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Abstract—There is a growing interest in deep model-based
architectures (DMBAs) for solving imaging inverse problems
by combining physical measurement models and learned image
priors specified using convolutional neural nets (CNNs). For
example, well-known frameworks for systematically designing
DMBAs include plug-and-play priors (PnP), deep unfolding
(DU), and deep equilibrium models (DEQ). While the empiri-
cal performance and theoretical properties of DMBAs have been
widely investigated, the existing work in the area has primarily
focused on their performance when the desired image prior is
known exactly. This work addresses the gap in the prior work
by providing new theoretical and numerical insights into DMBAs
under mismatched CNN priors. Mismatched priors arise natu-
rally when there is a distribution shift between training and
testing data, for example, due to test images being from a dif-
ferent distribution than images used for training the CNN prior.
They also arise when the CNN prior used for inference is an
approximation of some desired statistical estimator (MAP or
MMSE). Our theoretical analysis provides explicit error bounds
on the solution due to the mismatched CNN priors under a set
of clearly specified assumptions. Our numerical results compare
the empirical performance of DMBAs under realistic distribution
shifts and approximate statistical estimators.

Index Terms—Image reconstruction, inverse problems, deep
learning, robustness.

I. INTRODUCTION

ONE OF the most widely-studied problems in computa-
tional imaging is the recovery of an unknown image

from a set of noisy measurements. The recovery problem is
often formulated as an inverse problem and solved by inte-
grating the measurement model characterizing the response
of the imaging instrument with a regularizer imposing prior
knowledge on the unknown image. Some well-known image
priors include nonnegativity, transform-domain sparsity, and
self-similarity [1], [2], [3], [4].

Deep Learning (DL) has emerged in the past decade as a
powerful data-driven paradigm for solving inverse problems
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and has improved the state-of-the-art in a number of imaging
applications (see reviews [5], [6]). A traditional DL strategy
for solving inverse problems is based on training a con-
volutional neural network (CNN) to perform a regularized
inversion of the forward model, thus leading to a mapping
from the measurements to the unknown image. For example,
U-Net [7] and DnCNN [8] are two prototypical architectures
used for designing traditional DL methods for solving imaging
inverse problems.

There is a growing interest in deep model-based archi-
tectures (DMBAs) for inverse problems that integrate
physical measurement models and CNN image priors
(see reviews [9], [10], [11], [12]). Well-known DMBAs that
explicitly account for the measurement models include plug-
and-play priors (PnP), deep unfolding (DU), compressive
sensing using generative models (CSGM), and deep equilib-
rium architectures (DEQ) [13], [14], [15], [16], [17]. DMBAs
are systematically obtained from model-based iterative algo-
rithms by parametrizing the regularization step as a CNN and
training it to adapt to the empirical distribution of desired
images. An important conceptual point about typical DMBAs
is that they do not solve an optimization problem. That
is, even when the original model-based algorithm solves an
optimization problem, once the regularizer is replaced with
a CNN, then there is no longer any corresponding func-
tion to minimize. Remarkably, the heuristic of using CNNs
not associated with any explicit regularization function exhib-
ited great empirical success and spurred much theoretical and
algorithmic work [9], [10], [11], [12].

Despite the rich literature on DMBAs, the existing work
in the area has primarily focused on settings where the
desired image prior is known exactly. While this assump-
tion has led to many useful algorithms and insights, it fails
to capture the range of situations arising in imaging inverse
problems. Specifically, the knowledge of the image prior is
only approximate if there is a distribution shift between train-
ing and testing data, for example, due to testing images
being from a different distribution than images used for
training the CNN prior. Alternatively, the CNN prior used
for inference within DMBA might be an approximation of
some desired true statistical estimator, such as maximum a
posteriori probability (MAP) estimator or minimum mean
squared error (MMSE) estimator. In both of these settings,
it would be valuable to gain insights on how the discrepancies
in CNN priors influence the discrepancies in estimated
images.
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In this work, we address this gap by providing a set of
new theoretical and numerical results into DMBAs under mis-
matched CNN priors. We focus on the architecture derived
from the steepest descent variant of regularization by denois-
ing (SD-RED) [18] by considering two types of CNN priors:
(a) image denoisers trained to remove additive white Gaussian
noise (AWGN); (b) artifact removal (AR) operators learned
end-to-end using DEQ. Our theoretical analysis provides
explicit error bounds on the solution obtained by SD-RED
due to the mismatched CNN priors under a set of explic-
itly specified assumptions. Our numerical results illustrate
the practical influence of mismatched CNN priors on image
recovery from subsampled Fourier measurements, which is a
well-known problem in accelerated magnetic resonance imag-
ing (MRI) [19]. Specifically, we provide numerical results on
two related but distinct scenarios where: (i) CNN priors are
trained on data mismatched to the testing data and (ii) CNN
priors are trained to approximate an explicit image regularizer.

II. BACKGROUND

Inverse Problems: We consider the problem of recovering
an unknown image x∗ ∈ Rn from its measurements y ∈ Rm.
The problem is traditionally formulated as an inverse problem
where the solution is computed by solving an optimization
problem

x̂ = arg min
x∈Rn

f (x) with f (x) = g(x) + h(x), (1)

where g is the data-fidelity term enforcing consistency of the
solution with y and h is the regularizer enforcing prior knowl-
edge on x. The formulation in eq. (1) corresponds to the MAP
estimator when

g(x) = − log
(
py|x(x)

)
and h(x) = − log(px(x)) (2)

where py|x is the likelihood relating x to measurements y
and px is the prior distribution. For example, given measure-
ments of the form y = Ax + e, where A is the measurement
operator (also known as the forward operator) characteriz-
ing the response of the imaging instrument and e is AWGN,
the data-fidelity term reduces to the quadratic function g(x) =
1
2‖y−Ax‖2

2. On the other hand, a widely-used sparsity promot-
ing regularizer in imaging inverse problems is total variation
(TV) h(x) = τ‖Dx‖1, where D is the image gradient and τ > 0
controls the strength of regularization [1], [20], [21].

Model-Based Optimization: Proximal algorithms are often
used for solving problems of form (1) when h is nonsmooth
(see the review [22]). Two widely used families of proximal
algorithms for imaging inverse problems are the proximal gra-
dient method (PGM) [21], [23], [24], [25] and the alternating
direction method of multipliers (ADMM) [26], [27], [28], [29].
Both PGM and ADMM avoid differentiating h by using the
proximal operator, which can be defined as

proxσ 2h(z) := arg min
x∈Rn

{
1
2
‖x − z‖2

2 + σ 2h(x)

}
, (3)

with σ > 0, for any proper, closed, and convex function h [22].
Comparing eq. (3) and eq. (1), we see that the proximal oper-
ator can be interpreted as a MAP estimator for the AWGN

denoising problem

z = x0 + w where x0 ∼ px0 , w ∼ N
(

0, σ 2I
)
, (4)

by setting h(x) = − log(px0(x)). It is worth noting that another
less known but equally valid statistical interpretation of the
proximal operator is as a MMSE estimator [30], [31].

PnP and RED: PnP [13], [14] and RED [18] are two
related families of iterative algorithms that enable integrating
measurement operators and CNN priors for solving imaging
inverse problems (see the recent review of PnP in [12]). Since
for general denoisers PnP/RED do not solve an optimization
problem [32], it is common to interpret PnP/RED as fixed-
point iterations of some high-dimensional operators. For exam-
ple, given a denoiser Dθ : Rn → Rn parameterized by a
CNN with weights θ , the iterations of SD-RED [18] can be
written as

xk = Tθ

(
xk−1

)
= xk−1 − γ Gθ

(
xk−1

)
with

Gθ (x) := ∇g(x) + τ (x − Dθ (x)) , (5)

where g is the data-fidelity term, and γ , τ > 0 are the step
size and the regularization parameters, respectively. SD-RED
seeks to compute a fixed-point x ∈ Rn of the operator Tθ ,
which is equivalent to finding a zero of the operator Gθ

x ∈ Fix(Tθ ) :=
{
x ∈ Rn : Tθ (x) = x

}

⇔ Gθ (x) = ∇g(x) + τ (x − Dθ (x)) = 0 , (6)

The solutions of (6) balance the requirements to be both data-
consistent (via ∇g) and noise-free (via (I − Dθ )), which can
be intuitively interpreted as finding an equilibrium between
the physical measurement model and CNN prior. Remarkably,
this heuristic of using denoisers not necessarily associated with
any h within an iterative algorithm exhibited great empirical
success [10], [33], [34], [35], [36], [37], [38], [39], [40], [41]
and spurred a great deal of theoretical work on PnP/RED [32],
[42], [43], [44], [45], [46], [47], [48], [49], [50], [51], [52].
Recent line of PnP work has also explored automatic selection
of parameters [53] and the parameterization of the regu-
larization functions as CNNs, thus leading to explicit loss
functions [54], [55].

DU and DEQ: DU (also known as deep unrolling or
algorithm unrolling) is a DMBA paradigm highly related to
PnP/RED with roots in sparse coding [15]. DU has gained
popularity in inverse problems due to its ability to provide a
systematic connection between iterative algorithms and deep
neural network architectures [9], [11]. The SD-RED algo-
rithm (5) can be turned into a DU architectures by truncating
it to a fixed number of iterations t ≥ 1, and training the cor-
responding architecture end-to-end in a supervised fashion by
comparing the predicted image xt(θ) to the ground-truth x∗.
DEQ is a recent extension of DU that can accommodate an
arbitrary number of iterations [17], [56]. DEQ can be imple-
mented for SD-RED by replacing xt(θ) in the DU loss by
a fixed-point x(θ) in eq. (6) and using implicit differentia-
tion to update the weights θ . The benefit of DEQ over DU is
that it doesn’t require the storage of the intermediate variables
in training, thus reducing the memory complexity. However,
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DEQ requires the computation of the fixed-point x(θ), which
can increase the computational complexity.

Other Related Work: There were a number of recent pub-
lications exploring the topic of distribution shifts in inverse
problems. The use of DMBAs for adapting pre-trained CNNs
to shifts in the measurement model has been discussed in sev-
eral publications [39], [41], [57]. The performance gap due
to distribution shifts on several well-known DL architectures
has been empirically quantified for accelerated MRI in [58].
Test-time training was proposed as a strategy to decrease
the performance gap for certain distribution shifts in [59].
The robustness of compressive sensing (CS) recovery using
mismatched distributions with bounded Wasserstein distances
was analyzed in [60]. The robustness of CSGM to changes
in the ground-truth distribution and measurement operator in
CS-MRI was investigated in [61]. Denoising-based approx-
imate message passing (D-AMP) proposed in [62] coerces
the signal perturbation at each iteration to be very close to
AWGN. Finally, it is worth to briefly note a distinct line of
work in optimization exploring the impact of inexact proxi-
mal operators on the convergence of the traditional proximal
algorithms [63], [64], [65].

Our Contributions: Despite their conceptual differences in
training, PnP, DU, and DEQ can be implemented using the
same architecture during inference. For example, the SD-RED
iteration in eq. (5) can be interpreted as a PnP method when
the CNN prior Dθ is an AWGN denoiser, as a DU architecture
when Dθ was trained using a fixed number of unfolded iter-
ations, and as a DEQ architecture when Dθ was trained at a
fixed point. Note that the image prior in DU and DEQ is not an
AWGN denoiser, but rather an artifact removal (AR) operator
Dθ trained by taking into account the distribution of artifacts
within the iterations of SD-RED. The existing work on PnP,
DU, and DEQ has primarily focused on the settings where the
inference is performed assuming that Dθ exactly corresponds
to the desired AWGN denoiser or AR operator. However, it is
clear from the discussion above, that this is an idealized sce-
nario, in particular, when there is a distribution shift between
training and testing data or when Dθ is an approximation of
some true statistical estimator. Our contribution is a first tech-
nical discussion on this issue in the scenario where the CNN
prior used for inference in SD-RED is an approximation of
some true prior. While we use the SD-RED iterations as the
basis for our DMBA and corresponding mathematical analy-
sis, the results can be extended to other DMBAs, including
those based on PnP-PGM or PnP-ADMM. In short, this work
presents new theoretical analysis and numerical results that
are both complementary to and backward compatible with the
existing literature in the area.

III. THEORETICAL ANALYSIS

We focus on the DMBA based on the following modified
SD-RED iteration

xk = xk−1 − γ Ĝ
(

xk−1
)

with

Ĝ(x) := ∇g(x) + τ
(
x − D̂(x)

)
, (7)

where we refer to D̂ as a mismatched prior that approximates
some desired or true prior D. We denote as x∗ ∈ Zer(G)

the solution of SD-RED in (5) using the true D. We write
both operators as Dσ and D̂σ when explicitly highlighting the
strength parameter σ > 0 used to control the regularization
strength. This parameter can account for the variance σ 2 in
the proximal operator in eq. (3) and is analogous to the stan-
dard deviation parameter in the traditional PnP methods [13].
We next present a theoretical analysis of SD-RED under a
mismatched prior providing: (a) error bounds on the solutions
computed by (7) and (b) statistical interpretations under D̂
approximating a proximal operator, possibly corresponding to
MAP or MMSE estimators. Our theoretical analysis builds on
a set of explicitly specified assumptions that serve as sufficient
conditions.

Assumption 1: The function g is convex, continuous, and
has a Lipschitz continuous gradient with constant L > 0.

This is a standard assumption in optimization and is rela-
tively mild in the context of imaging inverse problems. For
example, it is satisfied by many traditional data-fidelity terms,
including those based on the least-squares loss.

Assumption 2: The operator D is Lipschitz continuous with
constant 0 < λ ≤ 1.

The Lipschitz continuity of CNN priors has been extensively
considered in the prior work on PnP, DU, and DEQ and can be
practically implemented using spectral normalization methods
(see [12] for a more detailed discussion in the context of PnP).
We say that D is a contractive operator when λ < 1 and it
is a nonexpansive operator when λ = 1. Note also how the
nonexpansiveness is only assumed on the desired CNN prior
D rather than the mismatched one D̂ used for inference.

Assumption 3: The operator D̂σ satisfies

‖D̂σ (x) − Dσ (x)‖2 ≤ σε, for all x ∈ Rn,

where σ > 0 is the strength parameter of the prior and ε > 0
is some constant.

This assumption bounds the distance between the true and
mismatched priors. We explicitly relate the bound to σ , since
for small values of the strength parameter σ it is natural for
the CNN priors to act as identity. The constant ε quantifies
the approximation ability of the mismatched prior; given two
approximations, the one with smaller ε is expected to be a
better match. Assumption 3 can be also justified by using sta-
tistical considerations. For example, Theorem 3 below shows
that when D and D̂ are MAP denoisers, Assumption 3 is a
direct consequence of a bound on the density ratio px/ p̂x. A
natural consequence of this argument is that when both D and
D̂ are available, Assumption 3 can be a proxy to quantify prior
distribution shifts.

We are now ready to state the first result.
Theorem 1: Run SD-RED in (7) for t ≥ 1 iterations under

Assumptions 1-3 with λ < 1 using a fixed step-size

0 < γ <
(1 − λ)τ

(L + (1 + λ)τ )2 .

Then, there exists a unique x∗ ∈ Zer(G) such that

‖xt − x∗‖2 ≤ ηtR0 + τσεA,
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where 0 < η < 1, R0 := ‖x0 − x∗‖2, and A := γ /(1 − η) are
constants independent of t.

The proof is provided in Appendix A. Theorem 1 shows that
SD-RED using a mismatched CNN prior—either an AWGN
denoiser or an AR operator—can approximate x∗ ∈ Zer(G)

up to an error term proportional to τ, σ , and ε. Note that it
is expected that the error shrinks for small values of τ and
σ since they control the influence of the CNN prior. While
Theorem 1 assumes that the true prior Dσ is a contraction,
our next result relaxes this condition by adopting an additional
assumption.

Assumption 4: The operator G is such that Zer(G) ,= ∅.
There exists a finite number R > 0 such that for any x∗ ∈
Zer(G), the iterates (7) satisfy

‖xt − x∗‖2 ≤ R for all t ≥ 1.

Assumption 4 simply states that G has a zero point in Rn,
which is equivalent to the assumption that SD-RED using the
true prior has a solution. The assumption additionally states
that the iterates generated via eq. (7) are bounded, which is
natural for many imaging problems, since images usually have
bounded pixel values in [0, 1] or [0, 255].

Theorem 2: Run SD-RED in (7) for t ≥ 1 iterations under
Assumptions 1-4 with λ = 1 using a fixed step-size 0 < γ <

1/(L + 2τ ). Then, we have that

min
1≤i≤t

‖G
(

xi−1
)
‖2

2 ≤ 1
t

t∑

i=1

‖G
(

xi−1
)
‖2

2 ≤ B1

t
+ τσεB2,

where

B1 :=
(
(L + 2τ )R2

)
/γ ,

B2 := (L + 2τ )(2R + γ τσε)

are constants independent of t.
The proof is provided in Appendix B. Theorem 2 is more

general since it relaxes the assumption that D is a contrac-
tion to it being a nonexpansive operator. This comes with
a cost of a slower sublinear convergence of the first term,
compared to the linear convergence of the corresponding
term under a contractive prior. It is worth highlighting that
Theorems 1 and 2 generalize the prior work on DMBAs in
the sense that for ε = 0 one recovers the traditional con-
vergence results in the literature [17], [38], [45], [46]. The
convergence rate and the error terms in the theorems are also
compatible with the traditional results on inexact first-order
methods [63], [64], [65].

Theorems 1 and 2 establish general error bounds on the
solutions of SD-RED using a mismatched operator D̂, under
the assumption that for the same input the distance between the
outputs of D̂ and D are bounded. The following result provides
a statistical interpretation to this assumption by considering
denoisers that perform MAP estimation.

Theorem 3: Let px and p̂x denote two log-concave contin-
uous probability density functions supported over Rn, and Dσ

and D̂σ denote corresponding MAP estimators for the AWGN
problem in eq. (4). Let r := px/ p̂x denote the density ratio
of p and p̂. If exp(−ε2/2) ≤ r(x) ≤ exp(ε2/2) for all x ∈ Rn,
then we have that ‖Dσ (x) − D̂σ (x)‖2 ≤ σε for all x ∈ Rn.

The proof is provided in Appendix C. Theorem 3 shows that
if two prior distributions px and p̂x are close to each other, then
the distance between corresponding MAP denoisers is small,
finally leading to a small error terms in Theorems 1 and 2.
It is worth mentioning that the density ratio is a common
tool for quantifying the distances between probability densities
and is used, for example, in the Kullback–Leibler divergence
Epx[ log(r(x))].

The next result enables a statistical interpretation of
Theorems 1 and 2. This is due to the fact that both MAP
and MMSE denoisers for the AWGN problem in eq. (4) can
be expressed as proximal operators [31], [49], [66]. Using
this result one can obtain a novel interpretation of PnP, DU,
and DEQ algorithms under mismatched priors as using CNNs
approximating true priors corresponding to some statistical
estimators. For the rest of this section, we set τ = 1/σ 2

to simplify the mathematical analysis and consider the true
prior of form Dσ = proxσ 2h, where the function h satisfies the
following assumption.

Assumption 5: The function h is closed, proper, convex, and
Lipschitz continuous with constant S > 0.

This assumption is commonly adopted in nonsmooth
optimization and implies the existence of a global upper bound
on subgradients [67], [68], [69]. It is satisfied by a large num-
ber of functions, including the '1-norm and TV regularizers.
We are now ready to state the final result, which can be seen
as an extension of the analysis in [70] to mismatched CNN
priors.

Theorem 4: Run SD-RED in (7) for t ≥ 1 iterations under
Assumptions 1-5 using a fixed step-size 0 < γ < 1/(L + 2τ ).
Then, we have that

min
1≤i≤t

(
f
(

xi−1
)

− f ∗
)

≤ 1
t

t∑

i=1

(
f
(

xi−1
)

− f ∗
)

≤ 2(L + 2τ )R3

γ t
+ ε2R

σ 2 + S2σ 2

2
,

where f = g + h, Dσ = proxσ 2h, and τ = 1/σ 2.
The proof is given in Appendix D. It states that SD-RED

using a mismatched CNN prior D̂σ , which approximates some
proximal operator (possibly corresponding to MAP or MMSE
statistical estimators), can approximate the minimum f ∗ up to
an error term that is a function of ε and σ 2. The error term is
minimized to εS

√
2R when σ 2 =

√
2ε2R/S2.

To conclude this section, we theoretically analyzed the SD-
RED iteration in eq. (7), where a mismatched prior D̂ is used
instead of the desired or true prior D. Our analysis shows
that one can get explicit error bounds on the solution of
DMBAs that depend on the level of mismatch. Our analysis
also reveals in the context of MAP estimation that the obtained
error bounds can be related to the prior distribution shifts. In
the next section, we provide a set of numerical results illustrat-
ing the empirical performance of SD-RED under distribution
shifts and approximate proximal operators.

IV. NUMERICAL EVALUATION

There has been significant interest in understanding the
performance of CNN priors for image recovery from noisy
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and sub-sampled measurements. The recent work on DMBAs
has shown that CNN priors can lead to significant improve-
ments over traditional image priors such as TV in a wide
variety of inverse problems. The results presented in this sec-
tion evaluate the performance under mismatched CNN priors
obtained due to shifts in the data distribution (for example,
training on natural images but testing on MRI images) and
due to approximate proximal operators (for example, train-
ing a CNN as an empirical MAP or MMSE estimator). It is
worth mentioning that our focus is to highlight the impact
of mismatched CNN priors, not to justify SD-RED as a DL
architecture (such justifications can be found elsewhere, for
example, see [12], [18], [32]).

We present three distinct sets of simulations on image recov-
ery from subsampled Fourier measurements: (a) using severely
mismatched CNN priors corresponding to AWGN denoisers
and AR operators trained on MRI, CT, and natural images;
(b) using CNNs trained to approximate the traditional TV
proximal operator; and (c) using moderately mismatched CNN
priors for MRI trained on a different anatomical regions or
MRI modalities. While our simulations focus on subsampled
measurements without noise, we expect that the reported rel-
ative performances will be preserved for moderate levels of
noise. In all simulations, we use the classical TV regulariza-
tion as a representative of the traditional model-based image
reconstruction [21].

A. Mismatched Priors From Training on CT, Natural,
and MR Images

We consider image recovery from subsampled Fourier mea-
surements y = Ax ∈ Cm, where A performs radial Fourier
sampling [19]. The measurement operator can be written as
A = PF, where F is the Fourier transform and P is a diago-
nal sampling matrix. We train three classes of CNN priors
modeling different empirical data distributions: (a) natural
grayscale images from [71], (b) brain images from [72], and
(c) CT images from the low dose CT grand challenge of
Mayo Clinic [73]. Ten 180 × 180 images from Set11 were
randomly chosen as natural test images. From 50 slices of
256 × 256 images provided for testing in [72], ten random
images were chosen as MRI test images. Ten random CT
images of 512×512 were chosen as CT test images. All images
are rescaled to the range [0, 255]. The recovery performance
of SD-RED using all three classes of CNN priors, as well as
the traditional TV regularizer [21], is quantified using peak-
signal-to-noise ratio (PSNR) in dB and structural similarity
index measure (SSIM).

Beyond the data distribution considerations, we also con-
sider two types of CNN priors: (i) AWGN denoisers and
(ii) AR operators. AWGN denoisers are extensively used
within PnP due to their simplicity and effectiveness, while AR
operators have been widely reported to achieve state-of-the-art
imaging performance [12], [74]. We train one AWGN denoiser
for each noise level σ ∈ {1, 2, 3, 5, 7, 8, 10, 12, 15} and image
distribution (natural, MRI, and CT) using the DnCNN archi-
tecture with batch normalization layers removed (as was done
in [74]). The architecture of the AR operators is identical to

Fig. 1. Numerical evaluation of the mismatch between CT and natural image
CNN priors with respect to the true MRI prior on MRI test images at vari-
ous noise levels σ . As supposed in Assumption 3 the distance between the
mismatched and true CNN priors is bounded and proportional to the noise
level σ .

that of the AWGN denoisers. The AR operators are trained
via DEQ using pre-trained AWGN denoisers for initializa-
tion [17]. We train one AR operator for each sampling ratio
considered in the simulations (10%, 20%, and 30%) and
image distribution (natural, MRI, and CT). Nesterov [75] and
Anderson et al.[76] acceleration techniques are used in for-
ward and backward DEQ iterations for faster convergence.
Spectral normalization is used for controlling the Lipschitz
constants of all our CNNs [74], [77]. For each experiment,
we select σ and τ achieving the best PSNR performance. We
use fminbound in the scipy.optimize toolbox to iden-
tify the optimal regularization parameters for TV and all the
SD-RED methods for each image at the inference time. We
set the number of iterations for SD-RED to 500 and TV to
300, which we observed to be enough for convergence.

Figure 1 plots the distances between the outputs of the true
AWGN denoisers trained on MRI images and mismatched
ones trained on CT and natural images. The plot is generated
using MRI test images. Average distance of the denoisers is
plotted against noise level σ . Shaded area illustrates the range
of values obtained across all test images. Our theoretical anal-
ysis assumes that the distance between the outputs of CNN
priors is bounded and proportional to σ . Figure 1 numerically
shows that the distance between the CNN priors is indeed
bounded with a constant proportional to the noise level.

Theorem 2 states that SD-RED with shifted priors con-
verges to an element of Zer(G) up to an error term that
depends on τ , σ , and ε. Figure 2 illustrates the convergence
of SD-RED with CT, natural, and MRI AWGN priors on MRI
test data under 10% subsampling ratio. The average value of
‖G(xk)‖2

2/‖G(x0)‖2
2 and PSNR (dB) are plotted against itera-

tions of the algorithm. The distance to the zero-set quantifies
the convergence behavior of the algorithm and is expected to
be smaller for matched priors compared to mismatched pri-
ors. For reference, we also provide the evolution of the PSNR
values obtained using TV reconstruction. Figure 4 shows the
influence of τ and σ on the convergence of SD-RED using a
mismatched natural AWGN prior to Zer(G), where G uses the
true MRI AWGN prior at 10% subsampling. The average value
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Fig. 2. Left: Empirical evaluation of convergence of SD-RED using the true and mismatched AWGN priors for brain MRI reconstruction at 10% sampling.
Average normalized distance to Zer(G) is plotted against the iterations. Right: PSNR (dB) is plotted against iterations for TV and three AWGN priors. Note
the effect of mismatched priors on the convergence of SD-RED to Zer(G) and the superior performance of mismatched CNN priors over TV.

Fig. 3. Visual evaluation of several AWGN and AR priors used within SD-RED for brain MRI reconstruction from radially subsampled Fourier measurements
at 10%, 20%, and 30%. Note how all the learned priors (both true and mismatched) outperform the traditional TV prior. Additionally, note the improvement
in terms of imaging performance due to the mismatched AR priors compared to the true and mismatched AWGN priors.

of ‖G(xk)‖2
2/‖G(x0)‖2

2 is plotted against iteration number for
σ ∈ {5, 10, 30} and τ ∈ {0.001, 0.01, 0.1}. The results are
consistent with the theoretical analysis and show that increase
in both τ and σ increases the error term.

Table I reports the recovery PSNR for natural, CT, and
MRI test images from subsampled Fourier measurements
using the corresponding true and mismatched CNN priors.
The best PSNR values for AWGN and AR priors are high-
lighted separately in bold. Figure 3 presents corresponding
visual comparisons on a MRI image with 10%, 20%, and
30% sampling. As expected, matched priors lead to better
performance in all the experiments, with matched AR pri-
ors achieving the best performance. While mismatched priors
result in performance drops for both AWGN and AR priors,
we observe better overall results for AR priors. Finally, note
the inferior performance of TV compared to SD-RED under
both true and mismatched CNN priors.

B. Approximating the TV Proximal Operator Using a CNN

In this section, we numerically evaluate CNN priors trained
to approximate proximal operators. To that end, we train

DnCNN to approximate the TV proximal operator and use
the trained network within SD-RED as a mismatched CNN
prior. We will refer to the mismatched prior as TV Approx and
the true prior as TV Exact. We generate the training dataset
by adding AWGN to natural grayscale images from [71]. We
pre-train TV Approx as a CNN approximation of TV proximal
by adding AWGN with σ ∈ {1, 2, 3, 5, 7, 8, 10, 12, 15} to the
training data and using the true TV solution as a training label.
As a result, we have 9 pre-trained TV Approx CNNs. During
the inference time, we select the TV Approx that yields the
best reconstruction performance in terms of PSNR. We con-
sider the same recovery problem as in the previous section,
where the goal is to recover an image from its subsampled
Fourier measurements at 10%, 20%, and 30% sampling rates.
Theorem 4 shows that SD-RED using TV Approx can approx-
imate the solution of (1) up to an error term. This behaviour
is illustrated in Figure 6 (Left) for natural images recon-
structed at 10% subsampling. The average value of f (xk)/f (x0)

is plotted against iterations. Figure 6 (Right) shows that the
approximate TV prior can indeed achieve performance simi-
lar to the true TV prior. These plots highlight that despite the
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Fig. 4. Illustration of influence of noise level (σ ) and regularization parameter (τ ) on the error term in the convergence analysis of SD-RED under mismatched
priors. Average normalized distance to Zer(G) is plotted against iterations for MRI and natural AWGN priors for MRI reconstruction at 10% sampling. Top:
τ is set to a constant to evaluate the effect of σ . Bottom: σ is set to a constant to evaluate the effect of τ . The gap illustrates the error term due to the use
of mismatched CNN priors. Note how the gap increases with the increase of both parameters τ and σ .

Fig. 5. Recovery of Butterfly and Parrot from 10%, 20%, and 30% Fourier samples using SD-RED under DnCNN trained as an approximate TV prior.
Results of the traditional TV are also provided. Note the visual and quantitative similarities between the exact and approximate TV results at all sampling
ratios.

constant error term in the objective function due to the prior
mismatch, the approximation can still lead to nearly identi-
cal PSNR and SSIM values. Figure 5 illustrates the recovery
of two test images at three sampling rates, highlighting the
ability of TV Approx to match the performance of the true
TV prior.

C. Using Mismatched MRI Priors for Accelerated
Parallel MRI

In this section, we consider only MRI images to evaluate the
impact of CNN priors trained on data with moderate distribu-
tion shifts. Our measurement model uses multi-coil Cartesian
Fourier sampling mask from the fastMRI challenge [78]
with 2× and 4× accelerated acquisitions. The measurement

operator for each coil can be written as Ai = PFSi, where P is
a subsampling mask, F is the Fourier transform, and Si is a coil
sensitivity map. We use datasets in [72] and [78] to pre-train
four separate AWGN denoisers on brain, knee, AXT1PRE,
and AXT2 images. The denoisers are trained on noise lev-
els corresponding to σ ∈ {1, 2, 3, 5, 8, 10, 12, 15}. We select
the denoiser yielding the best performance in terms of PSNR
as the prior for SD-RED. Thirty images are randomly chosen
from each dataset for testing. In each experiment, 128 coil
sensitivity maps are synthesized using SigPy [79]. Table II
reports PSNR and SSIM for 2× and 4× accelerated MRI
reconstruction using SD-RED. Note the superior performance
of Knee prior compared to other mismatched brain priors in
the reconstruction of MRI AXT2. Figure 7 presents a visual
comparison on one test image from the fastMRI AXT2 dataset
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TABLE I
THE RECOVERY OF NATURAL, MRI, AND CT IMAGES IN TERMS OF PSNR (DB) USING THE TRUE AND MISMATCHED AR AND AWGN PRIORS

Fig. 6. Left: Evolution of the average TV objective using the true TV prior and its DnCNN approximation over the test set of natural images. Right:
Evolution of average PSNR values on the true and approximate TV priors over the same test set of natural images. Note that despite the constant error term
predicted in the objective due to the use of mismatched priors, the approximate TV prior achieves nearly identical PSNR compared to the true TV prior.

TABLE II
RECOVERY OF MRI AXT2 AND AXT1PRE TEST IMAGES FROM ACCELERATED PARALLEL MRI MEASUREMENTS USING SEVERAL IMAGE PRIORS

using several CNN priors. The results indicate that mismatched
CNN priors can be useful when true CNN priors are not avail-
able. They also suggest that under the settings considered in
our simulations, mismatched CNN priors can outperform the
traditional TV reconstruction in terms of PSNR/SSIM.

V. CONCLUSION

In this work, we explored the topic of mismatched CNN pri-
ors within DMBAs by theoretically analyzing the error bounds
due to the mismatch and numerically illustrating the impact of
the mismatch on the imaging performance. While our focus
has been on the SD-RED architecture, similar results can cer-
tainly be carried out using other DMBAs. Our results show
how the severity of the mismatch on the CNN prior translates
to that of the final recovered images, relate the mismatch in
CNN priors to the distribution shifts in statistical priors, and
highlight the potential of DMBAs using mismatched CNN pri-
ors to outperform the traditional TV regularizer. In the future
work, we would like to explore alternative characterizations

of the mismatch and develop methods to reduce the influ-
ence of mismatch on the final recovery performance. Another
direction for future research would be the derivation of lower
bounds analogous the upper bounds in Theorems 1 and 2
(lower-bounds for traditional first-order methods have been
investigated before [80]).

APPENDIX

We adopt monotone operator theory [81], [82] as a frame-
work for a unified analysis of SD-RED under mismatched
priors. In Appendix A, we analyze SD-RED under the assump-
tion that the true CNN prior D is a contraction. In Appendix B,
we extend the analysis to nonexpansive operators D. In
Appendix C, we show how the bound on the density ratio r =
px/ p̂x leads to the bound in Assumption 3. In Appendix D,
we analyze SD-RED under approximate proximal operators.
In Appendices E and F, we present some key results from
monotone operator theory and traditional optimization that are
useful for our analysis.
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Fig. 7. Image recovery from 4× accelerated parallel MRI measurements of an image from AXT2 fastMRI dataset using several CNN priors trained as
AWGN denoisers. Note how despite the performance drop due to the distribution mismatched, all CNN priors significantly outperform the traditional TV
regularizer.

A. Proof of Theorem 1

First note that

‖G(x) − Ĝ(x)‖2 = τ‖(I − D)(x) −
(
I − D̂

)
(x)‖2 ≤ τσε.

Consider a single iteration x+ = x − γ Ĝ(x) and x∗ ∈ Zer(G)

‖x+ − x∗‖2 = ‖x − γ Ĝ(x) − x∗‖2

≤ ‖x − γ G(x) − x∗‖2 + γ ‖G(x) − Ĝ(x)‖2

≤ η‖x − x∗‖2 + γ τσε,

where in the first inequality we used the triangular inequality
and in the second Proposition 4 in Appendix E. By iterating
this inequality for t ≥ 1 iterations, we obtain

‖xt − x∗‖2 ≤ ηt‖x0 − x∗‖2 + τσεA,

where η2 := 1 − 2γ [τ (1 − λ)] + γ 2[L + (1 + λ)τ ]2 ∈ (0, 1)

and A := γ /(1 − η) are fixed constants.

B. Proof of Theorem 2

Consider a single iteration x+ = x−γ Ĝ(x) and x∗ ∈ Zer(G)

‖x+ − x∗‖2
2

= ‖x − γ Ĝ(x) − x∗‖2
2 = ‖x − γ G(x) − x∗‖2

2

+ 2γ
(
G(x) − Ĝ(x)

)T(
x − γ G(x) − x∗)

+ γ 2‖G(x) − Ĝ(x)‖2
2

≤ ‖x − x∗‖2
2 − γ

L + 2τ
‖G(x)‖2

2

+ 2γ ‖G(x) − Ĝ(x)‖2‖x − γ G(x) − x∗‖2

+ γ 2‖G(x) − Ĝ(x)‖2
2

≤ ‖x − x∗‖2
2 − γ

L + 2τ
‖G(x)‖2

2 + 2γ τσεR + γ 2τ 2σ 2ε2.

By rearranging the terms, we get

‖G(x)‖2
2 ≤

(
L + 2τ

γ

)[
‖x − x∗‖2

2 − ‖x+ − x∗‖2
2

]

+ (L + 2τ )
(

2τσεR + γ τ 2σ 2ε2
)
.

By averaging over t ≥ 1 iterations, we get

1
t

t∑

i=1

‖G
(

xi−1
)
‖2

2 ≤ B1

t
+ τσεB2,

where B1 := ((L+2τ )R2)/γ and B2 := (L+2τ )(2R+γ τσε).

C. Proof of Theorem 3

The MAP solution to (4) can be expressed as the proxi-
mal operator (3). Consider two density functions px and p̂x
and corresponding MAP regularizers h(x) = − log(px(x)) and
ĥ(x) = − log(̂px(x)). The log-concavity and continuity of px
and p̂x imply that proxσ 2h and proxσ 2ĥ are unique minimizers
of 1-strongly convex functions φ(x) = 1

2‖x − z‖2
2 + σ 2h(x)

and φ̂(x) = 1
2‖x − z‖2

2 + σ 2̂h(x), respectively. From the def-
inition of the proximal operator, φ and φ̂ are minimized at
x∗ = Dσ (z) = proxσ 2h(z) and x̂ = D̂σ (z) = proxσ 2ĥ(z),
respectively, where z ∈ Rn is any vector. From strong
convexity

φ(̂x) ≥ φ(x∗) + 1
2‖x∗ − x̂‖2

2
φ̂(x∗) ≥ φ̂(̂x) + 1

2‖x∗ − x̂‖2
2

⇒

‖x∗ − x̂‖2
2 ≤ σ 2(̂h

(
x∗) − h

(
x∗) + h(̂x) − ĥ(̂x)

)
. (8)

We can re-write the bound on the density ratio as

e−ε2/2 ≤ px(x)/ p̂x(x) ≤ eε2/2 ⇒
− ε2/2 ≤ log(px(x)) − log(̂px(x)) ≤ ε2/2 ⇒

|h(x) − ĥ(x)| ≤ ε2/2.

By combining this inequality with (8), we get the desired
conclusion

‖Dσ (z) − D̂σ (z)‖2
2 ≤ σ 2ε2,

which is true for any z ∈ Rn.

D. Proof of Theorem 4

Moreau smoothing is well-known in the optimization lit-
erature and has been extensively used to design and analyze
non-smooth algorithms (see, for example, [68]). It has been
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previously used in [70, Th. 2] to analyze the block-coordinate
RED (called BC-RED). The contribution of the following anal-
ysis is to extend [70] the prior result to a mismatched CNN
prior D̂. Following [70], we fix τ = 1/σ 2 for convenience,
which enables us to have only one regularization parameter,
namely σ 2.

We define the following loss function to approximate f =
g + h

fσ 2(x) = g(x) + τhσ 2(x),

where we set τ = (1/σ 2) and hσ 2 is known as the Moreau
envelope of h

hσ 2(x) := min
v∈Rn

{
1
2
‖v − x‖2

2 + σ 2h(v)
}
. (9)

Lemma 5 and Assumption 5 imply that

0 ≤ h(x) − τhσ 2(x) ≤ Sσ 2

2
⇔

0 ≤ f (x) − fσ 2(x) ≤ Sσ 2

2
. (10)

Additionally, Lemma 4 implies that

Gσ (x) = ∇g(x) + τ
(
x − proxσ 2h(x)

)
= ∇fσ 2(x), (11)

where ∇f 2
σ is (L + 2τ )-Lipschitz continuous. Eq. (11) implies

that a single iteration of SD-RED using the true CNN prior is
a gradient step on the smoothed version fσ 2 of f . From (9) and
the convexity of the Moreau envelope, we have for all x ∈ Rn

f ∗
σ 2 = fσ 2

(
x∗) ≤ fσ 2(x) ≤ f (x), (12)

where x∗ ∈ Zer(G). Hence, there exists a finite f ∗ such that
f (x) ≥ f ∗ with f ∗ ≥ f ∗

σ 2 for all x ∈ Rn.
Consider a single SD-RED update using a mismatched prior

x+ = x − γ Ĝ(x)

fσ 2
(
x+)

≤ fσ 2(x) + ∇f T
σ 2

(
x+ − x

)
+ (L + 2τ )

2
‖x+ − x‖2

2

= fσ 2(x) − γ∇fσ 2(x)TĜ(x) + γ 2(L + 2τ )

2
‖Ĝ(x)‖2

2

≤ fσ 2(x) + γ

2

[
‖Ĝ(x)‖2

2 − 2∇fσ 2(x)TĜ(x)
]

≤ fσ 2(x) − γ

2
‖∇fσ 2(x)‖2

2 + γ τ 2σ 2ε2

2
, (13)

where in first inequality we used the Lipschitz continuity of
∇fσ 2 , in the second the fact that γ ≤ 1/(L+2τ ), and the third

‖Ĝ(x) − ∇fσ 2(x)‖2 ≤ τσε ⇔
‖Ĝ(x)‖2

2 − 2∇fσ 2(x)TĜ(x) ≤ (τσε)2 − ‖∇fσ 2(x)‖2
2.

Consider the iteration t ≥ 1, then we have that

min
1≤i≤t

(
f
(

xi−1
)

− f ∗
)

≤ 1
t

t∑

i=1

(
f
(

xi−1
)

− f ∗
)

≤ 1
t

t∑

i=1

(
fσ 2

(
xi−1

)
− f ∗

σ 2

)
+ S2σ 2

2

≤ R
t

t∑

i=1

‖∇fσ 2

(
xi−1

)
‖2

2 + S2σ 2

2

≤ 2R
γ t

(
fσ 2

(
x0

)
− f ∗

σ 2

)
+ ε2R

σ 2 + S2σ 2

2

≤ 2R3(L + 2τ )

γ t
+ ε2R

σ 2 + S2σ 2

2
,

where in the second inequality we used eq. (10) and (12), in
the third the convexity of fσ 2 and Assumption 4, in the forth
eq. (13) and that τ = 1/σ 2, and in the final the convexity of
fσ 2 and Assumption 4.

E. Useful Results for the Main Theorems

Proposition 1: Suppose Assumptions 1-2 are true. Then,
G = ∇g + τR is (1/(L + 2τ ))-cocoercive.

Proof: Since ∇g is L-Lipschitz continuous, from Lemma 1
is also (1/L)-cocoercive. Then, from Lemma 2, I − (2/L)∇g
is nonexpansive.

Since D = I − R is nonexpansive and any convex combina-
tion of nonexpansive operators is nonexpansive, we have that
the following operator is also nonexpansive

I − 2
L + 2τ

G

=
[

2
L + 2τ

· 2τ

2

]
(I − R) +

[
2

L + 2τ
· L

2

]
(I − (2/L)∇g)

=
[

1 − 2
L + 2τ

· L
2

]
(I − R) +

[
2

L + 2τ
· L

2

]
(I − (2/L)∇g).

Thus, Lemma 2 implies that G is 1/(L + 2τ )-cocoercive.
Proposition 2: Suppose Assumptions 1-2 are true. Then, for

any 0 < γ ≤ 1/(L + 2τ ), we have

‖x − γ G(x) − x∗‖2
2 ≤ ‖x − x∗‖2

2 −
(

γ

L + 2τ

)
‖G(x)‖2

2,

where x ∈ Rn and x∗ ∈ Zer(G).
Proof: We have the following set of relations

‖x − γ G(x) − x∗‖2
2 = ‖x − x∗‖2

2 − 2γ G(x)T(
x − x∗)

+ γ 2‖G(x)‖2
2

≤ ‖x − x∗‖2
2 −

(
2γ

L + 2τ

)
‖G(x)‖2

2

+
(

γ

L + 2τ

)
‖G(x)‖2

2

= ‖x − x∗‖2
2 −

(
γ

L + 2τ

)
‖G(x)‖2

2,

where in the second row we used Proposition 1 and the fact
that γ ≤ 1/(L + 2τ ).

Proposition 3: Suppose Assumptions 1-2 are true with
λ < 1. Then, G = ∇g + τR is [τ (1 − λ)]-strongly monotone
and [L + (1 + λ)τ ]-Lipschitz continuous.

Proof: From the convexity and smoothness of g, we know
that ∇g is monotone. Due to the contractiveness of D,
Lemma 3 implies that R is (1 − λ)-strongly monotone. Thus,
we have that

(G(x) − G(z))T(x − z) = (∇g(x) − ∇g(z))T(x − z)
+ τ (R(x) − R(z))T(x − z) ≥ τ (1 − λ)‖x − z‖2

2.
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To see the Lipschitz continuity, note that

‖G(x) − G(y)‖2 ≤ ‖∇g(x) − ∇g(y)‖2 + τ‖R(x) − R(y)‖2

≤ L + τ (1 + λ).

Proposition 4: Suppose Assumptions 1-2 are true with
λ < 1. Suppose that the step-size parameter is selected to
satisfy

0 < γ <
(1 − λ)τ

(L + (1 + λ)τ )2 .

Then, for any x ∈ Rn and x∗ ∈ Zer(G), we have

‖x − γ G(x) − x∗‖2
2 ≤ η2‖x − x∗‖2

2,

where η2 = 1 − 2γ [τ (1 − λ)] + γ 2[L + (1 + λ)τ ]2 ∈ (0, 1).
Proof: Let ' = L + (1 + λ)τ and µ = (1 − λ)τ .

‖x − γ G(x) − x∗‖2
2 = ‖x − x∗‖2

2 − 2γ G(x)T(
x − x∗)

+ γ 2‖G(x)‖2
2

≤ ‖x − x∗‖2
2 − 2γµ‖x − x∗‖2

2

+ γ 2'2‖x − x∗‖2
2

= η2‖x − x∗‖2
2,

where η2 = (1−2γµ+γ 2'2). Thus, for any 0 < γ < 2µ/'2,
we have that 0 < η2 < 1.

Proposition 5: Suppose Assumptions 1-5 the update

x+ = x − γ Ĝ(x), x ∈ Rn,

under, where Dσ = proxσ 2h and 0 < γ ≤ 1/(L + 2τ ). Then,
for any, we have

‖∇f(1/τ )(x)‖2
2 ≤ 2

γ

(
f(1/τ )(x) − f(1/τ )

(
x+))

+ σ 2ε2,

F. Background Material

The results in this section are well-known in the
optimization literature and can be found in different forms in
standard textbooks [75], [81], [83], [84]. We summarize the
results useful for our analysis by restating them in a convenient
form.

Lemma 1: For convex and continuously differentiable func-
tion g, we have

∇g is L-Lipschitz continuous ⇔ ∇g is (1/L)-cocoercive.

Proof: See [75, Th. 2.1.5 and Sec. 2.1]
Lemma 2: Consider an operator T : Rn → Rn and β > 0.

The following properties are equivalent
1) T is β-cocoercive;
2) βT is firmly nonexpansive;
3) I − βT is firmly nonexpansive;
4) βT is (1/2)-averaged;
5) I − 2βT is nonexpansive.
Proof: See Proposition 4 in the Supplementary Material1

of [51].
Lemma 3: Consider an operator R = I − D where

D : Rn → Rn.

D is Lipschitz continuous with constant λ < 1 ⇒
R is (1 − λ)-strongly monotone.

1It can also be found in the pre-print https://arxiv.org/pdf/2006.03224.pdf.

Proof: See Proposition 2 in the Supplementary Material
of [51].

Definition 1: Consider a proper, closed, and convex func-
tion h and a constant µ > 0. We define the proximal
operator

proxµh(x) = arg min
z∈Rn

{
1
2
‖z − x‖2 + µh(z)

}

and the Moreau envelope

hµ(x) = min
z∈Rn

{
1
2
‖z − x‖2 + µh(z)

}
.

The following two lemmas provide useful results on the
Moreau envelope. The Moreau envelope is convex and smooth.

Lemma 4: The function hµ is convex and continuously
differentiable with a 1-Lipschitz gradient

∇hµ(x) = x − proxµh(x).

Proof: See [38, Proposition 8].
The Moreau envelope can also serve as a smooth approxi-

mation of a nonsmooth function.
Lemma 5: Consider h ∈ Rn and its Moreau envelope hµ(x)

for µ > 0. Then,

0 ≤ h(x) − 1
µhµ(x) ≤ µ

2 G2
x with

G2
x := ming∈∂h(x) ‖g‖2, ∀x ∈ Rn.

Proof: See [38, Proposition 9].
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