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A B S T R A C T

Robust excitation of a large spin ensemble is a long-standing problem in the field of quantum information
science and engineering and presents a grand challenge in quantum control. A formal theoretical treatment
of this task is to formulate it as an ensemble control problem defined on an infinite-dimensional space. In
this paper, we present a distinct perspective to understand and control quantum ensemble systems. Instead
of directly analyzing spin ensemble systems defined on a Hilbert space, we transform them to a space where
the systems have reduced dimensions with distinctive network structures through the introduction of moment
representations. In particular, we illustrate the idea of moment quantization for a spin ensemble and illuminate
how this technique leads to a dynamically equivalent control system of moments. This equivalence enables the
control of spin ensembles through the control of their moment systems, which in turn creates a new control
analysis and design paradigm for quantum ensemble systems based on the use of truncated moment systems.

1. Introduction

Applications involving the control of a large ensemble of spin
systems are prevalent in the domain of quantum science and tech-
nology. An essential step enabling these applications is to engineer a
time-varying excitation that manipulates the dynamics and collective
behavior of the spin ensemble as desired in an efficient or optimal
manner. Prominent examples range from uniform or selective excita-
tion of spins in nuclear magnetic resonance (NMR) spectroscopy and
imaging (MRI) (Cory, Fahmy, & Havel, 1997; Glaser et al., 1998; Li,
Ruths, Yu, Arthanari, & Wagner, 2011) to time-optimal control of spins
for fast quantum transport in quantum optics and quantum information
processing (Chen, Torrontegui, Stefanatos, Li, & Muga, 2011; Roos &
Moelmer, 2004; Silver, Joseph, & Hoult, 1985; Stefanatos & Li, 2011,
2014).

The analysis and control of quantum ensembles are severely chal-
lenged by the complexity arising from the vast scale (typically infinite-
dimension) and underactuated nature inherent in the system dynam-
ics. This compels inventions of new methodologies of systems theory
derived from a completely different angle beyond the reach of the
modern paradigm. Extensive works have been conducted to overcome
such bottlenecks in quantum control, including the developments of
novel ensemble control (Belhadj, Salomon, & Turinici, 2015; Brockett
& Khaneja, 2000; Li & Khaneja, 2009; Li, Ruths, & Glaser, 2017;
Stefanatos & Li, 2011; Zhang & Li, 2021), robust control (Daems,
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Ruschhaupt, Sugny, & Guérin, 2013; Van Damme, Ansel, Glaser, &
Sugny, 2017), computational optimal control (Khaneja, Li, Kehlet, Luy,
& Glaser, 2004; Khaneja, Reiss, Kehlet, Herbruggen, & Glaser, 2005;
Li, Ruths, & Stefanatos, 2009; Phelps, Royset, & Gong, 2016; Wang &
Li, 2017), and learning-based methods (Chen, Dong, Long, Petersen,
& Rabitz, 2014; Dong, 2020). A common theme of these emerging
methods is to develop strategies to compensate for the variations in the
dynamics of individual systems across the entire ensemble. This forms
the basis of modern quantum pulse design and has motivated numerous
novel design approaches, such as the perturbation-based robust optimal
control method (Van Damme et al., 2017), iterative optimal control
algorithms (Vu & Zeng, 2020; Wang & Li, 2017), and the non-harmonic
Fourier synthesis approach (Zhang & Li, 2015).

Apart from these existing, successful and promising developments,
in this paper, we present a distinct perspective to understand quantum
ensemble systems. Instead of directly analyzing these large-scale sys-
tems defined on a Hilbert space, we transform them to a space where
the systems have reduced dimensions with distinctive network struc-
tures through the introduction of moment representations. In particular,
we present the idea of moment quantization for a continuum of spin
systems and illustrate how this technique leads to a control system of
moments, which is dynamically equivalent to the spin ensemble system.
This equivalence enables the control of spin ensembles through the
control of their moment systems, which in turn creates a new control
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design paradigm for quantum ensemble systems based on the use of the
moment systems.

This paper is organized as follows. In Section 2, we represent the
control of spin systems as an ensemble control problem, and intro-
duce the notion of ensemble moments and moment quantization. We
then derive moment representations of ensemble systems and reveal
the nontrivial network structures induced by these representations. In
Section 3, we establish a unified control paradigm for spin ensemble
systems using their moment systems and demonstrate how this transi-
tion to the domain of moments facilitates the systems-theoretic analysis
and control design using challenging pulse design problems in quantum
control.

2. Quantization of spin ensembles via moment representations

2.1. Spin ensembles on Hilbert space

The time-evolution of a sample of nuclear spins immersed in an
external magnetic field follows the Bloch equations, which forms a
semiclassical model given by
d
dt
M(t,!, ") =

⌅

!⌦z + "u(t)⌦y + "v(t)⌦x
⇧

M(t,!, "), (1)

where M(t,!, ") À R3 denotes the magnetization vector of the spin
characterized by the parameter vector � = (!, ")® at time t; u(t) and
v(t) are the respective external control fields (i.e., radio-frequency (rf)
pulses) applied in the x- and y-axis, respectively; and ⌦x, ⌦y, and
⌦z are the generators of rotation around the corresponding axis. The
parameter ! denotes the Larmor frequency of the spin and " depicts the
intensity of the applied control field. In practice, variations in these
parameters arise so that ! À [!1,!2] œ R and " À [1 * �, 1 + �] for
0 < � < 1, referred to as Larmor dispersion and rf-inhomogeneity due to
chemical shifts and inhomogeneity in the applied rf fields, respectively.

These inherent inhomogeneities make the Bloch model in (1) an
infinite-dimensional system consisting of a continuum of spin systems
and hinders the formal treatment of such an ensemble system with
classical tools from systems theory. Consequently, establishing a new
control-theoretic paradigm is compelled to enable proper analysis and
design for ensemble systems. Analogous to the Fourier transform of a
time-dependent signal or the Laplace transform of a time-invariant lin-
ear system to its frequency domain, in this work, we propose a kernel-
based transformation that maps the ensemble system to a domain on
which the analysis is eased and transparent.

2.2. Ensemble moments and moment quantization

In probability theory and statistics, the method of moments con-
cerns with representing probability distributions of random variables
in terms of infinite sequences. The function space setting of the spin
ensemble in (1) renders the opportunity to adopt the method of moments
for studying ensemble control systems. The building blocks are made of
the time-dependent quantities which we refer to as ensemble moments.
To introduce this concept in a general setting, we consider an ensemble
of systems defined on a common manifold M ” Rn, indexed by the
system parameter �, of the form
d
dt
x(t, �) = F

�

t, �, x(t, �), u(t)
�

, (2)

where � takes values on a compact space K œ Rd , the state x(t, �) is
an element in the space F (K ,M) of M-valued functions defined on K,
F (t, �, �, u(t)) is a vector field on M for each � À K, and u(t) À Rm is a
piecewise constant control input.

To place the focus on quantum systems, in this paper we assume that
the state space F (K ,M) of the ensemble system in (2) is a separable
Hilbert space H, and denote the state variable x(t, �) as x(t)Î. The
separability allows the expression of x(t)Î as a linear combination of
basis elements of H (Folland, 2013), which inspires the idea of moment
quantization.

Definition 1 (Ensemble Moments). Given an ensemble system defined
on a separable Hilbert space H as in (2), the kth ensemble-moment of
the system is defined by

mk(t) = Í kx(t)Î, (3)

where k À Nd is a multi-index, and
�

 kÎ : k À Nd
�

is a basis of H.

According to the Schwarz inequality (Folland, 2013), we have

mk(t) = Í kx(t)Î =
˘

Í k kÎÍx(t)x(t)Î < ÿ,

because  kÎ À H and x(t)Î À H. Therefore, all the ensemble moments
are well-defined and finite. Geometrically, mk(t), or to be more rigorous,

mk(t)
 kÎ

˘

Í k kÎ
=

 kÎÍ k
˘

Í k kÎ
x(t)Î,

represents the projection of x(t)Î onto the subspace of H spanned by
 kÎ. We define ÇP k x(t)Î by

ÇP k =
 kÎÍ k
Í k kÎ

: H ô H

as the projection operator satisfying

ÇP 2
 k

=
 kÎÍ k kÎÍ k

Í k kÎ2
= ÇP k .

In addition, because
�

 kÎ : k À Nd
�

is a basis of H, the state x(t)Î
can be represented in terms of the ensemble moments mk(t). To find
this representation, we treat the inner product on H as a tensor field,
equivalently a Riemannian metric, denoted by g, whose coordinate
representation under this basis is given by gij = Í i jÎ. Moreover,
we denote

�

Í k : k À Nd
�

as the basis of H<, the dual space of H,
satisfying Í i jÎ = �ij with � the Kronecker delta function satisfying

�ij =
T

1, if i = j,
0, otherwise.

Correspondingly, the inner product on H
< under this dual basis has the

coordinate representation of the form gij = Í i jÎ. By viewing g as a
matrix with gij being the (i, j)-entry, gij is simply the (i, j)-entry of the
inverse matrix of g. Allowing a little bit abuse of notations, we also use
g*1 to denote the metric tensor on the dual space H

<.

Theorem 1 (Moment Quantization). Given an ensemble system defined
on a separable Hilbert space H as in (2), the state x(t)Î satisfies the
decomposition,

x(t)Î =
…

i,jÀNd
gijmi(t) jÎ, (4)

where
�

 kÎ : k À Nd
�

is a basis of H and gij is the coordinate
representation of the inner product g*1 on H

< under the dual basis
�

 kÎ :
k À Nd

�

.

Proof. By the definitions of ensemble moments in (3) and the metric
tensor gij , the right hand side of (4) yields
…

i,jÀNd
gijmi(t) jÎ =

…

i,jÀNd
Í i jÎÍ ix(t)Î jÎ

=
…

i,jÀNd

�

 jÎÍ i
��

 jÎÍ i
�

x(t)Î.

The duality between the bases {Í k} and { kÎ} gives

 jÎÍ i =  jÎÍ i =
T

ÇP i , if i = j,
0, otherwise,

by using  iÎ =
≥

jÀNd gij  jÎ and Í i =
≥

jÀNd gijÍ j . We then arrive
at
…

i,jÀNd
gijmi(t) jÎ =

…

iÀNd
ÇP i x(t)Î = x(t)Î

as desired. ∏
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Theorem 1 reveals a decomposition of the state of an ensemble
system into a linear combination of countably many ‘‘pure states’’
( jÎ) under the moment representation. This is fundamentally different
from the classical quantum mechanical representation, in which pure
states are eigenfunctions of the system Hamiltonian. Here, the ensemble
moments mj and states  jÎ are analogous to the energy levels and pure
quantum states, respectively. Owing to this interpretation, we refer to
(4) as the moment quantization of the ensemble system in (2).

Note that when
�

 kÎ : k À Nd
�

forms an orthonormal basis of the
state-space H of the ensemble system in (2), then gij = �ij holds so that
the moment quantization in (4) is reduced to a spectral representation.
This further indicates explicit dependence of the moment quantization
on the choices of the basis of H. As a result, a generic question to
ask is how the ensemble moments, and correspondingly the moment
quantizations, change with respect to different bases of H. This simply
pertains to the question of change of coordinates in linear algebra.

Corollary 1 (Change of Moment Coordinates). Consider an ensemble
system defined on a separable Hilbert space H as in (2). Let

�

 kÎ :
k À Nd

�

and
�

õ kÎ : k À Nd
�

be two bases of H satisfying õ kÎ =
≥

iÀNd aik iÎ for some aik À R and all k À Nd , then the two respective
ensemble moment sequences m(t) and õm(t) associated with this system under
these two bases satisfy the relation

õmk(t) =
…

iÀNd
aikmi(t). (5)

Proof. Applying Íõ k to the moment quantization in (4) under the basis
�

 kÎ : k À Nd
�

gives

õmk(t) = Íõ kx(t)Î =
…

i,jÀNd
gijmi(t)Íõ l jÎ

=
…

i,jÀNd
gijmi(t)

…

lÀNd
alkÍ l jÎ

=
…

i,j,lÀNd
alkgijgljmi(t).

Because gij is the metric tensor on the dual space H< and is symmetric,
i.e., glj = gjl, we have

≥

jÀNd gijgkj =
≥

jÀNd gijgjk = �ik, which leads to
the desired conclusion, i.e., õmk(t) =

≥

iÀNd aikmi(t). ∏

It is worth noting that although the moment quantization of the
state x(t)Î depends on the metric tensor g*1 of H

<, the change of
moment coordinates formula in (5) is independent of both g and g*1.
This is due to the duality between H and H

<, which eliminates the
effect of g*1 by g on H, as shown in the proof of Corollary 1.

Moreover, this change of moment coordinates is dramatically dis-
tinct from the regular change of coordinates. This can be best illustrated
through the finite-dimensional analogy. For example, if the dimension
of H is n, then the relation õ kÎ = ≥n

i=1 aik iÎ means that the linear
transformation of H sending  kÎ to õ kÎ, for all k = 1,… , n, has the
matrix representation A, whose (i, j)-entry is aij . This follows that for
any state x(t)Î À H, its coordinate representations x(t) À Rn and
õx(t) À Rn under the two bases satisfy

x(t)Î =
n
…

i=1
xi(t) iÎ =

n
…

i=1
õxi(t)õ iÎ

=
n
…

i=1

⇠

õxi(t)
n
…

j=1
aji jÎ

⇡

=
n
…

j=1

⇠

n
…

i=1
ajiõxi(t)

⇡

 jÎ

so that

xj (t) =
n
…

i=1
ajiõxi(t)

for all j = 1,… , n, where xi(t) and õxi(t) are the i-entries of x(t) and õx(t),
respectively. Consequently, in the matrix form, x(t) and õx(t) satisfy the
contravariant relation, i.e., õx = A*1x. However, Corollary 1 indicates
that the moment sequences m(t) and õm(t) of x(t)Î under the two bases

follow the covariant relation, i.e., õm(t) = Am(t), which is exactly the rule
for the change of coordinates under a dual basis of H<. This relation
gives the interpretation of ensemble moments as elements in the dual
space H

< and sheds light on duality between ensemble and moment
systems to be discussed in the next section.

2.3. Moment representation of ensemble systems

The introduced notion of ensemble moments defined on a separable
Hilbert space and the developed moment quantization in Section 2.2
allow us to transform an ensemble system, e.g., the spin ensemble in
(1), to a system governed by the moment dynamics. To put this idea
into a general setting, let us consider the control-affine ensemble system
defined on a Hilbert space H of the form,

d
dt
x(t, �) = f (�, x(t, �)) +

r
…

i=1
ui(t)gi(�, x(t, �)), (6)

where the system parameter � takes values on a compact set K œ
Rd , x(t)Î := x(t, �) denotes the state, f and gi are vector fields
on H. The spin ensemble in (1) is in this control-affine form with
the drift, f (!, ",M(t,!, ")) = !⌦zM(t,!, "), and control vector fields,
g1(!, ",M(t,!, ")) = "⌦yM(t,!, ") and g2(!, ",M(t,!, ")) = "⌦xM
(t,!, ").

Now, let us consider a specific basis
�

 kÎ : k À Nd
�

of H

and denote the space of ensemble moment sequences associated with
elements in H by M. Then, we define the moment transformation L :
H ô M, which assigns each function xÎ À H a moment sequence
m À M by m(t) = Lx(t, �). Specifically, from Definition 1, the kth
component of m(t) is given by mk(t) = Í kx(t)Î. Note that the map L

is clearly well-defined as the zero state 0Î À H is mapped to the zero
sequence in M.

Lemma 1. The moment transformation L : H ô M is a vector space
isomorphism.

Proof. It is equivalent to proving that L is a bijective linear map. The
linearity and subjectivity of L directly follow from its definition. To
show the injectivity, we pick a state xÎ À H such that Lx = 0, which
gives Í kxÎ = 0 for all k À Nd . Therefore, xÎ is orthogonal to all
the basis elements, and hence must be 0Î. This concludes that L has a
trivial kernel, implying the injectivity. ∏

From Lemma 1, it is natural to equip M with the quotient topology
generated by L, under which M becomes a Banach space and L is a
diffeomorphism (Lee, 2012). Under this setting, the pushforward map,
equivalently the differential L< : TH ô TM between the tangent bun-
dles of H andM is a well-defined global diffeomorphism. This property
allows us to derive the moment system associated with a control-affine
ensemble system as in (6) by using the moment transformation, which
yields
d
dt
m(t) = d

dt
Lx(t, �) = L<

⇠ d
dt
x(t, �)

⇡

= L<

⇠

f (�, x(t, �)) +
r
…

i=1
ui(t)gi(�, x(t, �))

⇡

= (L<f )(m(t)) +
r
…

i=1
ui(t)(L<gi)(m(t)).

In this derivation, we used the definition and linearity of the pushfor-
ward map L< (Lee, 2012). Because L< is diffeomorphic, the induced
vector fields L<f and L<g are well-defined on M. Therefore, the de-
rived moment system, governing the dynamics of the ensemble moment
sequences, is well-defined on M and has an intimate relation to the
original ensemble system in (6).

Proposition 1 (Dynamic Moment Problem). Given the control-affine
ensemble system defined on a Hilbert space H as in (6), then
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(1) the associated moment system transformed by L is in the same
control-affine form defined on M, given by

d
dt
m(t) = Ñf (m(t)) +

r
…

i=1
ui(t) Ñgi(m(t)), (7)

where Ñf = L<f and Ñgi = L<gi for all i = 1,… ,m; and
(2) there is a one-to-one correspondence between the two control-affine

systems in (6) and (7).

Proof. The proof follows directly by the fact that L< is a diffeomor-
phism and the analysis presented above. ∏

This result reveals a duality between a control-affine ensemble
system on H and its moment system represented with the moment
coordinates. This equivalence paves the way for understanding and
controlling ensemble systems through their moment systems.

2.4. Moment-induced network structures for spin ensembles

The notion and technique of moment quantization developed in
Sections 2.2 and 2.3 provide a new angle to represent and visualize
spin ensembles. To illuminate this new prospect, we consider the case
in the absence of Larmor dispersion, i.e., ! is a constant, and put the
spin ensemble in (1) in a rotating frame with respect to !, that is,
d
dt
M(t, ") =

⌅

"u(t)⌦y + "v(t)⌦x
⇧

M(t, "), (8)

where M(t, ") denotes the bulk magnetization vector at time t with
M(0, ") = (0, 0, 1)® for all " À K = [1 * �, 1 + �], where 0 < � < 1,
and the matrices

⌦y =
b

f

f

d

0 0 *1
0 0 0
1 0 0

c

g

g

e

and ⌦x =
b

f

f

d

0 0 0
0 0 1
0 *1 0

c

g

g

e

.

Now, we consider the Hilbert space Hs = L2(K ,R3) = {f : K ô
R3 › ÒfÒ2 < ÿ} consisting of R3-valued L2-functions, in which ÒfÒ2 =
�

î
1+�
1*� f (")2d"

�1_2 with  �  : R3 ô R being the Euclidean norm on
R3. Because the spin ensemble in (8) evolves on a subspace of Hs,
we may construct the corresponding moment system with respect to
different choices of basis of H. Before giving explicit illustrations, we
define the inner product on H by Íf gÎ = î

1+�
1*� f

®(")g(")d" for any
f , g À L2(K ,R3), where f ®(") denotes the transpose of f (") À R3. In
particular, we will present three moment representations formed by
monomials, Legendre polynomials, and Chebyshev polynomials, which
have significant theoretical and computational implications.

2.4.1. Monomial-moment system of spin ensemble
Our first attempt is to define the ensemble moments in (3) using

monomials, which are consistent with classical ‘‘statistical moments’’.
In this case, we have the basis

�

 kÎ = "k : k À N
�

of H = L2(K ,R3),
and then the kth-ensemble moment of the spin system in (8) is given by

mk(t) = Í kM(t)Î =
 

1+�

1*�
"kM(t, ")d".

Taking the derivative of mk(t) with respect to t yields

d
dt
mk(t) =

d
dt  

1+�

1*�
"kM(t, ")d"

=
 

1+�

1*�
"k d
dt
M(t, ")d"

=
 

1+�

1*�
"k
⌅

"u(t)⌦y + "v(t)⌦x
⇧

M(t, ")d"

=
⌅

u(t)⌦y + v(t)⌦x
⇧

 

1+�

1*�
"k+1M(t, ")d"

=
⌅

u(t)⌦y + v(t)⌦x
⇧

mk+1(t); (9)

Fig. 1. Illustration of the network structure of the moment systems associated with
the Bloch ensemble in (8). (a) Bloch ensemble consisting of uncoupled spin systems
evolving on the unit sphere. (b) Unidirectional chain network structure of the monomial
moment system in (9). (c) Bidirectional chain network structure of the Legendre and
Chebyshev moment systems in (12) and (14), respectively.

or, equivalently, we can express this moment system in the tensorial
form,
d
dt
m(t) =

�

R‰
⌅

u(t)⌦y + v(t)⌦x
⇧�

m(t), (10)

where R denotes the right-shift operator and ‰ is the tensor product
of operators. Apparently and interestingly, under the standard basis of
the moment space M, that is, {ei : i À N} with ei the sequence having
1 in the ith component and 0 elsewhere, the system in (10) also admits
the matrix representation

d
dt

b

f

f

f

f

d

m0(t)
m1(t)
m2(t)
4

c

g

g

g

g

e

=
�

UR ‰
⌅

u(t)⌦y + v(t)⌦x
⇧�

b

f

f

f

f

d

m0(t)
m1(t)
m2(t)
4

c

g

g

g

g

e

,

where

UR =

b

f

f

f

f

d

0 1
0 1

0 7
7

c

g

g

g

g

e

is the matrix representation of the right shift operator R and ‰ the
Kronecker product of matrices.

As shown in Fig. 1(b), we observe that the involvement of the
right shift operator R in the moment system in (10) gives rise to a
chain-network structure, in which the dynamics of mk(t) depends on
its successor mk+1(t). More interestingly, this newly unveiled structure
reveals, on a conceptual level, the moment-induced quantum entangle-
ment for an uncountable ensemble of uncoupled spins transformed to
a moment space.

2.4.2. Legendre-moment system of spin ensemble
In addition to the canonical monomial basis, it is natural and

advantageous to use orthogonal bases, such as Legendre or Chebyshev
polynomials, in a Hilbert space.

Let Pk(") be the kth Legendre polynomial, defined by the recurrence
relation,

"Pk(") = ckPk+1(") + ck*1Pk*1(") (11)

with P0(") =
˘

1_2, P1(") =
˘

3_2", and ck = (k + 1)_
˘

(2k + 1)(2k + 3),
then

�

PkÎ : k À N
�

forms an orthogonal basis of H. The system
governing the dynamics of the Legendre-moments,

mk(t) = ÍPkM(t)Î =
 

1+�

1*�
Pk(")M(t, ")d",
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then follows

d
dt
mk(t) =

 

1+�

1*�
Pk(")

d
dt
M(t, ")d"

=
 

1+�

1*�
"Pk(")

⌅

u(t)⌦y + v(t)⌦x
⇧

M(t, ")d"

=
⌅

u(t)⌦y + v(t)⌦x
⇧

 

1+�

1*�

⌅

ckPk+1(")

+ ck*1Pk*1(")
⇧

M(t, ")d"

=
⌅

u(t)⌦y + v(t)⌦x
⇧�

ckmk+1(t) + ck*1mk*1(t)
�

, (12)

where we use the recurrence relation in (11) in the third equality.
Putting this system into a tensorial form gives

d
dt
m(t) =

�

R‰
⌅

u(t)⌦y + v(t)⌦z
⇧�

[
0

0
c

1

˝m(t)]

+
�

L‰
⌅

u(t)⌦y + v(t)⌦z
⇧�

[c˝m(t)], (13)

where c = (c0, c1,…)®, L is the left-shift operator, and ‘˝’ denotes
the Hadamard product, i.e., component-wise product, of matrices. In
addition, under the standard basis {ei : i À N} for M, we have the
matrix representation of the Legendre-moment system, given by

d
dt

b

f

f

f

f

f

d

m0(t)
m1(t)
m2(t)
m3(t)
4

c

g

g

g

g

g

e

=
H

b

f

f

f

f

f

d

0 c0 0 0
c0 0 c1 0
0 c1 0 c2
0 0 c2 0

7

c

g

g

g

g

g

e

‰
⌅

u(t)⌦y + v(t)⌦x
⇧

I

b

f

f

f

f

f

d

m0(t)
m1(t)
m2(t)
m3(t)
4

c

g

g

g

g

g

e

=
H

b

f

f

f

f

f

d

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

7

c

g

g

g

g

g

e

‰
⌅

u(t)⌦y + v(t)⌦x
⇧

I

b

f

f

f

f

f

d

0
c0m1(t)
c1m2(t)
c2m3(t)

4

c

g

g

g

g

g

e

+
H

b

f

f

f

f

f

d

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

7

c

g

g

g

g

g

e

‰
⌅

u(t)⌦y + v(t)⌦x
⇧

I

b

f

f

f

f

f

d

c0m0(t)
c1m1(t)
c2m2(t)
c3m3(t)

4

c

g

g

g

g

g

e

=
H

UR ‰
⌅

u(t)⌦y + v(t)⌦x
⇧

I

b

f

f

f

f

f

d

0
c0m1(t)
c1m2(t)
c2m3(t)

4

c

g

g

g

g

g

e

+
H

UL ‰
⌅

u(t)⌦y + v(t)⌦x
⇧

I

b

f

f

f

f

f

d

c0m0(t)
c1m1(t)
c2m2(t)
c3m3(t)

4

c

g

g

g

g

g

e

,

Similar to the monomial-moment system in (9), the Legendre-moment
system also preserves a chain-network structure. In particular, it is

a bidirectional chain-network, illustrated in Fig. 1(c), because the
Legendre-moment system in (12) or (13) is governed by both right- and
left-shift operators, so that the dynamics of each ensemble-moment is
determined by both of its predecessor and successor.

2.4.3. Chebyshev-moment system of spin ensemble
Chebyshev polynomials are another class of widely-used orthogonal

bases for Hilbert space. Here, we choose the set of Chebyshev polyno-
mials of the first kind, denoted Tk(✓), k À N, as the basis of H, and they
satisfy the recurrence relation,

Tk+1(✓) + Tk*1(✓) = 2✓Tk(✓)

with T0(✓) = 1 and T1(✓) = ✓. This is in fact equivalent to the recurrence
relation in (11) for the Legendre polynomials with cK = 1_2 for all
k À N. Similar to the derivations for the monomial- and Legendre-
moment systems, we immediately obtain the coordinate, tensorial, and
matrix representations of the Chebyshev-moment system, given by
d
dt
mk(t) =

1
2
⌅

u(t)⌦y + v(t)⌦z
⇧

(mk*1(t) + mk+1(t)), (14)

d
dt
m(t) =

�

(R + L)‰ 1
2
⌅

u(t)⌦y + v(t)⌦x
⇧�

m(t), (15)

and

d
dt

b

f

f

f

f

f

d

m0(t)
m1(t)
m2(t)
m3(t)
4

c

g

g

g

g

g

e

=
H

b

f

f

f

f

f

f

d

0 1
2 0 0

1
2 0 1

2 0
0 1

2 0 1
2

0 0 1
2 0

7

c

g

g

g

g

g

g

e

‰
⌅

u(t)⌦y + v(t)⌦x
⇧

I

b

f

f

f

f

f

d

m0(t)
m1(t)
m2(t)
m3(t)
4

c

g

g

g

g

g

e

= 1
2

H

(UR + UL)‰
⌅

u(t)⌦y + v(t)⌦x
⇧

I

b

f

f

f

f

f

d

m0(t)
m1(t)
m2(t)
m3(t)
4

c

g

g

g

g

g

e

,

respectively.

Remark 1 (Moment Space Induced by Hilbert Space Basis). It is also
crucial to note that a different choice of the basis of Hs may result
in a dramatically different moment space M. For example, the mo-
ment space under the monomial basis consists of infinite sequences
(m0,m1,…) satisfying the Carleman’s condition,

(n + 1)
n
…

k=0

⌧

0

n
k

1

�n*kmk
�2

f K ,

for some K independent of n and for all n À N, where �n*kmk =
≥n*k
i=0

�n*k
i

�

(*1)imk+i. This is a direct consequence of the Hausdorff
moment problem (Hausdorff, 1923). On the other hand, because the
sets of Legendre and Chebyshev polynomials are orthonormal with
respective to the L2-inner product, by the Pythagorean theorem, the
moment spaces induced by these bases are both l2, the space of
square-summable sequences.

3. Moment control of spin ensembles

The introduced notion of moment quantization and developed mo-
ment transformations offer a formal channel to control an ensemble
system through controlling its moment system. In this section, we will
leverage this equivalence to build a new moment-based ensemble con-
trol paradigm and to draw the parallel of the fundamental properties
between this pair of dual systems.
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3.1. Ensemble and moment controllability

Since the ensemble system as in (2) is infinite-dimensional defined
on the function space F (K ,M), it is proper to define the notion of
controllability, which we refer to as ensemble controllability, in the
approximate sense.

Definition 2 (Ensemble Controllability). The system in (2) is said to be
ensemble controllable on F (K ,M), if for any " > 0 and starting with any
initial profile x0 À F (K ,M), there exists a piecewise-constant control
law u(t) that steers the system into an "-neighborhood of a desired
target profile xF À F (K ,M) in a finite time T > 0, i.e., d(x(T , �), xF (�)) <
", where d : F (⌦,M)ùF (K ,M) ô R is a metric on F (⌦,M) (Li, Zhang,
& Tie, 2020).

When F (K ,M) is a Hilbert space, denoted H, which is the case of
particular interest in this paper, the norm Ò � Ò : H ô R induced
by the inner product Í��Î : H ù H ô R gives a metric on H as
Òf*gÒ =

˘

Íf * gf * gÎ. In the following, we will restrict our attention
to ensemble controllability defined in this way.

Definition 2 refers to the notion of ‘‘approximate controllability’’
for any control system defined on an infinite-dimensional function
space. Specifically, for the moment system defined on M derived in
Sections 2.3 and 2.4, we may regard the moment sequences as real-
valued functions defined on Nd . This, together with the isomorphic
property of the moment transformation described in Lemma 1, leads
to a nice equivalence of the controllability property between the two
systems.

Corollary 2. A control-affine ensemble system defined on a separable
Hilbert space H as in (6) is ensemble controllable if and only if the
associated moment system in (7) is approximately controllable on M.

Proof. The proof follows directly from the isomorphic property of the
moment transformation, which guarantees ÒmF * m(t)Ò = ÒLxF (�) *
Lx(t, �)Ò = ÒxF (�) * x(t, �)Ò for any desired final state xF À H of the
ensemble system in (6). ∏

Corollary 2 then provides the theoretical guarantee of controlling
ensemble systems through controlling the associated moment systems.

Remark 2 (Controllability-preserving Moment Quantization). Recall that
a moment system always consists of countably many dynamic compo-
nents, although the corresponding ensemble system contains a contin-
uum of (uncountably many) individual systems. Therefore, the moment
transformation gives rise to a controllability-preserving quantization
(or dimensionality reduction) of ensemble systems.

Computationally, the countable nature of moment systems defined
on H

< will greatly benefit and facilitate the ensemble control design
through the use of truncated moment systems. In particular, the design
based on such reduced finite-dimensional approximation systems will
result in a desired uniform performance across the entire ensemble.
This can also be understood by observing the kth moment representing
the ‘‘averaged ensemble dynamics’’ over the subspace spanned by  kÎ,
where

�

 iÎ : i À Nd
�

is the basis of the state space of the correspond-
ing ensemble system. This formal finite-dimensional approximation by
the truncated moment representations is of particular importance to
improve the design paradigm typically based on taking dense samples
of the systems in the ensemble, for which a uniform performance is
often not guaranteed (Zlotnik & Li, 2012). Therefore, the ensemble
control inputs designed based on the moment systems will exhibit
inherent persistence to the dispersion of system parameters. We will
illustrate this feature below using challenging pulse design problems in
nuclear magnetic resonance (NMR).

Remark 3. Conventionally, quantum ensemble systems are studied
by using the state-space model defined on an infinite-dimensional
function space as presented in (1). Extensive theoretical and numerical
methods, integrating ideas and tools from Lie algebras, functional
analysis, and algebraic and differential geometry, have been developed
to overcome the challenges in analysis and control design due to the
infinite-dimension and underactuated nature inherent in the system dy-
namics. The moment quantization method proposed in this work maps
the quantum ensemble system to a dynamically-equivalent moment
system, so that the quantum ensemble can be understood through the
well-defined finite-dimensional truncations of the moment system. This
approach shifts ensemble control to a new paradigm and opens the door
for quantum pulse design by utilizing any state-of-the-art methods for
finite-dimensional systems.

3.2. Pulse design for spin ensembles

Designing robust electromagnetic pulses to excite a large quantum
ensemble is an essential step to enabling numerous applications in the
domain of quantum control, including NMR spectroscopy and imaging,
quantum optics, and quantum information processing (Cory et al.,
1997; Dong & Petersen, 2010; Glaser et al., 1998). This long-standing
problem is challenged by typically imperfect excitation caused by inho-
mogeneities inherent in the system dynamics across the ensemble, such
as rf inhomogeneity and Larmor dispersion in NMR, so that sensitivity
in the experiments is significantly degraded (Li et al., 2011). In this
section, we will illuminate the design of uniform excitation pulses
essential to many aforementioned applications by using the moment
quantization technique.

3.2.1. Approximation of inverse moment quantization
In Section 2.3, we have illustrated that the moment quantization

transforms the Bloch ensemble in (8) to the moment systems in the form
of (10), (13), or (15) under different basis representations. This trans-
formation opens the door for conducting systems-theoretic analysis and
control design based on the truncated moment systems. To evaluate
how the analysis and design perform on the original ensemble system,
it is essential to construct and apply the inverse moment quantization.

To fix ideas, we define Pk : M ô Rk as the projection operator
projecting an element on M onto its first k components by Pkm(t) =
�

m0(t),… ,mk*1(t)
�

Å Çm(t), where Rk is considered as a vector subspace
of M by identifying

�

m0(t),… ,mk*1(t)
�

with the moment sequence
�

m0(t),… ,mk*1(t), 0, 0,…
�

. A truncated moment system with the trun-
cated moment sequence Çm(t) as the state variable can then be expressed
as
d
dt
Çm(t) = ÇR ‰

⌅

u(t)⌦y + v(t)⌦z
⇧

Çm(t), (16)

d
dt
Çm(t) = ÇR ‰

⌅

u(t)⌦y + v(t)⌦z
⇧

[
0

0
Çc

1

˝ Çm(t)]

+ ÇL ‰
⌅

u(t)⌦y + v(t)⌦z
⇧

[
0

Çc
0

1

˝ Çm(t)], (17)

d
dt
Çm(t) = 1

2 (
ÇR + ÇL)‰

⌅

u(t)⌦y + v(t)⌦z
⇧

Çm(t), (18)

with respect to the monomial, Legendre, and Chebyshev polynomials,
respectively, where Çc = (c0,… , ck*1)® À Rk with c defined in (13) and
ÇR, ÇL À Rkùk denote the upper-left kùk blocks of R and L, respectively.
In addition, we have Çm(t) ô m(t) as k ô ÿ, and hence, by Lemma 1,
L
*1 Çm(t) ô L

*1m(t) = M(t, �). This implies that given a desired final
state MF À Hs of the Bloch ensemble with the associated moment
sequence mF À M, a pulse (u(t), v(t))® steering the truncated moment
system to Çm(t) will drive the Bloch ensemble to a neighborhood ofMF ,
denoted Br(MF ), where the radius r of the neighborhood depends on
the truncation order.

To construct the inverse moment quantization, we partition the
parameter space K = [1 * �, 1 + �] by 1 * � = "0 < "2 < 5 < "N = 1 + �,
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Fig. 2. The uniform ⇡_2-pulse sequence (u(t), v(t))® designed in our previous
work (Zhang & Li, 2015) by using the techniques of small angle approximation and
non-harmonic Fourier series for the Bloch ensemble in (8) with 40% rf-inhomogeneity
(� = 0.4).

and approximate the moment sequence m(t) corresponding to the state
M(t, �) of the Bloch ensemble in (8) by using Riemann sum, i.e.,

mk(t) = Í kM(t)Î =
 ⌦

 k(")M(t, ")d"

=
N
…

i=1  

"i

"i*1
 k(")M(t, ")d"

˘
N
…

i=1
("i * "i*1) k("i)M(t, "i). (19)

Putting this approximation into a matrix form yields mk(t) ˘ ÇM(t) k,
where  k = [ ("1 * "0) k(�1) › 5 › ("N * "N*1) k("N ) ]® À RN and
ÇM(t) = [M(t, "1) › 5 › M(t, "N ) ] À R3ùN . Consequently, the truncated
moment sequence Çm(t) = Pkm(t) can be expressed as

Çm(t) =
⌅

m0(t) › m1(t) › 5 › mk*1(t)
⇧

˘
⌅ ÇM(t) 0 › ÇM(t) 1 › 5 › ÇM(t) k*1

⇧

= ÇM(t) , (20)

where  =
⌅

 0 ›  1 › 5 ›  k*1
⇧

À RNùk. The construction of the
inverse moment transformation then boils down to computing the
pseudoinverse  † of  .

We will use the truncated singular value decomposition (TSVD) to
compute  †, which regularizes the ill-posedness resulting from those
near-zero singular values of  . Specifically, we have  = U⌃V ®, where
⌃ À Rrùr with r f min{N , k} is the diagonal matrix consisting of the
non-zero singular values s1 g s2 g 5 g sr of  and U À RNùr and
V À Rkùr are the semi-orthogonal matrices satisfying U ®U = V ®V = Ir,
the rù r identity matrix. Then, from (20) we obtain the approximation
of the inverse moment quantization, given by

ÇM(t) ˘
N(⌘)
…

i=1

Çm(t)vi
si

u®i , (21)

where N(⌘) = min{i : s1_si < ⌘} is the number of singular values
determined by the chosen threshold ⌘, and ui and vi denote the left-
and right- singular vectors corresponding to si for i = 1,… ,N(⌘).

In the next section, we will illustrate the theoretical development
of the moment quantization from two alternative angels. On the one
hand, we will show that a uniform excitation pulse (u(t), v(t))® designed
with the Bloch model in (8) will be driving the associated moment
systems between the moment sequences corresponding to the ground
and excited states. On the other hand, we will reverse engineering
to design uniform pulses using the moment systems as in (10), (13),
and (15), and then verify the resulting control designs with the Bloch
ensemble in (8).

Fig. 3. Validation of the uniform ⇡_2-pulse shown in Fig. 2 by using the truncated
Legendre- and Chebyshev-moment systems in (17) and (18), respectively, with trunca-
tion order N = 9. (a) Component-wise l2-error, Ò Çmk(T ) * Ç⌘kÒ for k = 0,… ,N , between
the final and target states of the truncated Legendre-moment system. (b) Component-
wise l2-error, Ò Çmk(T ) * Ç⌘kÒ for k = 0,… ,N , between the final and target states of the
truncated Chebyshev-moment system.

3.2.2. Uniform excitation pulses
Here, we showcase the design of uniform excitation pulses in the

presence of rf-inhomogeneity. Specifically, we consider the spin ensem-
ble following the Bloch system as in (8) with 40% variation, i.e., " À
K = [1 * �, 1 + �] = [0.6, 1.4]. The goal is to design open-loop control
fields, (u(t), v(t))® such that the ensemble is steered from the equilibrium
state M0(") = M(0, ") = (0, 0, 1)® to the excited state MF (") = (1, 0, 0)®
at a prescribed time T > 0. Methods for broadband and uniform
pulse design have been extensively proposed (see Li et al., 2011 and
the references therein). Here, we specifically illustrate how such a
challenging ensemble control design task can be eased by translating
it to the domain of moment space.

In our previous work (Zhang & Li, 2015), we presented a construc-
tive approach based on systematic synthesis of non-harmonic Fourier
series that generate the desired evolution (i.e., a sequence of rotations)
fromM0(") toMF ("). As a validation of moment quantization, we apply
a uniform ⇡_2-pulse designed using this method, shown in Fig. 2, to
the truncated moment systems induced by the Legendre polynomial
and Chebyshev polynomial bases in (13) and (15), respectively, and
evaluate whether this pulse will steer these moment systems between
the truncated moment sequences, Çm(0) and Ç⌘, corresponding to M0(")
and MF ("), respectively. Fig. 3 shows the resulting l2-error, i.e., Ò Ç⌘k *
Çmk(T )Ò, k = 0,… ,N , between the desired and final moments following
the designed pulse, where Ç⌘ = ( Ç⌘0,… , Ç⌘N )® denotes the truncated
moment sequence of order N corresponding to MF ("). These results
numerically validate the equivalence between controlling the Bloch
ensemble and its moment systems.

Alternatively, as a two-fold validation, we design uniform excitation
pulses using these truncated moment systems. In particular, we will
design controls to steer these systems between the moment sequences
⇠ and ⌘ corresponding to the equilibrium M0(") and the excited state
MF ("), respectively. To illustrate the main idea, we use the Chebyshev
moment system in (15). The control design task can be formulated as
the following optimal control problem,

min
u(t),v(t)

Ò⌘ * m(T )Ò

s.t. Üm(t) =
�

(R + L)‰ 1
2
⌅

u(t)⌦y + v(t)⌦x
⇧�

m(t). (22)

Various computational methods can be utilized to solve for this opti-
mal control problem, such as gradient-based methods (Khaneja et al.,
2004, 2005), pseudospectral methods (Li et al., 2009, 2011; Phelps
et al., 2016), and iterative algorithms (Vu & Zeng, 2020; Wang &
Li, 2017, 2018). Here, we synthesize a direct method by discretizing
this continuous-time problem in the time domain with the partition
0 = t0 < t1 < 5 < tn = T and approximate the dynamics of the
truncated Chebyshev moment system of order N as in (18) by Euler
discretization, that is,

Çm(tk) = Çm(tk*1) + (tk * tk*1)



Annual Reviews in Control 54 (2022) 305–313

312

J.-S. Li et al.

Fig. 4. Optimal control of the truncated Legendre- and Chebyshev-moment systems
in (17) and (18), respectively, with the truncation order N = 7. (a) Component-wise
l2-error, Ò Ç⌘k* Çmk(T )Ò for k = 0,… ,N , between the final and target states (top), and the
final ensemble state ( ÇMx(T , "), ÇMy(T , "), ÇMz(T , "))® (bottom) obtained by the application
of the inverse moment transformation to the final state Çm(T ) of the truncated Legendre-
moment system. (b) Component-wise l2-error, Ò Ç⌘k* Çmk(T )Ò for k = 0,… ,N , between the
final and target states (top), and the final ensemble state ( ÇMx(T , "), ÇMy(T , "), ÇMz(T , "))®
(bottom) obtained by the application of the inverse moment transformation to the final
state Çm(T ) of the truncated Chebyshev-moment system.

�
�

( ÇR + ÇL)‰ 1
2
⌅

uk⌦y + vk⌦x
⇧�

m(tk*1)

=
$

I + (tk * tk*1)

�
�

( ÇR + ÇL)‰ 1
2
⌅

uk⌦y + vk⌦x
⇧�

%

m(tk*1), (23)

where uk = u(tk), vk = v(tk), and k = 1,… , n. Note that the difference
equation in (23) represents a discrete-time linear system with the
system matrix ⌦(uk, vk) =

�

I+(tk*tk*1)
�

( ÇR+ ÇL)‰ 1
2
⌅

u(tk)⌦y+v(tk)⌦x
⇧��

,
and hence the final state can be concretely calculated as

Çm(tn) = ⌦(un, vn)5⌦(u1, v1) Çm(t0) =
1
«

k=n
⌦(uk, vk) Ç⇠,

where Ç⇠ = ( Ç⇠0,… , Ç⇠N )® is the order N truncation of the initial moment
sequence ⇠. This yields an approximation of the continuous-time op-
timal control problem in (22) by a discrete unconstrained nonlinear
program,

min
uk ,vk

Ù

Ù

Ù

Ç⌘ *
1
«

k=n
⌦(uk, vk) Ç⇠

Ù

Ù

Ù

. (24)

We designed a uniform ⇡_2-pulse using the optimization formula-
tion presented in (24). Fig. 4 shows the l2-error, Ò Ç⌘k* Çmk(T )Ò, for each
k = 0,… ,N , and the corresponding final states ÇM(T ) of the Bloch
ensemble obtained by applying the inverse moment transformation
in (21) to the truncated moment sequence at time T , i.e., Çm(T ) =
( Çm0(T ),… , ÇmN (T )). In these cases, we took the truncation order N = 7
and the pulse duration T = 15 with uniform discretization of size
n = 1500, i.e., ti * ti*1 = 0.01 for all i = 1,… , n, for both the Legendre-
and Chebyshev-moment systems. Fig. 5 shows the designed ⇡_2 pulses
using both the truncated Legendre and Chebyshev moment systems of
order N = 7, as well as the trajectories and final states of the spin
ensemble excited by these pulses. Specifically, the performance of both
pulses, which is defined as the averaged x-component,Mx(T , "), at time
T over " À [0.6, 1.4], is 0.9999.

4. Conclusion

In this paper, we propose a moment-based framework for quantiza-
tion of quantum ensemble systems defined on a separable Hilbert space.
The underlying idea is to project the dynamics of a quantum ensemble
onto the subspace spanned by each basis element of the state-space
of the ensemble system. The moment quantization induces a moment
system, which is equipped with a distinctive network structure and

Fig. 5. Uniform ⇡_2-excitation pulse designed by using the Legendre- and the
Chebyshev-moment system. (a) Spin ensemble trajectories (top-left) and the final states
( ÇMx(T , "), ÇMy(T , "), ÇMz(T , "))® (top-right) following the uniform ⇡_2-pulse (u(t), v(t))®
(bottom) designed by using the Legendre-moment system in (17). (b) Spin ensemble tra-
jectories (top-left) and the final states ( ÇMx(T , "), ÇMy(T , "), ÇMz(T , "))® (top-right) following
the uniform ⇡_2-pulse (u(t), v(t))® (bottom) designed by using the Chebyshev-moment
system in (18).

dynamically equivalent to the original quantum ensemble system. We
show that the control of a quantum ensemble system can be achieved
by the control of its moment system and demonstrate this through
pulse design in NMR spectroscopy and imaging. In particular, we design
⇡_2-pulses robust to rf-inhomogeneity based on different representa-
tions of moment systems under the bases of Legendre and Chebyshev
polynomials, which yield high fidelity across the entire ensemble. The
presented notion and method of moment quantization promises a new
perspective and direction towards a holistic understanding of quantum
ensemble systems and enriches the repertoire of analytical and design
tools in advancing quantum control theory. To date, open-loop control
strategies have been the focus in ensemble control. The moment-based
framework enables the application of aggregated feedback, which can
be synthesized using population-level measurements, to close the loop
in ensemble systems. Ideas and tools from robust control theory will
play an important role in filling this gap and taking the next step
towards advancing a complete theory of ensemble control.
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