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Abstract

We consider the global well-posedness of weak energy conservative solution to a general quasilinear
wave equation through variational principle, where the solution may form finite time cusp singularity, when
energy concentrates. As a main result in this paper, we construct a Finsler type optimal transport metric,
then prove that the solution flow is Lipschitz under this metric. We also prove a generic regularity result by
applying Thom’s transversality theorem, then find piecewise smooth transportation paths among a dense set
of solutions. The results in this paper are for large data solutions, without restriction on the size of solutions.
© 2023 Elsevier Inc. All rights reserved.
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1. Introduction

Consider a class of quasilinear wave equations derived from a variational principle whose
action is a quadratic function of derivatives of the field with coefficients depending on both the
field and independent variables
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where we use the summation convention, see [1]. Here x € R4t are the space-time variables and
u: R4 — R™ are the dependent variables. We assume the coefficients A}/, : R9T! x R" — R

dx =0, (1.1)

are smooth and satisfy Ai{v = Af)jﬂ = Aifv. The Euler-Lagrange equations associated with (1.1)
are

) ( i 814”) 19AY, dur du”

— — == —_— . 1.2
dx; \ kK g 2 9uk 9x; dx; (1.2)

In this paper, we consider the special case of (1.1) when n =1 and d = 1, where the Euler-
Lagrange equation (1.2) reads that

1,041 A2 9A??
(A“ut + Alzux), + (Alzut + Azzux)x = —(—u,z +2——usuy + —u)zc) (1.3)
2% ou ou ou

Moreover, assume the coefficients satisfy

. 2
(Al)3,r = ("/‘3 _’iz> (x. u),

then equation (1.3) exactly gives the following nonlinear variational wave equation
(@?uy + Bu)e + (Bue =y u)x = aou; + Buttsitx =y vty (1.4)
with initial data
u(x,0)=uo(x) € H', u;(x,0) =u(x) € L% (1.5)
Here the variable r > 0 is time, and x is the spatial coordinate. The coefficients « = a(x, u),

B =pB(x,u), y =y(x,u) are smooth functions on x and u, satisfying that, there exist positive
constants o1, a2, B2, ¥1 and y2, such that for any z = (x, u),

O<ar<a(z)<az, |Bx,u)|<B2, O0<y1 =y =<y,

sup(IVa(@)l, VB, [V ()]} < 00, VzeR2. (1.0
Z
Then system (1.4) is strictly hyperbolic with two eigenvalues
B— /,32+oz2y2 B+ /ﬂ2+a2y2
hoi=———5—— <0, hpi=————>5——>0. (1.7
o o
Moreover, in this paper we always assume that the following generic condition is satisfied
Ours(x,u) =0= 0yuArs(x,u) #0 or 0JyyAs(x,u)#0. (1.8)
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In this paper, we will always call waves in the families of A_ and A as backward and forward
waves, respectively. By (1.6), —A_(x, u) and A4 (x, u) are both smooth on x and u, bounded and
uniformly positive.

1.1. Physical background and earlier results

There are various physical models related to equations (1.1) and (1.4). For example, see [1]
for the background in general relativity. There are many classical results, such as in [11].

A particular physical example leading to (1.1) and (1.4) is the motion of a massive director
field in a nematic liquid crystal. A nematic liquid crystal can be described by a director field of
unit vectors n € S2. In the regime in which inertia effects dominate viscosity, the propagation of
orientation waves in the director field is modeled by the least action principle (see [2])

3/(a,n-a,n—W(n, Vn))dxdt:O, n-n=1, (1.9)

where W(n, Vn) = K;|n x (V x n)|2 + K2(V -n)%2 + K3(n - V x n)? is the well-known Oseen-
Franck potential energy density. Here K, K> and K3 are positive elastic constants. This varia-
tional principle is in the form of (1.1).

When n = (cosu(x, t), sinu(x, t),0), with x € R, the dynamics are described by the varia-
tional principle

af(uf—c2(u)u§)dxdt=0, (1.10)

with wave speed ¢ given by ¢?(u) = K cos® u + K7 sin” u. This gives the variational wave equa-
tion

uy —c@)(cuuy)y =0, (1.11)

which is a special example of (1.4), so does the inhomogeneous case: (1.10) with ¢ = c(x, u).

It is known that solutions for the initial value problem of (1.11) generically have finite time
cusp singularity [3,6,10]. The global existence and uniqueness of Holder continuous energy
conservative solution was established by Bressan-Zheng and Bressan-Chen-Zhang in [7,5], re-
spectively. See other existence result for (1.11) in [14].

The breakthrough on the Lipschitz continuous dependence happened later in [4] by Bressan
and Chen, where the solution flow was proved to be Lipschitz continuous on a new Finsler type
optimal transport metric.

The main target of this paper is to extend this Lipschitz continuous dependence result to
the general equation (1.4), where the existence and uniqueness of energy conservative Holder
continuous solution for (1.4)—(1.5) has been established by [15,9], respectively.

1.2. Main results of this paper

Due to finite time singularity formation [3,6,10], one needs to consider weak solutions for
(1.4)—(1.5).
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Definition 1.1 (Weak solution). The function u = u(x, t), defined for all (x,¢) e R x RT, is a
weak solution to the Cauchy problem (1.4)—(1.5) if it satisfies following conditions.

(i) In the x-t plane, the function u(x, t) is locally Holder continuous with exponent 1/2. The
function ¢ — u(-, t) is continuously differentiable as a map with values in Lﬁ)c, for all
1 < p < 2. Moreover, it is Lipschitz continuous with respect to (w.r.t.) the L? distance, that
is, there exists a constant L such that

||I/l(,t) _M(',S)||L2 SL“ _S|v

forallt,s e RT.

(i) The function u(x, t) takes on the initial conditions in (1.5) pointwise, while their temporal
derivatives hold in Lic for p €[1,2).

(iii) The equations (1.4) hold in distributional sense, that is

/ / [0 (@us + Bux) + @x (Bur — v*uy) + o(acyu? + Buusuy — yyu?)|dx dt =0

for any test function ¢ € CC1 (R x R™).

When a finite time gradient blowup forms, the solution flow fails to be Lipschitz in the energy
space, i.e. H' space. We will construct a Finsler-type distance that renders the conservative solu-
tion flows of (1.4)—(1.5) Lipschitz continuous. The new distance is determined by the minimum
cost to transport from one solution to another. We consider a double optimal transportation prob-
lem which equips the metric with information on the quasilinear structure of the wave equation.
To control the energy transfer between two characteristic directions, we add a wave potential
capturing future wave interactions in the metric.

The main result of this paper is:

Theorem 1.1 (Lipschitz continuous dependence). We consider the unique conservative solution
given in Theorems 2.1 and 2.2 for (1.4)—(1.5). Let the conditions (1.6)—(1.8) be satisfied, then the
geodesic distance d(-, -), defined in Definition 7.2, provides solution flow the following Lipschitz
continuous property. Consider two initial data (uo, u1)(x) and (ig, it1)(x) in (1.5), then for any
T > 0, the corresponding solutions u(x,t) and u(x,t) satisfy

d((wu ), @, () = €d (o, un). o, an) ),
when t € [0, T], where the constant C depends only on T and the total energy.

There are many variations in the construction of new Lipschitz metric and the proof of Lips-
chitz property for (1.4), comparing to the theory for variational wave equation in [4], especially
on the subtle relative shift terms. A slight change in the metric may ruin the Lipschitz property.

Another crucial obstruction in establishing the new distance is how to prove the existence
of regular enough transportation planes between two solutions. Here we prove the following
generic regularity result showing that on a dense set of initial data the corresponding solutions
are piecewise smooth and only including generic singularities. Then we prove the existence of
piecewise smooth solution path between any two generic solutions in Theorem A.1.
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Theorem 1.2 (Generic regularity). Let the condition (1.6)—(1.8) be satisfied and let T > 0 be
given, then there exists an open dense set of initial data

Mc (03(R) N H‘(R)) x (CZ(R) N LZ(R)>,

such that, for (ug,ui) € M, the conservative solution u = u(x,t) of (1.4)—(1.5) is twice contin-
uously differentiable in the complement of finitely many characteristic curves, within the domain

R x [0, T].

This paper will be divided into seven sections. Section 2 is a short review on the existence and
uniqueness of conservative solution to (1.4)—(1.5). In Section 3, we will introduce the main idea
and steps used in Sections 4 to 7, where we construct the metric and prove main theorems step
by step.

2. Previous existence and uniqueness results

We begin, in this paper, by reviewing the existence and uniqueness of conservative weak
solution to the Cauchy problem (1.4)—(1.5) in [9,15].

Theorem 2.1 (Existence [15]). Let the condition (1.6) be satisfied, then the Cauchy problem
(1.4)—(1.5) admits a global weak solution u = u(x, t) defined for all (x,t) € R x RT.

To introduce the uniqueness result, let’s first introduce some notations. Denote wave speeds
as

13_ /,32+0l2)/2 ﬂ+ /,32+a2y2
—_—— <0, =iy =—"""—""7—77—>0,

o o

Cli=ai_ =
and Riemann variables as

R :=ou; +couy, S:=ou;+cruy. 2.1

By (1.6), the wave speeds —c; and ¢, are smooth, bounded and uniformly positive.
For a smooth solution of (1.4), the variables R and § satisfy

a(x,u)R; +c1(x,u)Ry = a1 R* — (a1 + a2) RS + a2 S* + ¢2bS — d| R,

a(x,u)S; +c2(x,u)Sy = —a; R+ (a1 + a2)RS — a2 S? + ¢1bR — d» S, 2.2)
S —c1R R-S
Uy=——— O Uy= ,
a(cy —cy) c) —C|
where
Cifyo — ¢ _adx(cr —2) + (c1 — 2) 0y
T 2a(cr—cy) B 20(ca — c1) ’

d— C€20xCl1 — C10xC)  ®0xCj — Cj 00X
T 2 —c1) 2a

. (=1,2).

293



H. Cai, G. Chen and Y. Shen Journal of Differential Equations 356 (2023) 289-335

Here 0, and 9, denote partial derivatives with respect to x and u, respectively.
Multiplying the first equation in (2.2) by 2R and the second one by 25, one has the balance
laws for energy densities in two directions, namely

2 2c2b bl —c10
(RY), + (2L R2), = 22 (RS2 — R2§) 4 220 s — XA T 10 o
o 201 5 oeb 80{(02 — Cé) (2.3)
(82 + (287, = (RS> — R2s) - “0Rs - ZEA TR 2
o o a alcx —cy)
Moreover, we have
(RH), + (&R, =G, 0
(§H) + (258H, =-G,
where
R?= —a R2, §? = @ SZ, and
) —C1 2 —C]
_ 2caq 2o 2c1ap 2 2c1c0b RS
a(cy —cy) a(cr —cy) alcp—cy)

which indicates the following conserved quantities
azulz + yzujzc =R*+ 5‘2,
and the corresponding energy conservation law
(R + 5%, + (5 R + 258, =o.

Now, we state the uniqueness result in [9], which together with the energy conservation proved
in [15] show that the problem (1.4)—(1.5) has a unique conservative solution under Definition 1.1.

Theorem 2.2 (Uniqueness [9] and energy conservation [15]). Let the condition (1.6) be satisfied,
then there exists a unique conservative weak solution u(x, t) for (1.4)—(1.5).

Here a weak solution u(x,t) defined in Definition 1.1 is said to be (energy) conservative if
one can find two families of positive Radon measures on the real line: {"_} and {"}, depending
continuously on t in the weak topology of measures, with the following properties.

(i) At every time t one has

]

w(R) + i, (R) = & = f [0 (. u0(0)ud0) + 72 (x, w0 (0 (00 | v

—00

(ii) For each t, the absolutely continuous parts of pu'_ and p', with respect to the Lebesgue
measure have densities respectively given by
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- —c -
R*=—" (qu, +couy)®,  §*= (cutty + crux)>.

e e —ci

eee + . t t

(iii) Foralmost everyt € R™, the singular parts of ' and ', are concentrated on the set where
oyr— =0or iy =0.

(iv) The measures u'_ and pf_s_ provide measure-valued solutions respectively to the balance

laws
cl 2c2aq 2ciap 2c1c2b
&+ (=)= 25 — 2 1% Rs,
a a(cy —c1) a(cy —c1) a(cy —cy)
2 2c2a 2 2c1az 2 2c1cb
N+ (—My=———"—— — ——RS.
a a(cr —c1) a(cr —c1) a(cr —c1)

Furthermore, for above conservative weak solution, the total energy represented by the sum
U— + p4 is showed to be conserved in time. This energy may only be concentrated on a set of
zero measure or at points where d,A_ or d, A+ vanishes. In particular, if 9, A+ # O for any (x, u),
then the set

oo

H‘C; () = / [|oz2(x,u(x,r))u12(x,t)+y2(x,u(x,t))u%(x,t)]dx < 50}

—00

has measure zero.
3. Main idea and structure of the proof for main theorems

Due to the finite time energy concentration at the gradient blowup, solution flow of (1.4) is
not Lipschitz in the energy space, i.e. H' space. One can find examples showing this instability
in [8] for some unitary direction models, or in [10] for the variational wave equation.

It is natural to use an optimal transport metric. To capture the quasilinear structure of solutions,
we consider a double transportation problem, which means that we study the propagation of
waves in backward and forward directions, respectively.

More precisely, to keep track of the cost in the transportation, we are led to construct the
geodesic distance. That is, for two given solution profiles u(¢) and u€(¢), we consider all possible
smooth deformations/paths y' : 6 > (u? (1), u (t)) for 6 € [0, 1] with y'(0) = (u(¢), u;(t)) and
yi(1) = (uE @), uf (t)), and then measure the length of these paths through integrating the norm
of the tangent vector dy’/d9; see Fig. 1 (a).

Roughly speaking, the distance between u and u€ will be calculated by the optimal path length

1
d t
d (u(e), uf (1)) = inf "] ::inf/ 108 () llo ) 4O, where vf (1) = “
n " o
0

The subscript u? () emphasizes the dependence of the norm on the flow u. The most important
element is how to define the Finsler norm [[v? (r)]| u () by capturing behaviors of the quasilinear
wave equation, such that, for regular solutions,

ly'l<cly®l,  VYrelo, Tl (3.1)
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ul(T) = us(T)
(a) Method of homotopy (b) Loss of regularity

Fig. 1. Compare two solutions u(x) and u€ (x) at a given time 7.

Here C only depends on the total initial energy and T, and is uniformly bounded when the
solution approaches a singularity.

The norm ||v? (D)l () measures the cost in shifting from one solution to the other one. We
will measure the cost in forward and backward directions, with energy densities wT, w~ defined
in Theorem 2.2, respectively. As a payback of using the double transportation problem, now we
can use both balance laws on forward and backward energy densities along characteristics, such
as (2.3) and (2.4). We need to control the growth of norm caused by the energy transfer between
two families during nonlinear wave interactions. The idea is to add interaction potentials in the
norm. More detail will be given in Section 4.

We will construct the metric d and prove that the solution map is Lipschitz continuous under
this metric in several steps.

1. We construct a Lipschitz metric for smooth solution (Section 4).

2. By an application of Thom’s transversality theorem, we prove that the piecewise smooth so-
lutions with only generic singularities are dense in H' x L? space. This proves Theorem 1.2
(Section 5).

3. We extend the Lipschitz metric to piecewise smooth solutions with generic singularities.
(Section 6).

4. We finally define the metric d for weak solutions with general H' x L? initial data, and
complete the proof of Theorems 1.1. We also compare the metric d with some Sobolev
metrics and Kantorovich-Rubinstein metric (Section 7).

4. The norm of tangent vectors for smooth solutions

The first goal is to define a Finsler norm on tangent vectors measuring the cost of transport,
and show this norm satisfies the desired Lipschitz property (3.1) for any smooth solutions.

Let (u, R, S) be any smooth solution to (1.4), (2.2), and then take a family of perturbed solu-
tions (u€, R€, S€)(x) to (1.4), (2.2), which can be written as

€l R (x) = R(x) +er(x) + o(e),
ut(x) =u(x)+ev(x) +o(e), and S0x) = S(x) 4+ €5(x) + 0(e). “.1)
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Here both u and u€ satisfy the Definition 1.1 of weak solution. Because of finite speed of propa-
gation, for any time 7 > 0, there exists a compact subset on the x-f plane with ¢ € [0, T'], out of
which the solution is smooth.

Here and in the sequel, we will omit the variables ¢, x when we use any functions if it does
not cause any confusion.

Let the tangent vectors r, s be given, in terms of (2.2) (equation on u,) and (4.1), the pertur-
bation v can be uniquely determined by

- ducr — B
= - M2 (RS, v(0,)=0. (4.2)
= (c2 —c1)
Moreover, it holds that
- S—ciR duc — 19
y= o AL I TR g0 4 ZHATARE (g Ry (4.3)
a(cy—cy)  as(ca—cy) a(cy —cy)

Furthermore, by a straightforward calculation, the first order perturbations v, s, r must satisfy the
equations

O521)tt - Vzvxx +2Bvx = 2y Yuttx + 2y ¥x — Buts vy — [Laayu; + Byuy + Bxlu

— [2u? 4 ayyau? + 20y + 2Buttrs + Buutts + Buuttsiiy v (4.4)
+ [VMZM)ZC + VVMM”% 4+ 2y Vulbxx + 2VuYxlix + 2Y Yaulix v,

and

ary +ciry =2a1Rr — (a1 +ap)(Rs + Sr) + 2a»Ss + cobs — dir 4+ 2a1(cy — ¢1)Ryv
+aB1R?>v — a(By + B2)RSv + aB2S?v + a B4Sv — aBsRv,

as; + sy = —2a1Rr + (a1 +a1)(Rs + Sr) —2apSs + c1br — dos + 2az(cy — ¢1) Sy v
—aBR?>v+ a(Bi + B2)RSv — aByS*v — aBgSv + a B3 Rv,

4.5)
where B; = 0‘8"“1'&;2“"3“‘”7 i=1,2, B3= ‘“’u(clbtiiz—clwu“’ By = Olau(czbiz—czbaua , Bs = a@udla—zdlaua

B() — otBMdzfzdzBua.

To meagure the cost in shifting from one solution to the other one, it is nature to consider
both vertical and horizontal shifts in the energy space. With this in mind, since the tangent flows
v, 7, s only measure the vertical shifts between two solutions, we also need to add quantities
w(x,1), z(x, t) measuring the horizontal shifts, corresponding to backward and forward direc-
tions, respectively. And it is very tentative to embed some important information of waves into
w(x,1), z(x,t) in order to focus only on reasonable transports between two solutions. Here we
require w(x, t) to satisfy

ew(x, 1) +o(e) =x(t) — x(1),
where x€(¢) and x (¢) are two backward characteristics starting from initial points x€(0) and x (0).
Symmetrically, the function €z(x, f) measures the difference of two forward characteristics. Then

it is easy to see that w, z satisfy the following system
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a0yCc] — €10y
ow; +cpwy = —————w —2a1(c2 — c) (v + uyw),

o
A0,xC) — Cr0,
az; + oz = %z —2a3(cs — 1) (v + Uy 2), (4.6)

w(x, 0) = wo(x), 2(x,0) = zo(x).

Next, we define interaction potentials W& /W™ for forward/backward directions as follows.

X +00
W =1+ / S2(y)dy, Whr:=1+ / R*(y)dy.
—00 X

Essentially, when tracking a backward wave, YW~ measures the total forward energy, that this
backward wave will meet in the future.
Now, let’s show the decay of interaction potentials. In view of (2.3), it holds that

X

— 2 2c¢1b O0xC1 —C10
WSy =Sy /[ Y (Rs? — R2§) — Ry - DA TAND 1y

o o o a(ca —c1)
—0o0
e 26,b 9 5
— C cl1—¢C C
W,++C—2Wj:—uR2+/[ﬂ(RSZ—RzS)—i— 20 gy — 2L T AN g2y
a o o o a(cy —c)

X

This together with condition (1.6) implies that

c 2
W+ D= < -2 4 G,
o o)

b 4.7
W+ 2wk < - R2 4 Gy,
o o)
where the functions
ap) 21b 3 3
Gi(t) = / ‘ﬂ(RSZ—RzS)+ c1b o cdcr—c xC2S2‘d ,
o (07 a(cx —cy)
—00
b 2 2cob a B
Ga(t) == / ‘ﬂ(RSz—RzS)+ 2 ps 274 "CZRZ‘d
a o a(cy —c1)
—0o0
As proved in [9] (see equation (3.16) in [9]), we obtain
T
/Gi(t)gcT, i=1,2, (4.8)
0

for some constant Cy depending only on T and the total energy.
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Fig. 2. A sketch of how to deform from R to R€: (a) a vertical shift er; (b) a horizontal shift € Ry w followed by a vertical
displacement er. Here x€ := x + ew(x). We denote the total shift as €7 = €(r + Ry w).

Up to now, we are ready to define a Finsler norm for the tangent vectors v, r, s as

I, 7, )lw,r,s) = inf [[(v,w, 7, 2,9)w.r,S)> 4.9)

v,w,r,z,§

where the infimum is taken over the set of vertical displacements v, 7, § and horizontal shifts w, z
which satisfy equations (4.2), (4.3), (4.6) and relations

p— b _
f=r+wa+a2(w Z)Sz—al+a2(w—z)RS+cz (w Z)S,
C2 —C €2 —Cl ¢ —c 4.10)
A aj(w — ai+a cib(w — 4.
S=5+2z8 — 1 Z)R2+ ! 2(w—z)RS_pil ( Z)R
2 —cy 2 —c ¢ — )

Here, to motivate the explicit construction of ||(v, 7, s)|l«, r,s), We consider a reference solution
R together with a perturbation R€. As shown in Fig. 2, the tangent vector r can be expressed
as a horizontal part ew and a vertical part €7, that is » =7 — R,w. The other terms in (4.10)
take account of relative shift. We will give more details on the relative shift terms later. Now, we
define the following norm:

(v, w, 7, 2,5l w,R,s)

= Ko/[|w|W*+|z|W+]dx+K1/[|w|(1+R2)W*+|z|(1+52)w+]dx
R

R
Rw — Sz 2y - 2y o+ SW— s W
+ier v+ﬁ‘[(l+R)W + (14 SHOWHdx + &3 [ [IFIW™ + 15 WH]dx
2 —C]
R R
. 2ay(w — 20 (w —
+K4/ wx_’_MS‘W*_’_ZX_MR‘W*]dX
L c) — (1 ) — (]
R
. 2a; (w — 20 (w —
+/<5f RwﬁmRS)W*Jr‘Szx—MRS‘V\#]M
L c) — (1 ) — (1
R
2 — 2 _
+K6/ [ 2Rf+R2wx+MRZS‘W’+ ‘25§—|—Szzx - MRSZ‘WJF]dx
cy) —C 2 —C
R
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6 6
::ZKi(/Ji_W_dx+/Ji+W+dx)::Z/qli, @.11)
i=0 R R i=0
where «; withi =0, 1,2---, 6 are the constants to be determined later, and I;, J., J * are the

[
corresponding terms in the above equation.

Next we give more details on how to obtain (4.11).

[T]. For Iy, the integrand |w|(1 + R?) accounts for the cost of transporting the base measure with
density 1+ R? from the point x to the point x + ew(x).

The integrand |z|(1 4+ $?) accounts for the cost of transporting the base measure with density
1 4 S? from the point x to the point x + €z(x). There are no relative shift terms.

The terms in I are corresponding to the variation of |x| with base measure with density 1,
which are added for a technical purpose.

[II]. I can be interpreted as: [change in u#] in the energy space. Indeed, the change in u can be
estimated as

u (x + ew(x)) —u(x) =v(x) +uy(x)wx) + o(e)

€
R —
=v(x)+Mw(x)+0(6)
) — (1
RN Ll S Sl S
Cc) —(C1 Cc) — (1

Here the last term =2 jfl S on the right hand side of the above equality is just balanced by the

. ) €
relative shift term.
Here we use this term to introduce how to calculate the relative shift term. Recall that

auy +couy =R, ou;+ciuy=S.

So the difference of these two equations give

1
e = (R—S).
¢ —C
Roughly speaking,
A _
Aux " (R =" (r_¥). (4.12)
) —C1 2 —C

Here the S term balances CZ:'é’ S. We omit the R term since it is a lower order term.

As we can see from (4.12) that there is only a general philosophy on how to choose terms
taking account of the relative shift. One needs to adjust them very carefully to meet the demand.
Comparing to the variational wave equation (1.11) in which two wave speeds have same magni-
tude but different signs, it is much harder to find the relative shift terms for the general equation
(1.4).
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[III]. I3 accounts for the vertical displacements in the graphs of R and S. More precisely, the
integrand |#| as the change in arctan R times the density 1 + R? of the base measure. Notice that,
for x¢ =x + ew(x) + o(e),

arctan R€(x€) = arctan (R(xf) +er(x) + o(e))

= arctan (R(x) +ew(x)Ry(x) +er(x) + o(e))

r(x) +wx) Ry (x)
14+ R2(x)

=arctan R(x) + € + o(e),

which together with the relative shift term gives J; . Here we add some subtle adjustments in the
relative shift terms to take account of interactions between forward and backward waves using
(2.2).

The change in arctan S times the density 1 + S? of the base measure is explained similarly.

[IV]. Is can be interpreted as the change in the base measure with densities R? and $2, produced
by the shifts w, z. Indeed,

(RE(x9))” = R*(x%) + 2¢ R(x)r (x) + o(€)
= Rz(x) +2ew(x)R(x)R;(x) + 2 R(x)r(x) + o(e),

we obtain that

(RE(x%))*dx® — R*(x)dx = (26R(x)Rx (O)w(x) + 26 R()r (x) 4+ € R2(x)w, (x) + 0(6)) dx.
(4.13)

Moreover, as in (4.12), in view of (2.3), if the mass with density S2 is transported from x to
x + €z(x), the relative shift between forward and backward waves will contribute

[2a>(RS? — R2S) 4+ 2c2bRS] - eczz __’:’1 . (4.14)

Hence subtracting (4.14) from (4.13) yields the term J . Symmetrically, we have J6+ .

[V]. In order to close the time derivatives of I> and Ig, we have to add two additional terms Iy
and Is. Here 14 accounts for the change in the Lebesgue measure produced by the shifts w, z,
while 5 account for the change in the base measure with densities R and §, produced by the
shifts w, z. These two terms are in some sense lower order terms of /.

The main goal of this section is to prove the following lemma by showing that the norm of
tangent vectors defined in (4.9) satisfies a Gréwnwall type inequality.

Lemmad4.1. Let T > 0 be given, and (u, R, S)(x, t) be a smooth solution to (1.4) and (2.2) when

t € [0, T]. Assume that the first order perturbations (v, r, s) satisfy the corresponding equations
(4.4)—(4.5). Then it follows that

I, r, )OOl w,r,5)0) < C(DW, 1, $)O)lw,R,5)0)> (4.15)
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for some constant C(T') depending only on the initial total energy and T.

Proof. To achieve (4.15), it suffices to show that

d N N
Ell(v, w, 7,2, ) O lw,r,50) <a®ll(v,w, 7,2, w,R,$0) (4.16)

for any w, z and 7, § satisfying (4.6) and (4.10), with a local integrable function a(¢). Here and in
the sequel, unless specified, we will use C > 0 to denote a constant depending on the initial total
energy and T, where C may vary in different estimates. Now we prove (4.16) by seven steps.

0). We first treat the time derivative of Iy. By (2.2) and (4.6), a straightforward calculation yields
that

cl
wy + (—w)y
o

®0yC] — €10y 2a Rw — Sz 2a1S 2a 1w
uw—ﬁ(cz—m)(v—k )+ 1(w—z)— :

c)— o o

=2

(R-095).

o?

This together with the uniform bounds (4.7) on the weights implies that

d e d _
7 Jy W dx:a lw|W™ dx
R R
Rw — Sz

gc/|w|(1+|R|+|S|)W—dx+c/|z||5|w+dx+c/‘v+— W™ dx
c—cy
R R R

2
+G1(t)/|w|W*dx—ﬂ/|w|S2W*dx.
(0%)
R R

Repeating the above process for the time derivative of f]R JJ W dx yields

d _d —)— )+
Tho= 2 [ (JoW™+ I )
R
<Cc >y /((1+|S|)Jk_W’+(l+|R|)Jk+WJr)dX (4.17)
k=12p

2
+[ (Gl(z)JO_W’ 4 Gz(r)J;V\ﬁ) dx -2 (SzJO_W’ i RZJOWW) dx.
(%)
R R

1). For Iy, using (2.2) and (2.3), by a direct computation, one has

_ C23XC1 — ClaxCZ R2
a(c2—c1)

S

2 2¢0b
(1+ R, + [ (1 + RY)], =~2(RS? — R®S) + ~22R
o o o

(4.18)
2ay adyc] — 10,

-—— R=-9)+—7F—
o o
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With this help and by (4.6), we obtain
c1
[w(1+RY], + [gw(l +RY),

= (w; + %wx)(l + R+ w[(1 + R, + (2—1(1 +RY).]

n 2¢ob RS — C205C1 — €10xC) R2 _ @(R 4 odyCl] — claxoz]
o alcy —cp) o a?
2a Rw — Sz 2a187 w
= o+ —) 0+ R (2 — 1) — =21+ RY) + —[2(a1 — a) RS
o c) —cC1 o o

a —
4 2RS4 260bRS 4 227D | p2

0 0 —cj0
—x—ac1R2—2a1R+4alS+2w].
c) — (1 o o

This together with (4.7) and the similar estimate for the other terms of I; gives that
d

a —W— o+
il 5ck§12/((1+|5|)1k W™+ (L4 [RDIEWT) dx
ey

2 1—yA)— 2
+c/(s JyW™ + R ) dx
R

+/ (GIOITW™ + G2 I W) d ﬂ/ (27w + REIFW) dx.
a2
R

(4.19)

Here we have used the fact that |RS?| < %(g—;RzS2 + ';l—sz) and |R2S| < %(;’—;R252 + ‘;—IZRZ).

2). To estimate the time derivative of I, recalling (4.2) and (4.3), we get the equation for the
first order perturbation v:

2a1R —2a» S d,c1 — 0
v+ Ly =S R0, WA TG, (4.20)
o o o alcr—c1)
Next, by (2.2) and (4.6), it holds that

[Rw—Sz] +c1[Rw—Sz]
Cc) —Ccp dt o Cc) —C1 dx

w cl Z c Z R 1
= (R + —Ry) — (Sr+—=8)+ =8+ (wy + —wy)
c—cC o ¢ —cCy o o c—cCy o
c S c1 1
- (21 + —2x) + =2 + (Rw — S2)|[( )i+ —( )x]
¢ — o o c—C o ) —cCl
0, —9
= —[ale — (a1 +ar+ M)RS +arS? + c2bS + (dy — 8xc1)R]
a(cy —cy) 2 —C
z 0y Cy — 0yC
—7[ —a1R* + (a1 + @) RS — (ap + X272 4 bR+ (ds — Bxcl)S]
a(cy —cy) 2 —C
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Z S 2a1R R-—S 2a8 R—-S
+_Sx + _Zx - 1 (U + w) + 2 (U + Z) (421)
(o4 o o ) — o 2 —C

Consequently, in accordance with (4.18), (4.20) and (4.21), we have

Rw 2 c1 Rw — 87 2
[(”ﬁ)“” ]+ [T+ a0
w— 8z c1  Rw— S8z 2
[(U’+_UX)+(ﬁ)t+;(m)x](] + R”)

+(v+ w—_cz)[(l +RY), + (2—1(1 +RY).]
— 01

2
1+ R? ar(w — ay+a c1b(w —z
= [s+sz— u ) + 2w - )RS+ = ( )R]
2 — ] ¢ — ] ¢ —c]
w(l + R? z(1+ R?
¥[azsz + bS] - g[azsz + (dy — 3xc1)S]
a(cx —cy) a(cy —cyp)
1+ R? 2a2(w — z Rw — Sz.12a 2c2b
+ (SZX—MRS)+(U+—)[ “Z2(RS® — R?S) + =22RS
c) —Cl c) —C1 o
0 —cy0 0, -9 d — 10 2
_ C20xC1 — C10xC2 R2+ uCl uC2 (1 +R2)S+ Q0xCl zcl X ﬂ(R S)]
a(cr —c1) a(cr —c1) o

This together with (4.7) and the similar estimate for the other terms of I gives that

d
Th= c/ ((1 FISDI, W™+ (1+ |R|)Jjw+) dx
R

+c Y / (1+52)J w- +(1+R2)J+W+) (4.22)
= I?SR

2
+/ (G1OI; W™+ G2 I W) dx %/ (2w~ + RIS W) dx
2
R R

3). We now turn to the time derivative of I3, which is much more delicate than the other terms.
Differentiating (2.2); with respect to x, we have

c 2a ar+a 2a b d
Ric+ (SRy), = L RR, = T2 (RS, + SR + =258+ 228, = <R,
o x o o o

BIR3>—B,S® B;+2B 2B+ B
il 257 1+ 2ps2 _ 1+ b2
cy —C cy) —C1 2 —C

B By, + B
LS (A 4 Ay 28
- c

B
R2S 4+ (A; — —> )R? (4.23)
c) — (]

+ (A2 — - )RS A4R + A3S,

where we have used the notations in (4.5) and
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A = a0y a; —2a,~8xoz =12, As= o0y, (c2b) 2— czbaxa’
o o
and
0xd| — d;0 0ydr — dp0
A4=ax121xa’ Aszax222xa.
o o

Then it follows from (4.5), (4.6) and (4.23) that

[r + wa]t + [fx—l(r + wa)]x

cl Cq Cq C1
=(rt+—ro)+ (=), 7 + Re(wr + —w,) + w[Rix + (—Ry) ]
o o o o

X

ar+ap

R-S
=+ w)(B1R> — (B1 + B2)RS + B2S” + B3S — B4R) — R(s + Sew)
c) —(C1

2a cob ay—a d
+72S(s+wa)+%(s+wa)+l 2S(r+Rxw)—;l(r+Rxw)

®0C] — €10 X
+%(r + Rew) + w[A1R? = (A1 + A2)RS + A28 + A3S — A4R]. (4.24)

Furthermore, for the third term of J;~, we derive from (2.2) (2.3) and (4.6) that

e el

) —C1 a 2 —C
a252 c1 252 a252 a(w — 7) c
= (Wi + Jwn) = ——— (@ + —zx) e [($%) + (=57),]
c—Cp o c) — o ) — (] o
a(w—2)r, 2 , Cl 2 c
e (= Y —2)S -
N2, - (L), ]+ w08 2o+ D]
2 —ap)S? Rw—S 2 -
_ 2m(a —ay) (v+ w Z)+ w— (Qara + aBy)S® — ajaz(w Z)RzS
a = a(c —Cl) a(cy —c1)
ar(adyc] — c1o c 0y C 0yt
2( 2xl 10x )( _ )SQ+[x1 xC2 x X ]azszw—l——Ssz
a2(cp —cy) a(cy —cy)
b — a0 2 b 2
Qb —@deer gy 200D —2) )RS— ﬂss (w—2). (4.25)
a(cy —cy) a(cy —c1)

The other terms of J;~ can be estimated similarly. On the one hand, using (2.2) and (4.6) we have

[- 952w —ors] +[ - LUELw - Rs]
c) —(C1 t o C) —C] x
a +a ay+a ay+a
S fRS( z+—wx)+ 1 2RS<Z+—zx>— L2 RSz,
o —
_a1+ 2 al+ 2

(w—2)S[R, + —le] -
) — C1 o ) —C

(w—2)R[S, + Ca—zsx]
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a1 +a
+1 2

al +ap cral+ay
(w — )RS, — (w — 2)RS[( )+ (=) ]
¢y —cil o ¢y —cl
2(a? — a2 Rw—S —
=MRS(U+ RS (a2 - 3d® — ajanRS* — L F 2 R
o c) — | a(cz—cl) o
wi(zaz _|_al +3a1a2)RzS+ M(w —Z)R3 _ M(w —2)53
a(c2—ci) a(c2 —ci) a(c2 —c1)
ay +az)RS
(2172)[2(6’13,(01 — adyerw + (@(@er +8e2) — (e + edea)e]
a(c2 —c1)
ay+a
— L2 (w—2)[(a1 + @) R*S + c1bR? + c2bS® — (dy + d2)RS]
acr—cy)
ci1(w—7z) aj +az
—72[(62 —c1)0x (a1 +a2) — (a1 + a2)dx(c2 — ) |RS + RSx(w —2)
a(cy —cy) o
w—z 2
——————[(c2 = c)du(a1 + a2) — (a1 + a2)du(c2 — 1) |RS”. (4.26)
a(c2 —c1)
On the other hand, by (2.2) and (4.6) we obtain
cob(w —z c1 eb(w—z
[2( )S]+[_12( )S]
Cy) — (] t o C) — (1 X
CzbS Cl C2bS Czb(w - Z) c
= (wy + —wy) — (z; + —zx) Zx + (S +—=Sx)
¢ — o ) —c o ¢ —cl o
2bSy(w — z) b c1 b
: +(w —2)8[( )+ (= ).]
Cc) — (1 o ) —C
2¢ob(ay —ay)S Rw — Sz cob(w — ob
_ 2b(ay —ay) (v+ )+ 2b( )(4a1—a2)S2+—Szx
o ¢ — 1 a(cr —c1)
(Cz — 1)y (c2b) — 62273 u(co — Cl)(w st 2cb(ay + az)(w — Z)RS
a(c2 —c1) a(c2 —c1)
b(w — b
_@ebw = 2) o BW =D L RS 4+ 1R — bS]
a(cr—cyp) a(cr —ci)
%[Z(aa c1 —c10 oz)w—(a& (c1+c¢2) — (c1 4+ )0 ot)z]
0[2(6‘2—6‘1) xC1 10x x (€1 2 1 2)0x
ci(w—2)8
72[(62 — C])a (Czb) — Czba (C2 - C])] — —Sx(w - Z) (4.27)
a(cy —cy)

In view of (4.10), combining (4.24)—(4.27) yields

i+ (),

2 _
ax(a; — az) Sz)

Rw—SZ 2 5
=+ 4)(311% — (Bi + B2)RS + B2S® + B3S — B4R —
) — (1 o
Rw — Sz
Fu+ )(
) — (]

2(a1 — az) 2(a1 —ar)crb S) n cob — (a; +a2)R§

o o o
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_ 2ax(w —72)
c—C

RS?)

a) —az)S —d ®0,Cl — €10\ . a .
+(( ) 2 )P+ 285+ 8%,
o o o

+Cgb —(n +a2)R( _ 2a(w —2) RS) RIS(w —7)

Szx laf +a1az — aBi]
o 2 —cl a(cr —c1)
RS*(w — a1 +a)RS
AR = B D gy GRS — bt — do(w — )]
a(cr —c1) a(cr —c1)
RS
+———[(c1z = 2w)d:(a1 + @) + (@ Bs — 2a1020) (w — 2)| — A4wR
a(cr —c1)
————[(caw — €12)dx (2b) + (di + da)crb(w — 2) + c2b(20 ¢ — wdkcd) |
a(c —c1)
S2
————[(caw — ¢12)dvaz + ax(dy + c2b) (w — 2) + ar(zdxc1 — wdkc)].  (4.28)
a(cr —c1)

This together with (4.7) and the similar estimate for the other terms of I3 gives that

d
—hL=<C Y f((1+|S|)J,;W‘+(1+|R|)J,jw+)dx

dt k:2’3’5’6R
+c/ (A+SHITW™ + (1 + RHIFWT ) dx (4.29)
R
2
+f (G105 W™+ Ga) I W) dx - %/ (S25 W™ + Ry W) dx.
2
R R

4). Consider /4, we first differentiate (4.6); with respect to x to get

c 2a; 2a1 2a1
wix + (gwx)x = —7(" + Ryw) + 7(8 + Syw) — 7(13 — S)wy
2a; R-—S R—-S
— —(0xc2 — dxc)v —2(c2 — c1)(A1 + By v+ w) (4.30)
o ) —C 2 —C1
a0yCcl — €10y a0 C] — €10y
o? x+ ( o2 ) w

With this help, utilizing the estimates (2.2), (4.6) and (4.30), we can derive

[wx N 2a1(w —z) S]t n [%(wx . 2a1(w —z) S)]x

) —C1 ) —C
c1 2a1 8 cl 2a18 c 2a18
=wx1+(_wx)x+ (wr + —wy) — (zt+—zx) + ix
o c) —Cl o Cy —C1 o
2a1(w —z c 2a1(w —z a c a
W=D 6y gy 2D o s[4 ()]
o —C o o c—cCy o cy—Cl
2 2 2 2 — 2 2 —
_ 2 Mg 2y, 4 2T pg ) 2 g 20D b
a o o ) — o 2 —C]
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a1 (9xcy — 0yC Rw — Sz

—2[A1(62—61)+31(R SH‘ (al ”"'M](v-'_ 2 —cl )

2a1S  «dyc) —c10x0 2(11(10 —2) adycr —c1d

S

+( + (X2 )(wx + ¢y — ) + ( a2 )X

2a1(dccy — d 2a1§ -

21002 =) 205 oy ey = L2 ) (4.31)

aley —cp) alcy —cy)

2(w —2)8

[ZalazS —ai(a; +a2)R +a(dy + cb — 0cc2) + @B R + ¢p0y al]
a(c2 —c1)

This together with (4.7) and the similar estimate for the other terms of 14 gives that

d
LD /(1+|S|)J W™ (1 + RN ) dx
k=23,4,5p

+ C/ (4 SHITW™ 4 (1 + BRI W ) dx
R
2
+f (GrOIT W™+ G W) dx = 2 [ (S W™ + R ) dx.
o
R
(4.32)

5). Next, we deal with the time derivative of /5. By (2.2) and (4.31), it holds that

2a1(w — z) c 2a1(w —2)
I:R(wx + c) —C1 S)]l + [;R(wx + c) — (] S):Ix

2a1(w — z)
cy) —Cl
2a1(w — z2) cl 2a1(w — z)
F Rt TIEE9), 4 (et TUE)),

2a1(w —z 2a1R 2ar(w — z
2w —z2) )R2S]+ R§+ = (Szx——Z( )
) —C 2 —C

= (R + ;—lm(wx + )

a] ~ 2
= ——[2RF + R*w, + RS)
o

a d ®0yC] — C1 0, 2a1(w — z
L 252y u)mwﬁy

— RS)

Cc) —(C1
a1 (0ccp — Bxcl)] Rw — Sz
e,y Ro =5

(a1 —az) +

2a1S
—2R[ A2 = e+ Bi(R =)+
c) —(C1

S 2a1(w —z ®0xC] — €10y
+ 5 @S+ eab) (wy + 2D gy 4 (@0 ) Rw
o ) — (1 o

2 (Bocr — 2a1RS -

2002 = 0et) gy, 2R g ey — ey - I
a(cs —c1) a(cy —c1)

2(w—2z)RS
a(ca—cy)

Oy
[ZalazS —aj(ar +a2)R +ai(dr + cob — 0¢cy) +aB1R + Czaxal].

This together with (4.7) and the similar estimate for the other terms of /5 gives that
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d
Sr<c Y /((1+|S|)Jk—w—+(1+|R|)J,jW+)dx
dt

k:2’3’5’6]R

+CZ/ (4 SHI7W™ + (1 + RHIF W) dx
i=L4p

2
+/<G1(t)J W™+ GanJF W) dx a”‘/ (205 W™ + RBIFW) d
R ? R
4.33)

6). Finally, we repeat the same procedure on /. Using (2.2), (2.3), (4.28) and (4.30), we achieve
[2R? + R2w,], + [ 2 QRF + RPwy)],
o
~ Cl A ~ C1
=2R(f+ (57), ) + 28Ry + = Ro) + R + (S wo)s] + wel (R + = (R),]

2
ay —a
(1 2)R2S

o

RU)—SZ 2 2 2 2
=2(v+7)[BzRS — ByR2S + B3RS — B4R* — Ay (c2 — ¢1)R? +
) — (1

2 — dycp — 0 2¢b(ar — 27
_2m@—a) oo @10 xcl)R2+ c2b(ar al)RS]+_r(a252+czbS)
o o o o
2§ dxca — €20 2a,8 2 -
B @R — bRy 4 (20 2008y o gy g2y, g 27D gy
o alcr —c1) a 2 —C1
2a3R 2az(w — 2208 + 2a, S* 2a;(w —
L2 (2S§+Szzx—7a2(w z)RS2)+7CQ + 20 (wa+7al(w Z)RS)

o ) —C1 o 2 —C

2¢2bR — 2(a; + az) R? 2ay(w — z 2a1(w — z 2a3(w — 7
L2 (a1 +az) (Sz0 — 2( )RS)~|— 1( )stx+ i( )R4
o c)—C o a(cy —cr)

dajar(w —z)

2a;(0 —a 2 b(w —

MR%}— M}ﬁ +2AwR? —2A4wR? - — 2~ Y RgS3
a(c2 —cy) a(cr —cy) a(cr —cy)
2RS

————[(coaw — €12)3x (c2b) + 2b(d) + dp) (w — 2) + €2b(20,c1 — W) ]

a(cy —cy)
2RS?

————[(caw — c12)dxaz + (a2(dy + c2b) — 2a162b) (w — 2) + a2 (z0xc1 — k)]

a(cy —cy)
2RZS

7[(61z —cw)dx (a1 +az) —ai1(9xc2 — dxc1)z +a(Bsy + Ar(ca —c))(w —2)

a(cy —cy)

C€10,C) — C20xC +a
—ay(cpb 4+ 22T 20y )] Y W S do(w —7)]
2 — 1 a(cy —cy)
2(w —2) 2(w —2)

dyc1 —c10
RZSZ[C(B +a 2]_ (O[ €l — C10x0t)

2 )szw

(4.34)

R*S(a} +aya) +

Ol(Cz—Cl) a(cy —cy)

Moreover, it follows from (2.2), (2.3) and (4.6) that
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[Zal(w —2) st]t N [c_l 2a1(w —z) st]x

c) —C1 a  C2—C]

2a; R2S c 2a; R2S c 2a; R2S 2a1(w —z
= 2R o Ly = 2RS @y g 2aRS L 2aW ) g

2 — (1 o Cy —C1 [0 o o

2a1R%*(w — ) 1)) 2a1S(w — z) c1
+ (5 28 + e [(R) + (SR,

) — (] o ) — (] o
aq C1l aq

+2(w — 2)R*S + =

w=2) [(cz—cl)t Ol(CQ—C])x]
dai(ay — a;) RS Rw — Sz 2a; R? 2a(w — z 2a1(w —z

_dai(ax —a)) (v+ )4+ 2R g, - 2( )RS)— 1( )stx
o ¢ —cCl o o —c o
2R*S%(w — 2a1R*S adyc —c1d drcr — €29
(w—72) @By — ayay) + 21 [a i1 —cdya | adier — xaz]

a(cy —cr) a(cy —cr) o o

2R%S(w — 7 dajar(w —z daycrb(w —z
—¥[aldz +aidecr — c1dya] + — 2t ) g 1625( )RS2

a(cr —cy) a(cx —cy) a(cy —cyp)

2
2ai1(a1 + a2)(w — z2) R3 2a1c1b(w — 2) R3 _ 2a1 (w —2) R4. (4.35)

a(cy —cy) a(cy —cp) a(cy —cy)

Combining (4.34) and (4.35), we obtain

X

[2R7 + R2wy + 2 =9 pag] 4 [ 2R7 4 B2y + 22— p2g)]
) — (] o ) —C1

Rw—S
—2(v+ u)[192(1e52 — R2S) + B3RS — B4R — Ay (c2 — ) R® —
e —cl

2 _ 2
(a1 —a2) RZS

2as(ay — decr—d 2eab(ar — 2%
_MRSZ _ ai(9yca xcl)Rz + c2b(az —ap) RS] + _r(azsz + b S)
o o @ o

dxca — €20 2a,8 2a;(w —
c1dxc2 —20xc1 2ap )2RP + Rwy + aj (w Z)RQS)

a(cy —cr) o c) — (]

-
—Z (@R = c2bR) + (
o

2aoR . 2 - 2¢2bS + 2a, §? 2 -
1 20R (055 1 52, - 22W D gy | 2ODTH2OST L 200 D) o
c) —C1 o ) —C
2¢obR — 2a, R? 2a2(w — z 2w —z
+ 2 2 (SZx_ 2( )RS)— ( ) RzSz[alaz—i-a%]
o c) —C1 Ol(Cz—Cl)
2R%S
—[(61 —¢2)z0xa1 + (c12 — caw)dxaz + (a By — aycob — axdo) (w — Z)]
a(cy —cy)
2a1R%S Cc) — C1)0x 2a,R%S
17[(8)(01 — 0xC2)z + (c2 10 Z] + 2 [woycr — z0xci]
a(cy —cp) a(cy —cp)
2RS?
————[(c2w — c12)dxaz + a2(dy + c2b)(w — 2) + a2 (zdcc1 — wokca) ]
a(cr —cy)
2RS
——————[(caw — ¢12)x (2b) + c2b(d1 + da)(w — 2) + c2b(20cc1 — WOrCD) |
a(cr —cy)
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_@du(@dycr — c19x0) = 2adecr — 10y 2A4R*w

3
o
a0y (dyc) — Cc10xa) — 2(x0xC1 — €10, ) 0y X R2
w.

o3

Together with (4.7) and the similar estimate for the other terms of I, we have

d -
TIs=C Y /((1 +ISDITWT + (L RN ) dx
k=2,6R
+C 3 [ (A+SHITWT+ A+ RYIFWY) da
i=1,3,5R
2
+/ (G1OIeW™ + GaIF W) dx ﬂ/(szjgvv* + R2IGWT ) dx.
2%

R R
(4.36)

Combining the estimates in (4.17), (4.19), (4.22), (4.29), (4.32), (4.33) and (4.36), and using
(4.8), we have

dl

d—t"g CZ /(1+|S|)J[W_dx+/(1+|R|)JZ+ Wtdx
teFl \R R

+C Y /(1+S2) J[W’dx—}—/(l—i—Rz) JFwtdx
eF! \R R

+/ (G1OITW™ + Ga W) dx - (% /52 I W—dx+/R2 JFWH dx

R R R

Here }',i, .7-',? c{0,1,2,---,6} are suitable sets of indices from the estimates (4.17), (4.19),
(4.22), (4.29), (4.32), (4.33) and (4.36), where a graphical summary of ]—',ﬁ’ is illustrated in Fig. 3.
For example, by (4.36), FL = {2,6} and F! = {1,3, 5}.

Since there is no cycle for the relation tree ,i’, we can choose a suitable small constant § > 0,
with the weighted norm defined by

lw, 7,2, )l r.5) = To+ 811 + 8+ 8713+ 6° 1y + 87 Is + 6 s,
such that the desired estimate (4.16) holds. This completes the proof of Lemma 4.1. O
5. Generic regularity of conservative solutions
Aim of this section is to study generic singularities to (1.4)—(1.5) and thus prove Theorem 1.2
by an application of the Thom’s Transversality theorem. Furthermore, for any two generic solu-

tions, we show that there exist a family of regular solutions connecting them.
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Fig. 3. k — .F,f’ C {0, 1, ---6} has no cycle! Choose «j in a certain order (kg >> k| > k3, k4 > k5 3> k2, kg) to prove
(4.16).

5.1. The semi-linear system on new coordinates
As a start, we briefly review the semi-linear system introduced in [15], which will be used in

both this and next sections. Please find detail calculations and derivations in [15].
Consider the equations for the forward and backward characteristics as follows

LxE(ssx, 1) = Ae sy x, ), uls; x5 (55 x, 1)),
x:t|S=[ =X,

where A+ are defined in (1.7). Then introduce a new coordinate transformation (x, ) — (X, Y)
as

x7(0;x,1) 0
X = / [14 R*(y,0)]dy, and Y := / [14 S%(y,0)]dy,
0 xt(0;x,1)
which implies that
ax, )X, +c1(x, )X, =0, oalx,u)Y;+cr(x,u)Y, =0. 6.1

Thus, for any smooth function f, we have

ax,u) fi +ca(x,u) fr = (@X; +c2Xy) fx =(c2 — c1)Xx fx,

5.2
a(x,u) fy +c1(x,u) fr = (@Y +c1Yy) fy =(c1 — c2)Yx fr. 62

For convenience to deal with possibly unbounded values of R and S, we introduce a new set
of dependent variables

R 1 1+ R?

£ = , hi=——, p:= ,
1+ R? 1+ R? X,

S 1 1+ 52
m=——, = = .
1+s2 8T 11 17 Ty,
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Making use of (2.2), (5.1) and the above definitions, one obtains a semi-linear hyperbolic system
with smooth coefficients for the variables ¢, m, h, g, p, q,u, x in (X, Y) coordinates, cf. [15].

qQCh—1)
by = ———[a1g +axh — (a1 + a2)(gh + m&) + cobhm — d, g¢],
2-cl (5.3)
p2g—1)
my =——— [—aig —ach + (a1 + a2)(gh + ml) + c1bgl — dryhm],
2—C1
2q¢
hy =— la1g + ach — (a1 + a2)(gh + m&) + cobhm — dy g¢],
C?zljnfl (5.4)
8x == [—ai1g — axh + (a1 + a2)(gh +ml) + c1bgl — dyhm],
2—C]
2pq C10xC2 — €205 ¢
py = lax(€ — m) + (a1 + az)(hm — gb) + cobml +digh + ————""—g],
C22_ c 82(C2 —c]
€10xCy — Cp0xC
ax = —2L (a1 (€ —m) + (@1 +a) (hm — g€) + c1bmt + dogh + LE2 20y,
c2—cy 2(ca —c1)
(5.5
224 qm
uy = s (Or Uy = )
C2C—2 Cl 2 — %11 (56)
xXx = ph, (or xy= qg).
) —C1 2 — (]
Setting f =1t in the (5.2), we obtain the equations for ¢,
h
tx = ap , ly= xas . 6.7
Cc) — (1 c) — (1

The system (5.3)—(5.7) must now be supplemented by non-characteristic boundary conditions,
corresponding to the initial data (1.5). Toward this goal, along the curve

v :={(X,Y); X+Y =0} CR?

parameterized by x ()_((x), Y(x)) = (x, —x), we assign the boundary data (u, 0,m,h, g, D,
q) by setting
_ 1 _ 1
T1+ R0 T 1482k 0) (5.8)
{=R(x,0h, m=S8x,0g p=1+R*(x,0, ¢=1+5*x,0),
with
R(x,0) = a(x, uo(x))u (x) + c2(x, uo(x) )ux,0(x),
S(x,0) = a(x, uo(x))ui (x) + e (x, uo(x))ux,0(x).

Obviously, the coordinate transformation F : (X, Y) — (x, ) maps the point (x, —x) € yp to the
point (x, 0), for every x € R.
For future reference, we state the following result of the above construction in [9,15].
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Lemma 5.1. Let (u,¢,m,h,g, p,q,x,t) be a smooth solution to the system (5.3)—(5.8) with
p,q > 0. Then the function u = u(x, t) whose graph is

{(X,Y), (X, V), u(X,Y)); (X,Y)eR?} (5.9)
provide the unique conservative solution to the variational wave equation (1.4)—(1.6).

As a preliminary, we examine the boundary data should satisfy some compatibility conditions.
Instead of (5.8), we can assign a more general boundary data for (5.3)—(5.7), along a line y,, =
{(X,Y); X+7Y =«},say

_ L(s,k — ) =L(s), h(s,k —s)=nh(s), p(s,k —s)=p(s),
His k=9 =uls), { ms. e —s) = (s). { g5,k — ) = Z(). { 45k — ) = G(5).
(5.10)
and

x(s,k —s)=x(s), t(s,k—5)=1(s). (5.11)

If both equations in (5.6); hold, then the boundary data should satisfy the compatibility condition

d
ﬁﬁ(s) = au(s, k—5)=(ux —uy)(s,k —s)
(5.12)

_ POE)  qs)ms)
C a-a  a-a

Moreover, according to (5.6), and (5.7), the following compatibility conditions is also be re-
quired

if(s) _ ix(s,K _s)= Ezﬁ(S)h(:V) —flé(S)g’(S)’ (5.13)
ds ds Ccr—C|
it_(s) = it(s, K—8)= p_(S)h(f) — ?_(S)g(s)ot(i(s), i(s)), (5.14)
ds ds ¢y — (1
here, we have denoted
cr:=ci(x(s),i(s)) and & :=co(X(s),u(s)). (5.15)

We take the following lemma as the starting point for our analysis.

Lemma 5.2. (i) Let (u, £, m,h, g, p,q)(X,Y) be smooth solutions of the system (5.3)—(5.6) with
the boundary conditions (5.10) along the line y = {(X,Y); X 4+ Y = «}. Assume that the com-
patibility condition (5.12) is satisfied. Then, for any (X, Y) € R2, it holds that

qm

(5.16)

uy = )
¢y —C1

if and only if
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pl
MX = 9
) —C]

(5.17)

(i) Let (u,€,m,h, g, p,q)(X,Y) be smooth solutions of the system (5.3)—(5.6). Then there
exists a solution (t,x)(X,Y) of (5.6),—(5.7) with the boundary data (5.11) if and only if the
compatibility conditions (5.13)—(5.14) are satisfied.

Proof. (i). By a direct calculation, we observe that

qm Pq
( )y = . {a1(2m€ —¢) — (a1 +a)(ml — gh) + ar(h — 2gh)
) — 1 (c2 —c1)
Oy (c2 —c1)
_ B2 TV e 4 cibgl + (do — Bxcz)mh}
c) — (1
8 —
=P Mgt - D+ ani - g - duetca = €Ly o ey g +comh)
(c2—c1) 20e(c2 —c1)
and
¢
(=)y = P {a@eh — ) + (@ + an) mt — gh) + ax(h — 2me)
¢ —ci (c2—c1)
du(c2 —c1)
— ————ml + crbmh + (d; — 8X61)g£}
¢ —
a —
_ Lz{alg(h S Dt aph(l— gy 22T DL gl —I—czmh)},
(c2 —c1) 20(ca —c1)

which leads to

qgm a4
()= (50 6.18)

Assume that (5.16) holds, it follows from (5.18) that

. ogm _ pl
“YX—(CZ_Cl)X—(CZ_Cl)Y'

This together with the boundary condition (5.10), compatibility condition (5.12) and the assump-
tion (5.16) gives that

Y
J4
ux( ) =uxe =0+ [ (L), s
Cc) —(C1
Kk—X
pl pl
=[ux —uyl(X.x = X) +uy(X,k — X) + (X,Y) - (X, k= X)
c) — (1 ) —C
pl
= (X,Y),
c) — (1

which is indeed the desired identity (5.17). Similar arguments yield the converse implication.
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[R|=infinity non-generic case

|S|=infinity

Fig. 4. The singular point in a solution u(#, x). (For interpretation of the colors in the figure(s), the reader is referred to
the web version of this article.)

(i1). We omit the proof here for brevity, since a similar approach of this result can be found in
[3]. O

5.2. Three types of generic singularities

We observe that, for smooth initial data, the solution of the semilinear system (5.3)—(5.7)
remains smooth on the X-Y plane. However, the solution u(x, t) of system (1.4)—(1.6) can have
singularities. This happens precisely at points where the Jacobian matrix D is not invertible. In
fact, the determinant of its Jacobian matrix is calculated as

det [(¥X X7 = apqgh
et =
Ix ty c) — (1

We recall that p, g remain uniformly positive and uniformly bounded on compact subsets of the
X-Y plane. To analyze the set of points (x, t) where u is singular, we thus need to study in more
details of the points where g =0 or 2 = 0. It is natural to distinguish three generic types of
singularities:

i. Points where h = 0 but £x # 0 and g # 0 (or else, where g = 0 but my # 0 and & # 0),
their images under the map F : (X, Y) (x (X,Y),t(X, Y)) yield a family of characteristic
curves in the x-t plane where solution u(x, ) is singular (Fig. 4, black curves, inner points
of singular curves).

ii. Points where h =0 and £x =0 but £xx # 0 (or else, g =0 and my = 0 but myy # 0), their
images in the x-f plane are point where singular curves start or end: (Fig. 4, red dots, initial
and terminal points of singular curves).

iii. Points where 7 =0 and g = 0, their images in the x-¢ plane are points where two singular
curves cross: (Fig. 4, blue dot, intersection of singular curves in two directions).

Correspondingly, we give the following definition.

Definition 5.1. We say that a solution u = u(x, t) of (1.4) has only generic singularities for
t € [0, T'] if it admits a representation of the form (5.9), where

(i) the functions (u,¢,m,h,g, p,q,x,t)(X,Y) are C*,
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(ii) the following generic conditions

h=0,lx=0= 4y #0,¢xx #0,
g=0,my=0:>mx ;ﬁo,myy;ﬁo, (5.19)
h=0,g=0={€x #0,my #0,

hold for 1 (X, Y) € [0, T].
5.3. Families of perturbed solutions

Now we construct families of smooth solutions to the semi-linear system of (5.3)—(5.6), de-
pending on parameters. Let a point (X¢, Yp) be given, and consider the line

Ve ={(X,Y); X+Y=«}, « = Xo+ Y.
The following lemma is crucial in proving the generic regularity result.

Lemma 5.3. Assume the generic condition (1.8) holds. Let a point (Xg, Yy) € R2 be given, and
(u,€,m,h, g, p,q,x) beasmooth solution of the semi-linear system (5.3)—(5.6).

(1) If (h,£x,lxx) (X0, Yo) = (0,0, 0), then there exists a 3-parameter family of smooth solu-
tions (u?, €%, m” , h?, g%, p”,q”, x?) of (5.3)—(5.6), depending smoothly on © € R3, such that
the following holds.

(i) When v =0 € R3, one recovers the original solution, namely (uo, 29 mO ho, go, pO, qo,
xo) =(u,l,mh,g, p,q,Xx).

(ii) At a point (Xo, Yp), when ¥ = 0 one has

rank Dy (h”, €%, %) = 3. (5.20)

2)If (h, g,€x)(Xo, Yo) = (0,0, 0), then there exists a 3-parameter family of smooth solutions
@?, 0%, m?, h?, g‘y, pﬂ, qﬁ, xﬂ) satisfying (1)—(ii) as above, with (5.20) replaced by

rank Dy (h”, g”, €%) = 3. (5.21)

3) If(h, Lx, 0yr_(x, u)) (Xo, Yo0) = (0, 0, 0), then there exists a 3-parameter family of smooth

solutions (uﬁ, 0% m? hY, gﬁ, pﬁ, q'j, xﬁ) satisfying (1)—(ii) as above, with (5.20) replaced by

rank Dy (h” , €%, 3,h—(x",u”)) = 3. (5.22)

Proof. Let (u,l,m,h, g, p,q,x)beasmooth solution to the semi-linear system (5.3)—(5.6), and
@@, 2, m, h,g,p,q,x)(s)bethe values along aline yK as 1n (5.10). The main goal of this lemma is
to consider families solution (a”, ¢, m”,h?”, g%, p”, 3", x”) of (5.3)=(5.6) with perturbations
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on the data (5.10) along the curve y,, so that the matrices in (5.20)—(5.22), computed at ¢+ =0,
have full rank at the given point (X¢, Yp). These perturbations will have the form

3 3
€ (s)=Ls)+ Y _0;L;(s), 27 () =2+ )_9;Gi(s),
j=1 j=1
m’(s)=m(s)+ Y 0;Mj(s), 1 p’()=pls)+ Y 3 P;(s),
j=1 j=1
h” () =h(s)+ Y 0 H;s), 3" () =q(s)+ Y _9;Q,(),
j=1 j=1

for some suitable functions L;, M;, H;, G, P;, Q; € CZ°(R). Moreover, at point s = X¢, we
set

3 3
i’ (Xo) =i(Xo) + Y _9,;U;(Xo), £ (Xo)=%(Xo)+ Y 9;X;(Xo).
Jj=1 j=I1

Notice that, with the above definitions and the compatibility conditions (5.12) and (5.13), we can
obtain the values 2% (s) and X7 (s) for all s € R. In addition, we can derive a unique solution of
the semi-linear system (5.3)—(5.6) for each ¥ € R3.

To prove our results, we proceed with the values of £x and £xx at the point (Xg, Yp). To this
end, we first observe that

7 (s) = —z(s k—58)=(2x —zy)(s, Kk —5),
at any point (s,k — s) € Y, for z=1¥€,m, h, g, q. Here and in the rest of this manuscript, unless
specified, we will use a prime to denote the derivative with respect to the parameter s along the

line y,. Hence, it follows from (5.3)—(5.5) that,

(2h P28 —

Cx(Xo,Yo) =€ + f1, my (Xo, Yo) = —m' + ———— fz, (5.23)
C2 6‘2 - C
7/ gl _ 2pm
hx(Xo,Yo) =h — — a 1, gr(Xo, Yo)=—-g — & fz, (5.24)
_ 2pq
qy (X0, Y0) = —q' + = e f3, (5.25)
Ccy — (1

where the right hand sides of (5.23)—(5.25) are evaluated at s = X( and we have denoted

fi == a1 +ach — (a1 + a2)(gh + ml) + ébhim — d1 g1,

= —a1g — azh + (@ + a2) (gh + mé) + ¢1bgl — dahim,
s = a1 — i) + (@ + @) (i — §0) + E1bind + dogh + 2= 2% p
J & 2(c c1)
2 — (]
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with a; = q; ()E(s), ﬁ(s)), b= b(i(s), it(s)), d; = d; ()E(s), zZ(s)) and ¢; denoted in (5.15), for
i=1,2.
On the other hand, a straightforward computation now shows

d? - d
Wﬁ(s) = a[ﬁx(s, k—58)—Ly(s,k —s)|=Uxx +Lyy —2Lxy)(s,k —s). (5.26)

By (5.3)—(5.6) and (5.24)—(5.25), further manipulation leads to the following estimates for £yy
and lyyx:

GgReh—r. S
try(Xo, Yo) = = =3[0, (62 = &)ty + 0@ — Ey |
(c2—c1)
(2h—1) - 2411 - G(2h — 1)
flq 4o Qfl_ 4 oy /i
Cc) —C1 ) —C1 cy—C1
2h —1 0yC1 — dyCo _ _  0xC1 — 0xCo _ _ _
‘I( 3 1 u 2q + xC1 xC2 1qm]f1 (5.27)
S (G2—¢1) cy —Cy cy—Cy
(2h—1)f1 L, 2pg 4q2L f}
—— [+ ——=Hl-—= _12
Cy —C1 C2 — (1 (c2—c1)
2h
u81/f1 =:F,
Cr—C1
and
gh—r. S
brx(Xo, Yo) == =25 [3u(6’2—CI)MX+3x(C2—Cl)XX:|f1
(2h—1) 24fi - GQh—
/i gx + = Qfl_ hx + 1 3xf1
Ccy— (1 Ccy— (1 Ccy— (1
Q(Zh - 1; [aucl — 0yC _E 0yC1 — ?xczézﬁh]f (5.28)
S (E2—a1) C2—Cy C2—C1
2(2h—1) 113 29 f1 -
- {Jq{f . afi g 2qt _2at .
(ca—c1) cy— C1 ¢y —C1
7(2h
qiaxfl L P,
¢y —C1

with 8, f| = 8, [a@18 +ah — (@ +a)(gh +mt) +crbhin —dy g€], for r = X or Y. The equations
(5.26)—(5.28) in turn yield

lxx =0 — F| +2F,. (5.29)
Now, we are ready to construct families of perturbed solutions satisfying (5.20)—(5.22).
(1). We choose suitable perturbations (iz”, €7, m?, h%, g%, p”, 3", x7), such that, at the point

s = X¢ and ¢ =0, it holds that
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=N NeNeleololololhchohol=Ne Nl

[=NeoNeolololoNoRoBoNeoho el ")

~

S

Hence, by using (5.23) and (5.29), we obtain the desired Jacobian matrix at the point (Xo, Yp),

h 1 00
Dﬂ Zx = * 1 0
Exx * % 1

This in turn yields (5.20). _ _
(2). We choose suitable perturbations (ﬁ”, 00 m? kY, g”, ﬁ”, c}ﬂ, )2’9), such that, at the point
s = X¢ and ¢ = 0, the Jacobian matrix of first order derivatives with respect to ¥ is given by

Dy

=leloBoBoNel A=
—_— O O OO OO oo

R RIRIT S oS00 S
Il
eoNeoBoBeoNeoNeoNeN "

This together with (5.23) implies that at the point (X, Yo),
h 1 00

Ds|l ¢ 1=10 1 0

Lx * x 1

We thus conclude this matrix has full rank, that is, (5.21) holds.
). If (h, 0,1, £x) (X0, Yo) = (0, 0, 0) is satisfied, the generic condition (1.8) gives that

Auur—(Xo, Y0) #0 or 9yxr_(Xo, Yo) #0. (5.30)

By choosing suitable perturbations (ﬁﬂ, 0, m?, hY, gr”, [30, 6719, )‘cﬂ), such that, at the point s =
Xo and ¢ = 0, it holds that
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or Dﬁ

[sNeololoBoNoleoBol S

—_— O OO O oo OO

R =113 Sl 00 S S
I

SO DO O —=O

=N NeloleNaololoNe]

—_— O OO OO o OO

)
<

=R S 00 S
I

OO DD O OO —=O

Here the first matrix corresponds to the assumption that 9,,A_ (X0, Yo) # 0, while the second
one corresponds to d,xA_(Xp, Yo) # 0. In terms of this construction and (5.23), one has

h 1 0 0 h 1 0 0
Dy | oyr— | =] * Ouri—- O or Dy | A | =1 % OuxAi— O],
Lx * * 1 Lx * * 1

at the point (Xo, Yp), which, in combination with (5.30) achieves (5.22). Here the first matrix
corresponds to the assumption that d,,A_(Xo, Yo) # 0, while the second one corresponds to
Ouxr—(Xo, Yo) # 0. This completes the proof of Lemma 5.3. O

Once we proved Lemma 5.3, Theorem 1.2 can be proved by using a very similar method as
in [3]. We leave this proof and the existence of generic regular path in the Appendix to make this
paper self-contained.

6. Metric for piecewise smooth solutions

In this section, we extend the Lipschitz metric for smooth solutions in Section 4 to piecewise
smooth solutions with only generic singularities.

6.1. Tangent vectors in transformed coordinates
To begin with, we express the norm of tangent vectors (4.11) in transformed coordinates X-Y .
Let u(x, t) be a reference solution of (1.4) and u®(x, t) be a family of perturbed solutions.
In the (X, Y) plane, denote (u, £,m, h, g, p,q,x,t) and (u®, €5, m®, h®, g, p?, q°, x%, t%) be the

corresponding smooth solutions of (5.3)—(5.7), and moreover assume the perturbed solutions take
the form

u®, 05, m®, h®, g% p®,q°% x5, 1) =(u, & ,m,h,g,p,q,x,1t)
+e(U,L,M,H,G,P,Q,X,T)+o(e).

Here we denote the curve in (X, Y) plane by
Fe={(X, D [1(X,Y) =1} ={(X,Y(r, X)); X e R} ={(X(7, V), Y); Y €R} (6.1)
and the perturbed curve as
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L ={X. DX Y) =1} ={(X,Y*(r, X)); X e R} = {(X*(z, V), ¥); Y e R}.

Notice that the coefficients of system (5.3)—(5.7) are smooth, it thus follows that the first order
perturbations satisfy a linearized system and are well defined for (X, Y) € R2.

Now, we are ready to derive an expression for Ip—Ig of (4.11) in terms of (U, L, M, H, G, P,
Q, X, T). First, we observe that

te(X, Yé(z, X)) = tg(Xg(r, Y), Y) =T.
By the implicit function theorem, at € = 0, it holds that

axe

_ NG _
= 7279 and =724 62)
de le=0 ahp ae le=0 ogq
(1). The change in x is
(X, Y1, X)) —x(X,Y(r, X
w = lim ( ( )) ( ( ))
e—0 & 6.3)
=X(X,Y(r, X)) +x 7 =(x - C—‘T)(X Y (1, X))
- ’ ’ Y 88 g:O - o ’ ’ .
Similarly, we obtain
x8(X8(1,Y),Y)—x(X(,Y),Y
z=lim ( 1) ) ( 1) )
e—0 & (6.4)
=X(X(x,Y),Y)+x ax —(X—C—ZT)(X('L’ Y),Y)
B T X 06 le=o o I
(2). For the change in u, we first observe from (5.6) and (6.2) that,
X, Y41, X)) —u(X,Y(r,X
v+uxw=1imu ( ( )) u( ( ))
e—0 &
aYe Tm
=U(X,Y(, X . =(U—-—)(X,Y(r, X)).
(XY@ X)) +uy S| =(U =DK@ X))
This together with (2.2) gives
Rw—S§ —
v 2 b uw At —— S S = U(X, Y (1, X)) 6.5)
) —C1 2 —C

(3). In addition, we derive an expression for the terms Jf in (4.11). Using (5.3), (5.4) and
(6.2), a direct computation gives rise to
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C(X, Y0, X)) — £(X, Y (z, X))

&
Ri=——(X,Y%, X =1li
rwi d!;‘hs( Y, )) e=0 sg% £
1 aYe 14 oYe®
=—(L+48ty — — —(H+hy -
PR vl M e G el WY
L (H T
=— — —5 — ——la1g + axh — (a1 + a2)(gh + ml) + c2bhm — d g4],
h h ahg
and
d &€
Sy =——(X°(1,Y),Y
s+z X d((,‘ ( (T ) ) e
1(M+ 0X® ) m (G+ aXe )
= — m . - 5 °
X de le=0 2 8x de le=0
M mG T
=———F — ——[-a1ig —axh + (a1 + a2)(gh + ml) + c1bgl — dyhm].
g§ & ahg
Thus, we obtain from (4.10) that
. L (tH T
r:z—ﬁ—a—h(al—alh—dla, (6.6)
and
. M mG T
§=——— — —(—axtayg —dym). 6.7
8 8 ag

(4). To continue, we first use the same procedure to derive the change in the base measure
with density 1 + R? as

—p-2" %y (6.8)
£=0 agq

d aYe
L (X, Y (r. X ‘ —p :
dsp ( (@ )) =0 +py de

Moreover, the change in base measure with density R? can be calculated as

i((pg(l — B9 (X, Y (x, X)))‘

de e=0
NG NG
(e ] Ja-mestew 5 ) e
= (P— 2T p) (0 = h) — p(H — Z=LThy).
agq agq

Finally, we can achieve the change in base measure with density 1 by subtracting (6.8) from (6.9)

= %pr) +p(H - 2="7ny). (6.10)

h(P
agq

Notice that
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(1+ R¥dx = pdX, (1+ 8%)dx=—qdY.

Hence, according to (6.3)—-(6.10), the weighted norm (4.11) can be rewritten as a line integral
over the line I'; defined in (6.1). More specifically, we have

6
10072 sy = Yok [ (196DVdX + W Fay),

k=0
where
C
Jo= (X =ZT)ph,
[0
Cl
J1=(X—;T)p,
Jo=Up,
(H Tp
13=LP—7P——(al—a1h—d1€),
2 0yt — 0
]4:hP~|—pH~|— ; (a1Z+CI x o )cClh)7
LH pTe €10x0 — @0xC
Js=4P + — —(a i+ —h),
5 +hp+°‘h(am+32“ )
C Ccy) — C C
Jo=(—hP—pH— IE27 2NNy _py,
a(c —cy)
and

Hy= (X — QT)Q&
—(x_
Hl—(.)f aT)q,

H,=Ug,

mG T
H3 =Mgq — ?q - Tq(—az +arg — dym),

20,0 — A0y C)

29T
Hy=g0Q +qG + =1~ (- aym + g),

o
mG 2gTm 20, — a0yC
HS:mQ_,__q_‘_q_(_azm_i_Mg)’
g otg8 5 200
€10xCy — €20xCq
Ho=(1-¢0—-q9G - ————Tq(1—-g).

a(cr —c1)

It is easy to verify that each integrands Ji, Hj are smooth, for k =0, 1, 2, 4, 6. On the other hand,
for the term % p in J3 and J5, we first observe that,

(E8)2 + (h8)2 — hS.
Differentiating this equation with respect to &, at ¢ = 0, it holds that

2¢0L+2hH =H.
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With this help, we achieve

(H 20°L +2¢hH  2(h—h*>)L+2¢hH
WP I pP= 3

p=2p[(1 —h)L +{H],

here we have used the fact that ¢2 + h% = h. Therefore, J3 and Js5 are also smooth. In a similar
way, we can get the smoothness of H3 and Hs.

6.2. Length of piecewise regular paths

In this part, we define the length of a piecewise regular path ¥ : 0 — (ue ®), u,e(t)), and
examine the appearance of the generic singularity will not impact the Lipschitz property of this
metric.

Definition 6.1. The length ||y’| of the piecewise regular path y’ : 0 (ue(t), uf(t)) is defined
as

16
||Vt||=i;1tf/{Zick/(IJ,?|W‘a’X+|H,fIW+dY)}d0, (6.11)
0 k=0 r

where the infimum is taken over all piecewise smooth relabellings of the X-Y coordinates and
I :={(X, V) (X, Y) =1}

Remark 6.1. In general, there are many distinct solutions to the system (5.3)—(5.7) which yields
the same solution u = u(x, t) of (1.4). In fact, suppose ¢, ¥ : R — R be two C? bijections, with
o,y >0. Consider a particular solution (u t,m,h, g p,q,x, t) to the system (5.3)—(5.7), and

by

X=0X), Y=vy{d), (6.12)
(ﬁérﬁﬁgxt)(XY) (u,,m, h, g, x,0(X,Y),
X V)=pX.¥) - ¢'(X),
GX,Y)=q(X,Y)-y/(Y).

(5.3)—(5.7), and the set

(FX.V)./(X.7).i4(X.Y)): (X.Y)eR?) (6.13)
coincides with the set (5.9). We thus derive that the set (6.13) is another graph of the same
solution u(x, t) of (1.4). One can regard the variable transformation (6.12) simply as a relabeling
of forward and backward characteristics, in the solution u(x, ). We refer the readers to [13] for

more details on the relabeling symmetries, in connection with the Camassa-Holm equation.
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Our main result in this section is stated as follows, which extends the Lipschitz property in
Lemma 4.1 to piecewise smooth solutions with generic singularities.

Theorem 6.1. Let T > 0 be given, consider a path of solutions 6 — (u9 1), u? (t)) of (1.4), which
is piecewise regular for t € [0, T]. Moreover, the total energy is less than some constants E > 0.
Then there exists constants ko, k1, - - , ke in (6.11) and C > 0, such that the length satisfies

ly' I < Cliy°Il, (6.14)
where the constant C depends only on T and E.

Proof. Let the piecewise regular path 6 +— (u9 (), u? (t)) be given. From Definition A.1, for
every 6 € [0, 1]1\{61, - -- , Oy}, the solution u? () has generic regularities for ¢ € [0, T]. More
specifically, u? is smooth in the X-Y coordinates and piecewise smooth in the x-f coordinates,
hence the tangent vector is well-defined for all 6 € [0, 1], 7 € [0, T].

To prove (6.14), it suffices to show that

1%, 7%, s%) Ol o re.s0yy < CLl (7, 77, 57) Ol o o 5090) (6.15)

for 6 € [0, I1\{61, --- , 0N}, here C; > is a constant depending only on T and the upper bound
of the total energy. Indeed, according to Definition 6.1, fix € > 0 and choose a relabeling of the
variables X, Y, such that, at time ¢ = 0, it holds that

1

/ Zxk/ |J,f|W’dX+|H,f|W+dY)}d9§||)/0||+e.
0 k=0

Integrating (6.15) over 9 € [0, 1], we have

ly' Il < CUY°l + o),

which yields the desired estimate (6.14) immediately, since € > 0 is arbitrary.

To complete the proof we need to achieve the estimate (6.15). Two cases can occur.

CASE 1: If u? is smooth in the x-# coordinates, (6.15) follows directly from (4.15).

CASE 2: If u? is piecewise smooth with generic singularities. In this case, we claim that the
appearance of the generic singularities will not affect the estimate (4.15). Toward this goal, we
first observe that there exist at most finitely many points W; = (X;,Y;),j =1,---, N such
that the generic conditions (5.19) hold when ¢ € [0, T']. Moreover, for each time t; =1(X;, Y;)
corresponding to the point W, the map

1
tr—>/{Xﬁzxk/(|J,f|W‘dX+|H,f|W+dY)}d9
0 k=0

is continuous. Hence the metric will not be impacted at (at most finitely) time # = ¢; when there
exist singularities such that the generic conditions (5.19) hold.
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On the other hand, at time ¢ # ¢}, to obtain the estimate (4.15) it suffices to show that the time
derivative

6
%Zxkf (|J,§|W—dx+ |H,f|W+dY)

k=0 ro

will not be affected by the presence of singularity. Indeed, assume that the solution has the
generic singularities along a backward characteristic. For a fixed time t and denote I'; :=
{(X,Y); (X, Y) = t}. Let the point (X,,Y,) be the intersection of the curve I';_, =
{(X V), X, ¥) =1t — ¢} and the singular curve {(X,Y); W(X,Y) = 0}, and the point

X, Y]) be the intersection of the curve 't = {(X,Y); X, V) =1+ ¢} and the singular
curve {(X,Y): h?(X,Y)=0}. In addition, define the curves

AF =T N{(X,Y); X € [XL, Xe}, xS =T e DX, Y)Y €[Ye, Y11,
A7 =Tooe N{(X, V): X € [X}, X1, xe =Teee N{(X,Y); Y € [Ye, Y1),

Then, it follows that

li J, dX =0,
EI—IRJS / / Z|k|w

AT A7 T
li H!Wtdy =0.
8%8 / / Z| k|

The first limit holds since each integrand is continuous and | X, — X.| = O(e). The second limit
holds since each integrand is continuous and |Y, — Y| = O(¢). Consequently, (4.15) follows
even in the presence of singular curve where 4 = 0. Similarity, we can obtain the same result in
the presence of singular curve where g = 0. This completes the proof of Theorem 6.1. O

7. Metric for general weak solutions

Finally, we prove Theorem 1.1, by extending the Lipschitz metric to general weak solutions.
Then we compare our metric with some other distances.

7.1. Construction of geodesic distance

In this part, we construct a geodesic distance d(-, -) on the space H '(R) x L*(R) and prove
the Lipschitz property. For the sake of convenience, fix any constant E > 0, we denote a set

Qp:={(u,u;) € H'R) x L*(R); Eu, uy) = /[a u? + y*u?ldx < E).
R
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Recall the generic regularity Theorem 1.2, that is, there exists an open dense set of initial data
McC (C3 ®RYNH! (R)) X (CZ(R) N LZ(R)), such that, for (ug, u1) € M, the conservative solu-
tion of (1.4) has only generic singularities. For future reference, we denote a set

M*>:=CFNM,
on which we define a geodesic distance by optimizing over all piecewise regular paths connecting
two solutions of (1.4). Then by the semilinear system (5.3)—(5.7) and Theorem 6.1, we can extend
this distance from space M to a larger space.
Definition 7.1. For solutions with initial data in M N Qf, we define the geodesic distance

d((u, uy), (4, 12,)) as the infimum among the weighted lengths of all piecewise regular paths
0+ (u?,u?), which connect (u, u,) with (i, ii,), that is, for any time ¢,

d((u,up), (@, ;) == inf{||y"|| :y" is a piecewise regular path, y'(0) = (u, u;),
Y () =@, i), Ew’, ul) <E, forall [0, 1]}.

The definition d(-, -) is indeed a distance because after a suitable re-parameterization, the
concatenation of two piecewise regular paths is still a piecewise regular path. Now, we can define
the metric for the general weak solutions.

Definition 7.2. Let (1o, u1) and (dg, @11) in H'(R) x L*(R) be two initial data as required in

the existence and uniqueness Theorem 2.2. Denote u and i to be the corresponding global weak
solutions, then for any time ¢, we define,

d((u,up), (@, i) == nlingod((u", ul), (@", i),

for any two sequences of solutions (u”, u') and (&", &}') with the corresponding initial data in
M N QEg, moreover

| (ug — uo, dg — @o)llgr — 0, and ||} —uy, éf — 1)l 2 — 0.
We claim that the definition of this metric is well-defined. Indeed, the limit in the definition
is independent on the selection of sequences because the solution with initial data in M N Qg

are Lipschitz continuous.
On the other hand, when

llug — uollgr — 0, lluf —uill 2 =0,

by the semi-linear equations (5.3)—(5.7), we can get the corresponding solutions satisfy, for any
t>0,

lu" —ullgr — 0, uf —usllp2 — 0.
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Thus the Lipschitz property in Theorem 6.1 can be extended to the general solutions, this in turn
yields the main theorem: Theorem 1.1.

7.2. Comparison with other metrics

Finally, by some calculations, we study the relations among our distance d(-, -) and other
types of metrics.

Proposition 7.1 (Comparison with the Sobolev metric). For any two finite energy initial data

(ug, u1) and (o, u1) € M, there exists some constant C depends only on the initial energy,
such that,

d((uo, uy), (fo, 1)) < C(IIMo —doll g1 + lluo — dollyr1 + lur — drllpr + llug — ﬁ1I|L2)~

Proof. To find an upper bound of this optimal transport metric, we only have to consider one
path (ug, u(f) connecting (ug, u1) and (&g, it1), satisfying the following conditions

R=6R+(1-60)R, P =68+ (1-6)8S.
In fact, it is easy to use above equations to recover a unique path (u?, u‘?); see (7.3). It is easy to

check that the energy f(]ée)2 + (3‘9)2 dx is bounded by the energies of (uq, u1) and (g, it1).
Then we choose w = z = 0, so the norm becomes

17, w720 5% oo 50 =K2/ ‘ve‘[(1+(R9)2) WY+ (1+ (892 WH]dx
R

s / [F°1 VY + 157 W) dx
R

+;c6fH2R9r9‘(W*)9 + ‘259s9((w+)9]dx.

R
(7.1)
Now we come to estimate terms in the above equation. It is easy to see that
d A d A
=—R'=R-R, s'=—§0=5_28. (7.2)
do do
Finally, we estimate v?. First, by (2.1),
0 0
0 RV - S (73)
e .

T (- uf)

Since the right hand side is Lipschitz on u#? and u? has compact support, one can easily prove

the existence and uniqueness of u? (x). So v? = dd—gue satisfies
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O _ g RO _ 0
v = —? 5
(c2 —c1)(x, u?) (c2 —c1)*(x, u?)

(Buca — duer) (x, u”),
then, using (7.2), it is easy to see that

W1 <K (IS =Sl + IR =Rl (7.4)
for some constant K. Using (7.1) and (7.2)—(7.4), it is easy to prove this Proposition. O

Using the Lipschitz continuous dependence under Finsler norm, i.e. Theorem 1.1, this propo-
sition tells that

(@ )0, () (0) = € (o = ol 1 + o = dtollys + ey = il o + s = il 2)

for any ¢ > 0. The path used in the proof of Proposition 7.1 is totally different from the one
used before in [4], because in the general case we lose the special structure that variational wave
equation holds. The following proposition can be proved in a similar way as in [4], we omit it
here for brevity.

Proposition 7.2. For any solutions u(t), ii(t) of system (1.4) with initial data ug, io € H'(R) N
L'(R) and uy, iy € L*(R), there exists some constant C depends only on the upper bound for
the total energy, such that,

e (Comparison with L! metric)

=il = Cd((wun @), @ i) ®).

e (Comparison with the Kantorovich-Rubinstein metric)

[ rau- [ raa

where , [L are the measures with densities o*(x, Lt)u,2 +92(x, u)u% and az()?,ﬁ)ﬁtz +
y2(R, 2)ia% with respect to the Lebesgue measure. The metric (7.5) is usually called a
Kantorovich-Rubinstein distance, which is equivalent to a Wasserstein distance by a duality
theorem [16].

sup
17l <1

= Cd(wun®), @, i) ®), (7.5)
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Appendix A

Now, we give the proof of Theorem 1.2 and the existence of generic regular path to make this
paper self-contained. The proof in the Appendix is very similar to the proof in [3].

A.1. Proof of Theorem 1.2

To recover the singularities of the solution u = u(x,t) of (1.4) in the original (x, ¢) plane,
we will use Lemma 5.3 together with transversality argument (cf. [3,12]) to study the smooth
solutions to the semi-linear (5.3)—(5.7), and hence determine the generic structure of the level
sets {(X,Y); h(X,Y)=0}and {(X,Y); g(X,Y)=0}. One can prove the following lemma in a

very similar method as in [3], we omit it here for brevity.

Lemma A.1. Assume the generic condition (1.8) holds. Consider a compact domain of the form
Q:={(X,Y); [X|=M, [YI=M},

and denote S be the family of all C? solutions (u,€,m,h, g, p,q,x) to the semi-linear system

(5.3)=(5.6), with p,q > 0 for all (X,Y) € R%. Moreover, denote S' C S be the subfamily of

all solutions (u,€,m,h, g, p,q,x), such that for (X,Y) € Q, none of the following values is
attained:

{ (h,€x, txx)=1(0,0,0), { (h,g,tx)=1(0,0,0), { (h,9,A—, £x) =(0,0,0), (A1)

(g, my,myy) =(0,0,0), (h,g,my)=1(0,0,0), (& dury,my) =(0,0,0).
Then S’ is a relatively open and dense subset of S, in the topology induced by C*(2).
Now we introduce a new space
N o= (C®)NH'®) x (CR)NLA®)),
equipped with the norm

(o, u)lln = lluolies + luoll g1 + llutlicz + llurll 2.

Applying a standard comparison argument, we deduce that, if the initial data (g, u1) € N,
then the corresponding solution remains smooth for all |x| sufficiently large. The proof of this
lemma is similar to [3], and we omit it here for brevity.

Lemma A.2. Assume (ug,u;) € N and let T > 0 be given. Then there exists r > 0 sufficiently
large so that the solution u = u(x,t) of (1.4)~(1.5) remains C? on the domain {(x,1); te
[0, 7], x| =r}.

With the help of Lemma A.1, we can now prove the generic regularity of conservative solu-
tions to (1.4)—(1.6) of the Theorem 1.2.
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Proof of Theorem 1.2. Let the initial data (iig, i#1) € NV be given and set the open ball

Bs = {(uo, u1) € N; ||(uo, ur) — (io, it1) || v < 8}

To prove our r’n\ain theorem, it suffices to prove that, for any (i, it /1.)\ € N, there exists an open
dense subset M C Bg, such that, for every initial data (ug, #1) € M, the conservative solution
u=u(x,t)of (1.4)-(1.6) is twice continuously differentiable in the complement of finitely many
characteristic curves, within the domain R x [0, T']. We prove this result by two steps.

(1). (Construction of an open dense set M) Since (iig, ii1) € N, in view of Lemma A.2, we
can choose r > 0 large enough so that the corresponding functions R,Sin(2.1) being uniformly
bounded on the domain of the form {(x,?);¢ € [0, T], |x| > r}. In particular, we can choose
6 > 0, such that, for initial data (ug, u1) € Bs, the corresponding solution u# = u(x, t) of (1.4)
being twice continuously differentiable on the outer domain {(x,¢); ¢ € [0, T], |x| > o}, for
some o > 0 sufficiently large. This means the singularities of u(x, t) in the set R x [0, T'] only
appear on the compact set

U = [-0,0]lx[0,T]

Denote F be the map of (X,Y)— F(X,Y) := (x(X,Y), (X, Y)). Then, we can easily obtain
the inclusion U/ C F(£2) by choosing M large enough and by possibly shrinking the radius &,
where €2 is a domain defined in Lemma A.1.

Now, we defined the subset Mc B; as follows: (uqg,u1) € M if the following items are
satisfied

(D). (uo, u1) € Bs;

(D). for any (X, Y) such that (x (X, Y), (X, Y)) € U, the values (A.1) are never attained, here
(u,€,m,h, g, p,q) is the corresponding solution of (5.3)—(5.6) with boundary data (5.8).

We claim the set M is open and dense in Bj, we omit the detailed proof here for brevity, since
a similar procedure of this result can be found in [3].

(2). (u is piecewise smooth) Now, it remains to verify that for every initial data (ug, u1) € M. ,
the corresponding solution u(x, r) of (1.4) is piecewise C> on the domain [0, T] x R. Toward
this goal, we recall that u(x, t) is C? on the outer domain {(x,1); t €[0,T], |x| > o}, so in the
following we just need to consider the singularities of solution u(x, ) on the inner domain /.
Recall the inclusion U C F(£2), we know that, for every point (Xg, Yp) € €2, there are two cases:

CASE 1. If h(Xg, Yp) # 0 and g(Xo, Yo) # 0, we can obtain the determinant of the Jacobian
matrix

h
det XX Xy ) _ apgng >0,
Ix ty cy) — (1

by (5.6), and (5.7). This implies that the map (X, Y) + (x, t) is locally invertible in a neighbor-
hood of (Xg, Yp). The solution u(x, t) is C?’ina neighborhood of (x(Xo, Yo), t (X0, Y0)).

CASE 2. If h(Xy, Yp) = 0, we can obtain £ = 0, immediately. In this case, we claim that either
Lx # 0 or Ly # 0. In fact, by the equation (5.3) and the definition of a; in (2.2), at the point
(Xo, Yo), we have

q aqg
Ly (Xo, Yo) = — alg = OyA—.
v (Xo, Yo) o 8T 5 e
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This together with the construction of M that the values (h,g,2x)=1(0,0,0) and (h, 0,A_,Lx)
= (0, 0, 0) are never attained in €2, it is easy to see that £x # 0 or £y # 0.
By continuity, we can choose 1 > 0, so that in the open neighborhood

= {(X,Y); IX|<M+n, Y| <M+n},

the values listed in (A.1) are never attained. Applying the implicit function theorem, we derive
that the sets

={(X,Y)eQ; h(X,Y)=0}, x%:={(X,Y)eQ; g(X,Y)=0}

are 1-dimensional embedded manifold of class C2. In particular, the set xh N © has finite
connected components Indeed, assume on the contrary that there exists a sequence of points
Py, Py, --- € x" N Q belonging to distinct components Then we can choose a subsequence, de-
note still by P;, such that P; — P for some P € x" N Q. Since h(P) =0, then (£x, £y)(P) #
(0,0), which together with the implicit function theorem nnphes that there is a neighborhood I
of P such that x/ NI is a connected C? curve. Thus, P; € x" NT for all i large enough, providing
a contradiction on the assumption that P; belongs to distinct components.

To complete the proof, we need to study more details on the image of the singular sets x”
and x4, since the set for the singular points (¢, x) of u coincides with the image of the two sets
x", x& under the C> map (X, Y) —~ F(X,Y) = (x(X,Y),1(X,Y)).

By the previous argument, there are only finite many points P; = (X;,Y;),i =1,--- ,m, in-
side set ', where & =0, £ =0, and £x = 0. Moreover, by (A.1), at a point (Xo, Yo) € Xh N x8,
we have £y #0,fy =0,mx =0, my # 0. Thus, the two curves 2 =0 and g = 0 intersect per-
pendicularly. Therefore, there are only finitely many such intersection points Q , = (X', Y ]’), J=
1,---,n, inside the compact set 2.

Moreover, the set Xh\{Pl, <o, Py, Q1,--+, On} has finitely many connected components
which intersect 2. Consider any one of these components, which is a connected curve, say y;,
such that A =0, =0 and £x # O for any (X, Y) € y;. Thus, for a suitable function ¢;, this
curve can be expressed as

vi={X,Y): X=9;),a; <Y <bj}.
We claim that the image A(y;) is a C? curve in the x-¢ plane. Indeed, on the open interval
(aj,bj), the differential of the map Y (x(goj(Y), Y), t(p;(Y), Y)) does not vanish. This is

true, because by (5.7), we have

agg
=]

—Yf(fpj(Y),Y)):tx¢}+tyzo.¢}+ > 0.

since g, 2 — ¢1,¢ > 0. As a consequence, the singular set F(x") is the union of the finitely
points p; = F(P),i =1,---,m, q;, = F(Q,), ] =1,---,n, together with finitely many c>-
curve F(y;). Obviously, the same representation is valid for the image J(x#). This completes
the proof of Theorem 1.2. O

Finally, we prove the existence of regular enough path of generic solutions between any two
generic solutions, in order to define the tangent vectors in the norm (4.9).
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Definition A.1. We say that a path of initial data y°: 6 — (uf),u9), 6 €[0, 1] is a piecewise
regular path if the following conditions hold.

(1) There exists a continuous map (X, Y,0) — (u, €, m,h, g, p, q, x, t) such that the semilin-
ear system (5.3)—(5.7) holds for 6 € [0, 1], and the function u? (x, 1) whose graph is

Graph (u’) = {(x,1,u)(X,Y,60); (X,Y)eR?}

provides the conservation solution of (1.4) with initial data u? (x,0) = ug(x), uf (x,0)= u‘f (x).
(ii)) There exist finitely many values 0 = 6y < 61 < --- < Oy = 1 such that the map
X,Y,0)— (u,¢,m,h,g,p,q,x,t) is C* for 6 € (6;—1,6;),i =1,---, N, and the solution
u? = u?(x, ) has only generic singularities at time # = 0.
In addition, if for all 8 € [0, 1]\{61, - - -, On}, the solution u? has only generic singularities
for t € [0, T], then we say that the path of solution ¥’ : 0 @?, u?) is piecewise regular for

tel0,T]

Towards our goal, we state the following result, which is an application of Theorem 1.2. The
proof of this result is similar to [3], and we omit it here for brevity.

Theorem A.l. Assume the generic condition (1.8) holds. For any fixed T > 0, let 60 —
(ug,ﬁg,mg,he,ge, pg,qe,xe,tg)ﬁ € [0,1], be a smooth path of solutions to the system
(5.3)—(5.7). Then there exists a sequence of paths of solutions 0 (ug, Zg, m,gl, h,gl, gﬁ, pz, qne,
xf; , t,f ), such that

(i) For each n > 1, the path of the corresponding solution of (1.4) 6 +— uz is regular for
t € [0, T] in the sense of Definition A.1.

(ii) For any bounded domain X in the (X,Y) space, functions (uz, Ez,m,@l, h,gl, g,gl, pZ, q,‘?,

2, tf) converge to (ue, 00 m? h?, gg, pe, q9, x?, te) uniformly in Ck([O, 1] x %), for every k >

1, as n — oc.
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