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Abstract—We present SoFIT, an easily-deployed and privacy-
preserving camera network system for occupant tracking. Unlike
traditional camera network-based systems, SoFIT does not re-
quire a person to calibrate the network or provide real-world
references. This enables anyone, including non-professionals,
to install SoFIT. Once installed, SoFIT automatically localizes
cameras within the network and generates the floor map lever-
aging movements of people using the space in daily life, before
using the floor map and camera locations to track occupants
throughout the environment. We demonstrate through a series
of deployments that SoFIT can localize cameras with less than
4.8cm error, generate floor maps with 85% similarity to actual
floor maps, and track occupants with less than 7.8cm error.

Index Terms—Camera Network, Camera Self-Localization,
Floor Map Generation, Indoor Tracking

1. INTRODUCTION

Localization and tracking are important in many applica-
tions [1]-[4], including in the current COVID-19 pandemic
to ensure that social distancing requirements are being met.
Although there are many works that explore indoor and
outdoor camera-based localization and tracking [5], most of
them require a long setup and calibration phase. For example,
a camera network-based localization system requires a person
to, not only install the cameras, but also calibrate the system to
the floor plan and location of cameras. There is also a privacy
concern with using dense deployments of cameras.

We propose SoFIT, an easily-deployed, low-cost, privacy-
sensitive camera network system for indoor occupant track-
ing. Unlike previous works, SoFIT completely automates and
removes the need for people to manually specify camera
positions, provide real-world references, and calibrate the
system to the floor map of the environment. Installing SoFIT
only requires placing cameras on the ceiling and turning them
on, allowing even non-professionals to install SoFIT. SoFIT
uses the movements of people going about daily life to auto-
matically self-localize cameras, generate the floor map of the
environment, and begin tracking occupants. Though a person
could intentionally walk through the camera deployment to
speed up the localization and floor map generation process, it
is by no means necessary. Additionally, SoFIT performs most
computations at the edge and does not transmit raw images
to a third-party cloud server. SOFIT only transmits generated
floor maps and locations of people to a cloud server rather
than raw images. Our contributions are summarized next:

« We propose SoFIT, an easily-deployed camera network
system for indoor occupant tracking, that requires no
setup aside from placing cameras on the room ceiling.

o« We introduce novel algorithms and architectures that
allow SoFIT to self-localize cameras in the network and
generate the floor map of the environment based solely
on the movements of occupants without any additional
information that needs to be supplied by the installer.

e We demonstrate that SoFIT can efficiently localize cam-
eras within its network with less than 4.8cm error, gen-
erate floor maps with 85% accuracy, and begin tracking
occupants with less than 7.8cm error in as quickly several
seconds to several minutes after installation depending
on occupant traffic patterns. We also show through sim-
ulations, using real data, that SoFIT can scale to tens
of cameras without accumulating large amounts of error.
SoFIT accomplishes all of this without requiring any
additional information provided by a person.

II. RELATED WORKS

There are many existing works on occupant tracking, es-
pecially for human dense commercial areas [6]—[8]. Many of
these use existing infrastructures, such as surveillance cameras.
Non-camera based sensing systems may work well in outdoor
scenarios [9], [10]. However, multi-path effects and moving
human objects lead to poor performances. SOFIT provides a
quick and easy way to set up inexpensive camera modules for
occupant tracking over large areas.

A. Camera Network Self-Localization

Knowing the location and orientation of cameras in the
real world is required for any camera network-based tracking
system; this process is also known as extrinsic calibration. This
either needs to be specified by the person installing the system
or estimated. Existing works that perform extrinsic calibration
often require an additional reference (e.g., a chessboard [11])
or additional sensors/actuators such as a moving robot [12].
Other works try to map corresponding objects observed in one
camera to another camera using the SIFT feature [13]. How-
ever, SIFT features perform poorly in images with periodic
or rotationally symmetric patterns, such as floor tiles in office
spaces and labs.

B. Floor Plan Generation

To perform indoor localization and tracking a floor map
of the environment is required; many works assume that
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Fig. 1: SoFIT system overview. (A): Example set up of cameras. (B): Each edge device extracts presence of people and line
segments that correspond to the floor map. (C): Using the movement of people between different views, SoFIT localizes each
camera without any input from a person. (D): Each edge device extracts alpha-shapes corresponding to the portion of the floor
map it can see, and SoFIT uses each camera’s view of the floor to stitch together a full floor map. (E): SoFIT uses the localized
cameras, generated floor map, and detected people to track occupants, an example of which is shown in (F).

the floor map is given or estimate it using camera-based
methods [14], [15]. However, these methods often require an
offline calibration phase or a user or robot to hold the camera
and walk around to take images of different parts of the room.
SoFIT does not require a person to generate a floor map and,
instead, utilizes a novel algorithm to stitch together portions of
the floor detected from each camera depending on the location
of each camera.

III. SYSTEM

Figure 1 shows the architecture of SoFIT. First, all cameras
are placed on the ceiling, facing towards the floor. We place
facing downwards and perpendicular to the floor, to reduce
the effects of occlusions caused by furniture and to improve
privacy; cameras pointing in this position capture less of a
person’s face than a camera mounted on a wall. Additionally,
the cameras can be placed semi-randomly; the only require-
ment is that each camera is close enough to at least one other
camera so that their field of view overlaps. This is to ensure
that each camera, at some point, has the opportunity to observe
at least one person at the same time as another camera to
localize itself. Next, SoFIT analyzes the view of each camera,
extracts floor map boundaries, and stitches them together as
more cameras localize themselves to generate the floor map.
Finally, SoFIT begins to track and map occupant locations
onto the floor map. One assumption we make is that each
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Fig. 2: SoFIT’s logic flow for self-localizing cameras.

camera in the network is at the same height because many
indoor environments have the same ceiling height throughout.

A. Camera Self-Localization

Once all cameras are installed, no additional information
or setup is required. SoFIT begins by localizing all cameras
relative to one another, as shown in Figure 2. One of the
cameras is designated as the coordinator, which SoFIT uses
as the reference to localize all other cameras. The idea behind
enabling self-localizing cameras is to identify moving occu-
pants in one camera that also appears in other cameras and use
their movements to estimate the location and orientations
of cameras relative to each other.

Identifying and corresponding occupants between dif-
ferent cameras: To use the movements of one person to
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Fig. 3: Example of SoFIT localizing camera 1 with respect to
camera 2. SoFIT utilizes at least three different locations of a
person observed by both cameras to localize the cameras.

self-localize two cameras with respect to each other, SoFIT
needs to first identify that two cameras are observing the same
person. To accomplish this, we need to first detect and extract
a person in each camera, and then confirm that the person
captured by each camera corresponds to the same person.

To detect and extract all observed people, each camera
module runs the YOLO real-time object detection deep neural
network (DNN) to detect and extract the bounding boxes of the
people present. Additionally, each camera module extracts the
pixel coordinate location of each detected person. The location
we detect depends on which part of the body we take the
measurement (e.g., location of the head, torso, or feet). We
decide to measure the location of a person by detecting the
location of a person’s feet. This is because in SoFIT, every
camera is facing downward and perpendicular to the ground,
which causes all vertical lines in the physical world (including
a typical walking person), to converge the vanishing point of
the camera’s FOV. In these circumstances, the vanishing point
is also the center of the camera’s FOV. This also means that
portions of a person’s body that are closer to the ground (i.e.,
feet) will inevitably remain in the camera’s frame at more
locations than a body part that is higher above ground (i.e.,
head), so we choose to detect and track each person’s feet.

To detect a person’s feet, we take the bounding box of a
detected person and use morphological transformations to find
the contour of the person. Then, the feet is located at the point
on the contour closest to the vanishing point of the view.

Next, each edge camera transmits only the bounding boxes
and locations of each person to the coordinator. The coordi-
nator then uses each detected person to find corresponding
and overlapping cameras by finding people who appear in
two cameras at the same time. To do this, we take bounding
boxes of people observed from different cameras and compute
the structural similarity index (SSIM) [16] to see if they
correspond to the same person. Cameras that observed the
same person at the same time will then use the movements of
that person to localize themselves in the following step. We
would like to note that SSIM only confirms whether the two
bounding boxes of people supplied correspond to the same
person and not the identity of the person.

Camera Self-Localization: Figure 3 demonstrates how the
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Fig. 5: An example of SoFIT finding floor map boundaries in
one of its cameras by leveraging the vanishing point (red dot)
to filter out lines that do not correspond to the floor map.

SoFIT coordinator finds the relative location of one camera
(camera 2) with respect to another (camera 1). At each point
where the same person is identified in both cameras, there
is a limited number of positions where camera 2 could be
located, which is along the circumference of the circle centered
around the location of the detected person. To find the exact
location, SoFIT needs to observe at least three consecutive
frames where the person is at different locations; the location
of camera 2 with respect to camera 1 is at the location where
the three circles generated for each frame intersect. To improve
robustness and confidence in our camera location estimates,
SoFIT uses slightly more frames (nine). SoFIT continues to
localize more cameras with respect to other cameras until
every camera has been localized. The speed at which all
cameras can be localized depends heavily on how much human
traffic moves through each portion of the environment; though
a person intentionally walking through the deployment could
help localize each camera faster, it is also possible to allow
SoFIT to localize cameras more naturally by observing the
daily movements of people. Additionally, this procedure does
not require cameras to know which camera views overlap;
identifying people who appear at the same time in multiple
views accomplishes this.

B. Floor Map Generation

Once cameras begin localizing themselves with respect to
each other, SoFIT begins to analyze the FOV of localized cam-
eras for lines and shapes that make up portions of the floor map
and stitch them together. To accomplish this, SOFIT makes the
assumption that most office space and apartments have rect-
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Algorithm 1: Floor Map Generation

Input:
N¢ : number of cameras.
C € RNeXNeX2: camera location matrix.
© € RNe*Ne: camera orientation matrix.
Map € RNe*H*W. alpha-shape matrix.
(H and W: height and width of the alpha-shape
generated by each camera)
Output:
Map,,;: integrated floor map (e.g., Figure 6(d))
1 Initialize C,;; = [], # all coordinates
2 Ouy =[], # all angles;

3 for (17])7 VZ77 S {17 7NC} do

4 ref = the first not-NULL element in column j;

s | it CliJli! = Clref1[j] or Oli[j]! = ©fre/][j] then
o | | (A5, = Clllj) - Clrefllj):

, Ay = 6fi][j] - OlrefIj:

8 for k=1,---,N. do

’ Clillk] = Clil[k] - (A, A,):

10 Oli][k] = O[i][k] — As;

11 end

12 end

end
fori=1,---,N. do
cover Mapli] on Map,;, with center C[i] after rotating

Old;

16 end

17 Apply Canny filter to Map,,;; + post processing for
denoising to obtain the boundary identifying the floor map
(e.g., Figure 6(d)).

angular room structures with straight floor-wall boundaries;
though this is not true for all environments, many buildings
exhibit these characteristics.

Figure 4 shows the logic flow for generating the floor map.
First, at each localized camera, SoFIT detects all straight
lines in the its FOV using OpenCV’s line segment detection
(LSD) function. Next, SoFIT filters out all lines that do not
correspond to the floor map.

There are two types of straight lines commonly observed
that do not correspond to the floor map. First, are the lines that
are vertical in the physical world because these correspond to
lines on the wall or on furniture off the ground. As mentioned
in Section III-A, all segments that are vertical in the physical
world will tend towards the vanishing point or the center of the
camera’s FOV. Using this observation, SoFIT can easily filter
out these types of lines. An example of this process is shown in
Figure 5. The second type of straight lines are ground patterns,
due to tiles, designs, or reflections on the ground. To filter
out these lines, we use the observation a person’s trajectory
would never cross a line that is the floor map boundary (people
generally do not walk on walls). This means if a person’s
trajectory intersects with a line, then that line is most likely not
part of the floor map. Using this observation, SoFIT filters out
all lines that intersect a person’s trajectory, meaning a person
walked through the pattern or tiles on the ground. Finally, we
apply the alpha-shape algorithm [17] to interpolate between
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(a) Ground truth floor plan with (b) White lines: Alpha-shapes
deployed SoFIT cameras.

generated by each edge device.

(c) White area: After stitching to- (d) White lines: The overall floor
gether alpha-shapes. map after post-filtering.

Fig. 6: An example process of generating the overall floor map
of an environment. Here, six cameras are placed throughout
the environment, with their locations marked by blue stars in
(a). The red lines indicate the ground truth floor map.

noisy and disjoint line segments to create the floor map or
alpha-shape visible at each camera.

Next, only the alpha-shapes, which represent the portion
of the floor map observed at each camera, are sent to a
cloud server, where SoFIT stitches together the alpha-shapes
generated from different cameras to generate the integrated
floor map for the entire environment, display it to users, and
use it to track occupants. The coordinates of the alpha-shape’s
vertices for each camera, 4, are denoted as map;.

To generate the floor map on the server, the first step is to
create the camera location matrix (C), by integrating locations
from each camera and their neighbors:

Ne —
c=JX, (1)

i=1
where j indicates all the cameras that overlap with camera 1,
N_ is the total number of cameras, and X;; is the location of
camera ¢. We generate the orientation matrix as follows:

Ne¢
0= )

¢;j is the orientation for carlnelra 7. In addition, the server
also computes the alpha-shape’s vertices for each camera
(map;) into the overall floor map alpha-shape matrix (Map).
The overall camera location matrix (C), the overall camera
orientation matrix (©), and the overall floor map alpha-shape
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Fig. 7: Left: An example of a deployment of SoFIT with three
cameras. Right: One Raspberry Pi-based camera module with
a wide angle lens, and the NCS2 acceleration hardware.

matrix (Map) are the inputs for Algorithm 1 to stitch together
the alpha-shapes floor maps from each camera to generated the
entire integrated floor map.

Figure 6(b) shows the alpha-shapes generated from each
camera overlaid onto an image of the floor map of the
environment. Figure 6(c) shows the overall shape generated
after stitching together all alpha-shape boundaries generated
at each camera in white. SOFIT then applies Canny filtering
to remove artifact noise and generate the final floor map, as
shown in green in Figure 6(d).

C. Real Time Tracking

Once the floor map has been generated and stitched together
for localized cameras, SOFIT begins tracking occupants. The
entire floor map does not need to be generated for SoFIT
to begin tracking occupants; SoFIT will begin tracking areas
where cameras have been localized and the floor map is
available. SoFIT will begin to track more areas as more
cameras become localized.

To track individuals, each camera in SoFIT utilizes the same
YOLO person detection DNN and SSIM metric to confirm the
same person in two frames, from Section III-A. Again, we find
the location of each person by detecting the location of their
feet and mapping this location onto the floor map.

D. Finding Real-World Measurements

Every method presented in this section generates measure-
ments, locations, and floor maps in pixels rather than absolute
distances; this is because SoFIT has no real-world length
reference. To allow SoFIT to map all measurements into
absolute distances, we decided to estimate the height of each
camera from the floor, using the FRCN deep neural network
(DNN) [18]. This network takes as input one image and
attempts to estimate the depth by generating a second image
that would likely be observed if a second lens was nearby to
enable stereo vision. The generated image and the input image
are then used to estimate depth and height of the camera from
the ground. Since we assume that all cameras are at the same
height, SoFIT averages all of the height estimates from all
cameras in the network. This height measurement is then used
to map all relative pixel-based measurements, locations, and
floor maps into real-world and absolute measurements.
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TABLE I: Price breakdown for one camera module.

Module Unit Price [U$]
Raspberry Pi 4 55
Pi Camera with Wide Angle Lens 20
Intel Neural Compute Stick 2 70
total 145
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Fig. 8: Average camera localization error across six configu-
rations across all three environments (Green: error of camera
location (cm), Blue: error of orientation (degree)).

IV. IMPLEMENTATION

Hardware Implementation: As shown in Figure 7, we
implement the SoFIT camera modules on the Raspberry Pi.
To enable the use of the YOLO object detection DNN, we
incorporate an Intel Neural Compute Stick 2 (NCS2) onto
each module. However, we found that SoFIT could only run
at 2.5 fps even after incorporating an NCS2. As such, we
adopted a lighter version, YOLO v3 tiny [19], that enabled
SoFIT to run at 18 fps. 18 fps is close to the frame rate of TV
shows and movies (24 fps) and was fast enough to enable good
performance in all aspects of SoFIT, as we show in Section V.

Expanding the Field of View: We added a wide-angle lens
to each camera module to increase the FOV. This introduces
distortion, especially at the edge of each frame. To correct
this, we integrate an algorithm adapted from the MATLAB
toolbox SWARD_Toolbox_2.2 [20], [21]. This algorithm has
a one-time calibration procedure that can be performed during
production, well before installing the cameras on site.

Cost: Table I shows the price breakdown of each camera
module in SoFIT, which is inexpensive and under 150 USD.

V. EVALUATION

We deployed a network of five camera modules in three
different environments. The environments we deployed SoFIT
could be inscribed in a rectangular prism with dimensions
(width by length by height) 4W by 2L by 2.5H, 6.5W by
4.5L by 3H, and 8W by 4L by 3.5H (all in meters). Two
of the environments are highlighted in Figure 11. In each
deployment, we deployed the cameras in six different semi-
random configurations. We had one person move around the
environment in each configuration, simulating movements in
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Fig. 9: Camera localization error vs. the average inter-camera
distance. We see that even as the average distance between
cameras increases, the localization error remains consistent.

daily life, until all cameras were localized and the floor map
was fully generated. For all configurations, we also evaluated
SoFIT under four different camera resolutions (90 by 60, 180
by 120, 360 by 240, and 720 by 480) to see how well SoFIT
performs if we reduce the resolution to improve privacy.

SoFIT utilizes several open-source models to perform parts
of its pipeline. First, it uses the YOLO v3 tiny object detection
neural network for person detection; we retrain this network
specifically for person detection using a dataset we collected
containing over 1,500 images in various environments, achiev-
ing a 89.0% precision and 91.0% recall.

Second, SoFIT utilizes the FCRN to estimate the height of
the cameras and uses it as the reference to map all pixel and
relative measurements to real-world measurements. We trained
FCRN using the KITTI odometry dataset [22]. Throughout our
deployments, SoFIT estimates the height of the environment
with an error of 6.3cm on average and a standard deviation of
1.1cm, which is small enough compared to the heights of the
environments we deployed SoFIT.

Third, SoFIT utilizes the SSIM metric to confirm whether
people detected in two camera views correspond to the same
person. Using this metric, we created a classifier with a 89%
accuracy on a 400 sample dataset extracted from images
from our deployment. Using these three models, we evaluate
the performance of SoFIT’s camera localization, floor map
generation, occupant tracking performance.

A. Camera Network Self Localization

Figure 8 shows the average estimated error in camera
location and orientation in each of SoFIT in our six configu-
rations and across three environments with differing camera
resolutions. We see that as resolution decreases, the error
increases, as expected. However, even when cameras are only
90 by 60 pixels, the average localization error is at most 8cm,
which is small compared to our deployment area. Using the
highest resolution (720 by 480), SoFIT achieves just 4.6cm
camera localization error. Thus, we select 90 by 60 as the
camera resolution used in the rest of this subsection.
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Fig. 10: Max, average, and min localization error per camera
vs. number of cameras. We see that the error remains relatively
constant even as the number of cameras in the network
increases, showing that SoFIT scales gracefully.

To better understand how well SoFIT localizes cameras
within its network, we looked at how the average error in
estimated camera locations changes as the average distance
between cameras increased (error vs. average camera distance)
and conducted a simulation to see how well SoFIT could
localize cameras at scale.

Localization Error vs. Average Camera Distance: Fig-
ure 9 shows the average localization error across all our
environments with respect to the average distance between
cameras. As the distance between cameras increases, the
overlapping FOV between cameras decreases, which could
lead to decreased localization accuracy. However, we see that
as long as SoFIT fully converges, the localization error remains
consistent across inter-camera distances.

At Scale: To quantify how well SoFIT runs at scale, we
ran a simulation to see if errors in camera localization will
accumulate at a high rate if the number of cameras in the
network increases. We simulate a 4m by 2m area with 2.5m
height and place N semi-randomly in the area such that each
camera’s FOV overlaps with at least one other camera in
the network. We simulate errors in camera localization by
adding a random offset. This offset is drawn from a Gaussian
distribution centered around the average and variance in inter-
camera errors observed between two cameras across all of our
deployments, which is 4.8cm. Figure 10 plots the average error
in localization of each camera in the network as the number of
cameras, 50, increases. We see that even though the average
error increases slightly as the number of cameras increases,
the average error in camera localization is less than 20cm even
when there are up to 50 cameras. This shows that the effect of
accumulating errors across a large number of cameras is very
small and that SoFIT scales well to large camera deployments.

B. Floor Map Estimation

Figure 11 shows examples of floor maps generated from two
of the environments at two resolutions (720 by 480 and 360
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Fig. 11: Example of floor maps generated by SoFIT for
two environments. (a)&(d) are the ground truth floor maps,
(b)&(e) are the floor maps generated by SoFIT using higher
resolution cameras (720 by 480), and (c)&(f) were floor
maps generated using lower resolution cameras (360 by 240).
Areas highlighted in red refer to areas of the generated floor
maps that saw a reduction in accuracy after reducing camera
resolution due to higher impact of lighting and occlusions.

by 240) where we deployed SoFIT, highlighting areas where
higher resolution cameras make a difference. This is because
higher resolution allows SoFIT to better account for lighting
and occlusions that are caused from furniture lying throughout
the environments. Overall, SOFIT produced floor maps with an
average of 85% intersection over union. This means that 85%
of the floor maps generated across all scenarios overlapped in
area and is consistent with the ground truth floor map.

C. Indoor Tracking

After the floor map is generated for each scenario, we
evaluate how well SoFIT can localize occupants. In each
environment and configuration, we instructed five participants
to walk a predetermined path. Figure 12(a) shows one of
these paths in green and the path that SoFIT estimated in
red. Figure 12(b) shows the cumulative distribution function
(CDF) of occupant localization across all environments and
configurations. We see that 98.25% of errors are less than
15.6cm, showing that SoFIT can accurately track occupants
after self-localizing cameras and generating a floor map.

D. Convergence

One concern about SoFIT is how fast it can localize
cameras, generate a floor map, and begin tracking occupants.
This depends primarily on whether or not a person walks
into the FOV of the cameras, which depends on the traffic
patterns of the environment and which areas people are in
throughout the day. Instead, we measure how long it takes for
SoFIT to localize one camera after one person comes into the
FOV of that camera since if no one moves within the FOV
of the camera, that camera will never be localized. Figure 13
shows the CDF distribution of these convergence times. We
see that 98% of the time, SoFIT takes less than 4.5 seconds
to localize a camera after a person walks into the FOV. It is
not unreasonable for a person to be moving in the FOV of a
camera for this much time, meaning SoFIT can successfully
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Fig. 12: (a) An example of one trajectory of a person estimated
by SoFIT (red) compared with the ground truth trajectory
(green). (b) CDF of occupant location errors across all con-
figurations and all three environments we deployed SoFIT.
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Fig. 13: CDF of the time it takes for SoFIT to localize one
camera in the network once one person enters its FOV.
localize a camera within the network with a high success rate
as long as there is traffic in that area.

VI. DISCUSSION AND FUTURE WORK

Camera placement restrictions. Currently, SoFIT requires
all cameras to be at the same height and facing down. We aim
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to generalize our methods to allow cameras to be placed on
any surface with any orientation.

Floor map shape restrictions. SoFIT assumes that the
floor map of indoor environments are mainly composed of
straight lines. Though this is the case for many buildings,
buildings with curved floor maps (e.g., a circle or dome) would
pose a significant challenge for SoFIT in its current state.
We plan to expand SoFIT’s floor map generation pipeline to
accommodate buildings with floor plans with arbitrary shapes
and characteristics.

Beyond moving occupants. There are many objects and
changes, besides a moving occupant, that we can potentially
leverage to improve camera localization or floor map genera-
tion. For instance, we can potentially leverage the changes in
shadows due to changes in lighting throughout the day to help
localize cameras in areas with little human traffic. We plan to
explore more avenues in the future.

Reducing energy consumption. Currently, we implement
our camera modules and algorithms on a Raspberry Pi, which
consumes a total of 11 Watts of power. In future work,
we aim to reduce power consumption by moving to lower
energy processing units (e.g., microcontrollers) and utilizing
lower resolution cameras, as we have shown that SoFIT can
still perform robustly even if we reduce camera resolution to
improve privacy.

VII. CONCLUSION

We present SoFIT, an easily-deployed and privacy-aware
camera network system for indoor tracking. Compared to
existing camera network-based tracking systems, SoFIT does
not require a user to calibrate or provide any real-world
references, allowing SoFIT to be easily and quickly installed
in almost any indoor setting. SoFIT automatically localizes
cameras, generates a floor map of the environment and begins
tracking all using the everyday movements of occupants in
the environment. We demonstrate in real deployments that
SoFIT can localize cameras within its network with less than
4.8cm error, generate floor maps with 85% accuracy, and track
occupants with less than 7.8cm error.
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