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Abstract— Deep neural networks for medical image
reconstruction are traditionally trained using high-quality
ground-truth images as training targets. Recent work on
Noise2Noise (N2N) has shown the potential of using mul-
tiple noisy measurements of the same object as an alterna-
tive to having a ground-truth. However, existing N2N-based
methods are not suitable for learning from the measure-
ments of an object undergoing nonrigid deformation. This
paper addresses this issue by proposing the deformation-
compensated learning (DeCoLearn) method for training
deep reconstruction networks by compensating for object
deformations. A key component of DeCoLearn is a deep
registration module, which is jointly trained with the deep
reconstruction network without any ground-truth supervi-
sion. We validate DeCoLearn on both simulated and experi-
mentally collected magnetic resonance imaging (MRI) data
and show that it significantly improves imaging quality.

Index Terms— Inverse problems, image reconstruction,
deep learning, magnetic resonance imaging (MRI).

I. INTRODUCTION

THE recovery of a high-quality image from a set of
noisy measurements is fundamental in medical imaging.

Manuscript received 17 February 2022; accepted 24 March 2022. Date
of publication 28 March 2022; date of current version 31 August 2022.
This work was supported in part by the National Science Foundation
(NSF) under Award CCF-2043134 and in part by the Washington Uni-
versity Institute of Clinical and Translational Sciences from the National
Center for Advancing Translational Sciences (NCATS) of the National
Institutes of Health (NIH) under Grant UL1TR002345. (Corresponding
author: Ulugbek S. Kamilov.)

This work involved human subjects in its research. Approval of all
ethical and experimental procedures and protocols was granted by the
Washington University in St. Louis Institutional under Application No.
202001098.

Weijie Gan and Yu Sun are with the Department of Computer Sci-
ence & Engineering, Washington University in St. Louis, St. Louis,
MO 63130 USA (e-mail: weijie.gan@wustl.edu; sun.yu@wustl.edu).

Cihat Eldeniz is with the Mallinckrodt Institute of Radiology, Wash-
ington University in St. Louis, St. Louis, MO 63130 USA (e-mail:
cihat.eldeniz@wustl.edu).

Jiaming Liu is with the Department of Electrical & System Engineering,
Washington University in St. Louis, St. Louis, MO 63130 USA (e-mail:
jiaming.liu@wustl.edu).

Hongyu An is with the Department of Neurology, Department of
Biomedical Engineering, Mallinckrodt Institute of Radiology, Saint Louis,
MO 63130 USA, and also with the Division of Biology and Biomedical
Sciences, Washington University in St. Louis, St. Louis, MO 63130 USA
(e-mail: hongyuan@wustl.edu).

Ulugbek S. Kamilov is with the Department of Computer Science &
Engineering and Electrical & Systems Engineering, Washington Univer-
sity in St. Louis, St. Louis, MO 63130 USA (e-mail: kamilov@ieee.org).

Digital Object Identifier 10.1109/TMI.2022.3163018

Fig. 1. The conceptual illustration of DeCoLearn for CS-MRI [1].
DeCoLearn trains a convolutional neural network (CNN) on unregistered
measurements using a registration module that corrects for object
deformation. This example highlights the improvement of DeCoLearn
over an identical deep reconstruction network trained on the same
measurements but without deformation compensation.

For instance, it is essential in compressed sensing magnetic
resonance imaging (CS-MRI) [1], which aims at obtaining
diagnostic-quality images from severely undersampled k-space
measurements. The recovery is traditionally formulated as an
inverse problem that leverages a forward model characterizing
the physics of data acquisition and a regularizer imposing
prior knowledge on the solution. Many regularizers have been
proposed to date, including those based on transform-domain
sparsity, low-rank penalty, and dictionary learning [2]–[5].

Deep learning (DL) has recently gained popularity in
medical image reconstruction [6]–[10]. A widely-used DL
strategy is based on training a convolutional neural network
(CNN) to map a low-quality image to its desired high-quality
counterpart. However, this simple supervised DL approach
is impractical in applications where it is difficult to collect
a sufficient number of high-quality training images. This
limitation has motivated the research on “ground-truth-free”
DL schemes that rely exclusively on the information available
in the corrupted data itself [11]–[15]. In this study, we focus
on the line of work based on Noise2Noise (N2N) [12], which
has shown that one can train a CNN without ground-truth
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by using only pairs of noisy observations of the same object.
Recent extensions to N2N have investigated the potential of
this strategy in a variety of imaging scenarios [16]–[24].

Despite recent progress, current N2N-based methods inher-
ently assume that the object is stationary across all the
measurements. This assumption limits their ability to exploit
measurements of an object undergoing nonrigid deformation.
To overcome this limitation, we propose a new deformation-
compensated learning (DeCoLearn) method that uses multiple
measurements of a deformation-affected object by integrating
a deep registration [25] module into the deep architecture for
an end-to-end training. DeCoLearn enables training without
any ground-truth supervision by adopting recent ideas from
self-supervised deep registration [26]–[29]. The key contribu-
tions of this work are as follows:

• DeCoLearn extends N2N and its more recent variant
Artifact2Artifact (A2A) [13] to enable learning directly
in the measurement domain (e.g., k-space for MRI) from
undersampled and noisy measurements without any fully
sampled ground-truth. It is trained by transforming the
reconstructed images back to the measurement domain
and minimizing the difference between the predicted
measurements and the measured raw data.

• DeCoLearn can use information from multiple measure-
ments of an object undergoing nonrigid deformation,
which enables it to leverage information that is not
suitable for direct N2N/A2A training. This capability
is achieved by integrating a deep registration module
into the final architecture (see Fig. 2), which is trained
end-to-end on unregistered, noisy, and subsampled mea-
surements. Note that the registration module is only
necessary during training, since image reconstruction can
be performed by using only the reconstruction module.

• We extensively validate DeCoLearn on both simulated
and experimentally collected MRI data. Our simulation
results show that DeCoLearn quantitatively outperforms
several baseline methods and matches the performance of
oracle method that has the knowledge of the true object
motion. Our results on experimentally collected data show
that DeCoLearn leads to significant quality improvements
by using additional measurements not suitable for tradi-
tional N2N-based learning.

This paper extends the preliminary work presented in the
conference paper [30]. While [30] considered 2D single-coil
uniformly-sampled MRI data, the DeCoLearn algorithm in this
paper considers 3D multi-coil non-uniformly sampled MRI.
Additionally, while the method in [30] was validated only
on simulated data, here we present results on experimen-
tally collected MRI data where deformations correspond to
breathing. This paper also provides an expanded discussion of
related work, new technical details, as well as new figures and
tables.

II. BACKGROUND

A. Imaging Inverse Problems
We consider the problem of recovering an unknown image

x ∈ Cn from its noisy measurements y ∈ Cm specified by the

linear system

y = Hx + e, (1)

where e ∈ Cm is noise and H ∈ Cm×n is the measurement
operator that characterizes the response of the imaging system.
For instance, H in parallel CS-MRI with a dynamic object can
be represented as

H(t)
i = P(t)FSi , (2)

where F denotes the Fourier transform operator, P(t) refers to
a k-space sampling operator at time t , and Si is the matrix of
the pixel-wise sensitivity map of the i th coil. We assume that
Si is fixed over time. When m < n, the problem is an ill-posed
inverse problem, which can be conventionally formulated as
regularized optimization

arg min
x∈Cn

D(x) + R(x), (3)

where D is the data-fidelity term that quantifies consistency
with the observed data y and R is a regularizer that encodes
prior knowledge on x. For example, two widely-used functions
in imaging are the least-squares and total variation (TV)

D(x) = 1
2
‖Hx− y‖22 and R(x) = τ ‖Dx‖1 , (4)

where τ > 0 controls the regularization strength and D is the
discrete gradient operator [5].

In the past few years, DL has gained popularity for solving
imaging inverse problems due to its excellent performance (see
reviews in [6]–[10]). One widely-used DL approach is based
on training a CNN hθ (·), with parameters θ ∈ Rp , to compute
a regularized inverse of H by mapping corrupted images to
their clean target versions. The training can be formulated as
an optimization problem

arg min
θ

∑

i

L(hθ (H
†
i yi ), xi ), (5)

where H† is a pseudoinverse of H, L is a loss function, and
i indexes the samples in the training set. Popular choices
for L include the "1 and "2 norms. For example, prior
work on DL for CS-MRI has trained the CNN by mapping
the zero-filled images to their corresponding fully-sampled
ground-truth images [31]–[33]. While traditional DL relies on
generic CNN architectures (such as UNet [34]), recent work
has also explored the integration of DL and model-based opti-
mization. For example, plug-and-play priors (PnP) [35] and
regularization by denoisers (RED) [36] refer to a related family
of algorithms that use pre-trained deep denoisers as imaging
priors [37]–[40]. The recent publication [41] has reviewed
PnP/RED in the context of image reconstruction for MRI.
Deep unrolling is another widely-used strategy inspired by
LISTA [42], where the iterations of a regularized optimization
are interpreted as layers of a CNN and trained in an end-to-end
fashion [31]–[33], [42]–[45].

Our work contributes to this broad area by providing a new
DL method that does not require clean ground-truth images
as training targets. While this work focuses on traditional
model-free DL architectures, our method is fully compatible
with the latest model-based architectures.
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B. Deep Image Reconstruction Without Ground Truth

There is a growing interest in DL image reconstruction to
reduce the dependence on high-quality ground-truth training
targets. One widely-adopted framework is N2N [12], where
the CNN hθ is trained on a group of noisy images {̂xi j },
with j indexing different realizations of the same underly-
ing image i . There have been multiple extensions of the
original method [16]–[24] with applications to numerous
medical imaging problems, including motion-resolved MRI
[13], [17], cryo-transmission electron microscopy (cryo-
TEM) [22] and optical coherence tomography angiogra-
phy (OCTA) [21]. A2A [13] is one of the extensions of
N2N that showed excellent performance using multiple noisy
and artifact-corrupted images {̂xi j } obtained directly from
sparsely-sampled MR measurements. In A2A, i j denotes the
j th MRI acquisition of the subject i with each acquisition
consisting a different undersampling pattern and noise real-
ization. The whole dataset {̂xi j } is assumed to compliment the
information missing in each individual measurement, therefore
enabling training of the CNN hθ to predict clean images. The
underlying assumption of N2N/A2A is that the expected value
of the images {̂xi j } j still matches the ground-truth xi [12]. The
CNN in A2A is trained by minimizing a loss function

arg min
θ

∑

i, j, j ′
L

(
hθ (̂xi j ), x̂i j ′

)
. (6)

Recent works [15], [46] have shown the potential of training a
model-based deep network without ground-truth by dividing a
single k-space MRI acquisition into two subsets and using both
subsampled sets of measurements as training targets. The same
training strategy has been extended to the “zero-shot” learning
and achieved excellent performance when training and testing
datasets are highly inconsistent [47]. A similar strategy has
also been used for denoising in 3D parallel-beam tomography
by splitting a stack of noisy sinograms along the angular
axis [23]. Two recent papers considered the inclusion of
image deformation into the training of a deep image denoiser
[20], [24]. In [20], a pre-trained registration network is used
for training a video denoising network. In [24], a deep network
is trained along with a deep deformation network to remove
common types of noise in medical images, including additive
white Gaussian noise (AWGN), Rician noise, and Poisson
noise. The key difference of our work is that it goes beyond
denoising by considering general inverse problems and using
training labels directly in the k-space for MRI.

Noise2Void [14] and Noise2Self [48] are a related class of
methods that use a single noisy copy of each training image
in the dataset [49], [50]. Self2Self [51] extends this idea to
use only a single noisy image as a training sample. These
methods have been shown to achieve excellent performance in
the context of image denoising. Since N2V-type methods learn
only from a single image, they are expected to be suboptimal
when dealing with structured artifacts, such as aliasing or
streaks. We empirically verify this limitation of N2V in the
context of accelerated MRI in Section IV.

Another related line of work is on deep image prior
(DIP) [52], where a CNN is used for image reconstruction

without any training on external data [53]–[55]. DIP exploits
the architecture of the CNN to regularize the reconstruction
by mapping random but fixed latent inputs to noisy measure-
ments. A recent method TDDIP [54] extends DIP to dynamic
MRI by compensating for the object motion by encoding
the motion trajectory into the input latent variable. DIP is
fundamentally different from DeCoLearn since it is not an end-
to-end DL model and needs to solve a nonconvex optimization
problem for each reconstruction task.

Our work contributes to this area by enabling the use of
information from the measurements of an object undergo-
ing nonrigid deformation. It not only allows our method to
use more information for training, but also addresses the
assumptions of stationarity and artifact incoherence in the
prior work. It is worth mentioning that while in this paper
we use a traditional CNN as the deep reconstruction network
for DeCoLearn, the method itself is fully compatible with any
model-based DL architectures [15].

C. Deep Image Registration

Let r and m denote a reference image and its deformed
counterpart, respectively. Deformable image registration aims
to obtain a registration field φ̂

m→r
that maps the coordinates

of m to those of r by comparing the content of the cor-
responding images. Deformable image registration has been
widely-used in many applications, such as motion track-
ing [56] and image segmentation [57], [58]. The registra-
tion field φ̂

m→r
is often characterized by a displacement

vector field v̂m→r that represents coordinate offsets from
m to r, φ̂

m→r = I + v̂m→r , where I denotes an identity
transformation [59].

Recently, there has been considerable interest in developing
DL methods for deformable image registration [25], espe-
cially methods that require no knowledge of the ground-truth
transformation for training [26]–[29]. The corresponding
self-supervised methods train a CNN gϕ , with parameters ϕ ∈
Rk , by mapping an input image pair {m, r} to a deformation
field φ̂

m→r = gϕ(m, r) that can be used for registration [25].
The CNN is trained on a set of image pairs

{
mi , ri

}
by

minimizing the following loss function

arg min
ϕ

∑

i

Ld(mi ◦ φ̂
m→r
i , ri ) + Lr(φ̂

m→r
i ), (7)

where ◦ is the warping operator that transforms the coordinates
of mi based on the registration field φ̂

m→r
i . The term Ld

penalizes the discrepancy between mi after transformation
and its reference ri , while Lr regularizes the local spatial
variations in the estimated registration field. In order to
use the standard gradient methods for minimizing this loss
function, the warping operator needs to be differentiable
and is often implemented as the Spatial Transform Network
(STN) [60].

Our work seeks to leverage the recent progress in deep
image registration to enable a novel methodology for train-
ing deep reconstruction networks on deformation-affected
datasets.
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Fig. 2. The proposed method jointly trains two CNN modules: hθ for image reconstruction and gϕ for image registration. Inputs are the measurement
pairs of the same object but at different motion states. The zero-filled images are passed through hθ to remove artifacts due to noise and
undersampling. The output images are then used in gϕ to obtain the motion field characterizing the directional mapping between their coordinates.
We implement the warping operator as the Spatial Transform Network (STN) to register one of the reconstructed images to the other. We train the
whole network end-to-end without any ground-truth images or transformations.

D. Motion-Compensated Reconstruction
Motion-compensated (MoCo) reconstruction refers to a class

of methods for reconstructing dynamic object from their noisy
measurements [61]–[71]. MoCo methods seek to leverage data
redundancy over the motion dimension during reconstruction.
For example, traditional model-based MoCo methods include
an additional regularizer in the motion dimension [61]–[63] or
enforce spatial smoothness in the images at different motion
phases using motion vector fields (MVFs) [64]–[66]. MVFs can
be obtained by registering images of the reconstructed object at
different motion states or via joint optimization using multi-
task optimization [67]–[69]. Recent methods have also used
DL to estimate MVFs by training a self-supervised network on
reconstructed images [70] or by jointly updating both MVFs
and images in a supervised fashion [71].

DeCoLearn is a complementary paradigm to the tradi-
tional MoCo image reconstruction. The primary focus of
DeCoLearn is to enable learning given pairs of measurements
of objects undergoing deformations. Thus, unlike MoCo meth-
ods, DeCoLearn does not specifically target sequential data.
DeCoLearn can be used both as a traditional (non-MoCo)
algorithm on 2D/3D spatial images or extended to explicitly
take into account the motion/temporal dimension of the signal.

III. PROPOSED METHOD

In this section, we introduce the technical details of the pro-
posed method. We start by describing the overall architecture,
followed by the details of each module.

A. Overall Model
Consider a pair of unregistered measurements (yr , ym)

obtained separately from the same object

yr = Hr xr + er and (8a)

ym = Hmxm + em with xm = xr ◦ φr→m , (8b)

where (Hr , Hm) and (er , em) denote distinct forward operators
and noise vectors, respectively. Eq. (8b) models the object
motion as a dense nonrigid transformation-field φr→m relative
to xr . For example, (yr , ym) can be two motion-affected accel-
erated MRI measurements of the same patient. Our method
aims to train a deep neural network on a set of such pairs
{(yr

i , ym
i )}N

i , where N ≥ 1 denotes the total number of training
samples, without the need for ground-truth images (xr

i and xm
i )

or transformations (φr→m
i ).

Fig. 2 summarizes the data processing pipeline of
DeCoLearn. It consists of a reconstruction module trained to
form images from measurements, and a registration module
for registering the reconstructed images onto each other. The
trainable parameters of both modules are denoted as θ and ϕ
in respective order. During training, we define two distinct loss
functions Lrec and Lreg as well as two Adam [72] optimizers
Adamrec and Adamreg for each module. Given a mini-batch of
training samples, the proposed training procedure alternatively
minimizes the loss functions by fixing the trainable parame-
ters of one module while training the other. Algorithm 1
summarizes the training strategy. Note that the registration
module of DeCoLearn is only employed during training, since
reconstruction during testing can be performed directly by
using the reconstruction module alone.

B. Reconstruction Module
During training, the reconstruction module separately takes

two measurements yr and ym described in (8) as inputs
to produce two images x̂r and x̂m as outputs, respectively.
The measurements are first mapped to the image domain
by applying the pseudoinverse of their respective forward
operators. We denote with (Hm)†ym and (Hr )†yr the resulting
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Algorithm 1 DeCoLearn Training

Require: Initial parameters θ0and ϕ0, number of iterations K ,
and Adam [72] optimizers Adamreg and Adamrec.

1: for number of training iterations k = 1, 2, . . . , K do
2: Select a training mini-batch: yr

i , ym
i , Hr

i , Hm
i

3: θ k ← Adamrec(θ
k−1, ∂Lrec/∂θ)

4: ϕk ← Adamreg(ϕk−1, ∂Lreg/∂ϕ)
5: end for
6: return Learned parameters θ K and ϕK .

artifact-corrupted images in the image domain. A CNN hθ with
parameters θ ∈ Rp is then trained to remove the artifacts from
the corrupted images

x̂m = hθ

(
(Hm)†ym)

and x̂r = hθ

(
(Hr )†yr ). (9)

Our network is a customized version of the residual CNN used
in the prior work on deep image reconstruction [13], [15], [73].

Since the underlying true images xm and xr are unregistered,
their reconstructed versions x̂m and x̂r obtained from hθ are
also unregistered. Therefore, it is suboptimal to construct a loss
function to directly compare the pixel-wise difference between
x̂m and x̂r . It is thus necessary to use the registration module
to mitigate their potential misalignment. We define T(̂xr ) and
T(̂xm) as the images transformed according to the estimated
deformation field (see details in Sec. III-C). In our notation,
T(̂xr ) denotes a transformed variant of x̂r relative to x̂m .

The loss function Lrec of hθ has two components

Lrec = Lcross + γ · Lself, (10)

where the parameter γ > 0 controls the relative strength of
each component. The function Lcross is the main component
that penalizes the difference between the raw data and the
transformed reconstructed image at a different motion state

Lcross =
N∑

i=1

L
(
yr

i , Hr
i T(̂xm

i )
)
+ L

(
ym

i , Hm
i T(̂xr

i )
)
, (11)

where Hm
i and Hr

i are the forward operators used to map the
registered images back to the measurement domain. Eq. (11)
maps pairs of measurements having the forms (8a) and (8b)
by assuming that the deformations between them have been
accounted for via the registration module. The function Lself
penalizes the discrepancy between the measurements estimated
from a reconstructed image and the corresponding actual raw
measurements

Lself =
N∑

i=1

L
(
yr

i , Hr
i x̂r

i
)
+ L

(
ym

i , Hm
i x̂m

i
)
. (12)

Note that N2N/A2A can be seen as special cases of the
proposed method where the potential deformations between
the measurements are set to identity.

C. Registration Module
Our registration module builds on self-supervised deep

image registration discussed in Sec. II-C, which consists of a

CNN gϕ , customized from U-net [34] with trainable parame-
ters ϕ ∈ Rq , and a Spatial Transform Network (STN) [60].
As its order-sensitive input, the network accepts a pair of
reconstructed images (̂xm, x̂r ) estimated using hθ and registers
them onto each other. The network gϕ uses two inputs in
different orders to generate two motion fields

φ̂
m→r = gϕ (̂xm, x̂r ) and φ̂

r→m = gϕ

(
x̂r , x̂m) (13)

that characterize two coordinate mappings with opposite direc-

tions relative to each other. For example, φ̂
m→r

denotes a
directional mapping from the coordinates of x̂m to those of x̂r .
STN then transforms the coordinate of inputs based on the
motion fields and obtains their registered variants

T(̂xm) = x̂m ◦ φ̂
m→r

and T(̂xr ) = x̂r ◦ φ̂
r→m

. (14)

The loss function Lreg for training gϕ is specified as

Lreg = Lsimilarity + λ · Lsmooth, (15)

where Lsimilarity enforces similarity between registered images
and their references, Lsmooth enforces spatial smoothness in
the motion field, and λ > 0 is a regularization parameter. The
function Lsimilarity is given by

Lsimilarity = −
∑

i

(
LCC(T(̂xm), x̂r

i ) + LCC(T(̂xr ), x̂m
i )

)
.

(16)

where LCC denotes the local cross-correlation (LCC) [29],
which is known to be robust to intensity variations across dif-
ferent acquisitions [74]. While minimizing Lsimilarity enforces
accurate alignment, it can also generate non-smooth registra-
tion fields that are not physically realistic [29]. Therefore,
we include the function Lsmooth that imposes smoothness on
the coordinate offsets v̂ = φ̂ − I

Lsmooth =
∑

i

( ∥∥Dv̂m→r
i

∥∥2 +
∥∥Dv̂r→m

i

∥∥2
)
. (17)

IV. EXPERIMENTAL VALIDATION

We validate our method in the context of accelerated MRI.
We consider three settings: (a) 2D simulated measurements
and simulated deformations; (b) 2D simulated measurements
and real unknown deformations; and (c) 3D experimentally
collected measurements and real unknown deformations.

A. Setup

1) Baseline Methods: We used several well-known image
reconstruction methods for comparison

(a) TV/CS: The traditional total variation regularization
method is summarized in eq. (4). On the experimentally
collected free-breathing MRI data, we replace the basic
TV with the compressed sensing (CS) method from [76].
Similarly to the well-known XD-GRASP method [61],
CS exploits regularization along the motion dimension
to significantly boost reconstruction performance.
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TABLE I
AVERAGE PSNR AND SSIM VALUES OBTAINED OVER THE TEST SET. THE TABLE HIGHLIGHTS THAT DECOLEARN OUTPERFORMS SEVERAL

WELL-KNOWN BASELINE METHODS AT DIFFERENT ACCELERATION FACTORS AND SYNTHETIC DEFORMATION MAGNITUDES

(b) SSDU/Self-Supervised [46]1: A recent self-supervised
method that trains a deep unrolling network by dividing
each k-space MRI acquisition into two subsets and using
them as training targets for each other. Self-Supervised
is a variant of SSDU that uses the same reconstruction
CNN as DeCoLearn. Having both methods allows to
separate the influence of the deep unrolling architec-
ture from that of the training scheme on the SSDU
performance.

(c) DIP/TDDIP [54]2: DIP is an image reconstruction
method that uses an untrained CNN as a regularizer.
We use an improved variant of DIP on our simulated
data where two i.i.d. latent vectors are mapped to
different measurements of the same subject. TDDIP
is a recent extension of DIP that improves perfor-
mance by taking into account the motion dimen-
sion in the image sequence. We use TDDIP on
our experimentally-collected MRI data by sampling
the latent inputs in the straight-line manifold due to
the acyclic nature of the respiratory motion occurred
in the dataset [54].

(d) Noise2Void (N2V) [14]3: An alternative to N2N that
trains image restoration CNNs by mapping noisy pixels
to their randomly-selected neighbors. Unlike N2N, N2V
does not require paired data, but inherently assumes that
artifacts are spatially unstructured—an assumption that
does not hold for aliasing and streaking artifacts in MRI.

We also performed an ablation study to highlight the influence
of the registration module within DeCoLearn. The ablated
methods can be divided into three categories.

• Registration-free methods:

(i) A2A (Unregistered): The most basic variant of
A2A, trained directly on unregistered measure-
ments. It can be interpreted as the worst-case
scenario for DeCoLearn when no deformation-
compensation is performed during training.

1We use the SSDU implementation at github.com/byaman14/SSDU.
2We use the TDDIP implementation at github.com/jaejun-yoo/TDDIP.
3We use the Noise2Void implementation at github.com/juglab/n2v.

Fig. 3. Visual illustration of deformations in the simulated experiments.
The red regions are segmentations in the reference, while the blue
regions are the corresponding segmentations in the deformed counter-
parts. The synthetic deformations were generated by using the method
in [75], where σ is inversely related to the deformation strengths. The
in vivo deformation is due to normal aging and disease.

• Pre-registration methods: In this category, we explore
the use of a fixed registration module that provides motion
field estimates during the A2A training.
(ii) A2A (Affine): Uses Affine algorithms implemented

in advanced normalization tools (ANTS) [77].
(iii) A2A (SyN): Similar to A2A (Affine), but uses Sym-

metric Normalization (SyN) [74] algorithm instead.
(iv) A2A (VoxelMorph): Uses a deep registration method

from [29] pre-trained on artifact-corrupted images.
• Oracle-registration method:

(v) A2A (Oracle): A2A (Oracle) is the idealized variant
of DeCoLearn using the registration model that
provides perfect results. In our simulations, we syn-
thesized the registered data by applying different
measurement operators on the same ground-truth
image with no motion. Note that this method is
not applicable to the experimental data as the
ground-truth is unavailable.

2) Evaluation Metrics: In simulations, we implemented two
widely-used quantitative metrics, peak signal-to-noise ratio
(PSNR), measured in dB and structural similarity index
(SSIM), relative to the ground-truth images used to synthesize
the measurements. The quantitative results were statistically
analyzed by comparing DeCoLearn to other image reconstruc-
tion methods. We used the non-parametric Friedman’s test and
the post-hoc test of the original FDR method of Benjamini
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TABLE II
QUANTITATIVE RESULTS OF AN ABLATION STUDY SHOWING INFLUENCE OF THE REGISTRATION MODULE. THE TABLE SHOWS THAT DECOLEARN

NEARLY MATCHES THE PERFORMANCE OF THE IDEALIZED A2A (Oracle) METHOD, WHICH USES THE TRUE DEFORMATIONS

TABLE III
AVERAGE PSNR AND SSIM VALUES OBTAINED OVER THE TEST SET.

NOTE HOW DECOLEARN ACHIEVES BETTER PERFORMANCE THAN

ALL THE METHODS AT DIFFERENT ACCELERATION FACTORS. THE

DEFORMATIONS CONSIDERED IN THIS TABLE ARE in Vivo DUE

TO NORMAL AGING AND DISEASE

and Hochberg [78]. The statistical analysis was performed
using GraphPad Prism 9 (Version 9.3.1 for macOS, GraphPad
Software, San Diego, CA, USA). Statistical significance was
defined as P < 0.05. Our evaluations on experimental data
are qualitative due to the ground-truth being unavailable.

3) Implementation: We have experimented with several
choices for the loss functions in eq. (10). The best empirical
results were obtained when using the "1 loss for the experi-
mentally collected measurements, and the Huber function (or
smooth-"1 loss [79]) for the simulated measurements. We set
the learning rates of Adamreg and Adamrec to 0.0005, and the
mini-batch sizes to 4. We performed all our experiments on
a machine equipped with an Intel Xeon Gold 6130 Processor
and an NVIDIA GeForce RTX 2080 Ti GPU.

B. Simulated Measurements and Deformations
1) Dataset: We used the T1-weighted MR brain acquisitions

of 60 subjects obtained from the open dataset OASIS-3 [80]
as the raw ground-truth for simulating measurements. The raw
ground-truth images are magnitude images. These 60 subjects
were split into 48, 6, and 6 for training, validation, and testing,
respectively. For each subject, we extracted the middle 50 to
70 (depending on the shape of the brain) out of the 256 slices

TABLE IV
QUANTITATIVE RESULTS FROM AN ABLATION STUDY EVALUATING THE

INFLUENCE OF REGISTRATION. NOTE HOW DECOLEARN ACHIEVES

COMPARABLE PERFORMANCE TO A2A (Oracle), WHICH, UNLIKE

DECOLEARN, RELIES ON REGISTRATION INFORMATION OBTAINED

FROM THE GROUND-TRUTH. THE DEFORMATIONS CONSIDERED IN

THIS TABLE ARE in Vivo DUE TO NORMAL AGING AND DISEASE

on the transverse plane, containing the most relevant regions of
the brain. Each slice corresponds to xr in (8a). We synthesized
motion fields (φr→m in (8b)) based on the method in [75]
and used them to deform the ground-truth images, where
the resulting images correspond to xm in (8b). Three pre-
defined parameters of the generation were the number of points
randomly selected in the zero vector field p = 2000, the range
of random values assigned to those points δ = [−10, 10],
and the standard deviations of the smoothing Gaussian kernel
for the vector field σ ∈ {10, 18, 24}. Thus, σ is inversely
related to the strength of deformation in the image. Fig. 3
shows visual examples of the deformed images generated
by synthetic registration fields with different values of σ .
In order to obtain corrupted measurement pairs, we simulated a
single-coil MRI setting with a Cartesian sampling pattern that
sub-samples and fully-samples along ky and kx dimension
in the k-space, respectively. We set the sampling rate to
25% and 33% (corresponding to 4× and 3× acceleration)
of the full sampling rate for the complete k-space data and
added measurement noise corresponding to an input SNR
of 40dB.

2) Results: Table I summarizes quantitative results of all
the evaluated methods. Note that the improvement of SSDU
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Fig. 4. Quantitative evaluation of DeCoLearn on simulated MRI measurements with in-vivo deformations and 33% sampling rate: (a) comparison
against other methods and (b) results of an ablation study showing the influence of registration. The top-right corner of each image provides the
PSNR and SSIM values with respect to the ground-truth. Yellow arrows in the highlight brain regions that were well reconstructed using DeCoLearn.
Note that A2A (Oracle) is an idealized algorithm that requires perfectly registered measurements that are unavailable in practice. This figure highlights
that DeCoLearn can achieve excellent quantitative and visual performance.

Fig. 5. Illustration of in-vivo respiratory deformation and several 3D reconstruction results from experimentally collected measurements
corresponding to 800 spokes (about 2 minutes scan). The blue line provides a horizontal position reference of the tumor in the reconstruction
result of DeCoLearn, demonstrating nonrigid deformations between images across different respiratory phases. Yellow arrows indicate areas that
were well preserved by DeCoLearn. Note how DeCoLearn reconstructs higher quality images compared to both CS and A2A (VoxelMorph).

over Self-Supervised is due to the deep unrolling architecture,
that, in principle, can also be adopted in DeCoLearn to further
improve its performance. Table I shows that DeCoLearn
achieves the highest PSNR and SSIM values compared to other
methods over all considered configurations of subsampling
and deformation strengths. Statistical analysis of PSNR and
SSIM values in Table I also highlights that DeCoLearn can
achieve statistical significant results compared to the baseline
image reconstruction methods. Table II shows the quanti-
tative results of the ablation study evaluating the influence
of the deep registration module. The results suggest that
pre-registering images before training leads to sub-optimal
performance, while DeCoLearn nearly matches the perfor-
mance of the idealized A2A (Oracle) that uses the ground-truth
deformations.

C. Simulated Measurements and Real Deformations
1) Dataset: We consider a data acquisition scheme that

is similar to that described in Sec. IV-B, but differs in the
approach to deform the ground-truth. Specifically, we used the
second MR acquisitions of the 60 subjects from the OASIS-3
[80] dataset as the deformed images. The intervals between the
two MR sessions of each subject range from one to ten years.
Note that the deformations occurring in two different in vivo
MR images of the same subject are due to normal aging and
the potential effects of the Alzheimer disease. Fig. 3 visually
illustrates the corresponding deformation.

2) Results: Fig. 4a summarizes the results from all the eval-
uated methods on this dataset. One can observe a significant
reduction in imaging artifacts due to TV compared to the Zero-
Filled reconstruction. However, TV also leads to a loss of
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Fig. 6. Comparison of several reconstruction methods on experimentally collected data corresponding to 800 radial spokes (scans of about
2 minutes). N2V, SSDU, and Self-Supervised are all trained by using the available 800 spokes at each motion state. CS and TDDIP take advantage
of the correlations in the respiratory motion dimension by imposing an additional regularizer and encoding the motion trajectory into input latent
variables, respectively. DeCoLearn improves over A2A training by correcting for deformations in different motion states. The visually important
differences are highlighted using arrows. Note how compared to other methods, DeCoLearn recovers sharper images (see yellow arrows in magnified
regions) and reduces artifacts (see orange arrows in the background).

Fig. 7. Illustration of the results from the ablation study of DeCoLearn on experimentally-collected data corresponding to 800 radial spokes (scans
of about 2 minutes). A2A (Unregistered) is directly trained on unregistered 3D measurement pairs, while A2A (SyN) and A2A (VoxelMorph) train
CNNs on pre-registered but artifact-corrupted images. MCNUFFT 2000-spokes requires data corresponding to 2000 radial spokes (scans of about
5 minutes). The visual differences are highlighted using arrows in magnified regions. Note how DeCoLearn outperforms its ablated variants by jointly
performing 3D image reconstruction and registration.

detail due to the well-known “staircase effect”. While N2V can
achieve good performance on removing unstructured artifacts,
such as AWGN, it is suboptimal for the removal of structured
MRI ghosting artifacts due to k-space undersampling. The yel-
low arrows in the magnified regions of Fig. 4a highlight brain
tissue that was clearly reconstructed using only DeCoLearn.

Fig. 4b provides results from the ablation study. Pre-
registration methods, such as A2A (VoxelMorph), lead to a
significant improvements over the registration-free methods
by using pre-registered artifact-contaminated images, but they
still suffer from smoothing in the region indicated by yellow
arrows. DeCoLearn achieves better performance compared to
all of these ablated methods in terms of sharpness, contrast,
and artifact removal, due to its ability to correct for defor-
mations during training. Note that although the measurements

were simulated in this experiment for quantitative evaluation,
the deformations in the data are in vivo.

D. Real Measurements and Real Deformations

1) Dataset: All acquisition processes were performed on
a 3T PET/MRI scanner (Biograph mMR; Siemens Health-
care, Erlangen, Germany). We collected the data by using
the CAPTURE method, a T1-weighted stack-of-stars 3D
spoiled gradient-echo sequence with fat suppression that
has consistently acquired projections for respiratory motion
detection [76]. The acquisition parameters were as follows:
TE/TR = 1.69ms/3.54ms, FOV = 360 × 360 × 288 - 360 ×
360× 360 mm3, resolution = 1.125× 1.125× 6 mm3, partial
Fourier factor = 6/8, number of radial spokes = 2000, slice
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Fig. 8. Illustration of reconstruction results of DeCoLearn, A2A (Unregistered), and TDDIP from experimentally collected measurements using 400,
800, 1200, 1600, and 2000 spokes, corresponding to 1-, 2-, 3-, 4-, and 5- minute scans, respectively. A2A (Unregistered) trains CNNs on unregistered
measurements. TDDIP is a variant of DIP that improves performance jointly reconstructing images of 10 respiratory phases. We highlighted visual
differences by using arrows. Note how DeCoLearn reconstructs sharper edges (see liver tissues highlighted by yellow arrows in the magnified region)
and better reduces artifacts (see image backgrounds highlighted by orange arrows). This figure shows that DeCoLearn can improve over these two
methods at different acquisitions durations by integrating a deep image registration module.

resolution = 50%, slice per slab Nz = {96, 112, 120} so as to
cover the torso with an interpolated slice thickness of 3mm,
total acquisition time was about 5 minutes (slightly longer
for larger subjects). Note that the actual resolution in slice
dimension is 6 mm, but being interpolated into 3 mm. We
discarded the first ten spokes during reconstruction to ensure
the acquired signal reached a steady state. Our free-breathing
MRI data were subsequently binned into Np = 10 respiratory
phases, and thus each phase was reconstructed with Ns =
199 spokes. The dimension of raw measurement for each
subject was Nz × Nc × Np × Ns × Nl with Nc = {5, 6}
being the number of coils and Nl being the length of radial
spokes. The coil sensitivity maps were estimated from the
central radial k-space spokes of each slice and were assumed
to be known during experiments. Apodization was applied by
using a Hamming window that covered the central k-space
in order to avoid Gibbs ringing. We used inverse Multi-Coil
Non-Uniform Fast Fourier Transform (MCNUFFT) [81] to
map those measurements from k-space to the image domain,
yielding 4D images Nx×Ny×Np×Nz for each subject where
Nx × Ny is the image domain matrix size.

Upon the approval of our Institutional Review Board, mul-
tichannel liver data from ten healthy volunteers and six cancer
patients were used in this paper, where eight healthy subjects

were used for training, one healthy subject for validation, and
the rest for testing. Raw measurements of each subject were
first reformatted into Nz measurements, yielding 8Nz samples
for training and Nz for validation. Each of the reformatted
measurements is in three-dimensions with two spatial dimen-
sions and one dimension corresponding to the respiratory
phase. We then trained DeCoLearn on measurement pairs such
that each pair contained the five odd respiratory phases and
the five even respiratory phases of the same training sample.
Fig. 5 shows examples of MCNUFFT images obtained from
a training sample, demonstrating that DeCoLearn was trained
on unregistered measurement pairs corresponding to images
with nonrigid respiratory deformations. We used MCNUFFT
images from the full acquisition duration (5 minutes) as
the reference for qualitative evaluations. We conducted the
experiments for various acquisition durations of 1, 2, 3, 4,
and 5 minutes, corresponding to 400, 800, 1200, 1600, and
2000 radial spokes in k-space, respectively. The golden-angle
acquisition scheme ensures approximately uniform coverage of
k-space for any arbitrary number of consecutive spokes [82].

The original implementation4 of SSDU [15], [46] is based
on the fast Fourier transform (FFT), which is not suitable

4Publicly available at github.com/byaman14/SSDU.
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to the non-uniform sampling pattern used in our data. There-
fore, we re-implemented SSDU by using a publicly available
non-uniform FFT operator [81] and the unrolled regularization
by denoising architecture [45]. Though Self-Supervised relies
on the same 3D network as DeCoLearn, due to memory
constraints, SSDU is implemented as a 2D architecture that
processes each individual phase separately. Note that the
original implementation of SSDU is also based on a 2D
architecture.

2) Results: Fig. 6 shows reconstruction results of all
the methods on 800 radial spokes (corresponding to about
2 minute acquisitions). The MCNUFFT image suffers
from strong streaking artifacts. Note how even MCNUFFT
2000-spokes, which corresponds to about 5 minute acqui-
sitions, leads to imaging artifacts. All other methods yield
significant improvements over MCNUFFT. While the result of
CS (which is similar to the well-known XD-GRASP method)
shows a considerable reduction in the streaking artifacts, it also
contains a noticeable amount of detail loss. N2V reduces the
noise-like artifacts, but still preserves the structured streaking
artifacts. The results of SSDU and Self-Supervised show
the benefit of N2N-type of training over that of N2V for
image reconstruction. Overall, DeCoLearn achieves the best
qualitative performance. As highlighted in Fig. 6 using arrows,
DeCoLearn reconstructs sharper edges (see yellow arrows) and
reduces background imaging artifacts (see orange arrows).

Fig. 7 illustrates the results of the ablation experiments
on the real data with 800 radial spokes. A2A (Unregistered)
leads to a reasonable result even without registration in
training, but it also contains a noticeable amount of blur,
especially along the edges. A2A (Affine) and A2A (SyN) also
suffer from smoothing in the region of interest even with
the registration algorithms integrated to pre-align the samples.
Note the reduction in blur in A2A (VoxelMorph) relative to
the registration-free methods. However, a closer inspection
indicates that the result of A2A (VoxelMorph) still suffers
from artifacts, such as the noise-like artifacts around the spot
highlighted by yellow and orange arrows. Fig. 7 depicts that
DeCoLearn leads to improvements over several baseline meth-
ods, especially compared with MCNUFFT 2000 spokes with
a longer acquisitions time (5 minutes). Fig. 5 also provides
visual comparisons between DeCoLearn, CS and A2A (Voxel-
Morph). Fig. 5 shows that DeCoLearn performs better across
different respiratory phases, especially considering its ability
to remove artifacts around the spot highlighted by yellow
arrows. Note that both the measurements and the deformations
in these results are from experimentally collected data, demon-
strating the applicability of DeCoLearn in motion-resolved
MRI.

Fig. 8 illustrates comparisons between A2A (Unregistered),
TDDIP and DeCoLearn for various acquisition durations. We
annotated visual differences using yellow and red arrows.
While A2A (Unregistered) trains CNNs directly on unreg-
istered measurement pairs, DeCoLearn reconstructs sharper
boundaries highlighted by yellow arrows due to its ability to
take into account the deformation field during training. These
results indicates the excellent performance of DeCoLearn
across different acquisition durations.

V. DISCUSSION AND CONCLUSION

A. Benefits of DeCoLearn
DeCoLearn enables learning using information from mul-

tiple measurements of the same object undergoing non-
rigid deformation. Unlike N2N/A2A, DeCoLearn relaxes the
requirement on having registered measurements, making it
more applicable in practice. DeCoLearn is fully complemen-
tary to existing self-supervised methods that use a single
measurement, such as SSDU [15], [46] and N2V [14]. One
can simply integrate DeCoLearn with these self-supervised
schemes by imposing an additional self-supervision term. Note
also that DeCoLearn is compatible with any deep unrolling
architecture.

B. Limitations and Possible Extensions
1) Extension to Contrast-Variant Measurements: The current

implementation of DeCoLearn can only compensate image
deformations over different acquisitions of the same object.
In some dynamic imaging scenarios, such as the dynamic
contrast enhanced (DCE) imaging [83], different measure-
ments acquired from the same object might also correspond
to distinct image contrasts. DeCoLearn is not yet suitable
for such imaging problems. Extension of DeCoLearn to this
scenario would be an interesting direction of future research.

2) Extension to Sequential Image Reconstruction: The recon-
struction of a sequence of images from the measurements of
a dynamic object has many applications in medical imaging
(e.g., cine dynamic imaging). The key concept behind dynamic
imaging is to leverage the redundancies in the data across the
motion dimension (see our discussion of MoCo reconstruc-
tion). Our experimental validation on free-breathing MRI has
shown that DeCoLearn can be used to learn the redundancies
over the respiratory dimension. However, DeCoLearn does not
explicitly use properties specific to the motion dimension.
Future work can address this by extending DeCoLearn to
include an explicit motion regularization.

3) Availability of Training Data: DeCoLearn requires training
datasets consisting of the unregistered measurements acquired
from the same object. While DeCoLearn can relax the require-
ment on deformation-free measurements, there exist applica-
tions for which multiple measurements of the same object
are not available. The availability of the training data can be
a factor that could thus limit the usefulness of DeCoLearn
for some applications. It is worth mentioning that the avail-
ability of multiple views of the same object also comes
with the advantage that it can boost the imaging quality,
as can be seen from the comparisons between DeCoLearn
and N2V.

C. Conclusion
We proposed a new method for addressing an important

issue in the context of training of deep neural networks
for medical image reconstruction. Our proposed DeCoLearn
method extends the influential Noise2Noise approach by work-
ing directly in the measurement domain and compensating
for object motion in the data. We validated our method
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using simulated and experimentally collected MRI data. Our
results demonstrated that DeCoLearn significantly improves
image quality compared to several baseline methods. Though
our experiments focused on MRI, the DeCoLearn method
has the potential to be adopted in other imaging modalities
as well, such as computerized tomography [27] and optical
diffraction tomography [84]. In such imaging scenarios, it is
often impossible to obtain fully-sampled measurements, but
only several distinct views of the object where it is possible
that these views are not registered onto each other.

APPENDIX

D. Network Architectures

We customized the residual CNN [85] into hθ . hθ consists
of three components. The first component is a convolution
layer (Conv) that takes corrupted images as input. The second
component is a sequence of residual blocks. Each block
alternates between a Conv followed by a rectified linear unit
(ReLU), a normal Conv, and an adding residual connection.
The third component is a Conv followed by an adding skip
connection. It processes the feature maps generated by the first
component and produces a output with the same dimension as
that of the network input. Kernel sizes of all Convs are set
to 3, strides to 1, and filters to 64.

The architecture of gϕ is similar to VoxelMorph [29].
gϕ consists of five encoder blocks, four decoder blocks with
skip connections, and an output block. Each encoder block
sequentially has a Conv and a Parametric ReLu (PReLU). The
Conv has a kernel size of 4 and a strides of 2 to reduce
the feature maps by half in the spatial dimension. In the
decoder pathway, the intermediate feature maps were first
up-sampled to double the size through a bilinear interpolation
kernel. They were then concatenated with the feature maps
originated from the encoder block at the same level via the
skip connection. The concatenated feature maps were used as
inputs to a decoder block, which consists of a Conv with a
kernel size of 3 and a stride of 1, and a PReLU. The output
block has one normal Conv to generate a registration field.
Filters of all Convs are set to 32.

E. Deep Registration Component of DeCoLearn

In this section, we evaluate the deep registration component
of DeCoLearn, which was trained directly on subsampled and
noisy data. We consider simulated measurements described in
Sec. IV-B and Sec. IV-C.

1) Baseline Methods: We used several image registra-
tion methods as references that can be divided into three
categories.

• Reconstruction-free methods: Both methods apply reg-
istration algorithms directly on zero-filled (ZF) images.

1) Affine (ZF): Uses the Affine algorithm implemented
in advanced normalization tools (ANTs) [77].

2) SyN (ZF): Similar to Affine (ZF), but uses the
SyN [74] algorithm instead.

3) VoxelMorph (ZF): Trains a deep VoxelMorph [29]
model.

TABLE V
DICE SCORE OBTAINED OVER ON THE TESTING SET. NOTE THAT

VoxelMorph (Oracle) USES GROUND-TRUTH IMAGES AS INPUTS,
WHILE THE OTHERS RELY ON CORRUPTED COUNTERPARTS. THE

HIGHEST DICE SCORES AMONG METHODS USING CORRUPTED

IMAGES ARE IN BOLD. THIS TABLE ILLUSTRATES THAT

DECOLEARN IS APPROPRIATE TO TRAIN AN END-TO-END

REGISTRATION NETWORK ON CORRUPTED IMAGE PAIRS

• Pre-reconstruction methods:
4) SyN (TV): Uses SyN on images reconstructed using

TV.
• Oracle-reconstruction method:

5) VoxelMorph (Oracle): Similar to VoxelMorph (ZF),
but uses clean images for training.

2) Evaluation Metrics: We implemented Dice Score [86] as
the evaluation metric that quantifies the overlap of anatomical
segmentation maps generated through Freesurfer [87] between
the registered images and their registration targets.

3) Results: The quantitative results over the test set are sum-
marized in Table V. This table illustrates that DeCoLearn can
achieve a significant quality improvement when performing
deformable corrupted image registration by taking advantage
of the concurrent deep image reconstruction.
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