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Abstract— We investigate pulse design problems arising in
diverse applications in quantum science and technology. In
modern approaches, pulse design is cast as an ensemble control
problem involving the control of a continuum of nuclear spin
systems, which, however, is typically challenging to solve. In
this paper, we present a new pulse design paradigm by intro-
ducing moment representations of the spin ensemble system
and transforming the ensemble control problem associated to
pulse design to a moment control problem. We show that
feasible and optimal pulses can be effectively designed using the
moment system with performance guarantees across the entire
ensemble. We also illustrate the versatility and robustness of
our moment-based approach by designing uniform and selective
pulses essential to enable prominent applications in magnetic
resonance.

I. INTRODUCTION

Nuclear Magnetic Resonance (NMR) spectroscopy and
imaging (MRI) are precise and non-invasive techniques for
analyzing and reconstructing molecular compositions and
images. They have facilitated advancements in various re-
search fields, such as medical diagnoses [1], material science
[2], physics and biophysics [3], brain science, and fluid
dynamics [4], [5]. The key to the development of NMR
methodologies is the study of Bloch equations that model the
time-evolution of the bulk magnetization of a spin ensemble
immersed in a static magnetic field and controlled by external
radio-frequency (1f) fields [6], [7]. In real applications,
engineered rf fields of a certain duration is applied to align
the magnetization vector with a desired target on the Bloch
sphere.

Within this context, the pulse design problem entailing the
construction of applied rf fields to consistently manipulate
the spin population of enormous scale is challenging. Not
only we have the intrinsic nonlinearity of Bloch equations,
but also inhomogeneity induced by chemical shift, magnetic
field inhomogeneity and magnetic susceptibility variations
differentiate spin dynamics [7]. Hence, attempting to deal
with these divergences individually is intractable, as the
required calculations are expensive and the control dynamics
are in dire need for robustness.

Commonly adopted approaches for pulse design in NMR
and MRI either rely on approximations of the underlying
Bloch equations or cater to specific magnetization profiles
under different inhomogeneity considerations. For instance,
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rf fields taking the form of hard pulse, SINC pulse [8]
and SLR pulses [9] are obtained from time-domain Fourier
transformation of the target spectral magnetization profile
by limiting the flip angle to small values. Otherwise, a so-
called adiabatic pulse can be applied, requiring additional
constraints [7]. Other methods that integrate optimal control
theory [10], [11] or Fourier series analysis [12] have also
been developed for pulse design. Noticeably, recent works
have achieved promising results by treating Bloch systems
subjected to inhomogeneity as an ensemble dynamics [13],
[14], which consists of a continuum of dynamical systems
and a single broadcasting control signal.

In virtue of the ensemble system description, the pulse
design problem is naturally cast as an ensemble control
problem. Our work fits in this setting and aims to seek for
a unified approach for pulse design problem that applies
to disparate tasks with computational efficiency. To resolve
this, recent works of moment dynamics from our lab and
other colleagues [15]-[17] granted the shift from the study
of parameterized ensemble system to its nonparameterized
counterparts evolving within a Hilbert space. One benefit of
this transformation is that we can leverage the theoretical
results for dynamical systems within a Hilbert space setting
to help analyze ensemble controllability [18]-[20]. Another
advantage is that the ensemble control problem becomes
manageable via truncating the moment dynamics as a finite
dimensional system, thus allowing more flexibility in con-
structing the control.

In this paper, we extend the idea of moment dynamical
system to ensemble dynamics of bilinear form, and construct
feasible controls based on a truncated moment system. The
proposed method not only enables us to design pulses that
achieve different magnetization patterns, but also expand the
possibilities for diverse pulse shapes. In particular, this paper
is organized as follows: The Bloch ensemble dynamics and
its corresponding moment dynamics are derived in section
II, followed by a pulse design approach established from a
truncated version of the obtained moment dynamics in sec-
tion III, where we also conduct analysis of error terms. The
simulation results for different final profiles are demonstrated
in section IV and followed by conclusions in section V.

II. SPIN ENSEMBLE SYSTEM AND ITS MOMENT SYSTEM
A. Spin Ensemble Dynamics and Bloch Systems

The Bloch equations describe the time-evolution of the
bulk magnetization of a spin ensemble under a static mag-
netic field. The magnetization can be perturbed by external
rf fields, which are referred to as pulse sequences. In the
regime where the duration of the applied pulses is shorter
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than the relaxation times [6], the Bloch equations follow the
dynamic law,

0 —wo Uy (t)
M= w 0 —us(t) | M
—uy(t) wua(t) 0
= [wol + u1 (6)Qy + ua(t) Q| M, (1)

where M = (M,, M,, M)’ denotes the bulk magnetization,
wp is the Larmor frequency detuning of the spins in the
rotational frame, w4 (t) and uy(t) are the rf pulses (controls)
applied along the y- and the z-axis, respectively, and €2, €,
and (), are the generators of rotation around the respective
axis. The system (1) is a dimensionless description and the
corresponding physical terms are explained in Appendix A.
A typical goal in NMR applications is to design an rf-pulse
u(t) = (uy(t),usz(t)) of duration T that excites the Bloch
system from the equilibrium state M (0) = (0,0,1)" to an
excited state, e.g., M (T) = (1,0,0)".

In practice, however, heterogeneities arise across the spin
ensemble due to the chemical shifts and inhomogeneous in-
tensity of the applied rf fields (rf-inhomogeneity). Therefore,
the system parameters in (1) exhibit variations, which gives
rise to the consideration of a parameterized Bloch system of
the form

%M(t,w, B) = [wQZ + Buiy + ﬁuQQz}M(t,mﬁ), 2)

where w € [-K, K] and 8 € [1-6,1+4], § € (0,1), depict
the Larmor dispersion and rf-inhomogeneity, respectively.
Furthermore, M (t,-,-) is defined on L?([-K,K] x [1 —
5,1+ 4]) as in [21]. As a result, pulse design becomes very
challenging as one needs to control a parameterized family
(an ensemble) of systems in (2) with a common control
signal u(t).

In the next section, we will introduce a method of mo-
ments that makes the pulse design tractable and systematic
by transforming the underlying infinite-dimensional Bloch
ensemble system in (2) to a system governed by moment
dynamics.

B. Legendre-moments and moment systems

Moment-based methods have been recently proposed to
investigate linear ensemble systems [15], [17], which trans-
ferred a linear ensemble system defined on the space of
L? to a moment system defined on the Hilbert space ¢2.
Although the transformed moment system remains infinite-
dimensional, the moment dynamics are independent of the
system parameters, e.g., w and [ in (2), this feature, together
with the properties of ¢2, facilitate the control-theoretic
analysis and pulse design based on the use of the truncated
moment systems with quantifiable performance guarantees.

Here, we extend the development in [15] to establish a
Legendre-moment method for pulse design by introducing
the Legendre-moments associated with Bloch ensemble sys-
tem, defined by

where m(t) = (mo(t),m1(t),...,mg(t),...)" is an infinite
sequence of Legendre moments with my referred to as the
kth-order moment, P = (Py(8), P1(B),...) with Py(B)
denoting the normalized Legendre polynomial in (3, rescaled
o [—1,1], of order k, and ® is the Kronecker product.

To elaborate the ideas of our development, we first con-
sider pulse design to compensate for rf-inhomogeneity, and
defer other cases to Appendix B; namely, we consider the
Bloch ensemble system in the rotating frame with respect to
the Larmor frequency wy in (1),

%M(ta B) = [BurBi + BuaBa| M (t, ), 4)

with 8 € [1 —§,1+ 6], and B; = Q,, By = €, By taking
the time-derivative of m(t) in (3), we obtain the Legendre-
moment system,

m(t) = (Z BM») m(t), )

where Ei = C ® B; and C is the coefficient matrix of the
form C = 6Cy + Z with
0 -y
oo
Co = 0
Cr

Cr kezt.

The entries C} are derived using the recursive relation of
Legendre polynomials [17] (see Appendix C), and Z denotes
the identity matrix of infinite-dimension. Note that C is a
bounded operator since all the entries are uniformly bounded
[22], and it is equipped with a banded structure. Therefore,
B;s are also bounded operators with banded structure.

Thanks to the orthogonality of Legendre polynomials, a
nice feature accompanying with the introduced Legendre-
moment transformation is an induced isometry between the
state of the moment and the Bloch ensemble system in (5)
and (2), respectively, i.e.,

[IM(E,-) = My ()2 = [[m(t) = mgllez, (6)

where m(¢) and my are the moment sequences correspond-
ing to the ensemble states M (¢, ) and My (f3), respectively
(see Appendix C). The isometry permits the design of pulses
by using the Legendre-moment system, through which the
performance of pulse design can be theoretically quantified.

III. PULSE DESIGN USING TRUNCATED MOMENT SYSTEM
A. Optimal control of truncated moment system

A prominent goal in quantum control applications is to
engineer time-varying fields that navigate a spin ensemble
from an initial profile, e.g., the equilibrium state My(3),
to a desired excitation profile, M f(@’) at a prescribed time
T > 0. The performance of such control design can be
measured by the excitation error, i.e., ||Ms(-) — M(T, )| 2.

1
m(t) = / P(B) ® M(t,3)dB, (3) With the moment-based method presented in Section II-B,
-1 the design task can be achieved by utilizing the moment
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system that describes the entire spin ensemble dynamics
with moment representations, which are independent of the
individual systems in the ensemble. Although the moment
system as in (5) defined on ¢2 is infinite-dimension, the
convergence of the ¢? moment sequence m(t) allows us to
design pulses using truncated moment systems and formulate
the pulse design as an optimal control problem of the form,

min - |lmy(T) — || ()

(u1,u2

st. my(t) = (Z BNi“i) my(t), ®)

where IV is the truncation order and /m; denotes the target
state of the truncated moment system. Note that a proper or-
der can be selected so that the truncated moment system as in
(8) approximates the moment system sufficiently well. This
newly formulated optimal control of a finite-dimensional
moment system is the key to effective pulse design, which
was arduous to perform through the optimal control of the
original Bloch ensemble system in (2). In addition, the above
optimal control problem can be solved by various available
direct and indirect computational algorithms, such as pseudo-
spectral and gradient-based methods [23]-[25].

B. Error analysis

Combining the isometry in (6) and the use of truncated
moment systems, we are able to quantify and control the
pulse design performance. We first observe that the terminal
error in the moment system is bounded by

[m(T) —my||
< |lm(T) = mn (T)|| + [lmn (T) — my|| + [lmy — meé
9

Since || —my||, i.e., the discrepancy between the desired
final state of the moment and the truncated moment system,
can be controlled by a suitable choice of the truncation order
N, and ||my(T) — my|| is optimized by the designed pulse
and is O if the system in (8) is controllable, the error in (9)
can be analyzed by estimating |m(T") — mn (T)]|.

In practice, we may choose a truncation order N such that
max{||m; — my||, [[mo — mol||} < e for a given tolerance
€ > 0. By applying piecewise-constant controls, the solutions
to the moment and truncated moment systems with the
respective initial states mg and mg can be expressed by

m(T) = Sl(At) ¢} Sl—l(At) 0...0 Sl(At) o my,
mN(T) = Sl(At) o S'lfl(At) 0...0 gl(At) ° My,

where the time interval [0, T'] is partitioned into [ subintervals
with the time-step A;; Sk(A;) denotes the exponential
propagation under the constant control (u!*,u%*)’ within
subinterval k, and o denotes the composition of the prop-
agations, i.e., Si4+1 0.5k denotes the exponential propagation
under piece-wise constant controls (u'*, u%*)’ for subinterval
[(k—1)A, kA,), followed by a subsequent piece-wise con-

stant control (u'***, ut**')’ for subinterval [kA;, (k+1)A,).

Furthermore, Siomy_1 represents the moment state achieved
from my_, by following the evolution of propagation Sk.
By deﬁning €0 = ||m0 — Myol|, €1 = HSl omgp — Sl O’ﬁloH
(To make sense of the subtraction in €;, we denote S; o g
as its embedding to /2, where infinite zeros are appended to
the finite vector), we have by triangle inequality that €; <
€1||mol|+|S1]/€0- The term & = ||S; — S| under a bounded
control input, can be made arbitrarily small as the truncation
order N — oo. This is because S is a bounded operator and
B; parameters are equipped with a banded structure [26],
[27]. We omit A; from S to further simplify the notations,
and obtain the following recursive relation of the error terms,

€; S Ei”Sifl O0...0 Sl Om()H + ||5vi||€i717i Z 2,

where €; = ||Sio...o,5'1 omofgio...oglomoH and
& = ||S; — S;||. Since ||S;|| is bounded and can be made
sufficiently small for small interval A;, and ||S;—1 0...0
S1 omy]| is also bounded, we obtain that

l
€ < (H ||§Z||> €0+ &l|Si—10...051 omg|
=1

+ |ISill€-1]|Si—20...081 omgl| + ...
+ [1Se[Si—all- - - 152 /1€ [meoll

l
< (H 55) €0 + 16165 [[moll,
i=1

where we let max; & < &; and max;(max(||S; ||, [|S:|]) <
d2. When [ — oo, we arrive at

l
[m(T) —mn (T)|| < lim <H5§> co + 10185 |mo,
l—o0 i)

where the upper bound approaches 0 as [ increases. No-
tice that §; appeared in the above inequality measures the
precision of representing the infinite-dimensional moment
dynamics using the truncated moment system, and it can
be made smaller by increasing N. This error analysis offers
transparent guidelines for us to quantify and control the pulse
design performance. In the next section, we present various
pulse design examples to demonstrate the applicability and
effectiveness of the developed Legendre-moment method.

IV. NUMERICAL EXAMPLES OF PULSE DESIGN

The pulse design problem has been formulated as an
ensemble control problem involving the Bloch system as in
(4), and the objective is to steer the ensemble from an initial
state M (0, 3) = (0,0, 1)’ to a desired excited profile My (3)
at a given time 7. In this section, we handle various essential
pulses design problems in NMR and quantum optics and
manifest the promising capability of the proposed moment-
based method in Section III. All of the pulses presented
below are obtained by solving the optimal control problem
in (7) and (8) by employing an iterative control scheme
described in [28]. In particular, we consider the case of 40%
rf-inhomogeneity, i.e., § = 0.4, and a nominal pulse am-
plitude Ag = 20 kHz. In our simulations, we normalize the
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parameters with respect to Ay and set T" as the dimensionless
time length, namely, the physical time ¢ displayed in the
simulation results is computed by multiplying a scale factor
1/(2mAp) to the dimensionless time.

A. Uniform Pulse Design

1) Uniform Excitation Pulse in the Presence of RF-
Inhomogeneity: Uniform excitation of a spin ensemble is
a critical task in high-resolution NMR spectroscopy. The
control goal is to excite the spin population from the equi-
librium state, My(8) = (0,0,1)" (blue circle in Figure 1)
to a final state on the equatorial plane of the Bloch sphere,
e.g., My(8) = (1,0,0) (orange circle in Figure 1). The
obtained results for sampled trajectories, distribution of the
obtained M, (T) and the constructed controls are displayed
in Figure 1. For this task, we derive the corresponding
truncated moment dynamics for the given truncated orders
of N = 3,4,5,6. From Figure 1, we observe that when
choosing N = 5,6, we already complete the task with the
average value for M, (T') higher than 0.999.
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S ouw s w
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=10 - —_ Ul
o
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oY u
: P R T
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=
M-

Fig. 1. Simulation results for uniform pulse design with 7" = 3.8.
The subfigures highlight the ensemble state trajectory on Bloch sphere
(left panel), pattern of ensemble states M (T, 3) obtained from different
truncation orders N (upper right panel), and the computed control inputs
for N = 5 (lower right panel).

2) Uniform Inversion Pulse in the Presence of RF-
inhomogeneity: An inversion pulse nutates the magnetiza-
tion vector from the direction of the main magnetic field
My(8) = (0,0,1) to its opposite pole, ie., M;(8) =
(0,0,—1)". The results for this task are detailed in Figure
2, where we utilize a truncation order N = 6 to obtain
the truncated moment dynamics, and the average value for
the obtained M, (T') is —0.9997. The left figure in Figure 2
showcases sampled trajectories for the magnetization vector
evolving under the obtained control input.

3) Uniform Excitation Pulse in the Presence of Larmor
Dispersion and RF-inhomogeneity: In a more challenging
scenario, in which Larmor dispersion and rf-inhomogeneity
prevail simultaneously within the spin population, the pro-
posed moment-based method is, once more, capable of
exciting the ensemble uniformly. In this context, minor
adaptations are adopted to define the corresponding moment

~0.9985 -

~0.9990 -

Mz(T)

~0.9995 -

-1.0000 -, . . . ! ! . . .
06 07 08 09 10 11 12 13 14

S

amplitude(kHz)
\

10 -

@ Y 8
tlus)

Fig. 2. Simulation results for uniform inversion pulse design using
a truncation order N = 6 for 7' = 3.8w. The subfigures highlight
the ensemble state trajectory (left panel), final pattern of ensemble states
M (T, 3) (upper right panel), and the computed optimized inputs (lower
right panel).

dynamics, which are detailed in Appendix B. The perfor-
mance for the obtained excitation pulse is demonstrated in
Figure 3, where the parameters are set as K = 1, T = 4r
and N = 8. The proposed method achieves an average value

for M, (T) above 0.994.
™~
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Fig. 3. Simulation result for uniform pulse design using truncated order
N = 8 for two parameterization case.

B. Selective Excitation Pulse

Selective excitation pulses affect spins only within a
specific frequency range, leaving the remaining population
unaffected at the end of the pulse duration. For this ap-
plication, the target state in the case of rf-inhomgeneity is
specified as the following,

(17 07 O)’?
(0,0,1)',

00<B<1.1

M =
15 06<B<09Ul1<f<14

Notice that M;(8) has infinitely many nonzero moment
terms, which compels the implementation of a larger trun-
cation order in the control design via moment dynamics.
However, we can simplify the computation process by subdi-
viding this problem into three uniform pulse design problem
corresponding to three different range of the parameter, i.e.,
B €10.6,0.9) U (1.1,1.4] (the corresponding trajectories of
M, and M, are depicted in washed blue color in Figure 4),
and 8 € [0.9,1.1] (the corresponding trajectories of M, and
M, are in blue color in Figure 4). The results in Figure 4
are obtained by using truncation order N = 10 and 7" = 50.
Furthermore, we perform a selective excitation pulse in the
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Fig. 4. Simulation result for selective excitation pulse for 7" = 50 using
truncated order N = 10.

case of Larmor dispersion with the desired magnetization
vector given as,

M () = (1,0,0), - 0.2 <w <0.2
P700,0,1), —1<w< —02002<w< 1

The obtained simulation result is displayed in Figure 5 where
N =20 and T' = 100 are used.

Mx

00 200 300 400 500 600 700 600

‘D IAO IDIG 3!;0 460 5&0 H;U 70‘0 aéo 6 100
tlus) Endpoint distribution t{us)

10-
Mrl(w) /

-1.00 -0.75 -0.50 -0.25 000 025 050 075 100

Fig. 5. Simulation result for selective pulse design for 7 = 100 using
truncated order N = 20.

V. CONCLUSION

This paper devises a novel pulse design method for
manipulating bulk magnetization of spin ensembles by con-
sidering the moment dynamics accompanying Bloch ensem-
ble systems. The proposed moment-based method presents
promising performance in enhancing sensitivity in NMR
and MRI applications. We conduct error analysis on the
truncation of infinite-dimensional moment dynamics, paving
the way for constructing controls in a finite-dimensional
setting, where any effective nonlinear control algorithms
can be implemented. Furthermore, we have validated our
approach in different scenarios of system inhomogeneity in
Bloch equations by designing optimal pulses that realized
uniform, selective, and inversion excitation patterns. The
simplicity, yet efficacy, of the proposed approach allows it
to be exploited in a wide range of applications of pulse
design in quantum control and enables researchers to conduct
experiments that require sophisticated pulse design scenarios.

APPENDIX
A. Derivation of dimensionless ensemble dynamics

The dynamics of spin ensemble in a rotation frame is
described as

ar =
0 —Aw BEY sin(g)
Aw 0 —B= cos(9) | M,
6¥ sin(¢) B@ cos(¢) 0

where Y and ¢ are the amplitude and phase of the applied
f field, and Aw € [—f(,f(] (unit in Hertz) denotes the
variations in Larmor frequency, S € [1 — 4,1 + d] denotes
the inhomogeneity in rf field, with K > 0 and 6 € (0,1).
To obtain its dimensionless description as given in (1),
a normalization is performed by using a nominal pulse
amplitude Ay so that we have the following correspon-
dences, w = Aw/Ay € [-K,K] with K = K/Ap; the

. s
controls are normalized as well, ui(t) = WTEf)cosw(t)),
us(t) = %(Ut)sin(gb(t)); t in (1) denotes a dimensionless

time obtained from scaling physical time by 27 A.

B. Ensemble dynamics with different parameterization

Qz, Q, and 2, are generator of rotations along z, y and
z axis, which are skew-symmetric specified by

000 001 0-10
Q2 =100-1],9,=[ 000),2.=(100
010 -100 000

For Bloch ensembles with only parameterization w (i.e. § =
0), we have that

2
M(t,w) = (wA + ZuiBi) M(t,w),
i=1

whose associated moment dynamics is derived by defining
moment terms my = f_11 Py(w)M (t,w)dw,

m(t) = (A + Zuiéi> m(t),

where A = Co® A and Bi = 7 ® B; are bounded operators,
and Cy and 7 are the same as given in the main text.
For a more general form of Bloch ensembles as in (2), we

first define the moments by utilizing products of Legendre
polynomials { Py (w)F;(8)},

(10)

mia(t) = / 1 / P RBM (1.0, BB,

where my (t) € (2(R™) x (2(R"). If we consider w €
[-K, K] and § € [1—§,14 6], the dynamics of the moment
terms 1my,; are derived accordingly as

() = K [CrAmy_1; + Cry1Amyiq]
+ Z u; [0C Bimy—1 + 0C1 11 Bimy 141 + Bimy] .
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If truncation order of N is used, we obtain the truncated
moment dynamics,

2 [9]
mn(t) = | Ax + ZUiBNi m(t),
i=1 [10]
where my = (Mg g, .-, M N, M7 05+ -+ My ) and
[11]
Ay = 01 ® (diag(KéN) ® A) :
1 [12]
NXN
with C5 = Cyxn, Cn = (C1,Csq,...,CN), and T denotes  [14]
the identity matrix of matching dimension.
C. Derivation of Legendre-moment system [15]
By the moment definition in (3), we have the kth order
1 ..
moment equals to my(t) = [, Pp(8)M(t,5)dS and it is  [16]
differentiable in ¢ since [—1, 1] is compact. The normalized
Legendre polynomials Py(3) = %, Pi(B) \/gﬁ, U A
satisfy the following orthonormality and recurrence relations:  [yg;
forany ¢,j e Nand k € Z,
P, P))= [ P(B)P;(B)dB =16 9]
(Pi, Pj) = 2 (B)P;(B) dB = 6ij,
K
Cr+1Pp+1(B) = BPy(8) — CrPe—1(B), [20]
Since the set {P;} constitutes an orthonormal basis for
L?([-1,1]), and considering (3), an ensemble state M (t,-) €  [21]
L?([-1,1]) can be represented as a Legendre polynomial
series: oo
M) = mi(t)Pul-). 21
k=0 . .
The above Legendre polynomial series consequently induces
an isometric isomorphism between M (t,-) € L?([—1,1]) 23]
and m(t) € (2.
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