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ABSTRACT
The fast development of electric vehicles (EV) and EV chargers in-
troduces many factors that a�ect the grid. EV charging and charge
scheduling also bring challenges to EV drivers and grid operators.
In this work, we propose a human-centric, data-driven, city-scale,
multivariate optimization approach for the EV-interfaced grid. This
approach takes into account user historical driving and charging
habits, user preferences, EV characteristics, city-scale mobility, EV
charger availability and price, and grid capacity. The user prefer-
ences include the trade-o� between cost and time to charge, as well
as incentives to participate in di�erent energy-saving programs.
We leverage deep reinforcement learning (DRL) to make recommen-
dations to EV drivers and optimize their welfare while enhancing
grid performance.
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• Hardware! Smart grid; Renewable energy; • Theory of com-
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1 INTRODUCTION
Electrical vehicles (EVs) along with new generations of smart EV
chargers and grids have quickly extended the bene�ts of fast-growing
cyber-physical technologies to smart city development with a con-
nected, intelligent, sustainable and human-centric infrastructure [4].
Various works focus on the research in and applications of cutting-
edge techniques to co-optimize the grid performance and EV dri-
vers’ driving experience by reducing monetary and time cost to
charge their cars in daily commuting.
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Deep reinforcement learning (DRL) has recently gained attention
for solving grid optimization and human-centric recommendation
problems in an unsupervised manner [3]. However, many of these
methods require a substantial amount of real-world data to learn
optimal policies and handle unpredictable human behaviors. Col-
lecting enough data remains a large challenge from existing smart
grid infrastructure [1]. In addition, EV charging stations are man-
aged by di�erent companies, and can have di�erent charging levels
and plug types. To the best of our knowledge, there is no widely
available method for researchers to acquire holistic city-scale charg-
ing station information (e.g., charger type, availability, and price).
Recently, various works have actively constructed EV driving and
charging datasets [5], as well as charging scheduling datasets [2]
for researchers to tackle di�erent optimization problems. However,
many datasets are still limited in size, lacking generalizability and
scalability, and most importantly biased based on the data collection
methodology.

Studies typically leverage existing EV driving and charging
datasets or simulated results. Few works use real-time data, have
real EV drivers in the loop, or track preferential metadata for each
EV driver. To address these issues, we propose a data-driven city-
scale EV driving and charging optimization approach and a recom-
mender system with human-in-the-loop based on DRL to optimize
for grid performance and utility of EV drivers. The proposed ap-
proach pro�les individual EV-EV driver pairs, and incorporates
real-time and historical timestamped driving and charging data col-
lected by on-board diagnostic II (OBD II) scanners from real drivers.
We chose New York City (NYC) as the example city due to the avail-
ability of various data sources. We organize and augment the data
from existing datasets, online resources, and 4-month data collected
from three real EV drivers who live in the NYC area. For each new
EV-EV driver pair, data augmentation techniques, considering the
driver’s preferences, are applied. The recommendations to the EV
drivers are generated from a DRL model (shown in Figure 1a).

2 DATA SOURCE AND DATA AUGMENTATION
We collected and cleaned representative datasets from a variety of
authoritative sources and previous research projects. The sources
are then grouped into one of the three major categories: driving
and charging data for EV drivers, city-scale mobility data, and grid
infrastructure data.
Driving and Charging Data:We collected three EV drivers’ daily
driving patterns using OBD II scanners. To ensure data generaliz-
ability with data augmentation, we adopt datasets with emphasis
on vehicle energy consumption and EV charging [2, 5]. The driving
and charging records are converted into a standardized format with
only a compact yet useful set of data �elds for each trip including
user ID, trip ID, timestamp, speed, distance traveled, state of charge
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Figure 1: (a) System architecture of the proposed optimization based on DRL. (b) The smartphone App for the EV driver.

(SoC), longitude, latitude, etc.
City-Scale Mobility Data: City-mobility data, including tra�c
data from the Department of Transportation and National House-
hold Travel Survey, are studied to extract distributions for human
mobility habits like origins, destinations, trip types, and travel
distances. Along with driving records, charging records, and pref-
erences for each pro�led EV-EV driver pair, we also augment indi-
vidual trips from the city-scale mobility pattern to generate States
for EV drivers.
Grid and Charging Systems Data: To address the Reward in the
proposed DRL approach, we also incorporate city-scale grid infor-
mation and charging systems in the Environment. They include
hosting capacity, charging station locations, real-time charger avail-
ability, charging rate and electric price from sources like NYISO,
Plugshare, Nyserda, ConEdison, and PSEG to support data augmen-
tation and model-based policy optimization. To account for missing
charging prices and real-time availability for many chargers in our
data sources, we use k-means clustering within the same county
region for charging prices and a probabilistic algorithm to map
charger availability based on existing chargers and real-time tra�c.

3 SYSTEM ARCHITECTURE
As shown in Figure 1a and illustrated in Section 2, the proposedDRL-
based approach contains four parts to provide recommendations
(Actions) for NYC EV drivers in real time. Drivers can visualize
recommendations through a custom smartphone app (Figure 1b).

Speci�cally, Environment includes the historical and real-time
data sources. State consists of the augmented data based on the
data sources as well as the User Preference (what aspect(s) the driver
wants to optimize). After the user adjusts the tailored weights for
cost, time of trip & charging, and incentives to participate in various
energy-saving and peak-reduction programs, this information will
be input into the deep neural network (DNN), where the Reward
is generated based on the real-time Environment. In particular, the
Reward is based on the grid capacity, the tra�c conditions, as well
as the city-scale EV routing and charging scenarios considering
other EVs and EV drivers in the city. This DRL architecture learns
policies to generate Actions for the EV driver. Actions contain the
suggested Routes, as well as Charging Schedule that tells user where
and when to charge and how long to charge, based on the driver’s
preferences and driving habits.

Figure 1b shows an example recommendation for an EV driver
who wants to minimize the total monetary cost, leave location A
in the morning, stop at the location B for �ve hours, and arrives at
location C before dinner. Considering the SoC, tra�c, and travel
habits of this user, our approach recommends two di�erent charging
strategies. The most recommended action is to charge at location
D, which is close to location B (with the route annotated in red).
The alternative recommendation is to charge at the destination,
location C (with the route annotated in blue).

4 CONCLUSION
Wepropose a data-driven optimization approach in the EV-interfaced
grid with human-in-the-loop based on DRL to provide recommen-
dations, including routing strategies and charging scheduling, to
improve EV drivers’ utility in a city scale. This approach can provide
insights for EV drivers, EV charger owners, and grid operators.
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