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Abstract

We consider the global well-posedness of weak energy conservative solution to a general quasilinear 
wave equation through variational principle, where the solution may form finite time cusp singularity, when 
energy concentrates. As a main result in this paper, we construct a Finsler type optimal transport metric, 
then prove that the solution flow is Lipschitz under this metric. We also prove a generic regularity result by 
applying Thom’s transversality theorem, then find piecewise smooth transportation paths among a dense set 
of solutions. The results in this paper are for large data solutions, without restriction on the size of solutions.
© 2023 Elsevier Inc. All rights reserved.
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1. Introduction

Consider a class of quasilinear wave equations derived from a variational principle whose 
action is a quadratic function of derivatives of the field with coefficients depending on both the 
field and independent variables
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δ

∫
Aij

μν(x, u)
∂uμ

∂xi

∂uν

∂xj

dx= 0, (1.1)

where we use the summation convention, see [1]. Here x ∈Rd+1 are the space-time variables and 
u : Rd+1 → Rn are the dependent variables. We assume the coefficients Aij

μν : Rd+1 ×Rn → R

are smooth and satisfy Aij
μν = A

ij
νμ = A

ji
μν . The Euler-Lagrange equations associated with (1.1)

are

∂

∂xi

(
A

ij
kμ

∂uμ

∂xj

)
= 1

2

∂A
ij
μν

∂uk

∂uμ

∂xi

∂uν

∂xj

. (1.2)

In this paper, we consider the special case of (1.1) when n = 1 and d = 1, where the Euler-
Lagrange equation (1.2) reads that

(A11ut + A12ux)t + (A12ut + A22ux)x = 1

2

(∂A11

∂u
u2

t + 2
∂A12

∂u
utux + ∂A22

∂u
u2

x

)
. (1.3)

Moreover, assume the coefficients satisfy

(Aij )2×2 =
(

α2 β

β −γ 2

)
(x,u),

then equation (1.3) exactly gives the following nonlinear variational wave equation

(α2ut + βux)t + (βut − γ 2ux)x = ααuu
2
t + βuutux − γ γuu

2
x, (1.4)

with initial data

u(x,0) = u0(x) ∈ H 1, ut (x,0) = u1(x) ∈ L2. (1.5)

Here the variable t ≥ 0 is time, and x is the spatial coordinate. The coefficients α = α(x, u), 
β = β(x, u), γ = γ (x, u) are smooth functions on x and u, satisfying that, there exist positive 
constants α1, α2, β2, γ1 and γ2, such that for any z = (x, u),⎧⎨⎩0 < α1 ≤ α(z) ≤ α2, |β(x,u)| ≤ β2, 0 < γ1 ≤ γ (z) ≤ γ2,

sup
z

{|∇α(z)|, |∇β(z)|, |∇γ (z)|} < ∞, ∀z ∈R2.
(1.6)

Then system (1.4) is strictly hyperbolic with two eigenvalues

λ− := β −√β2 + α2γ 2

α2 < 0, λ+ := β +√β2 + α2γ 2

α2 > 0. (1.7)

Moreover, in this paper we always assume that the following generic condition is satisfied

∂uλ±(x,u) = 0 ⇒ ∂uuλ±(x,u) �= 0 or ∂uxλ±(x,u) �= 0. (1.8)
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In this paper, we will always call waves in the families of λ− and λ+ as backward and forward 
waves, respectively. By (1.6), −λ−(x, u) and λ+(x, u) are both smooth on x and u, bounded and 
uniformly positive.

1.1. Physical background and earlier results

There are various physical models related to equations (1.1) and (1.4). For example, see [1]
for the background in general relativity. There are many classical results, such as in [11].

A particular physical example leading to (1.1) and (1.4) is the motion of a massive director 
field in a nematic liquid crystal. A nematic liquid crystal can be described by a director field of 
unit vectors n ∈ S2. In the regime in which inertia effects dominate viscosity, the propagation of 
orientation waves in the director field is modeled by the least action principle (see [2])

δ

∫ (
∂tn · ∂tn− W(n,∇n)

)
dxdt = 0, n · n= 1, (1.9)

where W(n, ∇n) = K1|n × (∇ × n)|2 + K2(∇ · n)2 + K3(n · ∇ × n)2 is the well-known Oseen-
Franck potential energy density. Here K1, K2 and K3 are positive elastic constants. This varia-
tional principle is in the form of (1.1).

When n = (cosu(x, t), sinu(x, t), 0), with x ∈ R, the dynamics are described by the varia-
tional principle

δ

∫
(u2

t − c2(u)u2
x) dx dt = 0, (1.10)

with wave speed c given by c2(u) = K1 cos2 u +K2 sin2 u. This gives the variational wave equa-
tion

utt − c(u)(c(u)ux)x = 0, (1.11)

which is a special example of (1.4), so does the inhomogeneous case: (1.10) with c = c(x, u).
It is known that solutions for the initial value problem of (1.11) generically have finite time 

cusp singularity [3,6,10]. The global existence and uniqueness of Hölder continuous energy 
conservative solution was established by Bressan-Zheng and Bressan-Chen-Zhang in [7,5], re-
spectively. See other existence result for (1.11) in [14].

The breakthrough on the Lipschitz continuous dependence happened later in [4] by Bressan 
and Chen, where the solution flow was proved to be Lipschitz continuous on a new Finsler type 
optimal transport metric.

The main target of this paper is to extend this Lipschitz continuous dependence result to 
the general equation (1.4), where the existence and uniqueness of energy conservative Hölder 
continuous solution for (1.4)–(1.5) has been established by [15,9], respectively.

1.2. Main results of this paper

Due to finite time singularity formation [3,6,10], one needs to consider weak solutions for 
(1.4)–(1.5).
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Definition 1.1 (Weak solution). The function u = u(x, t), defined for all (x, t) ∈ R × R+, is a
weak solution to the Cauchy problem (1.4)–(1.5) if it satisfies following conditions.

(i) In the x-t plane, the function u(x, t) is locally Hölder continuous with exponent 1/2. The 
function t �→ u(·, t) is continuously differentiable as a map with values in Lp

loc, for all 
1 ≤ p < 2. Moreover, it is Lipschitz continuous with respect to (w.r.t.) the L2 distance, that 
is, there exists a constant L such that∥∥u(·, t) − u(·, s)∥∥

L2 ≤ L |t − s|,
for all t, s ∈R+.

(ii) The function u(x, t) takes on the initial conditions in (1.5) pointwise, while their temporal 
derivatives hold in Lp

loc for p ∈ [1, 2).
(iii) The equations (1.4) hold in distributional sense, that is∫ ∫ [

ϕt (α
2ut + βux) + ϕx(βut − γ 2ux) + ϕ(ααuu

2
t + βuutux − γ γuu

2
x)
]
dx dt = 0

for any test function ϕ ∈ C1
c (R ×R+).

When a finite time gradient blowup forms, the solution flow fails to be Lipschitz in the energy 
space, i.e. H 1 space. We will construct a Finsler-type distance that renders the conservative solu-
tion flows of (1.4)–(1.5) Lipschitz continuous. The new distance is determined by the minimum 
cost to transport from one solution to another. We consider a double optimal transportation prob-
lem which equips the metric with information on the quasilinear structure of the wave equation. 
To control the energy transfer between two characteristic directions, we add a wave potential 
capturing future wave interactions in the metric.

The main result of this paper is:

Theorem 1.1 (Lipschitz continuous dependence). We consider the unique conservative solution 
given in Theorems 2.1 and 2.2 for (1.4)–(1.5). Let the conditions (1.6)–(1.8) be satisfied, then the 
geodesic distance d(·, ·), defined in Definition 7.2, provides solution flow the following Lipschitz 
continuous property. Consider two initial data (u0, u1)(x) and (û0, û1)(x) in (1.5), then for any 
T > 0, the corresponding solutions u(x, t) and û(x, t) satisfy

d
(
(u,ut )(t), (û, ût )(t)

)
≤ Cd

(
(u0, u1), (û0, û1)

)
,

when t ∈ [0, T ], where the constant C depends only on T and the total energy.

There are many variations in the construction of new Lipschitz metric and the proof of Lips-
chitz property for (1.4), comparing to the theory for variational wave equation in [4], especially 
on the subtle relative shift terms. A slight change in the metric may ruin the Lipschitz property.

Another crucial obstruction in establishing the new distance is how to prove the existence 
of regular enough transportation planes between two solutions. Here we prove the following 
generic regularity result showing that on a dense set of initial data the corresponding solutions 
are piecewise smooth and only including generic singularities. Then we prove the existence of 
piecewise smooth solution path between any two generic solutions in Theorem A.1.
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Theorem 1.2 (Generic regularity). Let the condition (1.6)–(1.8) be satisfied and let T > 0 be 
given, then there exists an open dense set of initial data

M ⊂
(
C3(R) ∩ H 1(R)

)
×
(
C2(R) ∩ L2(R)

)
,

such that, for (u0, u1) ∈ M, the conservative solution u = u(x, t) of (1.4)–(1.5) is twice contin-
uously differentiable in the complement of finitely many characteristic curves, within the domain 
R × [0, T ].

This paper will be divided into seven sections. Section 2 is a short review on the existence and 
uniqueness of conservative solution to (1.4)–(1.5). In Section 3, we will introduce the main idea 
and steps used in Sections 4 to 7, where we construct the metric and prove main theorems step 
by step.

2. Previous existence and uniqueness results

We begin, in this paper, by reviewing the existence and uniqueness of conservative weak 
solution to the Cauchy problem (1.4)–(1.5) in [9,15].

Theorem 2.1 (Existence [15]). Let the condition (1.6) be satisfied, then the Cauchy problem 
(1.4)–(1.5) admits a global weak solution u = u(x, t) defined for all (x, t) ∈R ×R+.

To introduce the uniqueness result, let’s first introduce some notations. Denote wave speeds 
as

c1 := αλ− = β −√β2 + α2γ 2

α
< 0, c2 := αλ+ = β +√β2 + α2γ 2

α
> 0,

and Riemann variables as

R := αut + c2ux, S := αut + c1ux. (2.1)

By (1.6), the wave speeds −c1 and c2 are smooth, bounded and uniformly positive.
For a smooth solution of (1.4), the variables R and S satisfy⎧⎪⎪⎨⎪⎪⎩

α(x,u)Rt + c1(x,u)Rx = a1R
2 − (a1 + a2)RS + a2S

2 + c2bS − d1R,

α(x,u)St + c2(x,u)Sx = −a1R
2 + (a1 + a2)RS − a2S

2 + c1bR − d2S,

ut = c2S − c1R

α(c2 − c1)
or ux = R − S

c2 − c1
,

(2.2)

where

ai = ci∂uα − α∂uci

2α(c2 − c1)
, b = α∂x(c1 − c2) + (c1 − c2)∂xα

2α(c2 − c1)
,

di = c2∂xc1 − c1∂xc2 + α∂xci − ci∂xα
, (i = 1,2).
2(c2 − c1) 2α
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Here ∂x and ∂u denote partial derivatives with respect to x and u, respectively.
Multiplying the first equation in (2.2) by 2R and the second one by 2S, one has the balance 

laws for energy densities in two directions, namely⎧⎪⎨⎪⎩
(R2)t + (

c1

α
R2)x = 2a2

α
(RS2 − R2S) + 2c2b

α
RS − c2∂xc1 − c1∂xc2

α(c2 − c1)
R2,

(S2)t + (
c2

α
S2)x = 2a1

α
(RS2 − R2S) − 2c1b

α
RS − c2∂xc1 − c1∂xc2

α(c2 − c1)
S2.

(2.3)

Moreover, we have {
(R̃2)t + ( c1

α
R̃2)x = G,

(S̃2)t + ( c2
α

S̃2)x = −G,
(2.4)

where

R̃2 = −c1

c2 − c1
R2, S̃2 = c2

c2 − c1
S2, and

G = 2c2a1

α(c2 − c1)
R2S − 2c1a2

α(c2 − c1)
RS2 − 2c1c2b

α(c2 − c1)
RS,

which indicates the following conserved quantities

α2u2
t + γ 2u2

x = R̃2 + S̃2,

and the corresponding energy conservation law

(R̃2 + S̃2)t + (
c1

α
R̃2 + c2

α
S̃2)x = 0.

Now, we state the uniqueness result in [9], which together with the energy conservation proved 
in [15] show that the problem (1.4)–(1.5) has a unique conservative solution under Definition 1.1.

Theorem 2.2 (Uniqueness [9] and energy conservation [15]). Let the condition (1.6) be satisfied, 
then there exists a unique conservative weak solution u(x, t) for (1.4)–(1.5).

Here a weak solution u(x, t) defined in Definition 1.1 is said to be (energy) conservative if 
one can find two families of positive Radon measures on the real line: {μt−} and {μt+}, depending 
continuously on t in the weak topology of measures, with the following properties.

(i) At every time t one has

μt−(R) + μt+(R) = E0 :=
∞∫

−∞

[
α2(x,u0(x)

)
u2

1(x) + γ 2(x,u0(x)
)
u2

0,x(x))
]
dx .

(ii) For each t , the absolutely continuous parts of μt− and μt+ with respect to the Lebesgue 
measure have densities respectively given by
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R̃2 = −c1

c2 − c1
(αut + c2ux)

2, S̃2 = c2

c2 − c1
(αut + c1ux)

2.

(iii) For almost every t ∈R+, the singular parts of μt− and μt+ are concentrated on the set where 
∂uλ− = 0 or ∂uλ+ = 0.

(iv) The measures μt− and μt+ provide measure-valued solutions respectively to the balance 
laws ⎧⎪⎨⎪⎩

ξt + (
c1

α
ξ)x = 2c2a1

α(c2 − c1)
R2S − 2c1a2

α(c2 − c1)
RS2 − 2c1c2b

α(c2 − c1)
RS,

ηt + (
c2

α
η)x = − 2c2a1

α(c2 − c1)
R2S + 2c1a2

α(c2 − c1)
RS2 + 2c1c2b

α(c2 − c1)
RS.

Furthermore, for above conservative weak solution, the total energy represented by the sum 
μ− + μ+ is showed to be conserved in time. This energy may only be concentrated on a set of 
zero measure or at points where ∂uλ− or ∂uλ+ vanishes. In particular, if ∂uλ± �= 0 for any (x, u), 
then the set

{
τ ; E(τ ) :=

∞∫
−∞

[
|α2(x,u(x, τ )

)
u2

t (x, τ ) + γ 2(x,u(x, τ )
)
u2

x(x, τ )
]
dx < E0

}
has measure zero.

3. Main idea and structure of the proof for main theorems

Due to the finite time energy concentration at the gradient blowup, solution flow of (1.4) is 
not Lipschitz in the energy space, i.e. H 1 space. One can find examples showing this instability 
in [8] for some unitary direction models, or in [10] for the variational wave equation.

It is natural to use an optimal transport metric. To capture the quasilinear structure of solutions, 
we consider a double transportation problem, which means that we study the propagation of 
waves in backward and forward directions, respectively.

More precisely, to keep track of the cost in the transportation, we are led to construct the 
geodesic distance. That is, for two given solution profiles u(t) and uε(t), we consider all possible 
smooth deformations/paths γ t : θ �→ (

uθ (t), uθ
t (t)
)

for θ ∈ [0, 1] with γ t (0) = (u(t), ut (t)
)

and 
γ t (1) = (uε(t), uε

t (t)
)
, and then measure the length of these paths through integrating the norm 

of the tangent vector dγ t/dθ ; see Fig. 1 (a).
Roughly speaking, the distance between u and uε will be calculated by the optimal path length

d
(
u(t), uε(t)

)= inf
γ t

‖γ t‖ := inf
γ t

1∫
0

‖vθ (t)‖uθ (t) dθ, where vθ (t) = dγ t

dθ
.

The subscript uθ (t) emphasizes the dependence of the norm on the flow u. The most important 
element is how to define the Finsler norm ‖vθ(t)‖uθ (t) by capturing behaviors of the quasilinear 
wave equation, such that, for regular solutions,

‖γ t‖ ≤ C‖γ 0‖, ∀ t ∈ [0, T ]. (3.1)
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Fig. 1. Compare two solutions u(x) and uε(x) at a given time t .

Here C only depends on the total initial energy and T , and is uniformly bounded when the 
solution approaches a singularity.

The norm ‖vθ (t)‖uθ (t) measures the cost in shifting from one solution to the other one. We 
will measure the cost in forward and backward directions, with energy densities μ+, μ− defined 
in Theorem 2.2, respectively. As a payback of using the double transportation problem, now we 
can use both balance laws on forward and backward energy densities along characteristics, such 
as (2.3) and (2.4). We need to control the growth of norm caused by the energy transfer between 
two families during nonlinear wave interactions. The idea is to add interaction potentials in the 
norm. More detail will be given in Section 4.

We will construct the metric d and prove that the solution map is Lipschitz continuous under 
this metric in several steps.

1. We construct a Lipschitz metric for smooth solution (Section 4).
2. By an application of Thom’s transversality theorem, we prove that the piecewise smooth so-

lutions with only generic singularities are dense in H 1 ×L2 space. This proves Theorem 1.2
(Section 5).

3. We extend the Lipschitz metric to piecewise smooth solutions with generic singularities. 
(Section 6).

4. We finally define the metric d for weak solutions with general H 1 × L2 initial data, and 
complete the proof of Theorems 1.1. We also compare the metric d with some Sobolev 
metrics and Kantorovich-Rubinstein metric (Section 7).

4. The norm of tangent vectors for smooth solutions

The first goal is to define a Finsler norm on tangent vectors measuring the cost of transport, 
and show this norm satisfies the desired Lipschitz property (3.1) for any smooth solutions.

Let (u, R, S) be any smooth solution to (1.4), (2.2), and then take a family of perturbed solu-
tions (uε, Rε, Sε)(x) to (1.4), (2.2), which can be written as

uε(x) = u(x) + εv(x) + o(ε), and

{
Rε(x) = R(x) + εr(x) + o(ε),

Sε(x) = S(x) + εs(x) + o(ε).
(4.1)
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Here both u and uε satisfy the Definition 1.1 of weak solution. Because of finite speed of propa-
gation, for any time T > 0, there exists a compact subset on the x-t plane with t ∈ [0, T ], out of 
which the solution is smooth.

Here and in the sequel, we will omit the variables t, x when we use any functions if it does 
not cause any confusion.

Let the tangent vectors r, s be given, in terms of (2.2) (equation on ux ) and (4.1), the pertur-
bation v can be uniquely determined by

vx = r − s

c2 − c1
− ∂uc2 − ∂uc1

(c2 − c1)2 (R − S)v, v(0, t) = 0. (4.2)

Moreover, it holds that

vt = c2s − c1r

α(c2 − c1)
− c2S − c1R

α2(c2 − c1)
v∂uα + c2∂uc1 − c1∂uc2

α(c2 − c1)2 (S − R)v. (4.3)

Furthermore, by a straightforward calculation, the first order perturbations v, s, r must satisfy the 
equations

α2vtt − γ 2vxx + 2βvxt = [2γ γuux + 2γ γx − βuut ]vx − [2ααuut + βuux + βx]vt

− [α2
uu

2
t + αuuαu2

t + 2ααuutt + 2βuuxt + βxuut + βuuutux]v
+ [γ 2

u u2
x + γ γuuu

2
x + 2γ γuuxx + 2γuγxux + 2γ γxuux]v,

(4.4)

and⎧⎪⎪⎪⎨⎪⎪⎪⎩
αrt + c1rx = 2a1Rr − (a1 + a1)(Rs + Sr) + 2a2Ss + c2bs − d1r + 2a1(c2 − c1)Rxv

+αB1R
2v − α(B1 + B2)RSv + αB2S

2v + αB4Sv − αB5Rv,

αst + c2sx = −2a1Rr + (a1 + a1)(Rs + Sr) − 2a2Ss + c1br − d2s + 2a2(c2 − c1)Sxv

−αB1R
2v + α(B1 + B2)RSv − αB2S

2v − αB6Sv + αB3Rv,

(4.5)

where Bi = α∂uai−ai∂uα

α2 , i = 1, 2, B3 = α∂u(c1b)−c1b∂uα

α2 , B4 = α∂u(c2b)−c2b∂uα

α2 , B5 = α∂ud1−d1∂uα

α2 , 

B6 = α∂ud2−d2∂uα

α2 .
To measure the cost in shifting from one solution to the other one, it is nature to consider 

both vertical and horizontal shifts in the energy space. With this in mind, since the tangent flows 
v, r, s only measure the vertical shifts between two solutions, we also need to add quantities 
w(x, t), z(x, t) measuring the horizontal shifts, corresponding to backward and forward direc-
tions, respectively. And it is very tentative to embed some important information of waves into 
w(x, t), z(x, t) in order to focus only on reasonable transports between two solutions. Here we 
require w(x, t) to satisfy

εw(x, t) + o(ε) = xε(t) − x(t),

where xε(t) and x(t) are two backward characteristics starting from initial points xε(0) and x(0). 
Symmetrically, the function εz(x, t) measures the difference of two forward characteristics. Then 
it is easy to see that w, z satisfy the following system
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
αwt + c1wx = α∂xc1 − c1∂xα

α
w − 2a1(c2 − c1)(v + uxw),

αzt + c2zx = α∂xc2 − c2∂xα

α
z − 2a2(c2 − c1)(v + uxz),

w(x,0) = w0(x), z(x,0) = z0(x).

(4.6)

Next, we define interaction potentials W+/W− for forward/backward directions as follows.

W− := 1 +
x∫

−∞
S2(y) dy, W+ := 1 +

+∞∫
x

R2(y) dy.

Essentially, when tracking a backward wave, W− measures the total forward energy, that this 
backward wave will meet in the future.

Now, let’s show the decay of interaction potentials. In view of (2.3), it holds that⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
W−

t + c1

α
W−

x = −c2 − c1

α
S2 +

x∫
−∞

[2a1

α
(RS2 − R2S) − 2c1b

α
RS − c2∂xc1 − c1∂xc2

α(c2 − c1)
S2]dy,

W+
t + c2

α
W+

x = −c2 − c1

α
R2 +

+∞∫
x

[2a2

α
(RS2 − R2S) + 2c2b

α
RS − c2∂xc1 − c1∂xc2

α(c2 − c1)
R2]dy.

This together with condition (1.6) implies that⎧⎪⎨⎪⎩
W−

t + c1

α
W−

x ≤ −2γ1

α2
S2 + G1(t),

W+
t + c2

α
W+

x ≤ −2γ1

α2
R2 + G2(t),

(4.7)

where the functions

G1(t) :=
+∞∫

−∞

∣∣∣2a1

α
(RS2 − R2S) + 2c1b

α
RS − c2∂xc1 − c1∂xc2

α(c2 − c1)
S2
∣∣∣dy,

G2(t) :=
+∞∫

−∞

∣∣∣2a2

α
(RS2 − R2S) + 2c2b

α
RS − c2∂xc1 − c1∂xc2

α(c2 − c1)
R2
∣∣∣dy.

As proved in [9] (see equation (3.16) in [9]), we obtain

T∫
0

Gi(t) ≤ CT , i = 1,2, (4.8)

for some constant CT depending only on T and the total energy.
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Fig. 2. A sketch of how to deform from R to Rε : (a) a vertical shift εr ; (b) a horizontal shift εRxw followed by a vertical 
displacement εr . Here xε := x + εw(x). We denote the total shift as εr̂ = ε(r + Rxw).

Up to now, we are ready to define a Finsler norm for the tangent vectors v, r, s as

‖(v, r, s)‖(u,R,S) := inf
v,w,r̂,z,ŝ

‖(v,w, r̂, z, ŝ)‖(u,R,S), (4.9)

where the infimum is taken over the set of vertical displacements v, ̂r, ̂s and horizontal shifts w, z
which satisfy equations (4.2), (4.3), (4.6) and relations

⎧⎪⎨⎪⎩
r̂ = r + wRx + a2(w − z)

c2 − c1
S2 − a1 + a2

c2 − c1
(w − z)RS + c2b(w − z)

c2 − c1
S,

ŝ = s + zSx − a1(w − z)

c2 − c1
R2 + a1 + a2

c2 − c1
(w − z)RS + c1b(w − z)

c2 − c1
R.

(4.10)

Here, to motivate the explicit construction of ‖(v, r, s)‖(u,R,S), we consider a reference solution 
R together with a perturbation Rε . As shown in Fig. 2, the tangent vector r can be expressed 
as a horizontal part εw and a vertical part εr̂ , that is r = r̂ − Rxw. The other terms in (4.10)
take account of relative shift. We will give more details on the relative shift terms later. Now, we 
define the following norm:

‖(v,w, r̂, z, ŝ)‖(u,R,S)

:= κ0

∫
R

[|w|W− + |z|W+]dx + κ1

∫
R

[|w|(1 + R2)W− + |z|(1 + S2)W+]dx

+κ2

∫
R

∣∣∣v + Rw − Sz

c2 − c1

∣∣∣[(1 + R2)W− + (1 + S2)W+]dx + κ3

∫
R

[|r̂|W− + |ŝ|W+]dx

+κ4

∫
R

[∣∣∣wx + 2a1(w − z)

c2 − c1
S

∣∣∣W− +
∣∣∣zx − 2a2(w − z)

c2 − c1
R

∣∣∣W+]dx

+κ5

∫
R

[∣∣∣Rwx + 2a1(w − z)

c2 − c1
RS

∣∣∣W− +
∣∣∣Szx − 2a2(w − z)

c2 − c1
RS

∣∣∣W+]dx

+κ6

∫ [∣∣∣2Rr̂ + R2wx + 2a1(w − z)

c2 − c1
R2S

∣∣∣W− +
∣∣∣2Sŝ + S2zx − 2a2(w − z)

c2 − c1
RS2

∣∣∣W+]dx
R
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=:
6∑

i=0

κi

(∫
R

J−
i W− dx +

∫
R

J+
i W+ dx

)=:
6∑

i=0

κiIi, (4.11)

where κi with i = 0, 1, 2 · · · , 6 are the constants to be determined later, and Ii, J
−
i , J+

i are the 
corresponding terms in the above equation.

Next we give more details on how to obtain (4.11).

[I]. For I1, the integrand |w|(1 +R2) accounts for the cost of transporting the base measure with 
density 1 + R2 from the point x to the point x + εw(x).

The integrand |z|(1 + S2) accounts for the cost of transporting the base measure with density 
1 + S2 from the point x to the point x + εz(x). There are no relative shift terms.

The terms in I0 are corresponding to the variation of |x| with base measure with density 1, 
which are added for a technical purpose.

[II]. I2 can be interpreted as: [change in u] in the energy space. Indeed, the change in u can be 
estimated as

uε
(
x + εw(x)

)− u(x)

ε
= v(x) + ux(x)w(x) + o(ε)

= v(x) + R(x) − S(x)

c2 − c1
w(x) + o(ε)

= v(x) + Rw − Sz

c2 − c1
+ z − w

c2 − c1
S + o(ε).

Here the last term z−w
c2−c1

S on the right hand side of the above equality is just balanced by the 
relative shift term.

Here we use this term to introduce how to calculate the relative shift term. Recall that

αut + c2ux = R, αut + c1ux = S.

So the difference of these two equations give

ux = 1

c2 − c1
(R − S).

Roughly speaking,

�u ≈ �x

c2 − c1
(R − S) = z − w

c2 − c1
(R − S). (4.12)

Here the S term balances z−w
c2−c1

S. We omit the R term since it is a lower order term.
As we can see from (4.12) that there is only a general philosophy on how to choose terms 

taking account of the relative shift. One needs to adjust them very carefully to meet the demand. 
Comparing to the variational wave equation (1.11) in which two wave speeds have same magni-
tude but different signs, it is much harder to find the relative shift terms for the general equation 
(1.4).
300



H. Cai, G. Chen and Y. Shen Journal of Differential Equations 356 (2023) 289–335
[III]. I3 accounts for the vertical displacements in the graphs of R and S. More precisely, the 
integrand |r̂| as the change in arctanR times the density 1 +R2 of the base measure. Notice that, 
for xε = x + εw(x) + o(ε),

arctanRε(xε) = arctan
(
R(xε) + εr(xε) + o(ε)

)
= arctan

(
R(x) + εw(x)Rx(x) + εr(x) + o(ε)

)
= arctanR(x) + ε

r(x) + w(x)Rx(x)

1 + R2(x)
+ o(ε),

which together with the relative shift term gives J−
3 . Here we add some subtle adjustments in the 

relative shift terms to take account of interactions between forward and backward waves using 
(2.2).

The change in arctanS times the density 1 + S2 of the base measure is explained similarly.

[IV]. I6 can be interpreted as the change in the base measure with densities R2 and S2, produced 
by the shifts w, z. Indeed,(

Rε(xε)
)2 = R2(xε) + 2εR(xε)r(xε) + o(ε)

= R2(x) + 2εw(x)R(x)Rx(x) + 2εR(x)r(x) + o(ε),

we obtain that(
Rε

x(x
ε)
)2

dxε − R2(x)dx =
(

2εR(x)Rx(x)w(x) + 2εR(x)r(x) + εR2(x)wx(x) + o(ε)
)

dx.

(4.13)

Moreover, as in (4.12), in view of (2.3), if the mass with density S2 is transported from x to 
x + εz(x), the relative shift between forward and backward waves will contribute

[2a2(RS2 − R2S) + 2c2bRS] · ε z − w

c2 − c1
. (4.14)

Hence subtracting (4.14) from (4.13) yields the term J−
6 . Symmetrically, we have J+

6 .

[V]. In order to close the time derivatives of I2 and I6, we have to add two additional terms I4
and I5. Here I4 accounts for the change in the Lebesgue measure produced by the shifts w, z, 
while I5 account for the change in the base measure with densities R and S, produced by the 
shifts w, z. These two terms are in some sense lower order terms of I6.

The main goal of this section is to prove the following lemma by showing that the norm of 
tangent vectors defined in (4.9) satisfies a Gröwnwall type inequality.

Lemma 4.1. Let T > 0 be given, and (u, R, S)(x, t) be a smooth solution to (1.4) and (2.2) when 
t ∈ [0, T ]. Assume that the first order perturbations (v, r, s) satisfy the corresponding equations 
(4.4)–(4.5). Then it follows that

‖(v, r, s)(t)‖(u,R,S)(t) ≤ C(T )‖(v, r, s)(0)‖(u,R,S)(0), (4.15)
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for some constant C(T ) depending only on the initial total energy and T .

Proof. To achieve (4.15), it suffices to show that

d

dt
‖(v,w, r̂, z, ŝ)(t)‖(u,R,S)(t) ≤ a(t)‖(v,w, r̂, z, ŝ)(t)‖(u,R,S)(t), (4.16)

for any w, z and r̂, ̂s satisfying (4.6) and (4.10), with a local integrable function a(t). Here and in 
the sequel, unless specified, we will use C > 0 to denote a constant depending on the initial total 
energy and T , where C may vary in different estimates. Now we prove (4.16) by seven steps.

0). We first treat the time derivative of I0. By (2.2) and (4.6), a straightforward calculation yields 
that

wt + (
c1

α
w)x

= 2
α∂xc1 − c1∂xα

α2 w − 2a1

α
(c2 − c1)(v + Rw − Sz

c2 − c1
) + 2a1S

α
(w − z) − 2a1w

α
(R − S).

This together with the uniform bounds (4.7) on the weights implies that

d

dt

∫
R

J−
0 W− dx = d

dt

∫
R

|w|W− dx

≤ C

∫
R

|w|(1 + |R| + |S|)W− dx + C

∫
R

|z||S|W+ dx + C

∫
R

∣∣∣v + Rw − Sz

c2 − c1

∣∣∣W− dx

+ G1(t)

∫
R

|w|W− dx − 2γ1

α2

∫
R

|w|S2W− dx.

Repeating the above process for the time derivative of 
∫
R J+

0 W+ dx yields

d

dt
I0 = d

dt

∫
R

(
J−

0 W− + J+
0 W+)dx

≤ C
∑

k=1,2

∫
R

(
(1 + |S|)J−

k W− + (1 + |R|)J+
k W+)dx

+
∫
R

(
G1(t)J

−
0 W− + G2(t)J

+
0 W+)dx − 2γ1

α2

∫
R

(
S2J−

0 W− + R2J+
0 W+)dx.

(4.17)

1). For I1, using (2.2) and (2.3), by a direct computation, one has

(1 + R2)t + [c1

α
(1 + R2)]x =2a2

α
(RS2 − R2S) + 2c2b

α
RS − c2∂xc1 − c1∂xc2

α(c2 − c1)
R2

− 2a1
(R − S) + α∂xc1 − c1∂xα

.

(4.18)
α α2
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With this help and by (4.6), we obtain

[
w(1 + R2)

]
t
+ [c1

α
w(1 + R2)

]
x

= (wt + c1

α
wx)(1 + R2) + w[(1 + R2)t + (c1

α
(1 + R2)

)
x
]

+ 2c2b

α
RS − c2∂xc1 − c1∂xc2

α(c2 − c1)
R2 − 2a1

α
(R − S) + α∂xc1 − c1∂xα

α2

]
= −2a1

α
(v + Rw − Sz

c2 − c1
)(1 + R2)(c2 − c1) − 2a1Sz

α
(1 + R2) + w

α

[
2(a1 − a2)R

2S

+ 2a2RS2 + 2c2bRS + ∂x(c2 − c1)

c2 − c1
c1R

2 − ∂xα

α
c1R

2 − 2a1R + 4a1S + 2
α∂xc1 − c1∂xα

α

]
.

This together with (4.7) and the similar estimate for the other terms of I1 gives that

d

dt
I1 ≤ C

∑
k=1,2

∫
R

(
(1 + |S|)J−

k W− + (1 + |R|)J+
k W+)dx

+C

∫
R

(
S2J−

0 W− + R2J+
0 W+)dx (4.19)

+
∫
R

(
G1(t)J

−
1 W− + G2(t)J

+
1 W+)dx − γ1

α2

∫
R

(
S2J−

1 W− + R2J+
1 W+)dx.

Here we have used the fact that |RS2| ≤ 1
2 (

γ1
α2

R2S2 + α2
γ1

S2) and |R2S| ≤ 1
2 (

γ1
α2

R2S2 + α2
γ1

R2).

2). To estimate the time derivative of I2, recalling (4.2) and (4.3), we get the equation for the 
first order perturbation v:

vt + c1

α
vx = s

α
+ 2a1R − 2a2S

α
v + ∂uc1 − ∂uc2

α(c2 − c1)
Sv. (4.20)

Next, by (2.2) and (4.6), it holds that

[Rw − Sz

c2 − c1

]
t
+ c1

α

[Rw − Sz

c2 − c1

]
x

= w

c2 − c1
(Rt + c1

α
Rx) − z

c2 − c1
(St + c2

α
Sx) + z

α
Sx + R

c2 − c1
(wt + c1

α
wx)

− S

c2 − c1
(zt + c2

α
zx) + S

α
zx + (Rw − Sz)

[
(

1

c2 − c1
)t + c1

α
(

1

c2 − c1
)x
]

= w

α(c2 − c1)

[
a1R

2 − (a1 + a2 + ∂uc2 − ∂uc1

c2 − c1

)
RS + a2S

2 + c2bS + (d1 − ∂xc1)R
]

− z [
− a1R

2 + (a1 + a2)RS − (a2 + ∂uc2 − ∂uc1
)S2 + c1bR + (d2 − ∂xc1)S

]

α(c2 − c1) c2 − c1
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+ z

α
Sx + S

α
zx − 2a1R

α

(
v + R − S

c2 − c1
w
)+ 2a2S

α

(
v + R − S

c2 − c1
z
)
. (4.21)

Consequently, in accordance with (4.18), (4.20) and (4.21), we have

[(
v + Rw − Sz

c2 − c1

)
(1 + R2)

]
t
+
[c1

α

(
v + Rw − Sz

c2 − c1

)
(1 + R2)

]
x

=
[
(vt + c1

α
vx) + (Rw − Sz

c2 − c1

)
t
+ c1

α

(Rw − Sz

c2 − c1

)
x

]
(1 + R2)

+ (v + Rw − Sz

c2 − c1

)[
(1 + R2)t + (c1

α
(1 + R2)

)
x

]
= 1 + R2

α

[
s + zSx − a1(w − z)

c2 − c1
R2 + a1 + a2

c2 − c1
(w − z)RS + c1b(w − z)

c2 − c1
R
]

+ w(1 + R2)

α(c2 − c1)

[
a2S

2 + c2bS
]− z(1 + R2)

α(c2 − c1)

[
a2S

2 + (d2 − ∂xc1)S
]

+ 1 + R2

α
(Szx − 2a2(w − z)

c2 − c1
RS) + (v + Rw − Sz

c2 − c1

)[2a2

α
(RS2 − R2S) + 2c2b

α
RS

− c2∂xc1 − c1∂xc2

α(c2 − c1)
R2 + ∂uc1 − ∂uc2

α(c2 − c1)
(1 + R2)S + α∂xc1 − c1∂xα

α2 − 2a1

α
(R − S)

]
.

This together with (4.7) and the similar estimate for the other terms of I2 gives that

d

dt
I2 ≤ C

∫
R

(
(1 + |S|)J−

2 W− + (1 + |R|)J+
2 W+)dx

+C
∑

i=1,3,5

∫
R

(
(1 + S2)J−

i W− + (1 + R2)J+
i W+)dx (4.22)

+
∫
R

(
G1(t)J

−
2 W− + G2(t)J

+
2 W+)dx − 2γ1

α2

∫
R

(
S2J−

2 W− + R2J+
2 W+)dx.

3). We now turn to the time derivative of I3, which is much more delicate than the other terms. 
Differentiating (2.2)1 with respect to x, we have

Rtx + (c1

α
Rx

)
x

= 2a1

α
RRx − a1 + a2

α
(RSx + SRx) + 2a2

α
SSx + c2b

α
Sx − d1

α
Rx

+ B1R
3 − B2S

3

c2 − c1
+ B1 + 2B2

c2 − c1
RS2 − 2B1 + B2

c2 − c1
R2S + (A1 − B5

c2 − c1
)R2

+ (A2 − B4

c2 − c1
)S2 − (A1 + A2 − B4 + B5

c2 − c1
)RS − A4R + A3S,

(4.23)

where we have used the notations in (4.5) and
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Ai = α∂xai − ai∂xα

α2 , i = 1,2, A3 = α∂x(c2b) − c2b∂xα

α2 ,

and

A4 = α∂xd1 − d1∂xα

α2 , A5 = α∂xd2 − d2∂xα

α2 .

Then it follows from (4.5), (4.6) and (4.23) that

[
r + wRx

]
t
+ [c1

α
(r + wRx)

]
x

= (rt + c1

α
rx) + (c1

α

)
x
r + Rx(wt + c1

α
wx) + w[Rtx + (c1

α
Rx

)
x
]

= (v + R − S

c2 − c1
w)
(
B1R

2 − (B1 + B2)RS + B2S
2 + B3S − B4R

)− a1 + a2

α
R(s + Sxw)

+2a2

α
S(s + Sxw) + c2b

α
(s + Sxw) + a1 − a2

α
S(r + Rxw) − d1

α
(r + Rxw)

+α∂xc1 − c1∂xα

α2 (r + Rxw) + w
[
A1R

2 − (A1 + A2)RS + A2S
2 + A3S − A4R

]
. (4.24)

Furthermore, for the third term of J−
3 , we derive from (2.2) (2.3) and (4.6) that

[a2(w − z)

c2 − c1
S2
]
t
+
[c1

α

a2(w − z)

c2 − c1
S2
]
x

= a2S
2

c2 − c1
(wt + c1

α
wx) − a2S

2

c2 − c1
(zt + c2

α
zx) + a2S

2

α
zx + a2(w − z)

c2 − c1

[
(S2)t + (c2

α
S2)

x

]
−a2(w − z)

c2 − c1

[(c2

α
S2)

x
− (c1

α
S2)

x

]+ (w − z)S2[( a2

c2 − c1
)t + c1

α
(

a2

c2 − c1
)x
]

= 2a2(a2 − a1)S
2

α

(
v + Rw − Sz

c2 − c1

)+ w − z

α(c2 − c1)
(2a1a2 + αB2)S

3 − 2a1a2(w − z)

α(c2 − c1)
R2S

+a2(α∂xc1 − c1∂xα)

α2(c2 − c1)
(w − z)S2 + [∂xc1 − ∂xc2

α(c2 − c1)
+ ∂xα

α2 ]a2S
2w + a2

α
S2zx

+c1∂xa2 − a2∂xc1

α(c2 − c1)
(w − z)S2 + 2a2c1b(w − z)

α(c2 − c1)
RS − 2a2

α
SSx(w − z). (4.25)

The other terms of J−
3 can be estimated similarly. On the one hand, using (2.2) and (4.6) we have

[
− a1 + a2

c2 − c1
(w − z)RS

]
t
+
[
− c1

α

a1 + a2

c2 − c1
(w − z)RS

]
x

= −a1 + a2

c2 − c1
RS(wt + c1

α
wx) + a1 + a2

c2 − c1
RS(zt + c2

α
zx) − a1 + a2

α
RSzx

−a1 + a2
(w − z)S

[
Rt + c1

Rx

]− a1 + a2
(w − z)R

[
St + c2

Sx

]

c2 − c1 α c2 − c1 α
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+a1 + a2

α
(w − z)RSx − (w − z)RS

[
(
a1 + a2

c2 − c1
)t + (c1

α

a1 + a2

c2 − c1

)
x

]
= 2(a2

1 − a2
2)

α
RS
(
v + Rw − Sz

c2 − c1

)+ w − z

α(c2 − c1)
(2a2

2 − 3a2
1 − a1a2)RS2 − a1 + a2

α
RSzx

+ w − z

α(c2 − c1)
(2a2

2 + a2
1 + 3a1a2)R

2S + a1(a1 + a2)

α(c2 − c1)
(w − z)R3 − a2(a1 + a2)

α(c2 − c1)
(w − z)S3

+ (a1 + a2)RS

α2(c2 − c1)

[
2(c1∂xα − α∂xc1)w + (α(∂xc1 + ∂xc2) − (c2 + c1)∂xα

)
z
]

− a1 + a2

α(c2 − c1)
(w − z)

[
(a1 + a2)R

2S + c1bR2 + c2bS2 − (d1 + d2)RS
]

− c1(w − z)

α(c2 − c1)2

[
(c2 − c1)∂x(a1 + a2) − (a1 + a2)∂x(c2 − c1)

]
RS + a1 + a2

α
RSx(w − z)

− w − z

α(c2 − c1)2

[
(c2 − c1)∂u(a1 + a2) − (a1 + a2)∂u(c2 − c1)

]
RS2. (4.26)

On the other hand, by (2.2) and (4.6) we obtain

[c2b(w − z)

c2 − c1
S
]
t
+
[c1

α

c2b(w − z)

c2 − c1
S
]
x

= c2bS

c2 − c1
(wt + c1

α
wx) − c2bS

c2 − c1
(zt + c2

α
zx) + c2bS

α
zx + c2b(w − z)

c2 − c1

(
St + c2

α
Sx

)
−c2bSx(w − z)

α
+ (w − z)S

[
(

c2b

c2 − c1
)t + (c1

α

c2b

c2 − c1

)
x

]
= 2c2b(a2 − a1)S

α

(
v + Rw − Sz

c2 − c1

)+ c2b(w − z)

α(c2 − c1)
(4a1 − a2)S

2 + c2b

α
Szx

+ (c2 − c1)∂u(c2b) − c2b∂u(c2 − c1)

α(c2 − c1)2 (w − z)S2 − 2c2b(a1 + a2)(w − z)

α(c2 − c1)
RS

−a1c2b(w − z)

α(c2 − c1)
R2 + c2b(w − z)

α(c2 − c1)
[(a1 + a2)RS + c1bR − d2S]

+ c2bS

α2(c2 − c1)

[
2(α∂xc1 − c1∂xα)w − (α∂x(c1 + c2) − (c1 + c2)∂xα

)
z
]

+ c1(w − z)S

α(c2 − c1)2

[
(c2 − c1)∂x(c2b) − c2b∂x(c2 − c1)

]− c2b

α
Sx(w − z). (4.27)

In view of (4.10), combining (4.24)–(4.27) yields

r̂t + (c1

α
r̂
)
x

= (v + Rw − SZ

c2 − c1
)
(
B1R

2 − (B1 + B2)RS + B2S
2 + B3S − B4R − 2a2(a1 − a2)

α
S2
)

+(v + Rw − Sz
)
(2(a2

1 − a2
2)

RS − 2(a1 − a2)c2b
S
)

+ c2b − (a1 + a2)R
ŝ

c2 − c1 α α α
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+
( (a1 − a2)S − d1

α
+ α∂xc1 − c1∂xα

α2

)
r̂ + a2

α
(2Sŝ + S2zx − 2a2(w − z)

c2 − c1
RS2)

+c2b − (a1 + a2)R

α

(
Szx − 2a2(w − z)

c2 − c1
RS
)+ R2S(w − z)

α(c2 − c1)
[a2

1 + a1a2 − αB1]

+A1wR2 − RS2(w − z)

α(c2 − c1)
[a2

2 + 3a1a2] + (a1 + a2)RS

α(c2 − c1)
[w∂xc2 − z∂xc1 − d2(w − z)]

+ RS

α(c2 − c1)

[
(c1z − c2w)∂x(a1 + a2) + (αB4 − 2a1c2b)(w − z)

]− A4wR

+ S

α(c2 − c1)

[
(c2w − c1z)∂x(c2b) + (d1 + d2)c2b(w − z) + c2b(z∂xc1 − w∂xc2)

]
+ S2

α(c2 − c1)

[
(c2w − c1z)∂xa2 + a2(d1 + c2b)(w − z) + a2(z∂xc1 − w∂xc2)

]
. (4.28)

This together with (4.7) and the similar estimate for the other terms of I3 gives that

d

dt
I3 ≤ C

∑
k=2,3,5,6

∫
R

(
(1 + |S|)J−

k W− + (1 + |R|)J+
k W+)dx

+C

∫
R

(
(1 + S2)J−

1 W− + (1 + R2)J+
1 W+)dx (4.29)

+
∫
R

(
G1(t)J

−
3 W− + G2(t)J

+
3 W+)dx − 2γ1

α2

∫
R

(
S2J−

3 W− + R2J+
3 W+)dx.

4). Consider I4, we first differentiate (4.6)1 with respect to x to get

wtx + (c1

α
wx

)
x

= −2a1

α
(r + Rxw) + 2a1

α
(s + Sxw) − 2a1

α
(R − S)wx

− 2a1

α
(∂xc2 − ∂xc1)v − 2(c2 − c1)(A1 + B1

R − S

c2 − c1
)(v + R − S

c2 − c1
w)

+ α∂xc1 − c1∂xα

α2 wx + (α∂xc1 − c1∂xα

α2

)
x
w.

(4.30)

With this help, utilizing the estimates (2.2), (4.6) and (4.30), we can derive[
wx + 2a1(w − z)

c2 − c1
S
]
t
+
[c1

α

(
wx + 2a1(w − z)

c2 − c1
S
)]

x

= wxt + (c1

α
wx

)
x

+ 2a1S

c2 − c1
(wt + c1

α
wx) − 2a1S

c2 − c1
(zt + c2

α
zx) + 2a1S

α
zx

+2a1(w − z)

c2 − c1

(
St + c2

α
Sx

)− 2a1(w − z)

α
Sx + 2(w − z)S

[
(

a1

c2 − c1
)t + (

c1

α

a1

c2 − c1
)x
]

= −2a1
r̂ + 2a1

ŝ − 2a1 (
Rwx + 2a1(w − z)

RS
)+ 2a1 (

Szx − 2a2(w − z)
RS
)

α α α c2 − c1 α c2 − c1
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−2
[
A1(c2 − c1) + B1(R − S) + 2a1S

α
(a1 − a2) + a1(∂xc2 − ∂xc1)

α

](
v + Rw − Sz

c2 − c1

)
+(2a1S

α
+ α∂xc1 − c1∂xα

α2

)(
wx + 2a1(w − z)

c2 − c1
S
)+ (α∂xc1 − c1∂xα

α2

)
x
w

+2a1(∂xc2 − ∂xc1)

α(c2 − c1)
Rw + 2a1Sz

α(c2 − c1)
[2∂x(c1 − c2) − c1 − c2

α
∂xα] (4.31)

+2(w − z)S

α(c2 − c1)

[
2a1a2S − a1(a1 + a2)R + a1(d2 + c2b − ∂xc2) + αB1R + c2∂xa1

]
.

This together with (4.7) and the similar estimate for the other terms of I4 gives that

d

dt
I4 ≤C

∑
k=2,3,4,5

∫
R

(
(1 + |S|)J−

k W− + (1 + |R|)J+
k W+)dx

+ C

∫
R

(
(1 + S2)J−

1 W− + (1 + R2)J+
1 W+)dx

+
∫
R

(
G1(t)J

−
4 W− + G2(t)J

+
4 W+)dx − 2γ1

α2

∫
R

(
S2J−

4 W− + R2J+
4 W+)dx.

(4.32)

5). Next, we deal with the time derivative of I5. By (2.2) and (4.31), it holds that[
R
(
wx + 2a1(w − z)

c2 − c1
S
)]

t
+
[c1

α
R
(
wx + 2a1(w − z)

c2 − c1
S
)]

x

= (Rt + c1

α
Rx)
(
wx + 2a1(w − z)

c2 − c1
S
)

+ R
[(

wx + 2a1(w − z)

c2 − c1
S
)
t
+ (c1

α
(wx + 2a1(w − z)

c2 − c1
S)
)
x

]
= −a1

α
[2Rr̂ + R2wx + 2a1(w − z)

c2 − c1
R2S] + 2a1

α
Rŝ + 2a1R

α

(
Szx − 2a2(w − z)

c2 − c1
RS
)

+ (a1 − a2

α
S − d1

α
+ α∂xc1 − c1∂xα

α2

)(
Rwx + 2a1(w − z)

c2 − c1
RS
)

− 2R
[
A1(c2 − c1) + B1(R − S) + 2a1S

α
(a1 − a2) + a1(∂xc2 − ∂xc1)

α

](
v + Rw − Sz

c2 − c1

)
+ S

α
(a2S + c2b)

(
wx + 2a1(w − z)

c2 − c1
S
)+ (α∂xc1 − c1∂xα

α2

)
x
Rw

+ 2a1(∂xc2 − ∂xc1)

α(c2 − c1)
R2w + 2a1RSz

α(c2 − c1)
[2∂x(c1 − c2) − c1 − c2

α
∂xα]

+ 2(w − z)RS

α(c2 − c1)

[
2a1a2S − a1(a1 + a2)R + a1(d2 + c2b − ∂xc2) + αB1R + c2∂xa1

]
.

This together with (4.7) and the similar estimate for the other terms of I5 gives that
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d

dt
I5 ≤C

∑
k=2,3,5,6

∫
R

(
(1 + |S|)J−

k W− + (1 + |R|)J+
k W+)dx

+ C
∑
i=1,4

∫
R

(
(1 + S2)J−

i W− + (1 + R2)J+
i W+)dx

+
∫
R

(
G1(t)J

−
5 W− + G2(t)J

+
5 W+)dx − 2γ1

α2

∫
R

(
S2J−

5 W− + R2J+
5 W+)dx.

(4.33)

6). Finally, we repeat the same procedure on I6. Using (2.2), (2.3), (4.28) and (4.30), we achieve[
2Rr̂ + R2wx

]
t
+ [c1

α
(2Rr̂ + R2wx)

]
x

= 2R
(
r̂t + (c1

α
r̂
)
x

)
+ 2r̂(Rt + c1

α
Rx) + R2[wxt + (

c1

α
wx)x] + wx[(R2)t + c1

α

(
R2)

x
]

= 2(v + Rw − Sz

c2 − c1
)
[
B2RS2 − B2R

2S + B3RS − B4R
2 − A1(c2 − c1)R

2 + 2(a2
1 − a2

2)

α
R2S

−2a2(a1 − a2)

α
RS2 − a1(∂xc2 − ∂xc1)

α
R2 + 2c2b(a2 − a1)

α
RS
]
+ 2r̂

α
(a2S

2 + c2bS)

−2ŝ

α
(a2R

2 − c2bR) + (c1∂xc2 − c2∂xc1

α(c2 − c1)
− 2a2S

α

)(
2Rr̂ + R2wx + 2a1(w − z)

c2 − c1
R2S

)
+2a2R

α

(
2Sŝ + S2zx − 2a2(w − z)

c2 − c1
RS2)+ 2c2bS + 2a2S

2

α

(
Rwx + 2a1(w − z)

c2 − c1
RS
)

+2c2bR − 2(a1 + a2)R
2

α

(
Szx − 2a2(w − z)

c2 − c1
RS
)+ 2a1(w − z)

α
R2Sx + 2a2

1(w − z)

α(c2 − c1)
R4

+2a1(∂xc2 − ∂xc1)

α(c2 − c1)
R3w − 2a1c1b(w − z)

α(c2 − c1)
R3 + 2A1wR3 − 2A4wR2 − 4a1a2(w − z)

α(c2 − c1)
RS3

+ 2RS

α(c2 − c1)

[
(c2w − c1z)∂x(c2b) + c2b(d1 + d2)(w − z) + c2b(z∂xc1 − w∂xc2)

]
+ 2RS2

α(c2 − c1)

[
(c2w − c1z)∂xa2 + (a2(d1 + c2b) − 2a1c2b)(w − z) + a2(z∂xc1 − w∂xc2)

]
+ 2R2S

α(c2 − c1)

[
(c1z − c2w)∂x(a1 + a2) − a1(∂xc2 − ∂xc1)z + α(B4 + A1(c2 − c1))(w − z)

−a1(c2b + c1∂xc2 − c2∂xc1

c2 − c1
)(w − z)

]
+ 2(a1 + a2)

α(c2 − c1)
R2S[w∂xc2 − z∂xc1 − d2(w − z)]

− 2(w − z)

α(c2 − c1)
R2S2[αB1 + a2

2] − 2(w − z)

α(c2 − c1)
R3S(a2

1 + a1a2) + (α∂xc1 − c1∂xα)

α2

)
x
R2w.

(4.34)

Moreover, it follows from (2.2), (2.3) and (4.6) that
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[2a1(w − z)

c2 − c1
R2S

]
t
+
[c1

α

2a1(w − z)

c2 − c1
R2S

]
x

= 2a1R
2S

c2 − c1
(wt + c1

α
wx) − 2a1R

2S

c2 − c1
(zt + c2

α
zx) + 2a1R

2S

α
zx − 2a1(w − z)

α
R2Sx

+2a1R
2(w − z)

c2 − c1

(
St + c2

α
Sx

)+ 2a1S(w − z)

c2 − c1

[
(R2)t + (

c1

α
R2)x

]
+2(w − z)R2S

[
(

a1

c2 − c1
)t + c1

α

( a1

c2 − c1

)
x

]
= 4a1(a2 − a1)R

2S

α

(
v + Rw − Sz

c2 − c1

)+ 2a1R
2

α

(
Szx − 2a2(w − z)

c2 − c1
RS
)− 2a1(w − z)

α
R2Sx

+2R2S2(w − z)

α(c2 − c1)
(αB1 − a1a2) + 2a1R

2S

α(c2 − c1)

[α∂xc1 − c1∂xα

α
w − α∂xc2 − c2∂xα

α
z
]

−2R2S(w − z)

α(c2 − c1)
[a1d2 + a1∂xc1 − c1∂xa1] + 4a1a2(w − z)

α(c2 − c1)
RS3 + 4a1c2b(w − z)

α(c2 − c1)
RS2

+2a1(a1 + a2)(w − z)

α(c2 − c1)
R3S + 2a1c1b(w − z)

α(c2 − c1)
R3 − 2a2

1(w − z)

α(c2 − c1)
R4. (4.35)

Combining (4.34) and (4.35), we obtain

[
2Rr̂ + R2wx + 2a1(w − z)

c2 − c1
R2S

]
t
+ [c1

α

(
2Rr̂ + R2wx + 2a1(w − z)

c2 − c1
R2S

)]
x

= 2(v + Rw − Sz

c2 − c1
)
[
B2(RS2 − R2S) + B3RS − B4R

2 − A1(c2 − c1)R
2 − 2(a1 − a2)

2

α
R2S

−2a2(a1 − a2)

α
RS2 − a1(∂xc2 − ∂xc1)

α
R2 + 2c2b(a2 − a1)

α
RS
]
+ 2r̂

α
(a2S

2 + c2bS)

−2ŝ

α
(a2R

2 − c2bR) + (c1∂xc2 − c2∂xc1

α(c2 − c1)
− 2a2S

α

)(
2Rr̂ + R2wx + 2a1(w − z)

c2 − c1
R2S

)
+2a2R

α

(
2Sŝ + S2zx − 2a2(w − z)

c2 − c1
RS2)+ 2c2bS + 2a2S

2

α

(
Rwx + 2a1(w − z)

c2 − c1
RS
)

+2c2bR − 2a2R
2

α

(
Szx − 2a2(w − z)

c2 − c1
RS
)− 2(w − z)

α(c2 − c1)
R2S2[a1a2 + a2

2]

+ 2R2S

α(c2 − c1)

[
(c1 − c2)z∂xa1 + (c1z − c2w)∂xa2 + (αB4 − a1c2b − a2d2)(w − z)

]
+ 2a1R

2S

α(c2 − c1)

[
(∂xc1 − ∂xc2)z + (c2 − c1)∂xα

α
z
]
+ 2a2R

2S

α(c2 − c1)
[w∂xc2 − z∂xc1]

+ 2RS2

α(c2 − c1)

[
(c2w − c1z)∂xa2 + a2(d1 + c2b)(w − z) + a2(z∂xc1 − w∂xc2)

]
+ 2RS [

(c2w − c1z)∂x(c2b) + c2b(d1 + d2)(w − z) + c2b(z∂xc1 − w∂xc2)
]

α(c2 − c1)
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−α∂u(α∂xc1 − c1∂xα) − 2(α∂xc1 − c1∂xα)∂uα

α3 R2Sw − 2A4R
2w

+α∂x(α∂xc1 − c1∂xα) − 2(α∂xc1 − c1∂xα)∂xα

α3 R2w.

Together with (4.7) and the similar estimate for the other terms of I6, we have

d

dt
I6 ≤C

∑
k=2,6

∫
R

(
(1 + |S|)J−

k W− + (1 + |R|)J+
k W+)dx

+ C
∑

i=1,3,5

∫
R

(
(1 + S2)J−

i W− + (1 + R2)J+
i W+)dx

+
∫
R

(
G1(t)J

−
6 W− + G2(t)J

+
6 W+)dx − 2γ1

α2

∫
R

(
S2J−

6 W− + R2J+
6 W+)dx.

(4.36)

Combining the estimates in (4.17), (4.19), (4.22), (4.29), (4.32), (4.33) and (4.36), and using 
(4.8), we have

dIk

dt
≤ C

∑
�∈F l

k

⎛⎝∫
R

(1 + |S|) J−
� W− dx +

∫
R

(1 + |R|)J+
� W+ dx

⎞⎠

+C
∑
�∈Fh

k

⎛⎝∫
R

(1 + S2) J−
� W− dx +

∫
R

(1 + R2) J+
� W+ dx

⎞⎠

+
∫
R

(
G1(t)J

−
k W− + G2(t)J

+
k W+)dx − γ1

α2

⎛⎝∫
R

S2 J−
k W− dx +

∫
R

R2 J+
k W+ dx

⎞⎠ .

Here F l
k, Fh

k ⊂ {0, 1, 2, · · · , 6} are suitable sets of indices from the estimates (4.17), (4.19), 
(4.22), (4.29), (4.32), (4.33) and (4.36), where a graphical summary of Fh

k is illustrated in Fig. 3. 
For example, by (4.36), F l

6 = {2, 6} and Fh
6 = {1, 3, 5}.

Since there is no cycle for the relation tree Fh
k , we can choose a suitable small constant δ > 0, 

with the weighted norm defined by

‖(w, r̂, z, ŝ)‖(u,R,S) := I0 + δI1 + δ4I2 + δ2I3 + δ2I4 + δ3I5 + δ4I6,

such that the desired estimate (4.16) holds. This completes the proof of Lemma 4.1. �
5. Generic regularity of conservative solutions

Aim of this section is to study generic singularities to (1.4)–(1.5) and thus prove Theorem 1.2
by an application of the Thom’s Transversality theorem. Furthermore, for any two generic solu-
tions, we show that there exist a family of regular solutions connecting them.
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Fig. 3. k → Fh
k

⊂ {0, 1, · · ·6} has no cycle! Choose κk in a certain order (κ0 � κ1 � κ3, κ4 � κ5 � κ2, κ6) to prove 
(4.16).

5.1. The semi-linear system on new coordinates

As a start, we briefly review the semi-linear system introduced in [15], which will be used in 
both this and next sections. Please find detail calculations and derivations in [15].

Consider the equations for the forward and backward characteristics as follows{
d
ds

x±(s;x, t) = λ±(x±(s;x, t), u(s;x±(s;x, t))),

x±|s=t = x,

where λ± are defined in (1.7). Then introduce a new coordinate transformation (x, t) → (X, Y)

as

X :=
x−(0;x,t)∫

0

[1 + R2(y,0)]dy, and Y :=
0∫

x+(0;x,t)

[1 + S2(y,0)]dy,

which implies that

α(x,u)Xt + c1(x,u)Xx = 0, α(x,u)Yt + c2(x,u)Yx = 0. (5.1)

Thus, for any smooth function f , we have{
α(x,u)ft + c2(x,u)fx = (αXt + c2Xx)fX = (c2 − c1)XxfX,

α(x,u)ft + c1(x,u)fx = (αYt + c1Yx)fY = (c1 − c2)YxfY .
(5.2)

For convenience to deal with possibly unbounded values of R and S, we introduce a new set 
of dependent variables

� := R

1 + R2 , h := 1

1 + R2 , p := 1 + R2

Xx

,

m := S

2 , g := 1
2 , q := 1 + S2

.

1 + S 1 + S −Yx
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Making use of (2.2), (5.1) and the above definitions, one obtains a semi-linear hyperbolic system 
with smooth coefficients for the variables �, m, h, g, p, q, u, x in (X, Y) coordinates, cf. [15].⎧⎪⎨⎪⎩

�Y = q(2h − 1)

c2 − c1
[a1g + a2h − (a1 + a2)(gh + m�) + c2bhm − d1g�],

mX = p(2g − 1)

c2 − c1
[−a1g − a2h + (a1 + a2)(gh + m�) + c1bg� − d2hm],

(5.3)

⎧⎪⎨⎪⎩
hY = − 2q�

c2 − c1
[a1g + a2h − (a1 + a2)(gh + m�) + c2bhm − d1g�],

gX = − 2pm

c2 − c1
[−a1g − a2h + (a1 + a2)(gh + m�) + c1bg� − d2hm],

(5.4)

⎧⎪⎨⎪⎩
pY = 2pq

c2 − c1
[a2(� − m) + (a1 + a2)(hm − g�) + c2bm� + d1gh + c1∂xc2 − c2∂xc1

2(c2 − c1)
g],

qX = 2pq

c2 − c1
[a1(� − m) + (a1 + a2)(hm − g�) + c1bm� + d2gh + c1∂xc2 − c2∂xc1

2(c2 − c1)
h],

(5.5)⎧⎪⎨⎪⎩
uX = p�

c2 − c1
, (or uY = qm

c2 − c1
),

xX = c2

c2 − c1
ph, (or xY = c1

c2 − c1
qg).

(5.6)

Setting f = t in the (5.2), we obtain the equations for t ,

tX = αph

c2 − c1
, tY = αqg

c2 − c1
. (5.7)

The system (5.3)–(5.7) must now be supplemented by non-characteristic boundary conditions, 
corresponding to the initial data (1.5). Toward this goal, along the curve

γ0 := {(X,Y ); X + Y = 0} ⊂R2

parameterized by x �→ (X̄(x), Ȳ (x)) := (x, −x), we assign the boundary data (ū, �̄, m̄, h̄, ḡ, p̄,

q̄) by setting

ū = u0(x), h̄ = 1

1 + R2(x,0)
, ḡ = 1

1 + S2(x,0)
,

�̄ = R(x,0)h̄, m̄ = S(x,0)ḡ, p̄ = 1 + R2(x,0), q̄ = 1 + S2(x,0),

(5.8)

with

R(x,0) = α
(
x,u0(x)

)
u1(x) + c2

(
x,u0(x)

)
ux,0(x),

S(x,0) = α
(
x,u0(x)

)
u1(x) + c1

(
x,u0(x)

)
ux,0(x).

Obviously, the coordinate transformation F : (X, Y) �→ (x, t) maps the point (x, −x) ∈ γ0 to the 
point (x, 0), for every x ∈R.

For future reference, we state the following result of the above construction in [9,15].
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Lemma 5.1. Let (u, �, m, h, g, p, q, x, t) be a smooth solution to the system (5.3)–(5.8) with 
p, q > 0. Then the function u = u(x, t) whose graph is{

(x(X,Y ), t (X,Y ),u(X,Y )); (X,Y ) ∈R2} (5.9)

provide the unique conservative solution to the variational wave equation (1.4)–(1.6).

As a preliminary, we examine the boundary data should satisfy some compatibility conditions. 
Instead of (5.8), we can assign a more general boundary data for (5.3)–(5.7), along a line γκ =
{(X, Y); X + Y = κ}, say

u(s, κ − s) = ū(s),

{
�(s, κ − s) = �̄(s),

m(s, κ − s) = m̄(s),

{
h(s, κ − s) = h̄(s),

g(s, κ − s) = ḡ(s),

{
p(s, κ − s) = p̄(s),

q(s, κ − s) = q̄(s),

(5.10)
and

x(s, κ − s) = x̄(s), t (s, κ − s) = t̄ (s). (5.11)

If both equations in (5.6)1 hold, then the boundary data should satisfy the compatibility condition

d

ds
ū(s) = d

ds
u(s, κ − s) = (uX − uY )(s, κ − s)

= p̄(s)�̄(s)

c̄2 − c̄1
− q̄(s)m̄(s)

c̄2 − c̄1
.

(5.12)

Moreover, according to (5.6)2 and (5.7), the following compatibility conditions is also be re-
quired

d

ds
x̄(s) = d

ds
x(s, κ − s) = c̄2p̄(s)h̄(s) − c̄1q̄(s)ḡ(s)

c̄2 − c̄1
, (5.13)

d

ds
t̄(s) = d

ds
t (s, κ − s) = p̄(s)h̄(s) − q̄(s)ḡ(s)

c̄2 − c̄1
α
(
x̄(s), ū(s)

)
, (5.14)

here, we have denoted

c̄1 := c1
(
x̄(s), ū(s)

)
and c̄2 := c2

(
x̄(s), ū(s)

)
. (5.15)

We take the following lemma as the starting point for our analysis.

Lemma 5.2. (i) Let (u, �, m, h, g, p, q)(X, Y) be smooth solutions of the system (5.3)–(5.6) with 
the boundary conditions (5.10) along the line γ = {(X, Y); X + Y = κ}. Assume that the com-
patibility condition (5.12) is satisfied. Then, for any (X, Y) ∈R2, it holds that

uY = qm

c2 − c1
, (5.16)

if and only if
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uX = p�

c2 − c1
, (5.17)

(ii) Let (u, �, m, h, g, p, q)(X, Y) be smooth solutions of the system (5.3)–(5.6). Then there 
exists a solution (t, x)(X, Y) of (5.6)2–(5.7) with the boundary data (5.11) if and only if the 
compatibility conditions (5.13)–(5.14) are satisfied.

Proof. (i). By a direct calculation, we observe that

( qm

c2 − c1

)
X

= pq

(c2 − c1)2

{
a1(2m� − g) − (a1 + a2)(m� − gh) + a2(h − 2gh)

− ∂u(c2 − c1)

c2 − c1
m� + c1bg� + (d2 − ∂xc2)mh

}
= pq

(c2 − c1)2

{
a1g(h − 1) + a2h(1 − g) − ∂u[α(c2 − c1)]

2α(c2 − c1)
m� + b(c1g� + c2mh)

}
,

and

( p�

c2 − c1

)
Y

= pq

(c2 − c1)2

{
a1(2gh − g) + (a1 + a2)(m� − gh) + a2(h − 2m�)

− ∂u(c2 − c1)

c2 − c1
m� + c2bmh + (d1 − ∂xc1)g�

}
= pq

(c2 − c1)2

{
a1g(h − 1) + a2h(1 − g) − ∂u[α(c2 − c1)]

2α(c2 − c1)
m� + b(c1g� + c2mh)

}
,

which leads to ( qm

c2 − c1

)
X

= ( p�

c2 − c1

)
Y
. (5.18)

Assume that (5.16) holds, it follows from (5.18) that

uYX = ( qm

c2 − c1

)
X

= ( p�

c2 − c1

)
Y
.

This together with the boundary condition (5.10), compatibility condition (5.12) and the assump-
tion (5.16) gives that

uX(X,Y ) = uX(X,κ − X) +
Y∫

κ−X

( p�

c2 − c1

)
Y
(X, s) ds

= [uX − uY ](X,κ − X) + uY (X,κ − X) + p�

c2 − c1
(X,Y ) − p�

c2 − c1
(X,κ − X)

= p�

c2 − c1
(X,Y ),

which is indeed the desired identity (5.17). Similar arguments yield the converse implication.
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Fig. 4. The singular point in a solution u(t, x). (For interpretation of the colors in the figure(s), the reader is referred to 
the web version of this article.)

(ii). We omit the proof here for brevity, since a similar approach of this result can be found in 
[3]. �
5.2. Three types of generic singularities

We observe that, for smooth initial data, the solution of the semilinear system (5.3)–(5.7)
remains smooth on the X-Y plane. However, the solution u(x, t) of system (1.4)–(1.6) can have 
singularities. This happens precisely at points where the Jacobian matrix DF is not invertible. In 
fact, the determinant of its Jacobian matrix is calculated as

det

(
xX xY

tX tY

)
= αpqgh

c2 − c1
.

We recall that p, q remain uniformly positive and uniformly bounded on compact subsets of the 
X-Y plane. To analyze the set of points (x, t) where u is singular, we thus need to study in more 
details of the points where g = 0 or h = 0. It is natural to distinguish three generic types of 
singularities:

i. Points where h = 0 but �X �= 0 and g �= 0 (or else, where g = 0 but mY �= 0 and h �= 0), 
their images under the map F : (X, Y) �→ (

x(X, Y), t (X, Y)
)

yield a family of characteristic 
curves in the x-t plane where solution u(x, t) is singular (Fig. 4, black curves, inner points 
of singular curves).

ii. Points where h = 0 and �X = 0 but �XX �= 0 (or else, g = 0 and mY = 0 but mYY �= 0), their 
images in the x-t plane are point where singular curves start or end: (Fig. 4, red dots, initial 
and terminal points of singular curves).

iii. Points where h = 0 and g = 0, their images in the x-t plane are points where two singular 
curves cross: (Fig. 4, blue dot, intersection of singular curves in two directions).

Correspondingly, we give the following definition.

Definition 5.1. We say that a solution u = u(x, t) of (1.4) has only generic singularities for 
t ∈ [0, T ] if it admits a representation of the form (5.9), where

(i) the functions (u, �, m, h, g, p, q, x, t)(X, Y) are C∞,
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(ii) the following generic conditions

⎧⎪⎨⎪⎩
h = 0, �X = 0 =⇒ �Y �= 0, �XX �= 0,

g = 0,mY = 0 =⇒ mX �= 0,mYY �= 0,

h = 0, g = 0 =⇒ �X �= 0,mY �= 0,

(5.19)

hold for t (X, Y) ∈ [0, T ].

5.3. Families of perturbed solutions

Now we construct families of smooth solutions to the semi-linear system of (5.3)–(5.6), de-
pending on parameters. Let a point (X0, Y0) be given, and consider the line

γκ = {(X,Y ); X + Y = κ}, κ = X0 + Y0.

The following lemma is crucial in proving the generic regularity result.

Lemma 5.3. Assume the generic condition (1.8) holds. Let a point (X0, Y0) ∈ R2 be given, and 
(u, �, m, h, g, p, q, x) be a smooth solution of the semi-linear system (5.3)–(5.6).

(1) If (h, �X, �XX)(X0, Y0) = (0, 0, 0), then there exists a 3-parameter family of smooth solu-
tions (uϑ, �ϑ , mϑ, hϑ, gϑ, pϑ, qϑ, xϑ) of (5.3)–(5.6), depending smoothly on ϑ ∈ R3, such that 
the following holds.

(i) When ϑ = 0 ∈ R3, one recovers the original solution, namely (u0, �0, m0, h0, g0, p0, q0,

x0) = (u, �, m, h, g, p, q, x).
(ii) At a point (X0, Y0), when ϑ = 0 one has

rank Dϑ(hϑ, �ϑ
X, �ϑ

XX) = 3. (5.20)

(2) If (h, g, �X)(X0, Y0) = (0, 0, 0), then there exists a 3-parameter family of smooth solutions 
(uϑ , �ϑ , mϑ, hϑ, gϑ, pϑ, qϑ, xϑ) satisfying (i)–(ii) as above, with (5.20) replaced by

rank Dϑ(hϑ,gϑ, �ϑ
X) = 3. (5.21)

(3) If 
(
h, �X, ∂uλ−(x, u)

)
(X0, Y0) = (0, 0, 0), then there exists a 3-parameter family of smooth 

solutions (uϑ, �ϑ , mϑ, hϑ, gϑ, pϑ, qϑ, xϑ) satisfying (i)–(ii) as above, with (5.20) replaced by

rank Dϑ

(
hϑ, �ϑ

X, ∂uλ−(xϑ ,uϑ)
) = 3. (5.22)

Proof. Let (u, �, m, h, g, p, q, x) be a smooth solution to the semi-linear system (5.3)–(5.6), and 
(ū, �̄, m̄, h̄, ḡ, p̄, q̄, x̄)(s) be the values along a line γκ as in (5.10). The main goal of this lemma is 
to consider families solution (ūϑ , �̄ϑ , m̄ϑ , h̄ϑ , ḡϑ , p̄ϑ , q̄ϑ , x̄ϑ ) of (5.3)–(5.6) with perturbations 
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on the data (5.10) along the curve γκ , so that the matrices in (5.20)–(5.22), computed at ϑ = 0, 
have full rank at the given point (X0, Y0). These perturbations will have the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�̄ϑ (s) = �̄(s) +
3∑

j=1

ϑjLj (s),

m̄ϑ (s) = m̄(s) +
3∑

j=1

ϑjMj (s),

h̄ϑ (s) = h̄(s) +
3∑

j=1

ϑjHj (s),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ḡϑ (s) = ḡ(s) +
3∑

j=1

ϑjGJ(s),

p̄ϑ (s) = p̄(s) +
3∑

j=1

ϑjPj (s),

q̄ϑ (s) = q̄(s) +
3∑

j=1

ϑjQj (s),

for some suitable functions Lj , Mj, Hj , Gj, Pj , Qj ∈ C∞
c (R). Moreover, at point s = X0, we 

set

ūϑ (X0) = ū(X0) +
3∑

j=1

ϑjUj (X0), x̄ϑ (X0) = x̄(X0) +
3∑

j=1

ϑjXj (X0).

Notice that, with the above definitions and the compatibility conditions (5.12) and (5.13), we can 
obtain the values ūϑ (s) and x̄ϑ (s) for all s ∈ R. In addition, we can derive a unique solution of 
the semi-linear system (5.3)–(5.6) for each ϑ ∈ R3.

To prove our results, we proceed with the values of �X and �XX at the point (X0, Y0). To this 
end, we first observe that

z̄′(s) = d

ds
z(s, κ − s) = (zX − zY )(s, κ − s),

at any point (s, κ − s) ∈ γκ , for z = �, m, h, g, q . Here and in the rest of this manuscript, unless 
specified, we will use a prime to denote the derivative with respect to the parameter s along the 
line γκ . Hence, it follows from (5.3)–(5.5) that,

�X(X0, Y0) = �̄′ + q̄(2h̄ − 1)

c̄2 − c̄1
f1, mY (X0, Y0) = −m̄′ + p̄(2ḡ − 1)

c̄2 − c̄1
f2, (5.23)

hX(X0, Y0) = h̄′ − 2q̄�̄

c̄2 − c̄1
f1, gY (X0, Y0) = −ḡ′ − 2p̄m̄

c̄2 − c̄1
f2, (5.24)

qY (X0, Y0) = −q̄ ′ + 2p̄q̄

c̄2 − c̄1
f3, (5.25)

where the right hand sides of (5.23)–(5.25) are evaluated at s = X0 and we have denoted

f1 := ā1ḡ + ā2h̄ − (ā1 + ā2)(ḡh̄ + m̄�̄) + c̄2b̄h̄m̄ − d̄1ḡ�̄,

f2 := − ā1ḡ − ā2h̄ + (ā1 + ā2)(ḡh̄ + m̄�̄) + c̄1b̄ḡ�̄ − d̄2h̄m̄,

f3 := ā1(�̄ − m̄) + (ā1 + ā2)(h̄m̄ − ḡ�̄) + c̄1b̄m̄�̄ + d̄2ḡh̄ + c̄1∂x c̄2 − c̄2∂x c̄2
h̄,
2(c̄2 − c̄1)
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with āi = ai

(
x̄(s), ū(s)

)
, b̄ = b

(
x̄(s), ū(s)

)
, d̄i = di

(
x̄(s), ū(s)

)
and c̄i denoted in (5.15), for 

i = 1, 2.
On the other hand, a straightforward computation now shows

d2

ds2 �̄(s) = d

ds
[�X(s, κ − s) − �Y (s, κ − s)] = (�XX + �YY − 2�XY )(s, κ − s). (5.26)

By (5.3)–(5.6) and (5.24)–(5.25), further manipulation leads to the following estimates for �YY

and �YX:

�YY (X0, Y0) = − q̄(2h̄ − 1)

(c̄2 − c̄1)2

[
∂u(c̄2 − c̄1)ūY + ∂x(c̄2 − c̄1)x̄Y

]
f1

+ (2h̄ − 1)f1

c̄2 − c̄1
q̄Y + 2q̄f1

c̄2 − c̄1
h̄Y + q̄(2h̄ − 1)

c̄2 − c̄1
∂Y f1

= q̄(2h̄ − 1)

(c̄2 − c̄1)2

[∂uc̄1 − ∂uc̄2

c̄2 − c̄1
q̄m̄ + ∂x c̄1 − ∂x c̄2

c̄2 − c̄1
c̄1q̄m̄

]
f1

+ (2h̄ − 1)f1

c̄2 − c̄1
[−q̄ ′ + 2p̄q̄

c̄2 − c̄1
f3] − 4q̄2�̄f 2

1

(c̄2 − c̄1)2

+ q̄(2h̄ − 1)

c̄2 − c̄1
∂Y f1 =: F1,

(5.27)

and

�YX(X0, Y0) = − q̄(2h̄ − 1)

(c̄2 − c̄1)2

[
∂u(c̄2 − c̄1)ūX + ∂x(c̄2 − c̄1)x̄X

]
f1

+ (2h̄ − 1)f1

c̄2 − c̄1
q̄X + 2q̄f1

c̄2 − c̄1
h̄X + q̄(2h̄ − 1)

c̄2 − c̄1
∂Xf1

= q̄(2h̄ − 1)

(c̄2 − c̄1)2

[∂uc̄1 − ∂uc̄2

c̄2 − c̄1
p̄�̄ + ∂x c̄1 − ∂xc̄2

c̄2 − c̄1
c̄2p̄h̄

]
f1

+ 2(2h̄ − 1)p̄q̄f1f3

(c̄2 − c̄1)2 + 2q̄f1

c̄2 − c̄1
[h̄′ − 2q̄�̄

c̄2 − c̄1
f1]

+ q̄(2h̄ − 1)

c̄2 − c̄1
∂Xf1 =: F2,

(5.28)

with ∂rf1 = ∂r

[
ā1ḡ+ ā2h̄− (ā1 + ā2)(ḡh̄+m̄�̄) + c̄2b̄h̄m̄− d̄1ḡ�̄

]
, for r = X or Y . The equations 

(5.26)–(5.28) in turn yield

�XX = �̄′′ − F1 + 2F2. (5.29)

Now, we are ready to construct families of perturbed solutions satisfying (5.20)–(5.22).
(1). We choose suitable perturbations (ūϑ , �̄ϑ , m̄ϑ , h̄ϑ , ḡϑ , p̄ϑ , q̄ϑ , x̄ϑ ), such that, at the point 

s = X0 and ϑ = 0, it holds that
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Dϑ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ū

h̄

ḡ

�̄

m̄

p̄

q̄

x̄

ḡ′
h̄′
m̄′
�̄′
�̄′′
q̄ ′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
1 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 1 0
0 0 1
0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Hence, by using (5.23) and (5.29), we obtain the desired Jacobian matrix at the point (X0, Y0),

Dϑ

⎛⎝ h

�X

�XX

⎞⎠=
⎛⎝ 1 0 0

∗ 1 0
∗ ∗ 1

⎞⎠ .

This in turn yields (5.20).
(2). We choose suitable perturbations (ūϑ , �̄ϑ , m̄ϑ , h̄ϑ , ḡϑ , p̄ϑ , q̄ϑ , x̄ϑ ), such that, at the point 

s = X0 and ϑ = 0, the Jacobian matrix of first order derivatives with respect to ϑ is given by

Dϑ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ū

h̄

ḡ

�̄

m̄

p̄

q̄

x̄

�̄′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
1 0 0
0 1 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

This together with (5.23) implies that at the point (X0, Y0),

Dϑ

⎛⎝ h

g

�X

⎞⎠=
⎛⎝ 1 0 0

0 1 0
∗ ∗ 1

⎞⎠ .

We thus conclude this matrix has full rank, that is, (5.21) holds.
(3). If (h, ∂uλ−, �X)(X0, Y0) = (0, 0, 0) is satisfied, the generic condition (1.8) gives that

∂uuλ−(X0, Y0) �= 0 or ∂uxλ−(X0, Y0) �= 0. (5.30)

By choosing suitable perturbations (ūϑ , �̄ϑ , m̄ϑ , h̄ϑ , ḡϑ , p̄ϑ , q̄ϑ , x̄ϑ ), such that, at the point s =
X0 and ϑ = 0, it holds that
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Dϑ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ū

h̄

ḡ

�̄

m̄

p̄

q̄

x̄

�̄′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0
1 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
or Dϑ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ū

h̄

ḡ

�̄

m̄

p̄

q̄

x̄

�̄′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
1 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 1 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Here the first matrix corresponds to the assumption that ∂uuλ−(X0, Y0) �= 0, while the second 
one corresponds to ∂uxλ−(X0, Y0) �= 0. In terms of this construction and (5.23), one has

Dϑ

⎛⎝ h

∂uλ−
�X

⎞⎠=
⎛⎝ 1 0 0

∗ ∂uuλ− 0
∗ ∗ 1

⎞⎠ or Dϑ

⎛⎝ h

∂uλ−
�X

⎞⎠=
⎛⎝ 1 0 0

∗ ∂uxλ− 0
∗ ∗ 1

⎞⎠ ,

at the point (X0, Y0), which, in combination with (5.30) achieves (5.22). Here the first matrix 
corresponds to the assumption that ∂uuλ−(X0, Y0) �= 0, while the second one corresponds to 
∂uxλ−(X0, Y0) �= 0. This completes the proof of Lemma 5.3. �

Once we proved Lemma 5.3, Theorem 1.2 can be proved by using a very similar method as 
in [3]. We leave this proof and the existence of generic regular path in the Appendix to make this 
paper self-contained.

6. Metric for piecewise smooth solutions

In this section, we extend the Lipschitz metric for smooth solutions in Section 4 to piecewise 
smooth solutions with only generic singularities.

6.1. Tangent vectors in transformed coordinates

To begin with, we express the norm of tangent vectors (4.11) in transformed coordinates X-Y .
Let u(x, t) be a reference solution of (1.4) and uε(x, t) be a family of perturbed solutions. 

In the (X, Y) plane, denote (u, �, m, h, g, p, q, x, t) and (uε, �ε, mε, hε, gε, pε, qε, xε, tε) be the 
corresponding smooth solutions of (5.3)–(5.7), and moreover assume the perturbed solutions take 
the form

(uε, �ε,mε,hε, gε,pε, qε, xε, tε) = (u, �,m,h,g,p, q, x, t)

+ ε(U,L,M,H,G,P,Q,X ,T ) + o(ε).

Here we denote the curve in (X, Y) plane by

�τ = {(X,Y ) | t (X,Y ) = τ } = {(X,Y (τ,X));X ∈ R} = {(X(τ,Y ),Y );Y ∈ R} (6.1)

and the perturbed curve as
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�ε
τ = {(X,Y ) | tε(X,Y ) = τ } = {(X,Y ε(τ,X));X ∈R} = {(Xε(τ,Y ),Y );Y ∈ R}.

Notice that the coefficients of system (5.3)–(5.7) are smooth, it thus follows that the first order 
perturbations satisfy a linearized system and are well defined for (X, Y) ∈R2.

Now, we are ready to derive an expression for I0–I6 of (4.11) in terms of (U, L, M, H, G, P,

Q, X , T ). First, we observe that

tε
(
X,Y ε(τ,X)

)= tε
(
Xε(τ,Y ),Y

)= τ.

By the implicit function theorem, at ε = 0, it holds that

∂Xε

∂ε

∣∣∣
ε=0

= −T c2 − c1

αhp
, and

∂Y ε

∂ε

∣∣∣
ε=0

= −T c2 − c1

αgq
. (6.2)

(1). The change in x is

w = lim
ε→0

xε
(
X,Y ε(τ,X)

)− x
(
X,Y(τ,X)

)
ε

=X
(
X,Y(τ,X)

)+ xY · ∂Y ε

∂ε

∣∣∣
ε=0

= (X − c1

α
T
)
(X,Y (τ,X)).

(6.3)

Similarly, we obtain

z = lim
ε→0

xε
(
Xε(τ,Y ),Y

)− x
(
X(τ,Y ),Y

)
ε

=X
(
X(τ,Y ),Y

)+ xX · ∂Xε

∂ε

∣∣∣
ε=0

= (X − c2

α
T
)
(X(τ,Y ),Y ).

(6.4)

(2). For the change in u, we first observe from (5.6) and (6.2) that,

v + uxw = lim
ε→0

uε
(
X,Y ε(τ,X)

)− u
(
X,Y(τ,X)

)
ε

= U
(
X,Y(τ,X)

)+ uY · ∂Y ε

∂ε

∣∣∣
ε=0

= (U − T m

αg

)
(X,Y (τ,X)).

This together with (2.2) gives

v + Rw − Sz

c2 − c1
= v + uxw + w − z

c2 − c1
S = U(X,Y (τ,X)). (6.5)

(3). In addition, we derive an expression for the terms J±
3 in (4.11). Using (5.3), (5.4) and 

(6.2), a direct computation gives rise to
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r + wRx = d

dε

�ε

hε

(
X,Y ε(τ,X)

)∣∣∣
ε=0

= lim
ε→0

�ε

hε

(
X,Y ε(τ,X)

)− �
h

(
X,Y(τ,X)

)
ε

= 1

h

(
L + �Y · ∂Y ε

∂ε

∣∣∣
ε=0

)− �

h2

(
H + hY · ∂Y ε

∂ε

∣∣∣
ε=0

)
= L

h
− �H

h2 − T
αhg

[a1g + a2h − (a1 + a2)(gh + m�) + c2bhm − d1g�],

and

s + zSx = d

dε

mε

gε

(
Xε(τ,Y ),Y

)∣∣∣
ε=0

= 1

g

(
M + mX · ∂Xε

∂ε

∣∣∣
ε=0

)− m

g2

(
G + gX · ∂Xε

∂ε

∣∣∣
ε=0

)
= M

g
− mG

g2 − T
αhg

[−a1g − a2h + (a1 + a2)(gh + m�) + c1bg� − d2hm].

Thus, we obtain from (4.10) that

r̂ = L

h
− �H

h2 − T
αh

(a1 − a1h − d1�), (6.6)

and

ŝ = M

g
− mG

g2 − T
αg

(−a2 + a2g − d2m). (6.7)

(4). To continue, we first use the same procedure to derive the change in the base measure 
with density 1 + R2 as

d

dε
pε
(
X,Y ε(τ,X)

)∣∣∣
ε=0

= P + pY · ∂Y ε

∂ε

∣∣∣
ε=0

= P − c2 − c1

αgq
T pY . (6.8)

Moreover, the change in base measure with density R2 can be calculated as

d

dε

((
pε(1 − hε)

)(
X,Y ε(τ,X)

))∣∣∣
ε=0

= (P + pY · ∂Y ε

∂ε

∣∣∣
ε=0

)
(1 − h) − p

(
H + hY · ∂Y ε

∂ε

∣∣∣
ε=0

)
= (P − c2 − c1

αgq
T pY

)
(1 − h) − p

(
H − c2 − c1

αgq
T hY

)
.

(6.9)

Finally, we can achieve the change in base measure with density 1 by subtracting (6.8) from (6.9)

h
(
P − c2 − c1

αgq
T pY

)+ p
(
H − c2 − c1

αgq
T hY

)
. (6.10)

Notice that
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(1 + R2)dx = pdX, (1 + S2)dx = −qdY.

Hence, according to (6.3)–(6.10), the weighted norm (4.11) can be rewritten as a line integral 
over the line �τ defined in (6.1). More specifically, we have

‖(v,w, r̂, z, ŝ)‖(u,R,S) =
6∑

k=0

κk

∫
�τ

(
|Jk|W−dX + |Hk|W+dY

)
,

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

J0 = (X − c1

α
T
)
ph,

J1 = (X − c1

α
T
)
p,

J2 = Up,

J3 = Lp − �H

h
p − T p

α
(a1 − a1h − d1�),

J4 = hP + pH + 2pT
α

(
a1� + c1∂xα − α∂xc1

2α
h
)
,

J5 = �P + �H

h
p + 2pT �

αh

(
a1� + c1∂xα − α∂xc1

2α
h
)
,

J6 = (1 − h)P − pH − c1∂xc2 − c2∂xc1

α(c2 − c1)
T p(1 − h),

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H0 = (X − c2

α
T
)
qg,

H1 = (X − c2

α
T
)
q,

H2 = Uq,

H3 = Mq − mG

g
q − T q

α
(−a2 + a2g − d2m),

H4 = gQ + qG + 2qT
α

(− a2m + c2∂xα − α∂xc2

2α
g
)
,

H5 = mQ + mG

g
q + 2qT m

αg

(− a2m + c2∂xα − α∂xc2

2α
g
)
,

H6 = (1 − g)Q − qG − c1∂xc2 − c2∂xc1

α(c2 − c1)
T q(1 − g).

It is easy to verify that each integrands Jk, Hk are smooth, for k = 0, 1, 2, 4, 6. On the other hand, 
for the term �H

h
p in J3 and J5, we first observe that,

(�ε)2 + (hε)2 = hε.

Differentiating this equation with respect to ε, at ε = 0, it holds that

2�L + 2hH = H.
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With this help, we achieve

�H

h
p = 2�2L + 2�hH

h
p = 2(h − h2)L + 2�hH

h
p = 2p[(1 − h)L + �H ],

here we have used the fact that �2 + h2 = h. Therefore, J3 and J5 are also smooth. In a similar 
way, we can get the smoothness of H3 and H5.

6.2. Length of piecewise regular paths

In this part, we define the length of a piecewise regular path γ t : θ �→ (
uθ (t), uθ

t (t)
)
, and 

examine the appearance of the generic singularity will not impact the Lipschitz property of this 
metric.

Definition 6.1. The length ‖γ t‖ of the piecewise regular path γ t : θ �→ (
uθ (t), uθ

t (t)
)

is defined 
as

‖γ t‖ = inf
γ t

1∫
0

{ 6∑
k=0

κk

∫
�θ

t

(
|J θ

k |W−dX + |Hθ
k |W+dY

)}
dθ, (6.11)

where the infimum is taken over all piecewise smooth relabellings of the X-Y coordinates and 
�θ

τ := {(X, Y); tθ (X, Y) = τ }

Remark 6.1. In general, there are many distinct solutions to the system (5.3)–(5.7) which yields 
the same solution u = u(x, t) of (1.4). In fact, suppose ϕ, ψ : R �→ R be two C2 bijections, with 
ϕ′, ψ ′ > 0. Consider a particular solution (u, �, m, h, g, p, q, x, t) to the system (5.3)–(5.7), and 
let the new independent and dependent variables (X̃, ̃Y) and (ũ, �̃, m̃, h̃, g̃, p̃, q̃, x̃, ̃t) be defined 
by

X = ϕ(X̃), Y = ψ(Ỹ ), (6.12)⎧⎪⎨⎪⎩
(ũ, �̃, m̃, h̃, g̃, x̃, t̃)(X̃, Ỹ ) = (u, �,m,h,g, x, t)(X,Y ),

p̃(X̃, Ỹ ) = p(X,Y ) · ϕ′(X̃),

q̃(X̃, Ỹ ) = q(X,Y ) · ψ ′(Ỹ ).

It is easy to see that (ũ, �̃, m̃, h̃, g̃, p̃, q̃, x̃, ̃t)(X̃, ̃Y ) is also the solution to the same system 
(5.3)–(5.7), and the set

{(x̃(X̃, Ỹ ), t̃ (X̃, Ỹ ), ũ(X̃, Ỹ )
); (X̃, Ỹ ) ∈R2} (6.13)

coincides with the set (5.9). We thus derive that the set (6.13) is another graph of the same 
solution u(x, t) of (1.4). One can regard the variable transformation (6.12) simply as a relabeling 
of forward and backward characteristics, in the solution u(x, t). We refer the readers to [13] for 
more details on the relabeling symmetries, in connection with the Camassa-Holm equation.
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Our main result in this section is stated as follows, which extends the Lipschitz property in 
Lemma 4.1 to piecewise smooth solutions with generic singularities.

Theorem 6.1. Let T > 0 be given, consider a path of solutions θ �→ (
uθ (t), uθ

t (t)
)

of (1.4), which 
is piecewise regular for t ∈ [0, T ]. Moreover, the total energy is less than some constants E > 0. 
Then there exists constants κ0, κ1, · · · , κ6 in (6.11) and C > 0, such that the length satisfies

‖γ t‖ ≤ C‖γ 0‖, (6.14)

where the constant C depends only on T and E.

Proof. Let the piecewise regular path θ �→ (
uθ (t), uθ

t (t)
)

be given. From Definition A.1, for 
every θ ∈ [0, 1]\{θ1, · · · , θN }, the solution uθ (t) has generic regularities for t ∈ [0, T ]. More 
specifically, uθ is smooth in the X-Y coordinates and piecewise smooth in the x-t coordinates, 
hence the tangent vector is well-defined for all θ ∈ [0, 1], t ∈ [0, T ].

To prove (6.14), it suffices to show that

‖(vθ , rθ , sθ
)
(t)‖(uθ ,Rθ ,Sθ )(t) ≤ C1‖

(
vθ , rθ , sθ

)
(0)‖(uθ ,Rθ ,Sθ )(0), (6.15)

for θ ∈ [0, 1]\{θ1, · · · , θN }, here C1 > is a constant depending only on T and the upper bound 
of the total energy. Indeed, according to Definition 6.1, fix ε > 0 and choose a relabeling of the 
variables X, Y , such that, at time t = 0, it holds that

1∫
0

{ 6∑
k=0

κk

∫
�θ

0

(
|J θ

k |W−dX + |Hθ
k |W+dY

)}
dθ ≤ ‖γ 0‖ + ε.

Integrating (6.15) over θ ∈ [0, 1], we have

‖γ t‖ ≤ C(‖γ 0‖ + ε),

which yields the desired estimate (6.14) immediately, since ε > 0 is arbitrary.
To complete the proof we need to achieve the estimate (6.15). Two cases can occur.
CASE 1: If uθ is smooth in the x-t coordinates, (6.15) follows directly from (4.15).
CASE 2: If uθ is piecewise smooth with generic singularities. In this case, we claim that the 

appearance of the generic singularities will not affect the estimate (4.15). Toward this goal, we 
first observe that there exist at most finitely many points Wj = (Xj , Yj ), j = 1, · · · , N such 
that the generic conditions (5.19) hold when t ∈ [0, T ]. Moreover, for each time tj = t (Xj , Yj )

corresponding to the point Wj , the map

t �→
1∫

0

{ 6∑
k=0

κk

∫
�θ

t

(
|J θ

k |W−dX + |Hθ
k |W+dY

)}
dθ

is continuous. Hence the metric will not be impacted at (at most finitely) time t = tj when there 
exist singularities such that the generic conditions (5.19) hold.
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On the other hand, at time t �= tj , to obtain the estimate (4.15) it suffices to show that the time 
derivative

d

dt

6∑
k=0

κk

∫
�θ

t

(
|J θ

k |W−dX + |Hθ
k |W+dY

)

will not be affected by the presence of singularity. Indeed, assume that the solution has the 
generic singularities along a backward characteristic. For a fixed time τ and denote �τ :=
{(X, Y); tθ (X, Y) = τ }. Let the point (Xε, Yε) be the intersection of the curve �τ−ε =
{(X, Y); tθ (X, Y) = τ − ε} and the singular curve {(X, Y); hθ (X, Y) = 0}, and the point 
(X′

ε, Y
′
ε) be the intersection of the curve �τ+ε = {(X, Y); tθ (X, Y) = τ + ε} and the singular 

curve {(X, Y); hθ (X, Y) = 0}. In addition, define the curves

{
�+

ε := �τ+ε ∩ {(X,Y );X ∈ [X′
ε,Xε]},

�−
ε := �τ−ε ∩ {(X,Y );X ∈ [X′

ε,Xε]},

{
χ+

ε := �τ+ε ∩ {(X,Y );Y ∈ [Yε,Y
′
ε]},

χ−
ε := �τ−ε ∩ {(X,Y );Y ∈ [Yε,Y

′
ε]}.

Then, it follows that

lim
ε→0

1

ε

( ∫
�+

ε

−
∫

�−
ε

) 6∑
k=0

|J θ
k |W− dX = 0,

lim
ε→0

1

ε

( ∫
χ+

ε

−
∫

χ−
ε

) 6∑
k=0

|Hθ
k |W+ dY = 0.

The first limit holds since each integrand is continuous and |Xε − X′
ε| = O(ε). The second limit 

holds since each integrand is continuous and |Y ′
ε − Yε| = O(ε). Consequently, (4.15) follows 

even in the presence of singular curve where h = 0. Similarity, we can obtain the same result in 
the presence of singular curve where g = 0. This completes the proof of Theorem 6.1. �
7. Metric for general weak solutions

Finally, we prove Theorem 1.1, by extending the Lipschitz metric to general weak solutions. 
Then we compare our metric with some other distances.

7.1. Construction of geodesic distance

In this part, we construct a geodesic distance d(·, ·) on the space H 1(R) × L2(R) and prove 
the Lipschitz property. For the sake of convenience, fix any constant E > 0, we denote a set

�E := {(u,ut ) ∈ H 1(R) × L2(R); E(u,ut ) :=
∫

[α2u2
t + γ 2u2

x]dx ≤ E}.

R
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Recall the generic regularity Theorem 1.2, that is, there exists an open dense set of initial data 

M ⊂
(
C3(R) ∩ H 1(R)

)× (C2(R) ∩ L2(R)
)
, such that, for (u0, u1) ∈ M, the conservative solu-

tion of (1.4) has only generic singularities. For future reference, we denote a set

M∞ := C∞
0 ∩M,

on which we define a geodesic distance by optimizing over all piecewise regular paths connecting 
two solutions of (1.4). Then by the semilinear system (5.3)–(5.7) and Theorem 6.1, we can extend 
this distance from space M∞ to a larger space.

Definition 7.1. For solutions with initial data in M∞ ∩ �E , we define the geodesic distance 
d
(
(u, ut ), (û, ût )

)
as the infimum among the weighted lengths of all piecewise regular paths 

θ �→ (uθ , uθ
t ), which connect (u, ut) with (û, ût ), that is, for any time t ,

d
(
(u,ut ), (û, ût )

) := inf{‖γ t‖ :γ t is a piecewise regular path, γ t (0) = (u,ut ),

γ t (1) = (û, ût ),E(uθ , uθ
t ) ≤ E, for all θ ∈ [0,1]}.

The definition d(·, ·) is indeed a distance because after a suitable re-parameterization, the 
concatenation of two piecewise regular paths is still a piecewise regular path. Now, we can define 
the metric for the general weak solutions.

Definition 7.2. Let (u0, u1) and (û0, û1) in H 1(R) × L2(R) be two initial data as required in 
the existence and uniqueness Theorem 2.2. Denote u and û to be the corresponding global weak 
solutions, then for any time t , we define,

d
(
(u,ut ), (û, ût )

) := lim
n→∞d

(
(un,un

t ), (û
n, ûn

t )
)
,

for any two sequences of solutions (un, un
t ) and (ûn, ûn

t ) with the corresponding initial data in 
M∞ ∩ �E , moreover

‖(un
0 − u0, û

n
0 − û0)‖H 1 → 0, and ‖(un

1 − u1, û
n
1 − û1)‖L2 → 0.

We claim that the definition of this metric is well-defined. Indeed, the limit in the definition 
is independent on the selection of sequences because the solution with initial data in M∞ ∩ �E

are Lipschitz continuous.
On the other hand, when

‖un
0 − u0‖H 1 → 0, ‖un

1 − u1‖L2 → 0,

by the semi-linear equations (5.3)–(5.7), we can get the corresponding solutions satisfy, for any 
t > 0,

‖un − u‖H 1 → 0, ‖un
t − ut‖L2 → 0.
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Thus the Lipschitz property in Theorem 6.1 can be extended to the general solutions, this in turn 
yields the main theorem: Theorem 1.1.

7.2. Comparison with other metrics

Finally, by some calculations, we study the relations among our distance d(·, ·) and other 
types of metrics.

Proposition 7.1 (Comparison with the Sobolev metric). For any two finite energy initial data 
(u0, u1) and (û0, û1) ∈ M∞, there exists some constant C depends only on the initial energy, 
such that,

d
(
(u0, u1), (û0, û1)

)≤ C
(
‖u0 − û0‖H 1 + ‖u0 − û0‖W 1,1 + ‖u1 − û1‖L1 + ‖u1 − û1‖L2

)
.

Proof. To find an upper bound of this optimal transport metric, we only have to consider one 
path (uθ

0, u
θ
1) connecting (u0, u1) and (û0, û1), satisfying the following conditions

Rθ = θR + (1 − θ)R̂, Sθ = θS + (1 − θ)Ŝ.

In fact, it is easy to use above equations to recover a unique path (uθ, uθ
t ); see (7.3). It is easy to 

check that the energy 
∫
(R̃θ )2 + (S̃θ )2 dx is bounded by the energies of (u0, u1) and (û0, û1).

Then we choose w = z = 0, so the norm becomes

‖(vθ ,wθ , r̂θ , zθ , ŝθ )‖(uθ ,Rθ ,Sθ ) = κ2

∫
R

∣∣∣vθ
∣∣∣[(1 + (Rθ )2) (W−)θ + (1 + (Sθ )2) (W+)θ

]
dx

+ κ3

∫
R

[|rθ | (W−)θ + |sθ | (W+)θ
]
dx

+ κ6

∫
R

[∣∣∣2Rθrθ
∣∣∣ (W−)θ +

∣∣∣2Sθ sθ
∣∣∣ (W+)θ

]
dx.

(7.1)

Now we come to estimate terms in the above equation. It is easy to see that

rθ = d

dθ
Rθ = R − R̂, sθ = d

dθ
Sθ = S − Ŝ. (7.2)

Finally, we estimate vθ . First, by (2.1),

uθ
x = Rθ − Sθ

(c2 − c1)(x,uθ )
. (7.3)

Since the right hand side is Lipschitz on uθ and uθ has compact support, one can easily prove 
the existence and uniqueness of uθ(x). So vθ = d uθ satisfies
dθ
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vθ
x = rθ − sθ

(c2 − c1)(x,uθ )
− vθ Rθ − Sθ

(c2 − c1)2(x,uθ )
(∂uc2 − ∂uc1)(x,uθ ),

then, using (7.2), it is easy to see that

|vθ | ≤ K (‖S − Ŝ‖L1 + ‖R − R̂‖L1) (7.4)

for some constant K . Using (7.1) and (7.2)–(7.4), it is easy to prove this Proposition. �
Using the Lipschitz continuous dependence under Finsler norm, i.e. Theorem 1.1, this propo-

sition tells that

d
(
(u,ut )(t), (û, ût )(t)

)≤ C
(
‖u0 − û0‖H 1 + ‖u0 − û0‖W 1,1 + ‖u1 − û1‖L1 + ‖u1 − û1‖L2

)
for any t ≥ 0. The path used in the proof of Proposition 7.1 is totally different from the one 
used before in [4], because in the general case we lose the special structure that variational wave 
equation holds. The following proposition can be proved in a similar way as in [4], we omit it 
here for brevity.

Proposition 7.2. For any solutions u(t), û(t) of system (1.4) with initial data u0, û0 ∈ H 1(R) ∩
L1(R) and u1, û1 ∈ L2(R), there exists some constant C depends only on the upper bound for 
the total energy, such that,

• (Comparison with L1 metric)

‖u − û‖L1 ≤ C · d
(
(u,ut )(t), (û, ût )(t)

)
.

• (Comparison with the Kantorovich-Rubinstein metric)

sup
‖f ‖C1 ≤1

∣∣∣∣∫ f dμ −
∫

f dμ̂

∣∣∣∣≤ C · d
(
(u,ut )(t), (û, ût )(t)

)
, (7.5)

where μ, μ̂ are the measures with densities α2(x, u)u2
t + γ 2(x, u)u2

x and α2(x̂, û)û2
t +

γ 2(x̂, û)û2
x with respect to the Lebesgue measure. The metric (7.5) is usually called a 

Kantorovich-Rubinstein distance, which is equivalent to a Wasserstein distance by a duality 
theorem [16].

Data availability

No data was used for the research described in the article.

Acknowledgments

The first author is partially supported by the National Natural Science Foundation of 
China (No. 11801295), and the Shandong Provincial Natural Science Foundation, China (No. 
ZR2018BA008). The second author is partially supported by NSF with grants DMS-2008504.
330



H. Cai, G. Chen and Y. Shen Journal of Differential Equations 356 (2023) 289–335
Appendix A

Now, we give the proof of Theorem 1.2 and the existence of generic regular path to make this 
paper self-contained. The proof in the Appendix is very similar to the proof in [3].

A.1. Proof of Theorem 1.2

To recover the singularities of the solution u = u(x, t) of (1.4) in the original (x, t) plane, 
we will use Lemma 5.3 together with transversality argument (cf. [3,12]) to study the smooth 
solutions to the semi-linear (5.3)–(5.7), and hence determine the generic structure of the level 
sets {(X, Y); h(X, Y) = 0} and {(X, Y); g(X, Y) = 0}. One can prove the following lemma in a 
very similar method as in [3], we omit it here for brevity.

Lemma A.1. Assume the generic condition (1.8) holds. Consider a compact domain of the form

� := {(X,Y ); |X| ≤ M, |Y | ≤ M},

and denote S be the family of all C2 solutions (u, �, m, h, g, p, q, x) to the semi-linear system 
(5.3)–(5.6), with p, q > 0 for all (X, Y) ∈ R2. Moreover, denote S ′ ⊂ S be the subfamily of 
all solutions (u, �, m, h, g, p, q, x), such that for (X, Y) ∈ �, none of the following values is 
attained:{

(h, �X, �XX) = (0,0,0),

(g,mY ,mYY ) = (0,0,0),

{
(h, g, �X) = (0,0,0),

(h, g,mY ) = (0,0,0),

{
(h, ∂uλ−, �X) = (0,0,0),

(g, ∂uλ+,mY ) = (0,0,0).
(A.1)

Then S ′ is a relatively open and dense subset of S , in the topology induced by C2(�).

Now we introduce a new space

N :=
(
C3(R) ∩ H 1(R)

)
×
(
C2(R) ∩ L2(R)

)
,

equipped with the norm

‖(u0, u1)‖N := ‖u0‖C3 + ‖u0‖H 1 + ‖u1‖C2 + ‖u1‖L2 .

Applying a standard comparison argument, we deduce that, if the initial data (u0, u1) ∈ N , 
then the corresponding solution remains smooth for all |x| sufficiently large. The proof of this 
lemma is similar to [3], and we omit it here for brevity.

Lemma A.2. Assume (u0, u1) ∈ N and let T > 0 be given. Then there exists r > 0 sufficiently 
large so that the solution u = u(x, t) of (1.4)–(1.5) remains C2 on the domain {(x, t); t ∈
[0, T ], |x| ≥ r}.

With the help of Lemma A.1, we can now prove the generic regularity of conservative solu-
tions to (1.4)–(1.6) of the Theorem 1.2.
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Proof of Theorem 1.2. Let the initial data (û0, û1) ∈ N be given and set the open ball

Bδ := {(u0, u1) ∈ N ; ‖(u0, u1) − (û0, û1)‖N < δ}.

To prove our main theorem, it suffices to prove that, for any (û0, û1) ∈ N , there exists an open 
dense subset M̂ ⊂ Bδ , such that, for every initial data (u0, u1) ∈ M̂, the conservative solution 
u = u(x, t) of (1.4)–(1.6) is twice continuously differentiable in the complement of finitely many 
characteristic curves, within the domain R × [0, T ]. We prove this result by two steps.

(1). (Construction of an open dense set M̂) Since (û0, û1) ∈ N , in view of Lemma A.2, we 
can choose r > 0 large enough so that the corresponding functions R̂, Ŝ in (2.1) being uniformly 
bounded on the domain of the form {(x, t); t ∈ [0, T ], |x| ≥ r}. In particular, we can choose 
δ > 0, such that, for initial data (u0, u1) ∈ Bδ , the corresponding solution u = u(x, t) of (1.4)
being twice continuously differentiable on the outer domain {(x, t); t ∈ [0, T ], |x| ≥ �}, for 
some � > 0 sufficiently large. This means the singularities of u(x, t) in the set R × [0, T ] only 
appear on the compact set

U := [−�,�] × [0, T ].

Denote F be the map of (X, Y) �→ F(X, Y) := (x(X, Y), t (X, Y)). Then, we can easily obtain 
the inclusion U ⊂ F(�) by choosing M large enough and by possibly shrinking the radius δ, 
where � is a domain defined in Lemma A.1.

Now, we defined the subset M̂ ⊂ Bδ as follows: (u0, u1) ∈ M̂ if the following items are 
satisfied

(I). (u0, u1) ∈ Bδ ;
(II). for any (X, Y) such that (x(X, Y), t (X, Y)) ∈ U , the values (A.1) are never attained, here 

(u, �, m, h, g, p, q) is the corresponding solution of (5.3)–(5.6) with boundary data (5.8).
We claim the set M̂ is open and dense in Bδ , we omit the detailed proof here for brevity, since 

a similar procedure of this result can be found in [3].
(2). (u is piecewise smooth) Now, it remains to verify that for every initial data (u0, u1) ∈ M̂, 

the corresponding solution u(x, t) of (1.4) is piecewise C2 on the domain [0, T ] × R. Toward 
this goal, we recall that u(x, t) is C2 on the outer domain {(x, t); t ∈ [0, T ], |x| ≥ �}, so in the 
following we just need to consider the singularities of solution u(x, t) on the inner domain U . 
Recall the inclusion U ⊂F(�), we know that, for every point (X0, Y0) ∈ �, there are two cases:

CASE 1. If h(X0, Y0) �= 0 and g(X0, Y0) �= 0, we can obtain the determinant of the Jacobian 
matrix

det

(
xX xY

tX tY

)
= αpqhg

c2 − c1
> 0,

by (5.6)2 and (5.7). This implies that the map (X, Y) �→ (x, t) is locally invertible in a neighbor-
hood of (X0, Y0). The solution u(x, t) is C2 in a neighborhood of (x(X0, Y0), t (X0, Y0)).

CASE 2. If h(X0, Y0) = 0, we can obtain � = 0, immediately. In this case, we claim that either 
�X �= 0 or �Y �= 0. In fact, by the equation (5.3) and the definition of a1 in (2.2), at the point 
(X0, Y0), we have

�Y (X0, Y0) = − q
a1g = αqg

2 ∂uλ−.

c2 − c1 2(c2 − c1)
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This together with the construction of M̂ that the values (h, g, �X) = (0, 0, 0) and (h, ∂uλ−, �X)

= (0, 0, 0) are never attained in �, it is easy to see that �X �= 0 or �Y �= 0.
By continuity, we can choose η > 0, so that in the open neighborhood

�′ := {(X,Y ); |X| < M + η, |Y | < M + η},

the values listed in (A.1) are never attained. Applying the implicit function theorem, we derive 
that the sets

χh := {(X,Y ) ∈ �′; h(X,Y ) = 0}, χg := {(X,Y ) ∈ �′; g(X,Y ) = 0}
are 1–dimensional embedded manifold of class C2. In particular, the set χh ∩ � has finite 
connected components. Indeed, assume on the contrary that there exists a sequence of points 
P1, P2, · · · ∈ χh ∩ � belonging to distinct components. Then we can choose a subsequence, de-
note still by Pi , such that Pi → P̄ for some P̄ ∈ χh ∩ �. Since h(P̄ ) = 0, then (�X, �Y )(P̄ ) �=
(0, 0), which together with the implicit function theorem implies that there is a neighborhood �
of P̄ such that χh ∩� is a connected C2 curve. Thus, Pi ∈ χh ∩� for all i large enough, providing 
a contradiction on the assumption that Pi belongs to distinct components.

To complete the proof, we need to study more details on the image of the singular sets χh

and χg , since the set for the singular points (t, x) of u coincides with the image of the two sets 
χh, χg under the C2 map (X, Y) �→ F(X, Y) = (x(X, Y), t (X, Y)).

By the previous argument, there are only finite many points Pi = (Xi, Yi), i = 1, · · · , m, in-
side set �′, where h = 0, � = 0, and �X = 0. Moreover, by (A.1), at a point (X0, Y0) ∈ χh ∩ χg , 
we have �X �= 0, �Y = 0, mX = 0, mY �= 0. Thus, the two curves h = 0 and g = 0 intersect per-
pendicularly. Therefore, there are only finitely many such intersection points Qj = (X′

j , Y
′
j ), j =

1, · · · , n, inside the compact set �.
Moreover, the set χh\{P1, · · · , Pm, Q1, · · · , Qn} has finitely many connected components 

which intersect �. Consider any one of these components, which is a connected curve, say γj , 
such that h = 0, � = 0 and �X �= 0 for any (X, Y) ∈ γj . Thus, for a suitable function ϕj , this 
curve can be expressed as

γj = {(X,Y ) : X = ϕj (Y ), aj < Y < bj }.
We claim that the image �(γj ) is a C2 curve in the x-t plane. Indeed, on the open interval 
(aj , bj ), the differential of the map Y �→ (

x(ϕj (Y ), Y), t (ϕj (Y ), Y)
)

does not vanish. This is 
true, because by (5.7), we have

d

dY
t (ϕj (Y ),Y )) = tXϕ′

j + tY = 0 · ϕ′
j + αqg

c2 − c1
> 0,

since g, c2 − c1, q > 0. As a consequence, the singular set F(χh) is the union of the finitely 
points pi = F(Pi), i = 1, · · · , m, qj = F(Qj ), j = 1, · · · , n, together with finitely many C2-
curve F(γj ). Obviously, the same representation is valid for the image F(χg). This completes 
the proof of Theorem 1.2. �

Finally, we prove the existence of regular enough path of generic solutions between any two 
generic solutions, in order to define the tangent vectors in the norm (4.9).
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Definition A.1. We say that a path of initial data γ 0 : θ �→ (uθ
0, u

θ
1), θ ∈ [0, 1] is a piecewise 

regular path if the following conditions hold.
(i) There exists a continuous map (X, Y, θ) �→ (u, �, m, h, g, p, q, x, t) such that the semilin-

ear system (5.3)–(5.7) holds for θ ∈ [0, 1], and the function uθ(x, t) whose graph is

Graph (uθ ) = {(x, t, u)(X,Y, θ); (X,Y ) ∈R2}

provides the conservation solution of (1.4) with initial data uθ(x, 0) = uθ
0(x), uθ

t (x, 0) = uθ
1(x).

(ii) There exist finitely many values 0 = θ0 < θ1 < · · · < θN = 1 such that the map 
(X, Y, θ) �→ (u, �, m, h, g, p, q, x, t) is C∞ for θ ∈ (θi−1, θi), i = 1, · · · , N , and the solution 
uθ = uθ (x, t) has only generic singularities at time t = 0.

In addition, if for all θ ∈ [0, 1]\{θ1, · · · , θN }, the solution uθ has only generic singularities 
for t ∈ [0, T ], then we say that the path of solution γ t : θ �→ (uθ , uθ

t ) is piecewise regular for 
t ∈ [0, T ].

Towards our goal, we state the following result, which is an application of Theorem 1.2. The 
proof of this result is similar to [3], and we omit it here for brevity.

Theorem A.1. Assume the generic condition (1.8) holds. For any fixed T > 0, let θ �→
(uθ , �θ , mθ, hθ , gθ , pθ , qθ , xθ , tθ ), θ ∈ [0, 1], be a smooth path of solutions to the system 
(5.3)–(5.7). Then there exists a sequence of paths of solutions θ �→ (uθ

n, �
θ
n, m

θ
n, h

θ
n, g

θ
n, pθ

n, qθ
n , 

xθ
n, tθn ), such that

(i) For each n ≥ 1, the path of the corresponding solution of (1.4) θ �→ uθ
n is regular for 

t ∈ [0, T ] in the sense of Definition A.1.
(ii) For any bounded domain � in the (X, Y) space, functions (uθ

n, �
θ
n, m

θ
n, h

θ
n, g

θ
n, pθ

n, qθ
n , 

xθ
n, tθn ) converge to (uθ , �θ , mθ, hθ , gθ , pθ , qθ , xθ , tθ ) uniformly in Ck([0, 1] ×�), for every k ≥

1, as n → ∞.
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