 2021. A Drone-based System for
Intelligent and Autonomous Homes. ACM International Conference on Embedded
Networked Sensor Systems (2021). https://doi.org/10.1145/3485730.3492881
Stephen Xia and Xiaofan Jiang. 2020. PAMS: Improving Privacy in Audio-Based
Mobile Systems. AIChallengeloT@SenSys (2020). https://doi.org/10.1145/3417313.

380

[54

[55

[56

Zhao et al.

3429383

Wei-Ying Yi, Kwong-Sak Leung, and Yee Leung. 2018. A Modular Plug-And-Play
Sensor System for Urban Air Pollution Monitoring: Design, Implementation and
Evaluation. Sensors 18, 1 (2018). https://doi.org/10.3390/s18010007

Andrea Zanella, Nicola Bui, Angelo Castellani, Aldo Castellani, Lorenzo Vange-
lista, and Michele Zorzi. 2014. Internet of Things for Smart Cities. IEEE Internet
of Things Journal (2014). https://doi.org/10.1109/ji0t.2014.2306328

Minghui Zhao, Yanchen Liu, Avik Dhupar, Kaiyuan Hou, Stephen Xia, and Xiaofan
Jiang. 2022. A modular and reconfigurable sensing and actuation platform for
smarter environments and drones: demo abstract. In Proceedings of the 20th
Annual International Conference on Mobile Systems, Applications and Services.
626-627.

https://doi.org/10.1145/3485730.3492881
https://doi.org/10.1145/3417313.3429383
https://doi.org/10.1145/3417313.3429383
https://doi.org/10.3390/s18010007
https://doi.org/10.1109/jiot.2014.2306328

	Abstract
	1 Introduction
	2 Related Works
	3 System Design
	3.1 Hardware Design
	3.2 Software Design

	4 System Implementation
	4.1 LegoSENSE Hardware
	4.2 LegoSENSE Software

	5 Evaluation
	5.1 Application Scenarios
	5.2 LegoSENSE User Study

	6 Education and Community
	7 Discussion
	8 Conclusion
	Acknowledgments
	References

