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ABSTRACT: Pure gravity in AdS3 is a theory of boundary excitations, most simply ex-
pressed as a constrained free scalar with an improved stress tensor that is needed to match
the Brown-Henneaux central charge. Excising a finite part of AdS gives rise to a static
gauge Nambu-Goto action for the boundary graviton. We show that this is the 7T defor-
mation of the infinite volume theory, as the effect of the improvement term on the deformed
action can be absorbed into a field redefinition. The classical gravitational stress tensor is
reproduced order by order by the 7T trace equation. We calculate the finite volume energy
spectrum in static gauge and find that the trace equation imposes sufficient constraints on
the ordering ambiguities to guarantee agreement with the light-cone gauge prediction. The
correlation functions, however, are not completely fixed by the trace equation. We show
how both the gravitational action and the T7T deformation allow for finite improvement
terms, and we match these to the undetermined total derivative terms in Zamolodchikov’s
point splitting definition of the 7T operator.
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1 Introduction

The fact that General Relativity involves the dynamics of spacetime geometry implies that
the problem of defining boundary conditions in gravity is bound to be more subtle than
in non-gravitational theories. Gravitational boundary conditions are typically imposed
asymptotically, for example at spacelike or null infinity in asymptotically flat spacetimes,
or on the conformal boundary of anti-de Sitter spacetime. It is of interest to ask whether
imposing boundary conditions at a “finite cutoff boundary” makes sense, for example by
imposing a Dirichlet condition on the metric on a non-asymptotic timelike boundary. One



setting where this does seem to make sense — though not without subtleties — is the case
of pure AdSs3 gravity. This example is also of special interest due to its holographic relation
to TT deformed CFTy [1-3].

This problem was studied at both the classical and quantum level in [4, 5]. The focus
was on the dynamics of the boundary gravitons, since in 3d gravity these are the only
propagating degrees of freedom [6-8]. A main result was that these boundary gravitons are
governed by a static gauge Nambu-Goto action defined on the cutoff boundary. Obtaining
this result involved making a highly nontrivial and nonlocal field redefinition between the
variables describing the embedding of the boundary surface and those appearing in the
Nambu-Goto action. Quantization of this theory was initiated, revealing the need for
renormalization counterterms, which is not surprising given the well-known issues involved
in quantizing the square root Nambu-Goto action.

In this paper we clarify, consolidate, and extend these results in a way that provides
a satisfying agreement between the gravity and 7T deformed CFT sides of the story. We
now summarize the main results of our analysis. Other references on cutoff AdS3 gravity
include [9-21].

The general problem involves the classical and quantum theory of boundary gravitons
living on top of some background geometry, which could be global AdS, a conical defect,
or a BTZ black hole. We begin by considering the asymptotic AdS boundary case. The
boundary action, which can be obtained either in the Chern-Simons [22, 23] or metric [4, 5]
formulation of 3d gravity, is given by the Alekseev-Shatashvili theory [24, 25]. After a field
redefinition, this becomes the standard action for a free scalar, but with a few special
features. First, the scalar is not periodic around the boundary cylinder, but obeys a
fixed winding condition that encodes the mass and angular momentum of the background
gravity solution. Second, the theory is subject to a gauge symmetry whose origin lies in
the isometry group of the background geometry. Finally, the stress tensor is not canonical
but has an improvement term, which is needed in order to realize the Brown-Henneaux
central charge. We carefully go though the quantization of this theory, which has some
subtleties depending on the form of the winding condition, showing how to arrive at unitary
representations of the Virasoro algebra.

It is well-known that the Nambu-Goto action is the TT deformed action for an ordinary
free scalar with canonical stress tensor [2]. As noted above, the scalar arising from gravity
has a non-canonical stress tensor, but which does obey the trace equation TrT = % detT
that defines the T'T" flow. However, we show that adding an improvement term to the stress
tensor that preserves the trace equation does not change the deformed action, possibly after
performing a field redefinition, which explains why the Nambu-Goto action also arises in
the cutoff gravity context.

Assuming the standard Gibbons-Hawking-York plus cosmological constant boundary
term, the boundary stress tensor at finite cutoff obeys the trace equation TrT = % det T,
where A is proportional to the radial cutoff location r.. This equation can be used to
fix the explicit form of the non-canonical stress tensor that appears in the Nambu-Goto
action. In particular, starting from the form of the stress tensor at A = 0, including its
improvement term, one can work out the stress tensor order by order in A by imposing the



trace equation. We carry this out, showing how to reproduce the results obtained in [4, 5].
This stress tensor is nonlocal, in the sense that each successive order in A involves terms
with more derivatives (we do not have a closed form expression to all orders). This nonlocal
property aligns with previous results, such as the “Dirac string” picture developed in [26].

Having understood the emergence of the Nambu-Goto action from gravity at the
classical level, we turn to a discussion of its quantization.! One of the key facts about
TT deformed CFT is that the energy spectrum of the deformed theory on the circle is
related in a simple way to that of the undeformed CFT. In particular, E, — (1 —
V1 —=2)\E,, + \2P2)/\ where E,, and P, are the energy and momentum of the state n re-
spectively. One approach to obtain this, which we review, is to view the Nambu-Goto action

as the gauge fixed version of the coordinate invariant Nambu-Goto action for a string in a
flat d = 3 target spacetime, which can alternatively be expressed in light cone gauge where
the action is quadratic and hence easily quantized. At the classical level this is a canoni-
cal transformation [33]; quantum mechanically the equivalence is somewhat murkier given
that we are not in the critical dimension d = 26.2 Regardless, this route does lead to the
correct spectrum. We also discuss the computation of the spectrum by applying standard
time-independent quantum mechanical perturbation theory. Without additional input, this
leads to divergent sums over intermediate states, rendering the spectrum ambiguous, as one
would expect for a non-renormalizable theory. The additional ingredient needed to fix the
spectrum is the factorized form of the trace equation (T.z) = *%((Tz2><Tg*> —(T.2)(T.z)),
where the expectation value is taken in an energy/momentum eigenstate. Of course, this
is no surprise since this is the key relation used in [1] to obtain the spectrum.

We finally turn to a discussion of boundary correlation functions, both of the elemen-
tary fields and of the stress tensor. The Nambu-Goto action is non-renormalizable, yet
viewed as a TT deformed CFT its energy spectrum is unambiguous. To what extent does
this feature carry over to correlation functions? Here the gravity picture provides a useful
guide. Pure 3d gravity is renormalizable: using the equations of motion, all divergences can
be absorbed into the cosmological constant term [34]. This leads to the expectation that
on-shell correlators of elementary fields should be unambiguous. Indeed, existing perturba-
tive computations of correlators are rendered finite by counterterms that vanish on-shell.
The S-matrix is therefore unambiguous, which is a well-known feature of 7T deformed
theories. [1, 2, 29]

For the stress tensor the story is a bit different due to the inherent ambiguity in fixing
the improvement terms. For the gravity theory with a cutoff boundary nothing prevents us
from adding a boundary term of the form [d?zvhR® (h)Z(K) where R®(h) is the Ricci
curvature of the boundary and Z(K) some arbitrary function of the extrinsic curvature.?
The effect of this term is to add an improvement term to the stress tensor. In a general

'The general problem of quantizing the Nambu-Goto action in general target space dimension D has
received much attention in the context of “effective strings”, e.g. [27-32], and the works of Dubovsky et al.
developed the connection to the 7T deformation.

2The usual Lorentz anomaly is trivially absent in d = 3, so the procedure is perhaps justified in this case
as well.

3This term vanishes in the asymptotically AdS limit, which is why it is usually not considered.



renormalizable QFT the stress tensor is renormalized by such improvement terms [35], and
the same is true here. Although the stress tensor is ambiguous this does not affect the
usefulness of the equation (T,z) = —%((TZZMT;) — (T,z)(T,z) in determining the energy
spectrum because the improvement terms have vanishing expectation value. One might
ask whether the form of the quantum stress tensor could be fixed by imposing the operator
equation TrT" = % det T, but we show that this is not the case. The map to light-cone
gauge also does not fix these ambiguities; since it involves a state-dependent coordinate
transformation, it does not map correlation functions of local operators in light-cone gauge
to static gauge correlation functions of local operators. We conclude that although off-shell
correlators of the elementary fields and the stress tensor can be computed in perturbation
theory their definition is subject to ambiguities. This might be taken as an indication that
these are the wrong observables to be looking at if the goal is to define the theory at a
non-perturbative level.

The rest of this paper is organized as follows. In section 2 we review the boundary
gravity theory in the asymptotically AdS case, and then discuss its quantization and Hilbert
space in detail. In section 3 we discuss the construction of the boundary stress tensor,
emphasizing how its form can be fixed order by order by imposing the trace equation. The
transformation to light cone gauge is reviewed in section 4, and in section 5 we comment
on the use of ordinary perturbation theory. Correlation functions are discussed in section 6
and two appendices contain some technical details.

2 Boundary theory at zero cutoff

In this section we review the boundary theory of pure three-dimensional gravity without a
cutoff. The boundary theory reduces to a free scalar field with an improved stress tensor of
linear dilaton (or background charge) type, and a gauge symmetry. This will be particularly
useful for later sections where we study the TT deformation of this theory.

2.1 Gravity solutions

We start with the three-dimensional Euclidean action

__ 1 3 2
S = 167TG/01 x\/§<R+€2)+Sbndy, 2.1)

where Sy,,qy is a boundary contribution that ensures a well-defined variational principle .
It is well-known that in three dimensions there are no propagating gravitons in the bulk
and the theory has only boundary degrees of freedom. We consider solutions to Einstein
equations with asymptotic AdSs boundary conditions [7],

dr? 1
ds? = T+ [dz - CGOTTZZ(Z)dE} [dé _ CﬁorTzz(z)dz , (2.2)
where )
3
= 2.3
Cco 2G ) ( )



is the Brown-Henneaux central charge [6]. We are working in Euclidean signature with
z = x +it, and x = x + 27 i.e., the boundary has the topology of a cylinder. The free
functions (7%.(z),T%z(z)) can be identified as components of the boundary stress tensor.

The mass and angular momentum are

2w dZL' 2 dx
M = / Ty = / (Tzz + Tzz) s
0 21

2 d:c 2" dx
J= [ i, - / o, T, (2.4)
0o 2m 0o 2w
The stationary and rotationally symmetric solutions are written in terms of two constants
(a,a) as B
coa col
T,, = 2074’ Tz = i’ (25)
and carry
Co _ _ Co
M=_=2 J = — 2.6

Global AdSj3 corresponds to a = @ = 1. Upon continuation to Lorentzian signature there
are two braches of “healthy” solutions: rotating BTZ black holes and conical defects;
see e.g. [36]. Rotating BTZ black holes are given by a,a < 0, with the extremal case
M = |J| occurring when one of (a,a) vanishes. Conical defects have 0 < a = a < 1.
Taking a = a > 1 yields “conical excess solutions” whose energy lie below global AdSs
and correspond to non-unitary representations of Virasoro. Taking a # a with one or both
(a,a) being positive can be seen to yield naked closed timelike curves or singular horizons.
More general solutions that are “dressed with boundary gravitons” are obtained by taking

1= B (3PP +FELR) . Ta= D (SFEP+FELA) . @)

where the Schwarzian derivative is

F/// 3F//2
{F(2),2} = T ope

(2.8)

The functions (F, F) are each elements of diff(S!), i.e., maps from the circle to itself. They
are correspondingly monotonic and obey the winding conditions

F(x+2m,t) = F(x,t) + 27, F(x+2n,t) = F(x,t) +27. (2.9)

Solutions with the same (a,a) lie on a common diff orbit. These orbits are symplectic
manifolds, and the phase space action governing them is the so-called Alekseev-Shatashvili
action

B 2 ) 1)// 7 . _<1>// B
S = 247r/dx[aF8F (F, O:F +aF'0.F — (=) 0.F| . (2.10)

This action has been obtained from gravity in both the Chern-Simons and metric formula-
tions. In this action (F, F) = (F(z,t), F(x,t)) are each arbitrary functions of (x,t), subject
to the winding and monotonicity constraints. Primes denote z-derivatives and

0. = %(ax —idh), B = %@ +idy). (2.11)



In addition, (2.10) has the gauge redundancy*

F(x,t) ~ F(x,t) +e(t), F(x,t)~ F(x,t) +et). (2.12)

These gauge redundancies arise from the fact that they are invariances of the stress ten-
sor components. One can easily check that the Lagrangian transforms by a total spatial
derivative.

We now wish to quantize this theory. In the following we are going to treat the cases of
positive and negative (a,a) separately. In both cases the Hilbert space is a single unitary
representation of the Vir x Vir algebra, with lowest weight states determined by (a,a).
We refrain from considering cases with opposite signs for (a,a), since the corresponding
gravity solutions are pathological.

2.2 BTZ branch: a and a negative

We write
a=—-b*, a=-b>. (2.13)

It was noted in [24, 25] that the field redefinition
(ebF)/:bef, (eBF)I:Bef, (2.14)
brings the action (2.10) to the simple form
_ G 2 1o o
S= o [ @ (rof+ 7o.5) (2.15)

This is the action of a free scalar field in the first-order formalism. From (2.14) we can
read of the periodicity of the new variables

f(z +2m,t) = f(x,t) +2nb, f(x+2m,t) = f(z,t) + 27b, (2.16)
while the gauge redundancy is
f(@,t) ~ f(x,t) +be(t), f(x,t) ~ f(z,t)+ be(t). (2.17)

The final element needed to describe the classical boundary theory is the boundary stress
tensor. In [23] it was shown to be

Co 1.9 " =~ _ €0 1z //>
T=2|(-Z= T=—1[—= . 2.1

o (—prt ). T=ge (-5t d (218)
To make the connection with the free scalar theory more explicit let us define

b= |- (F+ ), T= (= ). (2.19)

487 ’ 487
The action (2.15) then takes the form
2 (i Loy 1o
S = [ d%x (ipll + 5¢ + 51_[ . (2.20)

4For the special value a = 1 the gauge redundancy is enhanced to PSL(2, R) x PSL(2, R) [23].



Naively integrating out II leads to the usual free scalar Lagrangian. However, this is not
quite correct because (2.16) leads to the constraint

21 _
de Tl = /22— b), (2.21)
0 12

which must be taken care of before employing the Euler-Lagrange equations. This is the
first-class constraint that generates the gauge symmetry (2.17):

o(x,t) = o(x,t) +e(t), (x,t) — (x,t), (2.22)

where £(t) = \/;(be( ) + bé(t)). The transformation of the Lagrangian (2.20) is a total
time derivative by virtue of the constraint (2.21). To proceed, we first need to pick a gauge,
solve the constraint, and then use the Euler-Lagrange equations. The net effect will be that
the zero modes of ¢ and II are fixed. Let us explain this further. We start by expanding
the fields into modes

¢ = ¢o(t) + (b+b)\/48

)+ > ma(t)e™, (2.24)
n#0

d)” e (2.23)

where we used (2.16) to fix the winding around the spatial circle. The constraint (2.21)
fixes 79 = (b — b)\/co/487. The gauge symmetry can be used to choose ¢y = im, i.e.,
the on-shell value it would have in the absence of the constraint (2.21). We can use the
Euler-Lagrange equations for the remaining non-zero modes. Hence, we see that we end
up with a free scalar field with fixed winding and zero-modes. The equations of motion
then lead to the free field expansion

0= /== (b + B +i(b D)t Z O in(a-+it) On gmina=it) (2 .95)
1= (b o I_)) /48 2\/» Z ane zn (z+it) ‘|‘ - Z Oéneilm x—it) (226)

n;éO

One can use (2.18) to write down a gauge-invariant expression for the stress tensor in terms
of spatial derivatives of ¢ and II. However, the gauge choice we made above (¢g = imp)
allows as to use the usual form

1 1
— 5T = 0udBud — 50,(09)° - ,/1%(8“8” — 6,,0%)6. (2.27)

keeping Lorentz symmetry manifest. Thus, we conclude that the boundary theory includes

also an improvement term for the stress tensor. As is well-known this affects the represen-

tations of the boundary Virasoro algebra. The spectrum of the theory is the same with or

without the improvement terms but it organizes itself differently into Virasoro modules.
The modes of the stress tensor in (2.18) are

d o b?
L,=— 2j e~ — E ko, + (in — b)\/i o + 2 -7 0n.0> (2.28)
T k;ﬁO 12 24



Conjugation acts as
of =al, = LI =L, . (2.29)

So far the discussion was classical. To quantize the theory we need to impose the usual
commutation relations

[6(t,2), 11(t,2")] = —id(x — '), [I(t,2),11(t,a")] = 0 = [$(t,2),6(t,2)] ,  (2.30)

which lead to
[, Q] = NOpmn = [Qn, O], [tn, Q] = 0. (2.31)

We also choose normal ordering of the operators a_pay for Ly in (2.28). Using the above,
one can show that the L,’s obey the algebra

1 c
(L, Lin) = (0= 1) L+ 35(0° = 1) + l—gn3 : (2.32)
while the operators
¢
Ly, =Ln+ 5000, (2.33)
satisfy the usual Virasoro algebra with central charge ¢ = ¢y + 1,
co+1
(L L] = (0= m) Liy o+ =15 (0% = 1) (2.34)

We see that the improvement term in (2.27) shifts the central charge by ¢o. To analyze
the Hilbert space, note that all the «,, modes can be written as combinations of the L/,
using (2.28) recursively. Hence the theory has a single primary state, namely the “vacuum”
defined by

an [0) =0, n>0. (2.35)

The L,, operators do not obey the usual Virasoro algebra. Only L! do, and we conclude
that the Hilbert space of the theory consists of a single Virasoro module with respect to
the L!’s. The primary state satisfies
, co(1 +b?) -, co(1+b?)
— I = - . 2-
Notice that this state is not annihilated by L_; = L’ ;. From (2.33) we see that the energy
of the primary state is

- co(b? + b2
(Lo + Lo) |0) = 0(24) 0). (2.37)
2.3 a and a positive
In this case
a="b, a="0b, (2.38)
and we modify (2.14) to
() =ivel, () = —ibel (2.39)



As can be seen after Wick rotating to Minkowski space, both F' and F are Hermitian.
From the above definition it then follows that f and f obey complicated reality properties
which we analyze below.

One can check that this again leads to the free scalar action (2.15). However, in this
case the periodicity of the new fields is

f(x+2m,t) = f(x,t) + 2mib, f(z+ 2nm,t) = f(z,t) — 2mwib, (2.40)

while the gauge redundancy is

P t) ~ Fant) +ibe(t),  F(a,t) ~ Flat) — ib(t) (2.41)
As a result, ¢ has imaginary winding
o(x + 21, 1) — d(a,t) +i Cf—;(b —b), (2.42)

Since f and f are not hermitian, ¢ also does not have this property, hence the appearance
of the imaginary winding. However, this does not imply the doubling of its modes as in
the case of a complex ¢. On the contrary, ¢ has more complicated reality properties and,
as we will see later, this translates to an unconventional conjugation for its modes.
In this case the momentum II obeys the constraint
2m 0T

dx TT = i(b + b)

i 5 (2.43)

while the gauge symmetry acts as before (2.22) where now e(t) = /z3=ib(e(t) — €(t)). We
can proceed as before and write the free field expansion

¢ 48 { (b b).T _ (b—l—b } Oén m (x4-it) Oén —zn x—it) ’ (244)
n#O n
_ 7 Co in(x+it —in(z—it)

In this case the modes of the stress tensor are

Cob2
L, - )DL, — 5. 2.4
2};)04 kak +i(n —b) D 91 9.0 (2.46)

As before, to quantize the theory we impose the commutation relations (2.30) which again
lead to (2.31). However, conjugation in this case needs to be modified. To preserve the
action of conjugation on the L,,’s

Lt =L_,, (2.47)

we need to define
p_nto : 2.48
I = YT n—b g&% b+k)(b—k— ) &k (248)



where the dots denotes terms with more «,,’s. Higher order terms are accompanied with
higher powers of 1/¢g. For large ¢y one can check that for the first few orders, (2.48) is
consistent with

} = —Nnim - (2.49)

[am am] = n6n+m = [a;f“ Oé;rn

Equation (2.48) is valid only for 0 < b < 1, but not for global AdS with b = b = 1 in which
case there is additional gauge symmetry.? It is surprising that one is forced to consider
this peculiar definition of conjugation. It would be interesting to understand its geometric
interpretation from the bulk 3d gravity point of view.

Let’s now consider the norm of the state a_,, |0) for n > 0. Using the above expression
for ¢! one can show that only the first term contributes

H:n(n—b)'

lan 10} 12 = (0] a! a0} = =7

(2.50)
We see that the spectrum is unitary only for —1 < b < 1. At the endpoints of this interval
null states appear. Combining with the results of the previous section we see that the
spectrum is unitary only for a < 1.° Note the slightly curious fact that we obtain unitary
representations of Virasoro in this range for a # a even though the corresponding gravity
solutions have naked closed timelike curves. The only novel aspect of this parameter regime
is the fact that ¢ in (2.44) is not Hermitian.

As in the case with negative a, one can similarly define (2.33) which obey the usual
Virasoro algebra. We then conclude that the Hilbert space of the theory contains a single
Virasoro module with

Co(]_ — b2)
24

Co(l — 62)

Ly|0) =
410) .

0y, Lglo) = 10) - (2.51)

For b,b < 1 this is a unitary representation whose primary state has energy

co(b? + b?)

(Lo + Lo) |0) = — 7

0) . (2.52)

2.4 Thermal partition function

We end this section with a few comments. In the previous sections we showed that the
bulk theory with the boundary condition (2.2), where T, and T3z given by (2.5), leads to
a single Virasoro primary on the boundary that satisfies

~co(l—a)
24

_ 60(1 — &)

L/
410 =

0y, Lg0) 0) - (2.53)

In our analysis the boundary was a cylinder. Let’s now compactify also the time
direction and consider the theory on the torus. If we define the partition function as

co+1

Z = (qg)" 7 Trgogh = (qq) "2 Trqtogho, (2.54)

5Solutions in gravity with a,@ > 1 correspond to “conical excesses”, and are indeed associated with
non-unitary representations [37, 38].

~10 -



we conclude that it is equal to

Z = XCO(;;“) (‘J)X cp(1—a) (‘j) ) (255)

24

where yp(q) is the character of a module of scaling dimension h. This has been obtained in
the literature before, either by computing the partition function of the Alekseev-Shatashvili
theory in the path integral formulation [23] or by computing it directly in the bulk [8, 39].

Since the above expression (2.55) contains just a single Virasoro character it cannot
be the partition function of a modular invariant CFT. From the gravity point of view we
would expect that black holes of different masses and angular momenta should be part
of a common Hilbert space and so should be included in the sum over states. However,
gravity provides little guidance as to what spectrum of masses to include. The spectrum
should be discrete in order to obtain a finite partition sum, and should also be in ap-
proximate agreement with the Bekenstein-Hawking entropy formula. The alternative sum
over Euclidean geometries can produce a modular invariant result but suffers from other
pathologies [8, 40]. These facts have led to the suggestion that the holographic dual of 3d
gravity in AdSs is actually an ensemble of CFTs [41-43].

3 The stress tensor in cutoff gravity and TT-deformed CFT

3.1 TT deformation and stress tensor improvement

At the classical level the TT deformation corresponds to finding an action Sy (¢) that obeys
the flow equation

—— =——= [d°xdetT 3.1
dA 872 / ’ (3:-1)
where the factor is 8% is convention dependent. The stress tensor 7T}, appearing on the

right hand side should be conserved with respect to the equations of motion of S). However,
given one conserved stress tensor 7}, one can always write down another conserved stress

tensor by adding an improvement term,°

Tw/ = Tw/ + (aHaV - an82)Y(¢) . (32)

Different choices for the stress tensor might therefore seem to lead, via (3.1), to different
expressions for the deformed action. However, we now show that these actions differ at
most by a field redefinition.

We first note that in a deformed CFT, A is the only dimensionful scale, and since TrT
is the generator of scale transformations we have that )\% = —ﬁ [d?x Tr T, which implies
that % detT =TrT, up to a possible total derivative. On the other hand, assume that we
define the deformed action in (3.1) using the improved stress tensor T uv- For the reason we
just explained, TW will also obey a trace equation % det T = Tr T up to a total derivative.
From (3.2) we have that Tr T = Tr T'— 9?Y from which it follows that det T = det T up to
a total derivative. Therefore Sy also obeys equation (3.1) but with 7T}, replaced by TW.

S Although this is not the most general improvement term for a generic QFT, it is for the case under
considerations which involves only a single scalar field.

- 11 -



This observation clarifies one of the main results of [5]. It is well-known that the
deformed action for a free scalar with canonical stress tensor is the Nambu-Goto action.
On the other hand, the undeformed action in [5] is a free scalar but the stress tensor is not
canonical, rather it has a linear dilaton improvement term. The argument above explains
why the deformed action starting from this non-canonical stress tensor turns out to be the
same Nambu-Goto action as in the canonical case.

Actually, there is one important point in this argument that we glossed over. The trace
equation % det T' = Tr T is satisfied only on-shell and therefore the statement det 7' = det T'
holds only after we use the equations of motion. If one uses two stress tensors that differ
by terms that vanish on-shell then the corresponding deformed actions may also differ by
such terms. However, on general grounds one knows that two actions that differ in this way
are related by a field redefinition; e.g [44]. So the general statement is that the ambiguity
regarding which stress tensor to use in (3.1) does not translate into any ambiguity in
the action, assuming one uses the freedom to make field redefinitions. Indeed, in [5] a
complicated field redefinition, not known in closed form, was needed in order to bring the
action to the Nambu-Goto form.

3.2 Nambu-Goto action from the trace equation

In classical cutoff gravity with the standard boundary term (GHY plus boundary cosmo-
logical term) the stress tensor obeys the trace equation

A

Th = o det T, (3.3)

We now quickly review how this deforms a free scalar field into the Nambu-Goto action.
We will use the canonical stress tensor, deferring the discussion of the improvement term
to the next section. From the argument of the previous section we know that we will obtain
the same action in either case. Since the undeformed action and the canonical stress tensor
contain only first derivatives of the scalar field, (3.3) will not generate any dependence on
higher derivatives. To preserve this feature, we do not add a total derivative term to (3.3).

To follow the above strategy it is more convenient to write the action in terms of ¢
and its derivatives than in terms of ¢ and its canonical momentum II. In this approach
Lorentz symmetry is manifest and we can easily get a closed form expression for the action
to all orders in the deformation parameter A\. A subtlety in this formulation is that the
Lagrangian is not gauge invariant. However, once we convert back to canonical variables
the gauge symmetry is restored. The strategy we follow is to impose that the Lagrangian
and the stress tensor in terms of ¢ and its derivatives are invariant under

o— d+e, (3.4)

for constant e. Equivalently we require that they do not depend on ¢ itself but only on its
derivatives. After obtaining the deformed action, we replace time derivatives of ¢ with 11
to find expressions that are gauge invariant under (2.22). It is possible to directly repeat
the derivations in this section using ¢ and II but it is not very illuminating. We have
included it in appendix A.
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From dimensional analysis and Poincaré invariance, the action must take the form

1
S = 3 /dsz(s) . S=X0,00". (3.5)
The canonical stress tensor defined as
oL
T =27 (L — ————=0,0 ) , 3.6
77 ™ ( n 8(8“@5) (b) ( )
is then equal to
can 27T /
" = 7(6WF —2X0,00,0 F") , (3.7)
and the trace equation (3.3) reduces to a differential equation for F,”
2 2
7”(21? —2sF!) = TWF(F —2sF). (3.9)

This ODE can be solved by integration. There are two branches and one integration
constant n: F' =1=++/1 —ns. We want the action (3.5) to reduce to the free boson action
for A — 0, so we are forced to choose the lower sign and fix n =1 to find

5 — /l\/d% (1 /1= Adu0000) . (3.10)

From the deformed action (3.10) we can derive the canonical stress tensor

T — 27” [(1 VT 8)5 — wf‘\/@} , (3.11)
_on B(a@%w pw ayqs} oW, (3.12)

which indeed reduces to (2.27) with ¢y = 0 (corresponding to no improvement term) in the
limit A — O.

3.3 Computing the improved stress tensor

We now explain how to obtain the stress tensor that arises from cutoff gravity. This stress
tensor takes the form
Ty = T3 + (04 0y — 6,0°)Y (3.13)

where T;;5" is the canonical part (3.11) derived from the Nambu-Goto action. More pre-
cisely, starting from the Lagrangian in terms of ¢ and II, the stress tensor can be put in
this form using the equations of motion. In the asymptotically AdS case corresponding to
A = 0 we know that the improvement term is

CcoT
Y =B6+0()\), B= % (3.14)
"A convenient identity is
1 (e} (el 17 1
det T = (067 — OR00)T",T" 5 = 5((TI«T)2 - Tr(7%)). (3.8)
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Combining this with the fact that the stress tensor obeys the trace equation (3.3), we can
uniquely determine Y order by order in A, as we now show. After using the equations of
motion this procedure reproduces the stress tensor computed in [5], and thereby establishes
the precise sense in which the cutoff gravity theory is the TT-deformed version of the free
scalar with improved stress tensor.

At first order in A it is easy to see that the only Lorentz invariant term allowed by
dimensional analysis is

Y = B+ yA\(0)? + O(N\?). (3.15)

Note that the gauge transformation (3.4) does not allow polynomials ¢™ with n # 1. To
this order the trace of the stress tensor becomes

T T = —B0%¢ — %(%)4 — YA P*(09)* + O(N?), (3.16)

while the right-hand side of the trace equation (3.3) is equal to

A A 9 9 y )\[32
o detT = i TrT< + O(N°) = BAOug 0,0 0M0" ¢ — (8¢) (8¢) O\?).
T
(3.17)
We can use the equations of motion
oAV
9% = —/\M A0, Dy p DM 4+ O(N?). (3.18)

A(09)?

and demanding (3.3) we get v = 6

One can follow the same procedure and at each order in A determine the improvement
term Y in (3.13). We carried out this calculation up to A* and we show that it leads the
following unique Y

2 A2 2233
Y = ot S (00 + G 00) + 3 50,00,00
)\3 2 5)333
6 (0¢>) 1925 2au¢ay¢aﬂa”¢(a¢)2
* 32;?;3 0ud 09 0o 010707 + 5 <8¢>26 B,0 010 p| + O(NY). (3.19)

We believe that the trace equation determines Y to all orders in A but unfortunately
we were not able to get an answer in a closed form. All in all we conclude that the full
stress tensor is given by (3.13) with the canonical part as in (3.11) and the improvement
term as in (3.19).

To relate to results in [5] we should express ¢ as a function of ¢/ and II using the
equations of motion following from the canonical form of the Nambu-Goto action,

S = /d% {mé - % (1 — ¢1 — A(@2 +112) + A2¢’2H2>} . (3.20)

This is indeed the TT deformed version of the action (2.20) (see [33]). Note that the action
is gauge invariant under (2.22). We further express results in terms of f and f using (2.19).

— 14 —



The action in these variables is given by

S=2 [d lz’f’f—z’f’ﬂfa (1—¢1—;rc(f’2+f_’2)+1167’2(f’2—f'2>2ﬂ . (321)

where )
o
=—. .22
T Ton (3.22)
Carrying out the conversion, the canonical part of the stress tensor is given
¢ — 1 — —
T = 0 (g T 2T T )
n co (w2 1 o2 3 o2 0 2
T2 = —— - —
o4 24<f + e fT A g (f2+ 1)+ )
co (- 1 — 3 - _
Ten = X (f’2 oo S22 T 4 > : (3.23)
24 2 16
while the improvement term is
co |1 — Te vt T2 —
V=2 S+ D+ 2T+ =T+ 27+ | (3.24)
6 |2 4 16
Acting with the appropriate derivatives (3.13), the corresponding stress tensor components
are
cof 1 =z 1 g2 ol Lo gt m !
Too= 0 |\ gref T e 1724 127 ) = 2P P+ 1T T 4 (3.25)
1, 1 . . 1 ~ 1
L= 2 84 Sre T4 2f T T =20 7 )4 o2 (£ 877+ 27 4 507 ) o
coflon 1 _ - 1y (e 1o
Teo= |5 f +gre@F 12420 f1" = 2T F' 1)+ 5o (f’f”’f”+f” f”+2f""f’2) +} .

Note that when expressed in terms of f and f the constant in front of the improvement
term ¢y appears as an overall factor. Indeed, since the gravity action is proportional to
& ~ ¢ the classical stress tensor must be proportional to co. The sum of (3.23) and (3.25)
reproduces the result in [5] obtained from the 3d bulk gravity.

3.4 Reduction to deformed Schwarzian quantum mechanics

Two-dimensional JT gravity defined on a Euclidean spacetime with disk topology is de-
scribed by the Schwarzian theory [45]. The finite cutoff version of this theory was studied
in [46, 47]. In particular, in [46] a partial result for the corresponding deformed Schwarzian
action was written down. We now explain how to reproduce this result from ours by di-
mensional reduction. Starting from (3.21) we take (f, f) to depend only on x, and we also
set f = f. Dropping the t integration we get

S = 12672% /dw (1 o J1- rcf’2) . (3.26)
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This action describes a finite cutoff geometry in JT gravity, as follows from the fact that
the steps in the reduction are precisely those that implement the Kaluza-Klein reduction
of our 3d gravity to JT gravity [48]. On the other hand, in [46] the cutoff JT action was
presented as

S = g /dzx (1 - \/1 + 2e2Sch(z, x) + derivatives of Schwarzian) , (3.27)

where the (non-total) derivative terms were left undetermined. To see the connection to
our result we note that the field redefinition

J=ef (3.28)

gives
Sch(z,z) = f" — % 2. (3.29)

Using the argument in section 3.5 of [46] that the Schwarzian is conserved, we can compare
these actions for constant values of the Schwarzian. This corresponds to constant f’, hence
to f” = 0. Using also the correspondence r, = ¢? and {3 = ¢,, we find agreement
between (3.26) and (3.27).

The function z(x) appearing in (3.27) describes directly the embedding of the cutoff
boundary in AdSo, however the corresponding action is only known up to terms involving
derivatives of the Schwarzian, as indicated. On the other hand, the action (3.26) is exact
but the field redefinition between f(z) and the embedding of the boundary is not known
in closed form. The perturbative expansion of the field redefinition follows by reduction
from the 3d field redefinition worked out (to a finite order) in [5].

4 Static vs light-cone gauge

As has been noted by various authors [2, 3, 33, 49, 50], the fact that the TT-deformed
theory of a collection of free scalar fields turns out to be the Nambu-Goto action in static
gauge implies that one can solve the theory by transforming to light-cone gauge where the
action is quadratic. Of course for a general number of scalar fields this is not justified at the
quantum level due to the target space Lorentz anomaly. However, the Lorentz anomaly
is absent in two special cases: for 24 scalar fields one has the usual cancellation of the
anomaly, while for a single scalar field the anomaly is trivially absent since it must be
antisymmetric in transverse target space indices. So there is a reason to believe that the
procedure is justified in the case relevant to 3d gravity, and indeed the resulting energy
spectrum is the correct one.

The canonical transformation between the static and light-cone gauge theories was
reviewed in the TT context in [33]. The only slight difference we need to take into account
is that our scalar field theory is a gauged version of the one in [33]. Since this difference
essentially goes along for the ride, we simply state a few of the main results and add some
comments.
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In this section we work in Lorentzian signature, taking our conventions as in ap-
pendix B, with action

.1
S = /d2x [Hqﬁ -3 (1 - \/l — N¢? +112) + A2¢’2H2>} . (4.1)
We will focus attention on the case (a = —b%,a@ = —52) for which the winding conditions

are®

flx+2m,t) = f(x,t) +2nb,  f(x+2m,t) = f(z,t) + 27b. (4.2)

This translate into the periodicities
oz + 27, 1) = d(x, 1) + ¢ /4%0%@ b)), M(z+2m,t) = (x, 1), (4.3)

T

along with the constraint

27 s .
(o, t)de = ,/T;(b —b). (4.4)

We view this action as a gauge fixed version of the Hamiltonian form of the Nambu-
Goto action

S = % / @[~ det 9,X10, X, (4.5)
which in Hamiltonian form reads
S = / o [I,X" — \Cy — 20y (4.6)
where the constraints are
Cy =1,X", Cy= %()\QH#H“ + X, X", (4.7)

Here pu = 0, 1,2 with the Minkowski metric 7,, = (—1,1,1). The X' direction is taken to
be compact and we consider the unit winding sector, X! (x + 27,t) = X!(x,t) + 27 .

4.1 Static gauge

Static gauge is defined by
X0=t, X'=u=. (4.8)
Solving the constraints and plugging back into (4.6) reproduces (4.1) up to a constant

additive shift under the identification

1
2 _ —_
X2=Vip, M= \aH' (4.9)

The constraint (4.4) translates to a constraint on II;. In terms of the string moving
in a three-dimensional target spacetime, this constraint amounts to fixing the spacetime
momentum in the X? direction, P, = 027r IIy(z,t)dz. The winding condition (4.3) on ¢

translates into
X%z +2m,t) = X% (x,t) + 2m(b+1D). (4.10)

The string therefore winds around both cycles of a target space torus in X2,

8The other sign choice leads to imaginary winding conditions and constraints, which clashes with the
intepretation in terms of a string embedded in a real target space.
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4.2 Light-cone gauge

Next we consider the light-cone gauge. Define
1
XF=X0+x!, I = 5o £10), (4.11)

and fix the gauge as
Xt (z,t)= 2 p_t+z, II_=p_, (4.12)

where p_ is constant. The other light-cone component of the target space momentum
is pp = f027r g—frHJr. Integrating the constraints allows us to relate py to (¢,1I), defined
in (4.9), as

(py —p)+Pec=0, 2X\H,+(1—4Xpip )=0, (4.13)
where
27 27 1
P, = H¢'de, H = §(H2 + ¢"?)dx . (4.14)
0 0
The action is )
S = /d% [Hq's - 5(H2 + ¢’2)] , (4.15)

along with a decoupled part involving the zero modes that we refrain from writing.? The
free field form of this action is of course the main virtue of the light-cone gauge. We can
view this free field theory as our undeformed theory. We have the spectra

o= 0 +F) N+ N, Po= 30 -1)+N-N, (@10
where the ground state contributions come from the momentum and winding.

4.3 Spectrum of static gauge Hamiltonian

We are interested in the energy spectrum of the static gauge theory, since the Hamiltonian
of that theory is identified with that of the TT-deformed theory. Explicitly,

27 1—+/1—=M\o'"? 112 A2 2112
g [Tl VI A+ ) + NP
0

(4.17)

H generates ¢ translations, which in static gauge is the same as X translations. In light-
cone gauge the generator of X translations is —(py +p_), so the static gauge Hamiltonian
expressed in terms of light-cone operators is H = —(p4+ +p—). The constraints (4.13) allow
us write this as

- \/1 — 2\Hj, + \2P?

H
A\ )

(4.18)

9As shown in [33] there is also a decoupled term f dtp_q~. This leads to an extra label for the states,
namely the eigenvalue value of g—. However, in [33] it was also shown that because of the constraints the
value of ¢_ is fixed in terms of the energy and momentum and thus no additional degeneracy is introduced.
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where we added the constant piece by hand. The free field spectra of (Hj., P.) then imply
that the spectrum of H is

L= V1= 20802 +5°) + N+ V) + A2(5 (0> =) + N — V)2
- \

This reproduces the TT energy spectrum. We now make a few comments. As shown in [33,

(4.19)

51] the phase space variables (¢, II) in the two gauges are related by a canonical transforma-
tion. While this establishes the equivalence of the theories at the classical level, this does
not automatically extend to the quantum theory since classical canonical transformations
typically have no quantum counterpart.'® Of course, the question of quantum equivalence
of the two theories is ill-defined unless one provides an independent definition of the static
gauge theory with its unwieldy square root. The point to be emphasized here is that if we
interpret the static gauge action as being a T'T deformed theory then this fixes the spectrum
of the theory and this spectrum coincides with that obtained from the light-cone theory.

The thermal partition function can be calculated as a trace over the Hilbert space of
e PH although we are not aware of a closed form expression like (2.55) in the deformed
case. This is a specific example of the general analysis of torus partition functions of 7T
deformed theories [32, 52, 53]. In particular, eq. 53 of [32] rewrites the finite temperature
path integral in terms of a sum over the energy levels (4.19) of the deformed CFT. In the
other direction, one can derive a path integral expression from the canonical formalism by
inserting a dense set of equal-time slices in the usual way. The resulting finite temperature
path integral will, by construction, agree with the Hilbert space trace. Because the kinetic
term in the action (3.20) is trivial, the path integral measure associated with the symplectic
form of f and f will be flat.

In [29] the quantum equivalence of the static and light-cone theories was discussed in
the context of the S-matrix. The static gauge theory has a nontrivial 2 — 2 S-matrix, which
at first seems in conflict with the fact that the light-cone theory is free. However this can be
understood in terms of the field dependent coordinate transformation that relates the theo-
ries. Namely, the static gauge 2 — 2 S-matrix is given by a time delay, and under the coordi-
nate transformation this time delay vanishes in light-cone gauge, as it must in a free theory.

Since correlation functions are readily computed in the light-cone theory, one might
wonder whether correlators in static gauge could be computed by transforming them to
light-cone gauge. Unfortunately, the canonical transformation maps simple static gauge
operators to complicated light-cone operators and vice versa, so this does not appear to be
helpful. In slightly more detail, consider a correlation function of local operators in static
gauge, each evaluated at a position x;, with superscript s for static gauge. Because the co-
ordinate transformation between static and light-cone gauge is field-dependent, the same
correlation function in light-cone gauge involves operators evaluated at field-dependent
locations x'¢[¢, 22]. These are complicated objects. For example calculating the correla-
tion function as a path integral would involve operators that move around (in light-cone
coordinates) as one integrates over the fundamental fields.

0This fact is sometimes stated by saying that there is no natural action of symplectomorphisms on
Hilbert space.
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5 Spectrum

5.1 Perturbation theory

In this section we discuss the computation of the energy spectrum of our theory by applying
ordinary perturbation theory.'" This is useful in order to clarify how the TT trace relation
resolves the quantization ambiguities. Our Hamiltonian is (4.17) where A = 127r./co.
For simplicity we restrict here to the b = b = 0 case, where the mode expansions (2.26)
and (2.45) as well as the Hermiticity properties (2.29) and (2.48) coincide. In terms of the
fields (f, f) (2.19), which are both 27 periodic in z, we have the mode expansions

12 ;
f/ — -~ Z amezmx ’
o m##0

_ 12 .
F=y=3 apem, (5.1)
o m7#0

and impose the commutation relations (2.31). The Hamiltonian may be expanded to the
first few orders as

U R S T S e P —
_ I LI YT 2
1 Jo on [f / 27' r ref O (f ) :| (5.2)

The general arguments of Zamolodchikov and Smirnov imply that we expect the energy
spectrum to be

12 — 3672 _
E C(]l1_\/1_ N+ )+ gC(N—N)2],
.

- 67, Co c
=N+N+ 1ZCNNJr 7i§zNN(N +N)+0 <C§> : (5.3)
where (N, N) are eigenvalues of the level operators
N=> o mom, N=) 0 pln. (5.4)

m>1 m>1

To define H as an operator and compute its spectrum we of course need to resolve ordering
ambiguities among the mode operators. We think of expanding out H in mode operators,
order by order in 1/c¢j (equivalently r.). Before reordering, the order ¢, contribution to H
is a homogeneous degree 2p + 2 polynomial in the mode operators. The difference between
two choices of ordering will involve a polynomial of degree ¢ < 2p+2 in the mode operators.
Now imagine computing the matrix elements of H in the unperturbed basis where states
are labelled by occupation numbers in each mode, again expanding in 1/¢g. Each squared
matrix element at order ¢,” is a polynomial of degree 2p + 2 in the occupation numbers.
The point we wish to emphasize here is that the order 2p + 2 piece of this polynomial
is unambiguous in the sense that it is independent of our choice of ordering and is also

HGee also [54] for a similar discussion in the case of a TT deformed fermion.
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UV finite. For example, the difference between ) . oa_mo, and > <o ama_y, is the
UV divergent quantity >, m, whose matrix elements are independent of the occupation
numbers. From (5.3) we see that the terms that appear in the energy spectrum involve only
these unambiguous contributions. We conclude that there is no ambiguity in reproducing
these terms, and the only issue is how to fix terms that are subleading in (N, N) at a given
order in the 1/¢ expansion.

As we now discuss, these subleading ambiguities are fixed by the 7T trace relation.

Classically, the relation
67
Tzi — _TOC(TZZTZZ - TZETZE) 3 (55)
is simply an identity. However, we obtain a useful expression by taking the expectation
value of both sides in an eigenstate of H and P. In particular, Zamolodchikov showed that

the right hand side factorizes, in the sense that the following equation holds

67
(Tzz) = —7;(<Tzz><Tzz> — (Tz)(T:z)) - (5.6)
Crucially, the expectation values in this equation are independent of whatever improvement
terms we wish to add to the stress tensor, as follows from the fact that improvement terms
are derivatives of local operators, but local operators have constant expectation values in
eigenstates of H and P. We are therefore free to impose (5.6) on the canonical stress

tensor, which takes the form (3.23) in terms of which the Hamiltonian (5.2) is
2T dw 27 dr
H=[" ST = [ SEeT: ~ T - ). (57)

Our strategy is to carry out perturbation theory order by order in 1/¢g, or equivalently
in 7., using (5.6) to fix any ordering ambiguities at each order, keeping in mind that both
the states and the stress tensor receive corrections at each order. We now illustrate this
by working out the spectrum to order 1/c3, verifying the prediction of (5.3).

We start with the theory at 7. = 0, and define (f'2, 72) by normal ordering so that ' =
N + N. States are labelled by their eigenvalues under the individual level numbers (5.4).
Now go to order 7.. The trace relation tells us that T,z = —ggr cf’2f with (f'2, 7 ) normal
ordered.

The Hamiltonian at order r. involves the expressions f 27/2 inT,, and T3z. It is natural
to guess that these operators are also normal ordered, and we will indeed verify that is the
correct prescription. Indeed, with this assumption the correction to the energy is given by
the standard formula (where subscripts indicate the order in 7.)

E = Eo + (Yo|H1lvo) +

=N+ N+ %'48/ f’2f2|¢0>+

(5.8)
co

in agreement with (5.3).
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At order 72 the left hand side of (5.6) involves <w0|f’2f/2(f’2 + 7’2)|¢0>, which is UV
divergent. We use (5.6) to define this matrix element in terms of matrix elements with
fewer insertions of (f, f). At this order we also need to include corrections to the states
according to the usual formula

Ek\HﬂE )

B = |ES) + 3 i ) + (59)
k#n

where we note that since H; is diagonal within a degenerate subspace only non-degenerate
unperturbed states contribute to the sum.

We can now work out the order 72 correction to the energy from the standard formula
of second order perturbation theory

|(¢o|Haltho)|”

5.10
e (5.10)

By = (yo|Haltho) + >
Py Fpo

with Hy = 5% 02” gié gf’Qf (f" +?l2). We explained above how to relate the expectation
value of Hy to lower order matrix elements, but to see how the correct result comes out
it is simpler to compute directly. More precisely, in order to confirm (5.3) we will just
concentrate on the part cubic in occupation numbers, trusting that our general arguments
enforce the vanishing of the terms subleading in occupation numbers. In terms of mode
operators we have

9r2

Hz = c2 Z(O‘mlam2am3am4amsame + Qi Qg Oy iy s Cing ) - (5.11)
0 my

The sum should be restricted such that the sum of o mode numbers equals the sum of @
mode numbers. The expectation value in a state with level numbers {N,,, N,,,} works out
to be

T2 - _
(i) = 22 S (N Ny + Ny (Vo))

€0 mime

432r? _ .
cgc > [N Nowy Nong + Nowy Ny, Nowg | (5.12)

mi,m2,ms3

On the other hand, the second order contribution in H; works out to be

'NH 2 36 2 _ .
3 WAL 308 S [ T 4 Y o]

0 mimo

Py F#bo
28872

C%c > NN Nong + Ny Ny Nowg | - (5.13)

mi,m2,ms3
These nicely combine together in (5.10) to give

7212
Co

Ey = “SSNN(N+N), (5.14)
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in agreement with (5.3). This procedure can in principle be carried out to higher orders.
As long as one enforces (5.6) at each order the result is guaranteed to reproduce (5.3),
since the trace relation (5.6) implies a differential equation for the energy levels that fixes
their values, as shown by Zamolodchikov and Smirnov. Our purpose in carrying out this
exercise was to emphasize that the contributions that actually appear in (5.3) are insensitive
to operator orderings. Operator ordering ambiguities only affect terms of lower order in
the level numbers, and these ambiguities are fixed by imposing the trace relation.

6 Correlation functions

6.1 Gravity side

For a Dirichlet boundary condition on the metric the standard choice of boundary term
n (2.1) is [55]

Shudy = —% aMd%:x/H(K —-1), (6.1)
where h,, is the metric on the boundary and K denotes the trace of the extrinsic curvature.
We are setting the AdS3 radius to unity, £ = 1, for convenience. The term without K is not
required by the variational principle but is added to yield a finite action in the limit that
the boundary is taken to infinity.'> The boundary stress tensor is defined via the on-shell

variation of the action

1
68 = — [ d*xhT"6h,,, (6.2)
Am Jom
and works out to be 1
Tl'”/ — E(KMV - Khluj + h/u/) . (63)

Now consider the problem of computing correlation functions of 7),, on a flat boundary
metric h,,. This boundary is taken to be a finite cutoff surface. This can in principle be
carried out order by order in G ~ 1/¢y. The immediate question that arises is whether
we will encounter UV divergences that require counterterms. We first recall the standard
argument that the bulk Einstein-Hilbert action (2.1) is not renormalized apart from a
possible redefinition of £. This follows from the fact that any candidate counterterm is
proportional to [ d3x,/g upon using the lowest order equation of motion; equivalently, a
field redefinition may be used to eliminate any counterterm involving curvatures.'3

What about boundary terms? The Gibbons-Hawking-York (GHY) term is tied by the
variational principle to the Einstein-Hilbert term. The boundary cosmological term can be
fixed by the requirement that the stress tensor vanish on a flat planar boundary. We should

also consider boundary terms involving the intrinsic and extrinsic curvature. A boundary

12 Actually, finiteness also requires an additional term associated with the Weyl anomaly [56], but since
this term is (locally) a total derivative it does not contribute to the stress tensor and will play no role in
our discussion.

13This statement is not without subtleties. For example, if we employ dimensional regularization then
away from d = 3 there are independent curvature dependent counterterms. These can potentially contribute
as “evanescent operators”, i.e., although the operators formally vanish as € — 0, if they are multiplied by 1/¢
coefficients they can still contribute in the limit. We implicitly assume that there exists a renormalization
scheme where such complications do not arise.
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term involving only intrinsic curvatures cannot contribute either to the action or its first
variation, and hence not to the stress tensor; recall here that we are interested in correlators
on flat boundary. Regarding extrinsic curvature terms, we demand that these do not spoil
the variational principle. The only type of boundary term which can contribute to the
stress tensor without spoiling the variational principle takes the form

1

ASpnay = —— | d*zVhR(W)Z(K,,), (6.4)
dm Jom

where Z(K,,) can depend on the extrinsic curvature and boundary derivatives thereof.

This term contributes to the stress tensor on a flat boundary as an improvement term,

ATy, = (0,0, — huwd*) Z(K). (6.5)

In the case of an asymptotic AdS3 boundary (6.4) does not contribute since it dies off as
the boundary is taken to infinity, but it can contribute in the case of a finite cutoff.

We conclude from this analysis that in the problem of computing stress tensor corre-
lators on a flat boundary we can encounter two types of divergences: divergences in the
action that vanish on-shell and hence can be removed by a field redefinition and divergences
in the stress tensor corresponding to improvement terms. This conclusion from the gravity
side nicely matches our expectations on the 2d field theory side, as we now discuss.

6.2 Field theory side

The fact that on the gravity side all counterterms vanish for a flat boundary surface leads
to the expectation that in field theory all counterterms in the action should vanish on-shell.
This implies that the S-matrix should be unambiguous, although this does not extend to
off-shell correlators of the elementary fields. This expectation is supported by previous
analyses [27-29, 57, 58] of perturbation theory applied to the Nambu-Goto action'* and
to TT theories more generally, e.g [59]. For example, the one-loop computation of the
four-point function in [5] required the action counterterm 47;55 [ d?20.(f' fo:(f'f'). This
expression can be seen to vanish after integration by parts and using the lower order field

equations 9, f' = 9zf' = 0. A compelling story regarding the finiteness of the 2 — 2 S-
matrix of the d = 3 target space Nambu-Goto action in static gauge was laid out in [28-32].

We next turn to correlators of the stress tensor computed on the plane. Previous work
on this problem includes [5, 9, 26, 59—-63]. We first recall the renormalization properties
of the stress tensor in a general QFT [35]. Let S(¢) be the renormalized action; that is
S(¢) includes counterterms that render finite all correlators of the elementary ¢ fields. Let
T, be the canonical stress tensor (3.6) obtained from S(¢) by application of Noether’s
theorem. The stress tensor Ward identity relates correlators of 9T}, with elementary
fields to correlators of elementary fields alone. Since the latter are assumed to be finite,
this implies that 0#T),, is a finite operator. The only divergences that can show up in 7},

In [28, 29] the Lagrangian form of the Nambu-Goto action was considered, rather than the Hamiltonian
version that naturally arises in gravity, but we expect the conclusions to be the same.

15This term is part of the evanescent 2d Ricci scalar that appears in dimensional regularization of the low
energy effective action for long strings [28]. We thank Raphael Flauger for bringing this to our attention.
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therefore take the form of identically conserved tensors,'® which for a scalar field theory
take the form of AT}, = (9,0, — 7,0?)Y (¢), which we refer to as an improvement term.
Besides the improvement terms needed for finiteness there is also the freedom to add finite
improvement terms, and these must enter into the discussion of what one means by stress
tensor correlators.

In a CFT tracelessness of the stress tensor restricts the class of improvement terms
that can appear, and indeed Virasoro symmetry fixes the stress tensor correlators uniquely
in terms of a single number, the central charge c. In a TT deformed CFT the stress tensor
is not traceless; at the classical level it obeys the trace equation TrT = % det T, and we
have seen how this equation may be used to fix the form of the stress tensor order by order
in A starting from an initial seed. It is natural to ask to what extent the quantum version
of the trace equation fixes the form of the quantum stress tensor and its correlators.

To address this we need to discuss the definition of the composite operator det 7" in the
quantum theory. Zamolodchikov famously showed that this operator is well defined (UV fi-
nite) up to total derivatives of local operators [64]. This has the important consequence that
the expectation value of det T is any energy-momentum eigenstate is finite and unambigu-
ous, since the total derivative pieces vanish in such states by translational invariance. How-
ever, the total derivatives terms do contribute to off-diagonal matrix elements, so in general
we have to accept that detT" requires such terms in order to make sense as an operator.

Now suppose that we have defined a renormalized stress tensor that obeys the relation

A
ToT = o~ detT +0,W", (6.6)
T

where 9, W# denote operators added to detT" to achieve UV finiteness. Then, consider
adding an infinitesimal improvement term to the stress tensor, 7’ }’W =T, +(0,0, —77#1,82)}/.
A simple computation shows that the new stress temsor obeys the equation Tr7T' =
%det T+ 9,W'" with W'* = WH — 20lY — %T“” 0,Y, where we used conservation
of the stress tensor. The new stress tensor therefore satisfies a trace equation that is
equally valid as the original one. We conclude that the quantum trace equation does not
fix the form of the quantum stress tensor, even though it does so at the classical level,
the reason being the appearance of the 9,W*# term that is needed for finiteness. It follows
that stress tensor correlators are similarly ambiguous. It is possible that there is some
additional principle that may be imposed on the stress tensor to render it unambiguous,
but this would presumably require a better understanding of how to define a 7T deformed
theory at the non-perturbative level.

We end this section by noting how these conclusions are borne out in perturba-
tion theory. In [5] the two-point function (T,:7.z) was computed to two-loop order;
all other stress tensor two-point functions may be obtained from this by Ward identi-
ties. In dimensional regularization the stress tensor was found to require the counterterm
AT,; = —Lp2f" " = —L329,.0:(f" f"), where we used the equations of motion in the

T 2'c — T 2'c
last line in order to define the counterterm as an improvement term. The addition of this

16By “identically conserved” we mean that the conservation should hold without using the equations of
motion, since an equation of motion piece would spoil the contact terms in the Ward identity.
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improvement term then induces the appearance of a W* term in the trace equation. This
pattern is expected to persist at all orders in perturbation theory.
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A Deformed action from the trace equation

In this appendix we show how one can determine the deformed action starting from the
trace equation (3.3) in the first order formalism using ¢ and its canonical momentum II.
Although this approach might be most appropriate for this work since we are mostly work-
ing in the first order formalism which makes quantization easier, it is not very convenient
for obtaining closed form results mainly because it obscures Lorentz invariance.

We illustrate how one can construct the deformed action as a power in series in A and we
determine the first order correction. Let’s recall the definition of the canonical stress tensor

oL
Tw=2r{0pL— ———=0, . Al
H m ( H a(au¢) (ZS) ( )
Using the definition of the canonical momentum
L
o
we can express the components of the stress tensor as
1 1 1 OH OH 1 OH OH
— —Tyw=H, ——Ty =1I¢, —— =—=—, —— =H - —I1-—¢.
gpio0 = =5 Tn =10, =5 Tho = 5y o or M oIl 9¢
(A.3)

To first order the most general gauge invariant (hence no ¢ polynomials) expression
for the Hamiltonian density is

1 / / / / ’
H=2(¢ 2HI%) + Mc1o ? + 29 PTL + e3¢ °I1* + ey 11 + o511 + O(N?) . (A4)

In this approach Lorentz invariance is encoded in the symmetry of the stress tensor

Tor = Tio = ¢ = — (A.5)

This fixes co = ¢4 = 0,¢1 = ¢5 and c¢3 = —2c¢5. H ence only one coefficient remains by just
requiring Lorentz invariance. Using (A.3) we then find

1 1 .

—5-To = §(¢2+n2) + A9 2 — 132 4 O(\?), (A.6)
Lo

—5 Lo =T =11¢", (A7)
1 1. .

—5-Tin = —5(@ 24 102%) — 3esA(9p 2 — 132 + O(\?). (A.8)

Plugging the above into the trace equation (3.3) we can fix the reaming coefficient c5 = %.
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B Conversion to Lorentzian signature
We relate the Euclidean and Lorentzian times as
tp = —it], .
The (anti)-holomorphic coordinates then become light-cone coordinates
z=x+itp=xc+t, =a",

z=x—itgp=x—tr=x

SO

1 1
8+=§(8x+8tL), 8_25(896—8,5L).
Since dtp = —idty, the relation between the actions is Sg = iSy, i.e. so that

Sp = /thd:n(((?tEqS)Q + ¢'?) = —z’/dtde(—(ﬁtL¢)2 + ¢'?) =4Sy,

The Euclidean action (2.15) then converts to the Lorentzian action
co , P
Sp= o [dwdt(£0-f + F0.F).

We keep the relation between f, f and ¢,1I as in (2.19) and find

Sy = /dxdtL <H¢'> - %(dﬂ + H2)> .

(B.1)

(B.6)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited. SCOAP? supports

the goals of the International Year of Basic Sciences for Sustainable Development.

References

[1] F.A. Smirnov and A.B. Zamolodchikov, On space of integrable quantum field theories, Nucl.

Phys. B 915 (2017) 363 [arXiv:1608.05499] [INnSPIRE].

[2] A. Cavaglia, S. Negro, .M. Szécsényi and R. Tateo, TT-deformed 2D quantum field theories,

JHEP 10 (2016) 112 [arXiv:1608.05534] [INSPIRE].

[3] L. McGough, M. Mezei and H. Verlinde, Moving the CFT into the bulk with TT, JHEP 04

(2018) 010 [arXiv:1611.03470] [INSPIRE].

[4] P. Kraus, R. Monten and R.M. Myers, 3D gravity in a box, SciPost Phys. 11 (2021) 070

[arXiv:2103.13398] [InSPIRE].

[5] S. Ebert, E. Hijano, P. Kraus, R. Monten and R.M. Myers, Field theory of interacting
boundary gravitons, SciPost Phys. 13 (2022) 038 [arXiv:2201.01780] [INSPIRE].

[6] J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic

symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986)

207 [INSPIRE].

_97 —


https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.nuclphysb.2016.12.014
https://doi.org/10.1016/j.nuclphysb.2016.12.014
https://arxiv.org/abs/1608.05499
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1608.05499
https://doi.org/10.1007/JHEP10(2016)112
https://arxiv.org/abs/1608.05534
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1608.05534
https://doi.org/10.1007/JHEP04(2018)010
https://doi.org/10.1007/JHEP04(2018)010
https://arxiv.org/abs/1611.03470
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1611.03470
https://doi.org/10.21468/SciPostPhys.11.3.070
https://arxiv.org/abs/2103.13398
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2103.13398
https://doi.org/10.21468/SciPostPhys.13.2.038
https://arxiv.org/abs/2201.01780
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2201.01780
https://doi.org/10.1007/BF01211590
https://doi.org/10.1007/BF01211590
https://inspirehep.net/search?p=find+J%20%22Commun.Math.Phys.%2C104%2C207%22

. banados, ree-airmensiona quantum geometry an ac OLES, onj. rroc.
7| M. Banados, Three-di jonal d black holes, AIP Conf. P 484
(1999) 147 [hep-th/9901148] [INSPIRE].

[8] A. Maloney and E. Witten, Quantum gravity partition functions in three dimensions, JHEP
02 (2010) 029 [arXiv:0712.0155] [INSPIRE].

[9] P. Kraus, J. Liu and D. Marolf, Cutoff AdSs versus the TT deformation, JHEP 07 (2018)
027 [arXiv:1801.02714] [INSPIRE].

[10] W. Cottrell and A. Hashimoto, Comments on TT double trace deformations and boundary
conditions, Phys. Lett. B 789 (2019) 251 [arXiv:1801.09708] [INSPIRE].

[11] W. Donnelly and V. Shyam, Entanglement entropy and TT deformation, Phys. Rev. Lett.
121 (2018) 131602 [arXiv:1806.07444] [INSPIRE].

[12] P. Caputa, S. Datta and V. Shyam, Sphere partition functions & cut-off AdS, JHEP 05
(2019) 112 [arXiv:1902.10893] [INSPIRE].

[13] M. Guica and R. Monten, TT and the mirage of a bulk cutoff, SciPost Phys. 10 (2021) 024
[arXiv:1906.11251] [INSPIRE].

[14] W. Donnelly, E. LePage, Y.-Y. Li, A. Pereira and V. Shyam, Quantum corrections to finite
radius holography and holographic entanglement entropy, JHEP 05 (2020) 006
[arXiv:1909.11402] [NSPIRE].

[15] A. Lewkowycz, J. Liu, E. Silverstein and G. Torroba, TT and EE, with implications for
subregion encoaings, arXiv: . INSPIRE].
A)dS subregi di JHEP 04 (2020) 152 1909.13808 S

[16] E.A. Mazenc, V. Shyam and R.M. Soni, A TT deformation for curved spacetimes from 3d
gravity, arXiv:1912.09179 [INnSPIRE].

[17] E. Llabrés, General solutions in Chern-Simons gravity and TT-deformations, JHEP 01
(2021) 039 [arXiv:1912.13330] [INSPIRE].

[18] Y. Li and Y. Zhou, Cutoff AdSs versus TT CFT in the large central charge sector:
correlators of energy-momentum tensor, JHEP 12 (2020) 168 [arXiv:2005.01693] [INSPIRE].

[19] H. Ouyang and H. Shu, TT deformation of chiral bosons and Chern-Simons AdSs gravity,
Eur. Phys. J. C' 80 (2020) 1155 [arXiv:2006.10514] INSPIRE].

[20] P. Caputa et al., Geometrizing TT, JHEP 03 (2021) 140 [Erratum ibid. 09 (2022) 110]
[arXiv:2011.04664] NSPIRE].

[21] Y. Li, Comments on large central charge TT deformed conformal field theory and cutoff AdS
holography, arXiv:2012.14414 [INSPIRE].

[22] O. Coussaert, M. Henneaux and P. van Driel, The asymptotic dynamics of three-dimensional
FEinstein gravity with a negative cosmological constant, Class. Quant. Grav. 12 (1995) 2961
[gr-qc/9506019] [INSPIRE].

[23] J. Cotler and K. Jensen, A theory of reparameterizations for AdSs gravity, JHEP 02 (2019)
079 [arXiv:1808.03263] [INSPIRE].

[24] A. Alekseev and S.L. Shatashvili, Path integral quantization of the coadjoint orbits of the
Virasoro group and 2D gravity, Nucl. Phys. B 323 (1989) 719 [INSPIRE].

[25] A. Alekseev and S.L. Shatashvili, From geometric quantization to conformal field theory,
Commun. Math. Phys. 128 (1990) 197 [INSPIRE].

_ 98 —


https://doi.org/10.1063/1.59661
https://doi.org/10.1063/1.59661
https://arxiv.org/abs/hep-th/9901148
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9901148
https://doi.org/10.1007/JHEP02(2010)029
https://doi.org/10.1007/JHEP02(2010)029
https://arxiv.org/abs/0712.0155
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0712.0155
https://doi.org/10.1007/JHEP07(2018)027
https://doi.org/10.1007/JHEP07(2018)027
https://arxiv.org/abs/1801.02714
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1801.02714
https://doi.org/10.1016/j.physletb.2018.09.068
https://arxiv.org/abs/1801.09708
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1801.09708
https://doi.org/10.1103/PhysRevLett.121.131602
https://doi.org/10.1103/PhysRevLett.121.131602
https://arxiv.org/abs/1806.07444
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.07444
https://doi.org/10.1007/JHEP05(2019)112
https://doi.org/10.1007/JHEP05(2019)112
https://arxiv.org/abs/1902.10893
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1902.10893
https://doi.org/10.21468/SciPostPhys.10.2.024
https://arxiv.org/abs/1906.11251
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.11251
https://doi.org/10.1007/JHEP05(2020)006
https://arxiv.org/abs/1909.11402
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.11402
https://doi.org/10.1007/JHEP04(2020)152
https://arxiv.org/abs/1909.13808
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.13808
https://arxiv.org/abs/1912.09179
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.09179
https://doi.org/10.1007/JHEP01(2021)039
https://doi.org/10.1007/JHEP01(2021)039
https://arxiv.org/abs/1912.13330
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.13330
https://doi.org/10.1007/JHEP12(2020)168
https://arxiv.org/abs/2005.01693
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2005.01693
https://doi.org/10.1140/epjc/s10052-020-08738-6
https://arxiv.org/abs/2006.10514
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.10514
https://doi.org/10.1007/JHEP03(2021)140
https://arxiv.org/abs/2011.04664
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2011.04664
https://arxiv.org/abs/2012.14414
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.14414
https://doi.org/10.1088/0264-9381/12/12/012
https://arxiv.org/abs/gr-qc/9506019
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F9506019
https://doi.org/10.1007/JHEP02(2019)079
https://doi.org/10.1007/JHEP02(2019)079
https://arxiv.org/abs/1808.03263
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1808.03263
https://doi.org/10.1016/0550-3213(89)90130-2
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB323%2C719%22
https://doi.org/10.1007/BF02097053
https://inspirehep.net/search?p=find+J%20%22Commun.Math.Phys.%2C128%2C197%22

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

J. Cardy, TT deformation of correlation functions, JHEP 12 (2019) 160
[arXiv:1907.03394] [INSPIRE].

O. Aharony and Z. Komargodski, The effective theory of long strings, JHEP 05 (2013) 118
[arXiv:1302.6257] [INSPIRE].

S. Dubovsky, R. Flauger and V. Gorbenko, Effective string theory revisited, JHEP 09 (2012)
044 [arXiv:1203.1054] [INSPIRE].

S. Dubovsky, R. Flauger and V. Gorbenko, Solving the simplest theory of quantum gravity,
JHEP 09 (2012) 133 [arXiv:1205.6805] INSPIRE].

S. Dubovsky and V. Gorbenko, Towards a theory of the QCD string, JHEP 02 (2016) 022
[arXiv:1511.01908] [INSPIRE].

S. Dubovsky, V. Gorbenko and M. Mirbabayi, Asymptotic fragility, near AdSs holography
and TT, JHEP 09 (2017) 136 [arXiv:1706.06604] [INSPIRE].

S. Dubovsky, V. Gorbenko and G. Hernandez-Chifflet, TT partition function from topological
gravity, JHEP 09 (2018) 158 [arXiv:1805.07386] [INSPIRE].

G. Jorjadze and S. Theisen, Canonical maps and integrability in TT deformed 2d CFTs,
arXiv:2001.03563 [iNSPIRE].

E. Witten, Three-dimensional gravity revisited, arXiv:0706.3359 [INSPIRE].

L.S. Brown, Dimensional regularization of composite operators in scalar field theory, Annals
Phys. 126 (1980) 135 [INSPIRE].

M. Bricefio, C. Martinez and J. Zanelli, Overspinning naked singularities in AdSs spacetime,
Phys. Rev. D 104 (2021) 044023 [arXiv:2105.06488] [INSPIRE].

A. Castro, R. Gopakumar, M. Gutperle and J. Raeymaekers, Conical defects in higher spin
theories, JHEP 02 (2012) 096 [arXiv:1111.3381] [INSPIRE].

J. Raeymaekers, Conical spaces, modular invariance and cp 1 holography, JHEP 03 (2021)
189 [arXiv:2012.07934] [INSPIRE].

S. Giombi, A. Maloney and X. Yin, One-loop partition functions of 3D gravity, JHEP 08
(2008) 007 [arXiv:0804.1773] [INSPIRE].

N. Benjamin, H. Ooguri, S.-H. Shao and Y. Wang, Light-cone modular bootstrap and pure
gravity, Phys. Rev. D 100 (2019) 066029 [arXiv:1906.04184] [INSPIRE].

N. Afkhami-Jeddi, H. Cohn, T. Hartman and A. Tajdini, Free partition functions and an
averaged holographic duality, JHEP 01 (2021) 130 [arXiv:2006.04839] INSPIRE].

A. Maloney and E. Witten, Averaging over Narain moduli space, JHEP 10 (2020) 187
[arXiv:2006.04855] [INSPIRE].

J. Chandra, S. Collier, T. Hartman and A. Maloney, Semiclassical 3D gravity as an average
of large-c CFTs, arXiv:2203.06511 [INSPIRE].

C. Arzt, Reduced effective Lagrangians, Phys. Lett. B 342 (1995) 189 [hep-ph/9304230]
[INSPIRE].

J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two
dimensional nearly anti-de-Sitter space, PTEP 2016 (2016) 12C104 [arXiv:1606.01857]
[INSPIRE].

~ 99 —


https://doi.org/10.1007/JHEP12(2019)160
https://arxiv.org/abs/1907.03394
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.03394
https://doi.org/10.1007/JHEP05(2013)118
https://arxiv.org/abs/1302.6257
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1302.6257
https://doi.org/10.1007/JHEP09(2012)044
https://doi.org/10.1007/JHEP09(2012)044
https://arxiv.org/abs/1203.1054
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1203.1054
https://doi.org/10.1007/JHEP09(2012)133
https://arxiv.org/abs/1205.6805
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1205.6805
https://doi.org/10.1007/JHEP02(2016)022
https://arxiv.org/abs/1511.01908
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1511.01908
https://doi.org/10.1007/JHEP09(2017)136
https://arxiv.org/abs/1706.06604
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1706.06604
https://doi.org/10.1007/JHEP09(2018)158
https://arxiv.org/abs/1805.07386
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.07386
https://arxiv.org/abs/2001.03563
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2001.03563
https://arxiv.org/abs/0706.3359
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0706.3359
https://doi.org/10.1016/0003-4916(80)90377-2
https://doi.org/10.1016/0003-4916(80)90377-2
https://inspirehep.net/search?p=find+J%20%22Annals%20Phys.%2C126%2C135%22
https://doi.org/10.1103/PhysRevD.104.044023
https://arxiv.org/abs/2105.06488
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2105.06488
https://doi.org/10.1007/JHEP02(2012)096
https://arxiv.org/abs/1111.3381
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1111.3381
https://doi.org/10.1007/JHEP03(2021)189
https://doi.org/10.1007/JHEP03(2021)189
https://arxiv.org/abs/2012.07934
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.07934
https://doi.org/10.1088/1126-6708/2008/08/007
https://doi.org/10.1088/1126-6708/2008/08/007
https://arxiv.org/abs/0804.1773
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0804.1773
https://doi.org/10.1103/PhysRevD.100.066029
https://arxiv.org/abs/1906.04184
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.04184
https://doi.org/10.1007/JHEP01(2021)130
https://arxiv.org/abs/2006.04839
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.04839
https://doi.org/10.1007/JHEP10(2020)187
https://arxiv.org/abs/2006.04855
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.04855
https://arxiv.org/abs/2203.06511
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2203.06511
https://doi.org/10.1016/0370-2693(94)01419-D
https://arxiv.org/abs/hep-ph/9304230
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9304230
https://doi.org/10.1093/ptep/ptw124
https://arxiv.org/abs/1606.01857
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1606.01857

[46] L.V. Hiesiu, J. Kruthoff, G.J. Turiaci and H. Verlinde, JT gravity at finite cutoff, SciPost
Phys. 9 (2020) 023 [arXiv:2004.07242] [InSPIRE].

[47] D. Stanford and Z. Yang, Finite-cutoff JT gravity and self-avoiding loops,
arXiv:2004.08005 [INSPIRE].

[48] T.G. Mertens, The Schwarzian theory — origins, JHEP 05 (2018) 036 [arXiv:1801.09605]
[INSPIRE].

[49] M. Caselle, D. Fioravanti, F. Gliozzi and R. Tateo, Quantisation of the effective string with
TBA, JHEP 07 (2013) 071 [arXiv:1305.1278] [INSPIRE].

[50] N. Callebaut, J. Kruthoff and H. Verlinde, TT deformed CFT as a non-critical string, JHEP
04 (2020) 084 [arXiv:1910.13578] INSPIRE].

[51] J. Kruthoff and O. Parrikar, On the flow of states under TT, arXiv:2006.03054 [iNSPIRE].

[52] J. Cardy, The TT deformation of quantum field theory as random geometry, JHEP 10 (2018)
186 [arXiv:1801.06895] [INSPIRE].

[63] O. Aharony, S. Datta, A. Giveon, Y. Jiang and D. Kutasov, Modular invariance and
uniqueness of TT deformed CFT, JHEP 01 (2019) 086 [arXiv:1808.02492] [nSPIRE].

[54] K.-S. Lee, P. Yi and J. Yoon, TT-deformed fermionic theories revisited, JHEP 07 (2021) 217
[arXiv:2104.09529] [INSPIRE].

[65] V. Balasubramanian and P. Kraus, A stress tensor for anti-de Sitter gravity, Commun.
Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].

[56] M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023
[hep-th/9806087] [INSPIRE].

[57] O. Aharony and M. Field, On the effective theory of long open strings, JHEP 01 (2011) 065
[arXiv:1008.2636] [INSPIRE].

[58] O. Aharony and N. Klinghoffer, Corrections to Nambu-Goto energy levels from the effective
string action, JHEP 12 (2010) 058 [arXiv:1008.2648] [INSPIRE].

[59] V. Rosenhaus and M. Smolkin, Integrability and renormalization under TT, Phys. Rev. D
102 (2020) 065009 [arXiv:1909.02640] [INSPIRE].

[60] O. Aharony and T. Vaknin, The TTx deformation at large central charge, JHEP 05 (2018)
166 [arXiv:1803.00100] [INSPIRE].

[61] S. Hirano, T. Nakajima and M. Shigemori, TT deformation of stress-tensor correlators from
random geometry, JHEP 04 (2021) 270 [arXiv:2012.03972] [InSPIRE].

[62] A. Dey, M. Goykhman and M. Smolkin, Composite operators in TT-deformed free QFTs,
JHEP 06 (2021) 006 [arXiv:2012.15605] [INSPIRE].

[63] S. He and Y. Sun, Correlation functions of CFTs on a torus with o TT deformation, Phys.
Rev. D 102 (2020) 026023 [arXiv:2004.07486] [INSPIRE].

[64] A.B. Zamolodchikov, Ezpectation value of composite field TT in two-dimensional quantum
field theory, hep-th/0401146 [INSPIRE].

— 30 —


https://doi.org/10.21468/SciPostPhys.9.2.023
https://doi.org/10.21468/SciPostPhys.9.2.023
https://arxiv.org/abs/2004.07242
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.07242
https://arxiv.org/abs/2004.08005
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.08005
https://doi.org/10.1007/JHEP05(2018)036
https://arxiv.org/abs/1801.09605
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1801.09605
https://doi.org/10.1007/JHEP07(2013)071
https://arxiv.org/abs/1305.1278
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1305.1278
https://doi.org/10.1007/JHEP04(2020)084
https://doi.org/10.1007/JHEP04(2020)084
https://arxiv.org/abs/1910.13578
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.13578
https://arxiv.org/abs/2006.03054
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.03054
https://doi.org/10.1007/JHEP10(2018)186
https://doi.org/10.1007/JHEP10(2018)186
https://arxiv.org/abs/1801.06895
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1801.06895
https://doi.org/10.1007/JHEP01(2019)086
https://arxiv.org/abs/1808.02492
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1808.02492
https://doi.org/10.1007/JHEP07(2021)217
https://arxiv.org/abs/2104.09529
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2104.09529
https://doi.org/10.1007/s002200050764
https://doi.org/10.1007/s002200050764
https://arxiv.org/abs/hep-th/9902121
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9902121
https://doi.org/10.1088/1126-6708/1998/07/023
https://arxiv.org/abs/hep-th/9806087
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9806087
https://doi.org/10.1007/JHEP01(2011)065
https://arxiv.org/abs/1008.2636
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1008.2636
https://doi.org/10.1007/JHEP12(2010)058
https://arxiv.org/abs/1008.2648
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1008.2648
https://doi.org/10.1103/PhysRevD.102.065009
https://doi.org/10.1103/PhysRevD.102.065009
https://arxiv.org/abs/1909.02640
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.02640
https://doi.org/10.1007/JHEP05(2018)166
https://doi.org/10.1007/JHEP05(2018)166
https://arxiv.org/abs/1803.00100
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1803.00100
https://doi.org/10.1007/JHEP04(2021)270
https://arxiv.org/abs/2012.03972
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.03972
https://doi.org/10.1007/JHEP06(2021)006
https://arxiv.org/abs/2012.15605
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.15605
https://doi.org/10.1103/PhysRevD.102.026023
https://doi.org/10.1103/PhysRevD.102.026023
https://arxiv.org/abs/2004.07486
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.07486
https://arxiv.org/abs/hep-th/0401146
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0401146

	Introduction
	Boundary theory at zero cutoff
	Gravity solutions
	BTZ branch: a and bar a negative
	a and bara positive
	Thermal partition function

	The stress tensor in cutoff gravity and T barT-deformed CFT
	T barT deformation and stress tensor improvement
	Nambu-Goto action from the trace equation
	Computing the improved stress tensor
	Reduction to deformed Schwarzian quantum mechanics

	Static vs light-cone gauge
	Static gauge
	Light-cone gauge
	Spectrum of static gauge Hamiltonian

	Spectrum
	Perturbation theory

	Correlation functions
	Gravity side
	Field theory side

	Deformed action from the trace equation
	Conversion to Lorentzian signature

