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In this paper, we revisit the original least squares formulation of the ensemble control problem. Based
on new considerations, we are able to resolve the longstanding problem of formulating general, and
easily verifiable conditions for an ensemble to be controllable in the least-squares sense. The key is to
take a purely operator theoretic approach from the very beginning, i.e. to study the ensemble control
problem by virtue of the associated Fredholm integral equation. By establishing a direct connection
to a recently introduced moment-based approach, the theoretical question of least-squares ensemble
controllability is eventually settled. In the second part, we take the very same integral operator
theoretic approach to consider the equally longstanding problem of synthesizing inputs that realize
a desired steering between two ensemble states. By means of a suitable discretization of the integral
operator, we obtain a computational procedure to synthesize control signals that steer ensembles in
both a robust and minimum energy fashion. This yields a unified framework for the ensemble control
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1. Introduction

The strikingly intriguing problem of coordinating an ensemble
of nearly identical systems by merely exerting a common control
signal to all systems in the ensemble, known as the ensemble
control problem, has generated considerable attention in recent
years. This prototype problem, formulated here in rather pure
systems-theoretic terms, in fact quite naturally arises in numer-
ous application domains ranging from quantum physics [1-3]
and cell biology and cancer treatment [4-6] to problems related
to human engineered systems [5,7-9], such as the control of
particle processes or robotic swarms. The reason for the premise
of applying a broadcast input on all systems in the ensemble
simply stems from the fact that once the number of systems in
the ensemble to be considered reaches a certain size, e.g., on the
order of Avogadro’s constant, say 1023, the idea of being able to
address individual systems in an individual manner becomes less
and less applicable.

After this general phenomenon has been first formulated in
purely systems theoretic terms about a decade ago, it has been
the subject of extensive studies with different systems theoretic
approaches. Starting with the work in [10,11] for the study of
linear and bilinear ensemble systems, it slowly became apparent
that one of the central objectives in the newly established field
of ensemble control would involve establishing systems-theoretic
descriptions for ensemble controllability [10-22]. In parallel to
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the purely theoretical investigations of ensemble controllability
conditions, the development of tractable computational methods
for computing the actual steering signals [23-28] needed in prac-
tical problems was recognized to be an equally important and
challenging problem.

The first approach to theoretical investigation of ensemble
controllability of linear ensemble systems was in a functional an-
alytic setting [ 10]. However, the characterization was formulated
in terms of a singular value expansion, which was not able to
yield a desirable characterization for ensemble controllability in
terms of the system matrices. At the same time, the problem
of constructing control signals to steer linear ensembles from
one state (configuration) to another in a practically acceptable
manner turned out to be particularly challenging with this ap-
proach as well, as the control synthesis problem is severely
ill-conditioned [29]. This may intuitively explained by virtue
of the whole ensemble system being highly underactuated. In
following years, another line of attack for resolving parts of the
issues was being developed. In this approach, it was found that a
discretization of the input signal by means of a zero-order hold
strategy would translate the ensemble control problem into a
polynomial approximation problem. By leveraging this connec-
tion to approximation theory, input signals for steering ensemble
systems between ensemble states of interest can be designed
using pseudospectral methods, by which an optimal ensem-
ble control problem is mapped to a discrete nonlinear program
through approximating the state and control functions using in-
terpolating polynomials [23,30-32], and a polynomial expansion
approach [25]. Most recently, a moment-based approach was
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introduced in [16], shedding some new light on the systematic
analysis of controllability and optimal input signal design for
linear ensemble systems in the least squares sense.

In this paper, we build upon insights from [16] and establish
for the most basic class of ensembles
%x(t, 0) = 6Ax(t, 0) + Bu(t), 0 € [a, b], (1)
the long sought after simple reading sufficient condition for least
squares ensemble controllability. Within this class, our results
are general enough to encompass all the considered cases of
controllable ensembles that have been studied so far using other
methods. Furthermore, based on the same circle of ideas, we
provide a general computational framework that encompasses
several different practical problem types arising in the compu-
tational ensemble control problem for linear systems. The scope
of the computational framework applies to the larger class of
ensembles of the form

%x(t, 0) = A(0)x(t, 0) + B(O)u(t),
In this sense, the framework proposed in this paper may be
described as both coherent and general.

Essentially, the key idea underlying the approach advocated
in this paper stems from the realization to finally accept the fact
that studying this problem from a truly dynamic and systems
theoretic perspective might be futile. This is in parts owed to the
fact that any dynamic descriptions of an ensemble, e.g. in terms
of moments do not close, etc.

Thus, we will consequently focus our entire attention to the
original starting point of the ensemble control problem, which is
given by the equation

0 € [a, b].

;
x(T, 0) = " Oxy(0) + / AOT=0Bg (L) dt.
0

Assuming the very relevant case that xo(6) = 0 for all 8 € [a, b],
we arrive at the simpler reading expression

T
x(T,0) = / AOT=Dpgy(t) dt. (2)
0

This is a Fredholm integral equation (see e.g., [33-36]), in which
we seek for an input signal t — u(t) so that the integral on the
right-hand side over the time variable yields the desired terminal
configuration, which is a function of the second variable 6 that
appears in the equation. The function K(t,0) = eA?T-0B(9) is
the kernel of the integral.

We may regard this relation in a more operator theoretic
fashion by introducing the operator

Rr : L([0, T, R™) — L*([a, b], R"),
which maps the signal u(-) to Ryu € L*([a, b], R"), given by

T
(Rru)(0) = / SAOT=OB(t) dt.
0

While there are a number of theoretical results regarding
Fredholm integral equations, none of those available are construc-
tive in the sense that they provide analytical solutions, with the
exception of very special kernels. Thus, the (numerical) solution
of Fredholm integral equations continues to draw great interest
in different scientific communities.

Based on this circumstance, and the fact that all the other ap-
proaches so far have not led to comprehensive, and encompassing
solutions (theoretically and computationally), in this paper we
make (2) our starting point for both theoretical and computa-
tional considerations. As it turns out, this approach will also serve
as an inherent link between the theoretical and the computa-
tional results, thereby yielding a coherent and general framework
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for ensemble control. In summary, the main contributions of this
paper are the establishment of a general coherent framework that
provides a complete and unified solution for both the theoretical
[*-ensemble controllability problem and the practical problem of
synthesizing actual control inputs that solve a given ensemble
steering task.

2. Review of L2-ensemble controllability and moment-contro-
llability with respect to monomials

The starting point for our theoretical investigation in the first
part of the paper is the following definition of L>-ensemble con-
trollability of a linear ensemble system [10].

Definition 1 (L?>-Ensemble Controllability). A linear ensemble

%x(t, 0) = 0Ax(t, 9) + Bu(t),
is said to be L?-ensemble controllable if for any two configurations
Xo(+), x7(-) € [*([a, b], R™), all T > 0 and all € > O there exists a
measurable input u : [0, T] — R™ that steers the ensemble from
the initial configuration xo(-) at t = 0 to a terminal configuration
X(T, ) with ||X(T, ) — xf(')”Lz([a,b],lR”) < €.

Despite extensive decade-long efforts to obtain practically ver-
ifiable characterizations of L?>-ensemble controllability of linear
ensembles, previously established characterizations are some-
what specialized and disparate, leaving the search for a more
general and coherent framework for characterizing L?-ensemble
controllability open. A promising recent approach has been estab-
lished through the consideration of the evolution of the moments
of an ensemble given by

6 € [a, b],

b
EP(T,u):/ OPx(T,0)do,

with p € Ny, which has provided (necessary) conditions for
[2-ensemble controllability that are formulated in terms of struc-
tural considerations of the matrices A and B and furthermore al-
low for a graphical interpretation of the moment dynamics [16].
The idea of the moment-based approach to ensemble control-
lability first introduced in [16] was to consider the problem of
controlling the moments of an ensemble as a proxy to controlling
the ensemble’s actual state. In more detail, a linear ensemble of
the form
%x(t, 0) = 6Ax(t, 6) + Bu(t), 0 € [a, b],
would be considered moment-controllable if for any sequence
of real numbers, there exists an input signal u that steers the
sequence of moments &, = fab 0Px(T, 0)d6 arbitrarily close to
the desired sequence of moments matching the sequence of
moments of a desired terminal ensemble state; see also [37] for
a related but slightly different idea of “ensemble controllability
in momenta”. By considering the dynamics of the moments via
differentiating the pth order moment &,, it was found that for the
system in (1), one has

d d b b
ag,,(t): E/ 0”x(t,0)d0=/ OPT1AX(t, @) + 6PBu(t)do
a

a

b
= A&y (1) + (/ 6P de) Bu(t).

The moment dynamics of the linear ensemble is thus

&o 0 A0 0 -\ (% toB
da|é& 00 A 0 - |[& 1B
al&el=lo 0o o0 a ]|t |ws|® ()
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with the initial state £,(0) = fab 0Px0(0)d6. With a temporary
additional technical assumption that [a, b] C [—1, 1], which will
be lifted in the remainder of the paper through a result show-
ing invariance of [>-ensemble controllability under linear scal-
ings of the parameter interval, it can be shown that the ensem-
ble moments (&)pen, €volve in the space of square-summable
sequences.

Lemma 2. Let 0 < M < 1 and consider some function g €
L*([—M, M1, R). Then the sequence (& )ren, defined by

&= [ osorw
[-M,M]
is square-summable.
Proof. By Holder's inequality (with p = q = 2), one has

/ 07g(0)do
[-M,M]

Thus

< 16" 1I2lig -

b b
;:3=(/ efg(e)cw) snefn%ngu%:ngn%(/ 92rd9>
a a

5 M2r+1
=2 .
||g||2<2r+1)

From the assumption 0 < M < 1, it can be directly concluded
(from, say, a ratio test for the convergence of a series) that
Y22 < oc. In other words (& )ren, € €2. O

2

Furthermore, the result that allows us to merely focus our
theoretical studies to the case that [—-M, M] C [—1, 1] without
any loss of generality is as follows.

Proposition 3. An ensemble of the form
ad
5x(t, 0) = 0Ax(t, 0) + Bu(t),

that is L*-ensemble controllable for 6 < [a, b] is also L*-ensemble
controllable for 6 € [aR, bR] for all R > 0.

This result illustrates that it is essential for the ensemble
controllability analysis whether or not the origin is an interior
point of the parameter interval [a, b], which is also the motivation
for the two main theorems of the paper, Theorems 8 and 9.

Proof. A more technical formulation of the statement of the
proposition is as follows. Consider two structurally identical lin-
ear ensemble systems of the form

%x(t, 0) = OAx(t,0) + Bu(t), 6 € [a, b, (4)

%i(t, 6) = 0AX(t,0) + Bi(t), 6 € [a/R, b/R), (5)

that differ only in a scaling of the parameter interval with a
scaling factor R > 0. Given a steering i* : [0, T] — R™ of the
scaled ensemble system (5) between Xo(-) € L*([a/R, b/R], R")
and % (-) € [*([a/R, b/R], R"), the modified input

u*:[0,T/R] > R™
t — u*(t) = Ru*(Rt)

results in the steering of (4) between 6 — x(6) = &0(%) and
0 — x:(0) = fcf(%) within the parameter interval 6 € [a, b]. As
a result, [?>-ensemble controllability of linear ensemble systems
of the form (%x(t, 0) = 0Ax(t,0) + Bu(t), 6 € [a, b] is invariant
under linear scalings of the parameter interval.
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To prove this result, we proceed as follows. The input * :
[0,T] — R™ steers the scaled ensemble system (5) between
Xo(-) € [*([a/R, b/R], R") and %(-) € L*([a/R, b/R], R"), i.e.,

-~ ~ T -~
Xp(0) ~ X(T,0) = e"T%y(0) + f ePAT=DBI*(t) dt.
0

We need to show that by applying u* : [0,L] - R™, t
u*(t) = Ru*(Rt) to (4) with initial state 8 — xo(0) = io(%) will
result in the final ensemble state

_ (0 . (0 T N
0 > x¢(0) = X | - ~ effTxy ( ~ +/ eRAT-OBi*(£) dt.
R R 0
We have

T R B
x(f,e) — /A% x0(0) +/ eeA(%’”BRu*(Rt)dt
R —— 0

)
0ar~ (O Ty ~
= eRATxo(R) +/ erT=1Bi* (1) dr,

0

-

where we have used the substitution 7 := Rt in the integration. O

Thus, within the context of studying L*>-ensemble controlla-
bility of the original ensemble, we can assume without loss of
generality that the parameter interval [a, b] is scaled so that
[a, b] C [—1, 1] and consider the definition of the operators

2: (R — (R,
3:R™ — (3(R"),

X =(X1,X2,...) > (Axp, Ax3, ...)
u+— (uoBu, uqBu, ...).

We can now rewrite (3) as an infinite-dimensional linear system

X(t) = a&(t) + su(t) (6)

defined on the state space £?(R").

By leveraging classical results from infinite-dimensional lin-
ear systems theory [38], the moment system is approximately
controllable if and only if

span;.o(a“3)(R™) = £,
or, equivalently, if all row truncations of the “infinite Kalman
matrix” (8, a8, 2*3, ...) given by

moB  wiAB  A’B

wiB  u2AB nsA’B

K™ = , (7)

umB  pumi1AB  pms2A’B

contain columns which span R™+1, We can summarize our
foregoing discussions and findings as follows.

Definition 4 (Moment-Controllability with Respect to Monomials).
A linear ensemble

%x(t, 0) = 0Ax(t,0)+ Bu(t), O €la,b] C[-1,1]

is said to be moment-controllable with respect to monomials if
the dynamics of the monomial moments &,(t, u) = fab OPx(t, 0)do
given by

§o 0 A0 O & toB
d & 00 A 0 -||& 1B
al&]l~]0 0 0 A T | 1B |%
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evolving in £?(R") is approximately controllable, or, equivalently,
if for all M € Ny the column-infinite “matrices”

woB  w1AB n2A’B

wiB  u2AB w3A’B
K™ =

umB  um41AB  pvi2A’B
contain columns that span the whole ambient space.

The latter test has already been leveraged in [16] to establish
valuable new insights regarding (necessary) conditions on -
ensemble controllability of the original ensemble system given in
terms of the matrices A and B. The equivalence between moment-
controllability with respect to monomials and L?>-ensemble con-
trollability was also already conjectured then, but not fully estab-
lished.

3. Moment-controllability with respect to Legendre polyno-
mials

The approach of considering ensemble moments with respect
to monomials is very favorable in terms of the resulting simple
structure found in the moment dynamics, as well as the resulting
favorable test for controllability of the moment dynamics via the
matrices A and B of the original ensemble %x(t, 0) = 0Ax(t,0)+
Bu(t), 6 € [a, b]. The exact connection between controllability of
the monomial moment dynamics and the most established no-
tion of L?-ensemble controllability is, however, not immediately
clear. If we instead focus on moments with respect to Legendre
polynomials (see e.g., [33-36]), denoted by P,, i.e.,

b
np(T, u):f Py(0)x(T, 0)d6,

the connection to L*-ensemble controllability is immediately
clear. This consideration of the modified moments involving
the Legendre polynomials is essentially the key to arrive at
[?-ensemble controllability results due to the following basic
Hilbert space argument. Given Legendre polynomials P, : [a, b] —
R (recentered on [a, b] and normalized), it is straightforward to
define the (vector-valued) Legendre polynomials via

P\ /O 0
ol [p, 0
0 0 0
0 0 P,

peNg

These form an orthonormal basis for L([a, b], R"). Expanding the
ensemble state x(t, -) in this vector-valued Legendre orthonormal
basis, we have

P\ (P 0 0
oo
xt)=) <x(t,~), : > : +-~~+<x(t,-), ; > AlE
p=0
0 0 Py Py
which can be reformulated into the more compact form

[2x:(¢, 0)Py(0) do

00 ot b
Xt )=y P=Y (/ Po(6)X(t, 9)d9) Py.
p=0| , p=0 "1
2 %, 0)P,(0) d6 e

Systems & Control Letters 168 (2022) 105350

Now, due to the expansion in an orthonormal basis, we have
Parseval’s identity
2 2

(o] Pp
1xCt, M 2(a.by.m) = Z<x(t, DN I > 4. .+<x(t, NN > ,
p=0 0 P,
i.e., the norm of the original function x(t, -) is equal to the norm
of its Fourier coefficients resulting from an expansion in an or-

thonormal basis. Now we can rewrite
2 2

PP
le(tv J”é([a,b],R”):Z <X(t’ ')’ > +---+ <X(t, ')7 >

p=0
0 P,

I
Nk

b
(/ x1(t, O)P,(6) d6)?

Il
o

p
b
4ot (/ xn(t, 0)Py(0)d6)>?

[ x(t, 0)P,(0)do

I
Nk

=
Il
o

[2 xa(t, 0)P,(0) dO

[
Nk

ot W2 = It w12 -

=
Il
o

In particular, this shows that the Legendre moment sequence
n(t, u) is square-summable. In a similar manner, again using
Parseval’s identity, we can also assert that

Ix(T, ) — X;”LZ([q,b],[Rn) = |In(T,u) - TI*HZZ(R")’ (8)

i.e., the [?-norm of the difference between the actual configura-
tion x(T, -) and the target configuration x7 is equal to the £%-norm
of the difference of the corresponding Fourier coefficients viewed
as a sequence of vectors in R". Based on this insight, we can thus
shift our attention to controlling the Fourier coefficients (7} )pen,.
as steering the Fourier coefficients of an ensemble state close to
the Fourier coefficients of the target state results in steering the
ensemble state close to the target state by virtue of (8).

The major difficulty we face when working with moments
with respect to Legendre polynomials is the less obvious structure
of the Legendre moment dynamics in contrast to the structure of
the monomial moment dynamics, which has been very favorable.
The main result we will establish in the course of our analysis
will be an equivalence of [2-ensemble controllability, moment
controllability with respect to monomials, and moment controlla-
bility with respect to Legendre polynomials, as well as some more
concrete tests based on A and B of the ensemble system.

4. Equivalence of the introduced ensemble controllability no-
tions

In the remainder, we will set xo(-) = O for a simpler presen-

tation. In doing so, there is no loss of generality because steering
an ensemble from a non-zero initial configuration

T
X(T,0) = e"Txo(0) + / e?AT-OBy(t) dt.
0

can be easily seen to be the steering of xy(-) = O to the terminal
configuration 8 — x(T, 6) — e?ATxy(6) by virtue of

;
X(T, 6) — e"Txo(0) = / ePAT=OBy(t) dt.
0
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We first observe that by considering the derivation
(T, u) / oP /
(o]
= [ o / pad
[7]x
00 b T k
T—t
_ Z(/ gl d@)A"B(/ r—t u(t)dt).
—\Ja 0 k!

and associating to the series expansion of &,(T, u) in (9) the
“infinite row”

Ky = (11pB  1pr1AB  ppi2A’B ..,

where u, = fﬂb 6P do, we directly recover the reachable set of
the pth order moment of the ensemble configuration in terms
of the range space of K. Stacking all moments up to degree M
we find that associated to the expansion of the stacked vector of
&o(T), ..., Em(T) yields nothing but the “column-infinite Kalman
matrix” (7). This integral-based derivation (in contrast to the
derivation based on the differential viewpoint), allows us to ob-
tain the “infinite Kalman matrix” of the dynamics of the moments
with respect to Legendre polynomials without having to first find
the operators 4, : €*(R") — (?(R") and 3, : R™ — ¢*(R") of
7 = 4,n+B,u and then having to form K, = (3,, 4,3,, ﬂ,%aa,,, co

Indeed, analogously to the foregoing derivation for the mono-
mial moments, in the case of Legendre moments we have

b T
np(T, u) = / P,(6) / ePAT=0By(t)dt do
a

:/abpp(e)/ Ze"
—Z(/ ekde)A"B(/o %u(t)dt)-

With the definition

AT=OBy(t)dt do

kBu(t) dedo 9)

A"B (t)dt do

b
Vpk = / P,(6)0% d6. (10)
a

and the stacking of no(T), ..., nu(T), we immediately obtain the
truncated “infinite Kalman matrix” K,

1)0103 VOJAB VOyzAzB
vioB  vi1AB v ,A%B

KM = , (11)
vmoB  vm1AB vy 2A’B

without having had to go through the more tedious route in
the dynamic approach. This immediately yields the test for con-
trollability of the Legendre moment dynamics in terms of the
columns of each truncation K,(,M) with M € Ny to span RM+1),
With the two purely algebraic tests for checking the controlla-
bility of the dynamics of both monomial moments and Legendre
moments, it is now possible to show the equivalence of the two
moment-controllability notions by algebraically manipulations of
the truncated Kalman matrices.

Definition 5 (Moment-Controllability with Respect to Legendre
Polynomials). A linear ensemble

x(t,0) = OAX(t, 0) + Bu(t), 6 € [a, b]

ot
is said to be moment-controllable with respect to Legendre poly-
nomials if the dynamics of the Legendre moments n,(t,u) =
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fab Py(0)x(t, 8)d6, with (P,)pen, forming an orthonormal basis for
L?([a, b], R™), evolving in £2(R") is approximately controllable, or,
equivalently, if for all M € Ny the column-infinite “matrices”

Vo,oB V0. ]AB UoizAzB
Ul’oB UL]AB V1,2AZB
KM =
n B
UM,OB l)Mq 1AB \)MﬁzAzB

contain columns that span the whole ambient space.
With the Hilbert space argument in the previous section, in
particular (8), we have the following result.

Theorem 6. A linear ensemble

%x(t, 0) = 0Ax(t, 0) + Bu(t),

is [>-ensemble controllable if and only if it is moment-controllable
with respect to Legendre polynomials.

0 € [a, b]

In the following we reveal how the study of the more general
Kalman matrix involving different v, can be in fact simply re-
duced to the simpler case involving the simpler Kalman matrix for
moment-controllability with respect to monomials. By perform-
ing purely linear algebraic manipulations on the row truncations
of the “infinite Kalman matrix” of the Legendre moment dynam-
ics, we show that for all M € Ny, the column spaces are the same
for K™ associated with monomial moments and K™ associated
with Legendre moments. This shows the equivalence between the
two moment-controllability notions, and as a result an equiva-
lence of I2-ensemble controllability and moment-controllability
with respect to monomials, which has not been obvious before.

Theorem 7. Consider a linear ensemble of the form

a

—tx(t, 0) = 0Ax(t,0)+ Bu(t), 6O €[a,b]C[-1,1].

The ensemble is L*>-ensemble controllable if and only if it is moment-
controllable with respect to monomials.

Proof. The equivalence between [%-ensemble controllability and
moment-controllability with respect to Legendre polynomials P,
is clear by virtue of the aforementioned standard inner product
space argument. We will now show that moment-controllability
with respect to Legendre polynomials is in fact equivalent to
moment-controllability with respect to monomials, which admits
a more favorable structure for the associated Kalman matrices.
First, we recall that a linear ensemble of the form —x(t 0) =
OAx(t, 0)+Bu(t) is moment-controllable with respect to Legendre
polynomials if for any 7ng,...,ny € R", where M is arbitrary
fixed, the equation

No UO’()B Uo,]AB U042AZB flo
m U]v()B UL]AB l)l.zAzB fl]
nm UMq()B vy 1AB l)M,zAzB

admits a solution (i )ken,. The solvability of this equation can be
analyzed by purely algebraic means, i.e., by studying the above
row rank of the column-infinite (but row-finite) Kalman matrix.
Recalling the definition v, x = f Py( 6)6% d9 and writing P p(0) =
Za:o ay0¢ for the (orthogonal) polynomlals introduced in view
of an L?-based analysis, we can conclude that

b b P p
ic= [ Powas = [ a0 = 3 anan.
a ¢ d=0 d=0
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i.e., the occurring factors in the above Kalman matrix can be writ-
ten as linear combinations of the factors uy from the moment-
controllability analysis. More specifically, we note that vg , =
for all k € N, i.e. the first row of the above Kalman matrix exactly
admits the factors wo, @1, 12, ....

Given this particular special structure of the Kalman matrix
for moment-controllability with respect to Legendre polynomials,
one can verify (in a rather elementary exercise) that by applying
suitable (block) row manipulations (that involve the coefficients
aq), the study of the row rank of the matrix in (11) can be
directly boiled down to the study of the Kalman matrix (7) for
moment-controllability with respect to monomials. This shows
the claimed equivalence between L2-ensemble controllability and
moment-controllability of the ensemble, which concludes the
proof. O

Theorem 7 establishes the equivalence between L*-ensemble
controllability and moment-controllability with respect to mono-
mials, which was conjectured in [16]. Compared to the Kalman
matrix (11) for moment-controllability with respect to Legendre
polynomials, the Kalman matrix (7) admits a simpler and more
evident structure. The next important step to come closer to a
general and easily verifiable sufficient condition for [?-ensemble
controllability is then to formulate a condition on the pair (A, B)
so that (7) has full row rank for each of the infinitely many trun-
cations. While [16] already provided some strong evidence and
hints in this direction, the long sought after sufficient condition
based on (A, B) has not been formulated until now.

Now unlike in the classical controllability problem for a linear
system X = Ax + Bu, the strategy is not to leverage the Cayley-
Hamilton theorem to reduce the consideration entirely to the
finite family of matrices B, AB, ..., A" !B. Rather, the additional
higher powers are in fact necessary for achieving a full row rank
for the matrices K™ with growing size. However, to arrive at
simple reading results, we have to be able to handle the non-
closure. The following result highlights an important case in
which handling non-closure is feasible.

Theorem 8. Consider a linear ensemble of the form
0
5x(t, 0) = 0Ax(t, 0) + Bu(t),

where 6 € [0, 1]. Assume there exist ¢ € N and A € R\{0} such
that A1 = AL Then, if (A, B) is controllable, the ensemble is moment-
controllable with respect to monomials, and hence also L?-ensemble
controllable.

Remark. We note that the imposed condition that for some
p € N and some A # 0, one has AP = Al, which appears
somewhat peculiar, is rather adequate. In fact, all the existing
examples of [>-ensemble controllable systems considered in the
literature with non-invertible B (see e.g. the examples in [15])
happen to fall into this special class of systems, so that it is fair
to claim that the results obtained in this paper are of sufficient
generality. Furthermore, the recent structure-focused study of the
general nonlinear ensemble control formulation in [19] provides
further evidence pertaining to the relevance of this class of linear
ensembles.

Proof. By virtue of the equivalency of [>-ensemble controllabil-
ity and moment-controllability with respect to monomials formu-
lated in Theorem 7, it is sufficient to show moment-controllability
with respect to monomials for the given class of linear ensemble
systems. To this end, we need to show that for all M € N,
the columns of K™ span R"+1), or, equivalently, that for any

Systems & Control Letters 168 (2022) 105350

vectors 1, ..., v, Where M is arbitrary fixed, there exists a
sequence (i )ken, SO that
Mo HoB  w1AB 12A’B Uo
m miB  uoAB nsA’B U
= aZ
M umB  pumi1AB  pmi2A’B

Clearly, for a fixed p € {0, ..., M}, we have

(o)
Mp = Z Mp+kAkBl_1k-
k=0

In anticipation of leveraging the special property of A, we now
may carry out the summation in packets associated to B, AB, . ..
A%1B, by which

oo q—1

) _
p = Z Z :up+(l+mq)A +quul+mq'
m=0 ¢{=0

Now, exploiting the special structure of A, we have A“t™ =
AY(ATY™ = AMA, so that

q—1 o0
Z AKB(Z Mp+(l+mq))\ma£+mq)
£=0

m=0

q—1 (o] q—1
= ZAZB(Z Mp+(é+mq)ﬁé+mq> = ZAZB%JZ’
=0 m=0 =0

in which we changed variables iigymq = A™igymg, Which is
reversible due to A # 0, and furthermore introduced
o0

Qp ¢ = E Mp+(e+mq)le4+mg-
m=0

Mp

Now, without loss of generality, we can assume q¢ > n, as
otherwise we would rescale § = aq with some a € N so that
g > n, in which case we have

AT = A% = (AT = (M) = A,

so that we would also rescale & = A%. Since (A, B) is furthermore
controllable, the problem boils down to choosing i, il1, ... S0
that the coefficients o, are such that any vector consisting of
o, - .., Ny €can be attained.

Fix some ¢ € {0, 1, ..., q — 1} and observe that

Q0,0 Mo Ho+q Ho+qm Uo
Q1,0 Hot+1  Motq+1 Ho+qM+1 Ugtq
Mo Ho+m  Mo+q+M Ho+gM+M Uo+gm

(12)

Now, in the case that 6 € [0, 1], we have the more explicit
representation

1 1
= | 6°do = —,
Hp /0 p+1

so that (12) can be written as
1 1 1

oo, o+l otq+1  ot2q+1 77 Uy
1 1 1 ~
%10 012  o+qt2  o+2q+2 Ug+q
=1 1 1 1 )
o+3 o+q+3 0+2q+3
am.o . ) \lo+qm



S. Zeng and ].-S. Li

in which we can recognize the matrix as a Cauchy matrix (cf. the
illustrative examples of Cauchy and Hilbert matrices, as well as
their relevance, in [16]), which is always invertible. Since this
argument holds for arbitrary g, this shows that we can find
ii € £ and hence u € ¢? such that any moments configuration
7o, - .., My can be achieved. Since the overall argument, in turn,
also holds for arbitrary M € N, this shows moment-controllability
of the ensemble and hence also L?-controllability by virtue of
Theorem 7. O

While the formulation of Theorem 8 explicitly refers to the
model case 6 € [0, 1], it provides a characterization for ensemble
controllability in all cases where the origin is not an interior point
of the parameter interval, cf. the result on scaling invariance of
the parameter interval in Proposition 3. In the more difficult
case when the considered parameter interval covers the origin,
as frequently considered upon the identification of this more
delicate case [16], we can formulate the following also very
comprehensive result.

Theorem 9. Consider an ensemble
B
gx(t, 0) = 0Ax(t, 0) + Bu(t),

where 6 € [—1, 1] and suppose there exists ¢ € N and A € R\{0}
such that A% = Al. Then, if (A%, B) is controllable, the ensemble is
[?-ensemble controllable.

In other words, the sufficient condition for ensemble control-
lability of an ensemble (6A, B) for 6 € [—1, 1], is equivalent to
the sufficient condition for L>-ensemble controllability of the pair
(9A%, B) over 6 < [0, 1].

Proof. As in the proof of the first theorem, we have

q—1 00 q—1
Np = ZAL)B<Z Mp+l+mqﬁl+mq> = ZAZBap,L
=0 m=0 =0

As before, the coefficients o, ¢ are essentially related to the values
tlg, U, ... via (12). The problem in the case that § € [—1, 1]
is that due to the fact that f_ll 07 d6 = 0 for even numbers p,
certain entries of the matrix in (12) may now be vanishing. This
is, however, always occurring in an alternating fashion, which is
the reason why one splits the consideration into the two cases
in which B, A?B, ..., A%"~ VB and AB, ..., A2"~1)(AB) have to be
used separately for spanning the respective vectors np. In order
to guarantee that this is always possible, we need (A2, B) and
(A2, AB) to be controllable. By pulling out A to the left in the
controllability matrix of (A%, B) we see that the controllability
for the pair (A%, AB) follows from the controllability of the pair
(A%, B) and the fact that A? is invertible, the latter of which is a
consequence of the assumption that A7 = Al. Since in each of the
two separate cases, the corresponding coefficients are each given
by a Cauchy matrix relation similar to that in the proof of the
foregoing theorem, the result follows. O

Example 10. Consider the canonical example of an ensemble of
harmonic oscillators with heterogeneous frequencies, i.e.

aor=( 2 N=o( ® N=va
”‘(—9 0)_ (—1 0)" '

We have A2 = —I, so that we may conclude that harmonic
oscillators fall into the class of systems specified in the two
previous theorems. Now if the parameter interval of interest is
given by 0 € [0, 1], we can conclude from the first theorem that
the ensemble is controllable with any non-zero column vector
B, as (A, B) is controllable with any non-zero column vector B.
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2 x(1,0) = 0x(1,0) + u(r)

Fig. 1. Illustration of the ensemble control setup for the case of a scalar linear
ensemble.

In the case that & € [—1, 1], we would need to consider the
controllability of (A%,B) = (—I,B), which is not controllable
using a single-input. This is in perfect accordance with previous
observations regarding this example.

5. The computational ensemble control problem

In the previous section, we have introduced an (integral) op-
erator theoretic framework in which the longstanding quest to
find a general and succinct condition for [?>-ensemble control-
lability could be resolved. In this section, we turn towards the
practical problem of computing steering policies for ensembles of
linear systems [26-28] and show that the same operator theoretic
framework provides novel insights as well as a novel computa-
tional framework, which in particular provides a unification and
generalization of the approaches described in [26].

Our benchmark example will be the deceptively simple look-
ing scalar ensemble
%x(t, 0) = 6x(t, 0) + u(t),
which may be depicted as in Fig. 1.

There we illustrate a portion of the real line, and a given
parameter range for 6. Attached to each 6 is a scalar linear
system, which has an initial state, a drift vector field, and a
control vector field (which is the same for all individual systems
in the ensemble). Since this is the case for every 6 € [—1, 0], the
ensemble state is a curve over the parameter 6. The drift for the
whole ensemble admits a linear dependency on 6.

Now even though for each fixed & € [—1,0], we have a
simple first order lead element at hand, when considered as
an ensemble combined with the premise of broadcast signaling,
great challenges from both a practical as well as a theoretical
perspective begin to appear. The ensemble control task to be
considered will consist of steering this stable ensemble from a
state of rest, i.e. x(0,0) = 0 for all & € [—1, 0] to the desired
terminal state in which all values x(T, 0) are as close as possible to
1. The addition “as close as possible” is included to reflect the fact
that an exact steering may not always be possible, but we will see
that the ensemble can be steered to an arbitrary neighborhood of
the desired terminal state. We now turn towards describing the
computational approach linked to the theoretical considerations
of this paper.

Given a linear operator R : U — X between two normed
infinite-dimensional vector spaces U and X, it is indeed quite
natural to discretize both spaces U and X by finite-dimensional
vector spaces Uy and Xy, and to consider the operator restricted
to the discretized spaces. In this way an infinite-dimensional
problem is naturally reduced to a finite-dimensional approxima-
tion of it, which can then be tackled by means of computational
methods.

0 €[-1,0],
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50

t

Fig. 2. The input signal obtained from solving the discretized version of the
integral equation using the first ten Legendre polynomials as the orthonormal
basis.

x(t,0)

0 t

Fig. 3. The evolution of the ensemble state when applying the synthesized input
signal illustrated in Fig. 2. The state appears to be very level throughout the
application of the input signal.

Fig. 4. The variance of the ensemble plotted over time. While this plot shows
that the variance at the end point is close to zero, we also find that the variance
is very low throughout the application of the input, which, in contrast to the
final time point t = T, was not explicitly specified.

15
10

Fig. 5. The input signal obtained from solving the discretized and regularized
version of the integral equation using the first ten Legendre polynomials as the
orthonormal basis and the regularization parameter A = 10713,

To this end, we first introduce a finite family of orthonor-
mal vectors Pq,...,Py on U and, similarly, a finite family of
orthonormal vectors Qq, ..., Qy on X. We denote the spans of
these vectors by Uy and X, respectively and consider the two
corresponding orthogonal projections given by

N M
Puu= > (W P)P,  Pyx= (X Q)Q.
i=1 i=1

It is a well-known fact that for any u € U, the orthogonal
projection Py, u is the element in the finite-dimensional subspace
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x(t,0)

0 t

Fig. 6. The evolution of the ensemble state when applying the synthesized input
signal illustrated in Fig. 5.

x10°

var(t)

t

Fig. 7. The variance of the ensemble is significantly lower compared to the
variance of the ensemble steered with the input obtained from the formulation
without regularization.

Uy that is the closest to u, and for any x € X, the orthogonal
projection Px,, x is the element in the finite-dimensional subspace
Xy that is the closest to x.

Then we introduce a linear mapping Ryy : Uy — Xu
(between finite-dimensional spaces!) as the linear operator Px,, R
whose domain is restricted to the subspace Uy. To progress
towards a computational solution to the original reachability
problem of finding a solution u which satisfies Ru = x, the idea
is to project x € X on Xy to obtain xy = Px,,x, and to then find
a least squares solution uy € Uy to the problem of minimizing
IRunun — Xm 2

This is justified by the following consideration. Let i’ := x—xy,
and define ¢, := ||’||. Then, we have

IRmnun — XI| = [IRunUN — (Pxy X + )| < |RunUN — Py XI| + €x.

Thus, the strategy for the practical problem would be to minimize
the first term on the right-hand side, as the second term is
dictated only by the choice of discretization. One can also further
derive a theoretical bound for the error that results from the
discretization. We observe that

IRm.nvun — Pxy X[l = [IPxy (Ruy — X)|| < [[Ruy — X]|.

To proceed, we recall that under the assumption of ensemble
controllability (see e.g. [10]), the range space of R is dense in X,
so that for any € > 0 one can find a u* € U so that ||Ru* —x| < e.
Given such u*, define uy, := Py, u*, i = u}, —u* and €,« == ||1”||.
Then one has Ruy = Ru* + Rh”. Inserting this in the above
inequality, we arrive at a bound for the total error given by
inf |[Ry nuy — x| < [[Rll€u + €.

uyeUy
Thus, with a sufficiently rich choice of basis vectors for Uy and
Xy, one can expect the discretization errors €, and €, to be
sufficiently small, so that the finite-dimensional approximation
provides a suitably accurate solution.

More explicitly, the discretization of the range operator Ry :
I%([0, T], R™) — [?([a, b], R™), which can be represented in terms
of an M x N matrix, denoted in the following by R* := Ry n, can
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Fig. 8. Left: This plot illustrates the effect of the regularization parameter A on the synthesized input signal. Right: This plot illustrates the dependency of the norm
of the input signal and the variance in the terminal state on the parameter A. In both plots a logarithmic scale is chosen for the A-axis.

be directly specified by its entries, which can be computed as

b T
R = / ( / ef‘“’XT*UB(e)I?j(t)dt) Q;(0)do
a 0

for i=1,...,Mandj=1,...,N.

Regarding this approach, we will only discuss two cases, which
appear to be the most natural and also relevant ones to be
considered in this context. This includes the case in which U
is discretized by means of Legendre polynomials and X is dis-
cretized by indicator functions defined on intervals of constant
length, and the case in which both U and X are discretized by
indicator functions.

In the first case, we choose the first ten Legendre polynomi-
als as the basis for Uy and 100 linearly independent indicator
functions as the basis for X;. We then compute the matrix repre-
sentation of the truncated range operator R* via (13) and attempt
to solve the corresponding linear system of equations R%uy = xy,
where x); = /M /Te with e denoting the all-ones vector. Having
obtained a solution

(13)

-
uy =(a; --- ay)

)

we construct the input signal as

N
u(t) =y aiP(t).

i=1
Fig. 2 illustrates the input signal for T = 5 and Fig. 3 shows
the resulting evolution of the ensemble when applying this input
signal.

While we only explicitly specified the ensemble state to be
perfectly level at the end time, namely all individual scalar en-
sembles to be as close to 1 as possible, we find that the ensemble
satisfies this property at all times when applying the specific
input signal. This is verified by plotting the variance of the ensem-
ble over time, as shown in Fig. 4. As we will see in the subsequent
studies of the example of scalar ensembles, this appears to be a
somewhat more general principle.

While the first solution obtained through discretizing the
range operator and solving a system of linear equations solved the
steering task specified in the beginning, we must, however, also
note that the steering is rather aggressive, leading to significant
overshooting of the ensemble state before the target is hit. It
would certainly be desirable if the task could also be solved in
a more economical way. A quite natural way of how this may be
achieved is to regularize the ill-conditioned inverse problem by
considering the minimization problem

minimize |[R%uy — xu|I* + Allun|l?, (14)

where A is the regularization parameter. The solution to this
regularized problem is simply given by

uy = ((R*)TR* + A1)~ '(R*) "xu.

From a control theoretic point of view, the regularized formula-
tion corresponds to the very natural idea of introducing a penalty
term for the input signal. From a numerical mathematics per-
spective, this is also a very well-known and prominent technique
known as Tikhonov regularization.

Choosing for example A = 10~'* and solving the regularized
problem, we obtain the input signal illustrated in Fig. 5, the
evolution of the steered ensemble with this input is illustrated in
Fig. 6, as well as the evolution of the ensemble variance illustrated
in Fig. 7. The input signal obtained from the regularized formu-
lation appears significantly more economic than the input signal
obtained from the unregularized solution, being able to achieve
the same goal in a much more calculated, subtle manner.

To illustrate the effect of the regularization in a more en-
compassing manner, in Fig. 8 we depict a family of different
input signals associated to different choices of A, as well as
the dependence of both ||uy| and the terminal variance on the
parameter A.

6. Conclusions

We revisited the classical least squares ensemble control prob-
lem, and showed how the recently introduced moment-based
framework can be leveraged to settle the longstanding problem
of establishing a general, concise, and easily verifiable condition
for L2-ensemble controllability. The starting point was to directly
tackle the ensemble controllability problem through its integral
operator theoretic formulation. This led to novel insights into
the systems theoretic mechanisms of ensemble controllability
in the case of linear ensembles with linear parameter variation.
In the second part of the paper, the same integral geometric
framework was taken to study the practical problem of construct-
ing control signals that steer ensembles between desired states
in a practically acceptable manner. We have presented a novel
computational framework that allows for a systematic design of
finely orchestrated and robust control inputs for ensembles of
linear systems, and furthermore unifies previous computational
approaches in a comprehensive way.
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