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Abstract

Bayesian optimization (BO) is increasingly employed in critical applications such as materials design and drug discovery.
n increasingly popular strategy in BO is to forgo the sole reliance on high-fidelity data and instead use an ensemble of

nformation sources which provide inexpensive low-fidelity data. The overall premise of this strategy is to reduce the total
ampling costs by querying inexpensive low-fidelity sources whose data are correlated with high-fidelity samples. Here, we
ropose a multi-fidelity cost-aware BO framework that dramatically outperforms the state-of-the-art technologies in terms of
fficiency, consistency, and robustness. We demonstrate the advantages of our framework on analytic and engineering problems
nd argue that these benefits stem from our two main contributions: (1) we develop a novel acquisition function for multi-fidelity
ost-aware BO that safeguards the convergence against the biases of low-fidelity data, and (2) we tailor a newly developed
mulator for multi-fidelity BO which enables us to not only simultaneously learn from an ensemble of multi-fidelity datasets,
ut also identify the severely biased low-fidelity sources that should be excluded from BO.
2023 Elsevier B.V. All rights reserved.

eywords: Bayesian optimization; Multi-fidelity modeling; Emulation; Resource allocation; Manifold learning; Gaussian process

1. Introduction and related works

Bayesian optimization (BO) is an iterative and sample-efficient global optimization technique that has been
uccessfully applied to a wide range of applications including materials discovery [1–4], design of chemical systems
uch as catalysts [5], hyperparameter tuning in machine learning (ML) models [6], robot motion control [7], and
pdating internet-scale software systems [8].

While BO is very effective, the total optimization cost can still be high if only an expensive source is sampled
uring the optimization (e.g., experiments or costly simulations). To reduce the overall data collection costs in such
cenarios an increasingly popular strategy is to formulate multi-fidelity (MF) methods that use multiple data sources
hich typically have different levels of accuracy and cost, see [9–12] for some applications. Assuming low-fidelity

LF) sources are cheaper to query, the overall premise of these methods is to reduce the total sampling costs by
everaging the correlations between low- and high-fidelity (HF) data. In this paper, we propose a multi-fidelity cost-
ware (MFCA) BO framework that optimizes an expensive objective function using an ensemble of data sources with
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Fig. 1. Bi-fidelity BO: We illustrate the overall flow for optimizing a function with two numerical inputs (x1, x2) and one categorical input
t) that has two levels (i.e., t = A or t = Z ). The figure also considers both single-fidelity (without LF data) and bi-fidelity (with LF data)
ptimization scenarios. In the left box, the dashed line separates the two optimization scenarios. The upper and lower plots on each side of
he dashed line visualize the function in 1D. For example, in the bi-fidelity case (with LF data), we visualize the emulation for HF and LF
s a function of x1 for either t = A (top plot) or t = Z (bottom plot). Note that (1) we have fixed x2 to 2 so that we can draw in 1D, and
2) t is categorical. In both scenarios, the first step is training the emulator on the data (right box). Then, the emulator is passed to the left
ox for optimization. In the optimization process of the SF model (without LF data), the optimum is found by merely sampling from the
xpensive HF source. However, in the MF scenario (with LF data), the LF source is also used in sampling which is correlated with the HF
ource and hence reduces the reliance on HF data. This iterative process of sampling-emulation is repeated until the convergence condition
s met.

rbitrary levels of accuracy and cost. We provide a new perspective on probabilistic learning from multiple sources
hich endows our framework with four major advantages over existing MF BO techniques: (a) safeguarding the

onvergence against the biases of the LF sources even if they are extremely inexpensive to query (i.e., if the majority
f the samples are LF), (b) learning the relative fidelity of the sources rather than requiring a priori determination
f such relations by the user, (c) dispensing with the assumptions that aim to relate the fidelity and cost of a data
ource, and (d) improving numerical stability and efficiency.

As schematically demonstrated in Fig. 1 and detailed in Section 2.2, BO has two main ingredients that interact
equentially to optimize a black-box and expensive-to-evaluate objective function. These two ingredients include an
mulator (i.e., a probabilistic surrogate) and an acquisition function (AF). The optimization process starts by fitting
he emulator to a small initial dataset that is typically obtained via design of experiments. The emulator is next
sed in the AF to determine the candidate input(s) whose corresponding output(s) must be obtained by querying the
xpensive function. Given the new sample(s), the training dataset is updated and the entire fitting-searching-sampling
rocess is repeated until a convergence criterion is met (e.g., resources are exhausted).

While many emulators such as Bayesian neural networks are available, Gaussian processes (GPs) are typically
sed in BO since they very efficiently learn from small data, are easy and fast to train, provide prediction
ncertainties, and have interpretable parameters [13–16]. Use of GPs in BO has increased even more because of
he recent works that enable them to handle categorical variables [17–19], high-dimensional inputs [20,21], large
atasets [22–25], and non-stationary noise [26,27]. As for the AF, there are many choices [28,29] such as expected
mprovement (EI), probability of improvement (PI), and knowledge gradient (KG). The primary difference among
hese AFs is that they select the candidate input(s) while taking different approaches for balancing exploitation

i.e., sampling based on the best predictions of the emulator) and exploration (i.e., sampling to reduce prediction

2
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uncertainty). This selection involves integration which can sometimes be analytically computed (e.g., when GP and
EI are chosen as the emulator and AF, respectively).

To optimally use an ensemble of information sources in BO, two conditions must be met: (1) the emulator should
everage the cross-source correlations (which are hidden in the datasets) to more accurately surrogate all the data
ources (esp. the HF one), and (2) the AF should appropriately calculate the value or utility of a to-be-sampled
ata point based on its source and evaluation cost. Satisfying these two conditions in many realistic applications is
ontrivial for the following reasons:

• The global optima (input and output) of LF sources differ from those of the HF source, see Fig. 4 for a one
dimensional illustration.
• Some LF sources have major biases (which are a priori unknown to the analyst) and must be excluded from

the search process from the very beginning. Including such LF sources increases the overall sampling costs
and may also result in convergence to an incorrect solution.
• If highly cheap LF sources are available, a naively designed AF chooses to sample from them very frequently

since the information value of a candidate point is inversely scaled by the cost of its source. This heavily
biased sampling can force BO to converge to the optima of those sources rather than the HF source.

As reviewed in Section 2.2, existing multi-fidelity BO technologies partially address these challenges by ad
oc tuning and making simplifying assumptions. These assumptions often include presuming a direct relationship
etween fidelity level and sampling cost, assuming LF sources are always useful, or manually adjusting the sampling
osts (e.g., converting the 1000/50/1 cost ratio between three sources to 1/0.5/0.1). These manual changes are quite
aborious and result in either convergence to an incorrect solution or higher overall costs compared to single-fidelity
SF) BO which solely leverages the HF source.

In this paper, we provide new perspectives for learning from multi-fidelity sources in the context of BO. In
articular, we argue that (a) the emulator must fuse the multi-source data in a nonlinearly learnt manifold to
aximally leverage cross-source correlations and also indicate trustworthy LF sources that do not deteriorate BO’s

erformance, and (b) the AF should use the available information on the LF sources solely for exploration and
hose on the HF sources for exploitation. As demonstrated in Section 4, these contributions endow our framework
ith significant performance improvements over existing technologies.
The rest of the paper is organized as follows. We review the relevant technical background in Section 2 and

ntroduce our approach in Section 3 (readers familiar with GPs and MF BO can safely skip Section 2). We test
he performance of our MFCA BO framework against the state-of-the-art on a set of analytic and two engineering
roblems in Section 4 and finally conclude the paper in Section 5. We also provide a nomenclature and list of
ymbols in Appendix H. The Gitlab repository associated with this project hosts supplementary materials.

. Technical background

In this Section, we first provide some background on latent map Gaussian process (LMGP) which is one of the
ey components of our MFCA BO framework. Then, we elaborate on the two main ingredients of BO in Section 2.2
here we also review some of the existing methods for handling MF data.

.1. Latent map Gaussian processes (LMGPs)

For metamodeling via GPs, one assumes that the training data comes from a multivariate normal distribution with
arametric mean and covariance functions and then uses closed-form conditional distribution formulas for prediction.
elow, we first detail the process for estimating these parameters when the input space contains categorical and/or
umerical variables. Then, we provide the prediction formulas.

Assume the training data is a realization from a GP and that the following relation holds:

y(x) = m(x)β + ξ (x) (1)

here x = [x1, x2, . . . , xdx ]T is the input vector, y(x) is the output/response, m(x) =
[
m1(x), . . . , mdβ(x)

]
are a

et of parametric basis functions, β = [β1, β2, . . . , βdβ]T are unknown coefficients, and ξ (x) is a zero-mean GP
hose covariance function or kernel is:( (

′
)) (

′
) 2 (

′
)

cov ξ (x), ξ x = c x, x = σ r x, x (2)

3
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where σ 2 is the variance of the process and r (., .) is a parametric correlation function. A common choice for r (., .)
is the Gaussian correlation function:

r (x, x′) = exp{−
dx∑

i=1

10ωi (xi − x ′i )
2
} = exp{−(x − x′)T 10Ω (x − x′)} (3)

where ω = [ω1, . . . , ωdx ]T are the scale parameters and Ω = diag(ω). GP modeling largely depends on the choice
of the correlation function which measures the weighted distance between any two inputs, see Eq. (3). As recently
motivated in [30], to directly use GPs for MF modeling we must extend them such that they can handle categorical
inputs. This extension primarily relies on reformulating r (., .) and can be accomplished in different ways. In this
paper, we employ LMGPs [30] since (1) they have been shown to outperform other approaches, and (2) they
provide a visualizable and interpretable manifold which can be used to detect discrepancies among data sources
(this manifold helps us to exclude highly biased LF sources from BO).

Let us denote categorical inputs via t = [t1, . . . , tdt ]T where variable ti has li distinct levels. For example,
t1 = {Male, Female} and t2 = {Persian, American, Spanish} are two categorical inputs where l1 = 2 and
2 = 3. To handle mixed inputs, u = [x1, . . . , xdx , t1, . . . , tdt ]T , LMGP learns a unified parametric function1 that

aps each combination of categorical variables to a point in a quantitative manifold (aka latent space2). This
apping function can be incorporated into any standard correlation function (e.g., Gaussian, Matern, etc.) and the

erformance of LMGP is quite insensitive to this choice [31,32]. In this paper, we use the Gaussian correlation
hich is reformulated as follows for mixed inputs:

r (u, u′) = exp{−(x − x′)TΩ(x − x′)− ∥z(t)− z(t ′)∥2
2} (4)

r equivalently,

r (u, u′) = exp{−
dx∑

i=1

10ωi (xi − x ′i )
2
} × exp{−

dz∑
i=1

(zi (t)− zi (t ′))2
} (5)

here ∥ · ∥2 denotes the Euclidean 2-norm and z(t) = [z1(t), . . . , zdz(t)]1×dz is the location in the learned latent
pace corresponding to the specific combination of the categorical variables denoted by t . To find these latent points,
MGP first assigns a unique prior representation (a unique vector) to each combination of categorical variables.
hen, it learns a linear transformation3 that maps these unique vectors into a compact manifold with dimensionality
z:

z(t) = ζ (t)A (6)

here t denotes a specific combination of the categorical variables, z(t) is the 1×dz posterior latent representation
f t , ζ (t) is the unique prior vector representation of t , and A is a rectangular matrix that maps ζ (t) to z(t). There are
arious methods for constructing the prior vectors ζ and we refer the reader to [30] for more details. In this paper, we
se grouped one-hot encoding which makes ζ (t) and A to be of sizes 1×

∑dt
i=1 li and

∑dt
i=1 li×dz, respectively. For

nstance, in the above example the grouped one-hot encoded version of the combination t = [Female, American]T

s ζ (t) = [0, 1, 0, 1, 0] where the first two numbers encode the levels of t1 while the last three numbers indicate
he levels of t2.

To emulate via LMGP, the hyperparameters (β, A, ω, and σ 2) must be estimated via the training data. To
nd these estimates, we utilize maximum a posteriori (MAP) which estimates the hyperparameters such that they
aximize the posterior of the n training data being generated by y(x), that is:

[β̂, σ̂ , ω̂, Â] = argmax
β,σ 2,ω,A

⏐⏐2πσ 2 R
⏐⏐− 1

2 × exp
{
−1
2

( y − Mβ)T (
σ 2 R

)−1
( y − Mβ)

}
× P(·)

β,σ 2,ω,A
(7)

or equivalently:

[β̂, σ̂ , ω̂, Â] = argmin
β,σ 2,ω,A

n
2

log
(
σ 2)
+

1
2

log(|R|)+
1

2σ 2 ( y − Mβ)T R−1( y − Mβ)+ log( P(·)
β,σ 2,ω,A

), (8)

1 Multiple mapping functions can also be used and we leverage this in Section 3.1.
2 In a manifold or a latent space, high dimensional objects such as images are represented via low-dimensional quantitative features.
3 More complex transformations based on, e.g., deep neural networks can also be used.
4
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where log(·) is the natural logarithm, | · | denotes the determinant operator, y = [y1, . . . , yn]T is the n × 1 vector
of outputs in the training data, R is the n×n correlation matrix with the (i, j)th element Ri j = r (xi , x j ) for i, j =
1, . . . , n, M is the n × dβ matrix with the (i, j)th element Mi j = m j (xi ) for i = 1, . . . , n and j = 1, . . . , dβ, and
P(·) is the prior on the hyperparameters. In this paper, we place independent priors on the hyperparameters where
σ ∼ Lognormal(0, 3) while ω, β, A follow normal priors.4 These priors are adopted in GPyTorch and shown to
be effective [33].

The optimization problem in Eq. (8) can be efficiently solved via gradient-based optimization [16,34]. Once the
hyperparameters are estimated, the conditional distribution formulas are used to predict the response distribution at
the arbitrary point x∗. The mean and variance of this normal distribution are:

E[y(x∗)] = µ(x∗) = m(x∗)β̂ + rT (x∗)R−1( y − Mβ̂) (9)

cov(y(x∗), y(x∗)) = σ 2(x∗) = σ̂ 2(1− rT (x∗)R−1r(x∗)+ g(x∗)(MT R−1 M)−1 g(x∗)T ) (10)

where E denotes expectation, m(x∗) = [m1(x∗), . . . , mdβ(x∗)], r(x∗) is an n×1 vector with the i th element r (xi , x∗),
and g(x∗) = m(x∗)− MT R−1r(x∗).

2.2. Bayesian optimization (BO)

BO is increasingly used to optimize expensive-to-evaluate (and typically black-box) functions. As opposed
to gradient-based or heuristic optimization techniques that only rely on function evaluations (or predictions of a
surrogate), BO leverages the probabilistic predictions of a sequentially updated emulator. In this paper, we focus on
single-response functions over unconstrained and bounded domains but note that BO can also handle multi-response
(or multi-task) [35], composite [36], or constrained problems [37].

As summarized in Algorithm 1, BO has an iterative nature where an emulator is first fitted to some initial training
data. This emulator is then queried via the AF which calculates the expected utility of any point in the input space,
i.e., E[I (x)] where I (x) is the user-defined utility function. These queries are used in the auxiliary optimization
problem5 which aims to find the candidate point with the maximum expected utility in the input space. Once this
point is found, the expensive function is queried and the resulting (input, output) pair is used to update the training
data. Given the augmented dataset, the above process is repeated until a convergence metric is met.

Except for some special cases, solving the auxiliary optimization problem in Algorithm 1 is highly costly
since each evaluation of its objective function (i.e., E[I (x)]) amounts to integration which cannot be calculated
nalytically. Fortunately, the special cases perform quite well in most practical applications and hence are used
requently (we also employ them in our framework).

Algorithm 1 is strictly sequential in that the dataset is augmented with a single sample at each iteration. To
leverage parallel computing, one can augment the dataset with a pool of samples which jointly maximize the
expected utility [38]. Additionally, Algorithm 1 is myopic in that the AF does not consider the effect of the to-be-
evaluated sample on the emulator in the future iterations. This myopic nature is addressed in look-ahead AFs such
as KG (detailed below) which typically provide improved performance at the expense of significantly increasing
the cost of solving the auxiliary optimization problem.

2.2.1. Single-fidelity acquisition functions
Many different AFs have been proposed for diverse applications and in this Section we review three of the most

widely used ones: EI, PI, and KG. While the first two AFs are myopic,6 KG is look-ahead. Any AF calculates the
expected value of a user-defined utility function conditioned on the available data D, that is:

α(x) = E[I (x) | D] (11)

Our proposed AF for MFCA BO (see Section 3.2) leverages EI as well as PI and hence is also myopic. In
Section 4 we compare our AF to EI, PI, and KG and indicate that it consistently outperforms them.

4 ω ∼ N (−3, 3), β ∼ N (0, 1), A ∼ N (0, 3).
5 Gradient-based optimization techniques are almost always used at this stage.
6 EI does have a look-ahead version [39].
5
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Algorithm 1: Strictly Sequential and Myopic Bayesian Optimization for Maximization

Given: Initial data Dk
= {(xi , yi )}ki=1, expensive black-box function f (x)

Define: Utility function I (x), stop conditions
while stop conditions not met do

1. Train the GP emulator using Dk

2. Define the acquisition function α(x) = E[I (x) | Dk]
3. Solve the auxiliary optimization problem: xk+1

= argmax
x∈X

α(x)

4. Query f (x) at xk+1 to obtain yk+1

5. Update data: Dk+1
← Dk

∪ (xk+1, yk+1)
6. Update counter: k ← k + 1

end
Output: Updated data Dk

=
{(

xi , yi
)}k

i=1, GP emulator

PI is an AF that favors exploitation [40], i.e., it rewards samples that improve y∗ which is the best function value
seen so far. For instance, when maximizing the expensive black-box function f (x), this AF uses the following utility
function:

IP I (x) =

{
1 y(x) > y∗

0 y(x) ≤ y∗
(12)

where y(x) is the emulator-based prediction at x. Based on Eq. (12), if y(x) is less than y∗, the point x has zero
utility. Assuming a GP is used for emulation, y(x) follows a normal distribution whose mean and variance are
given in Eqs. (9) and (10), respectively. Using the reparameterization trick (see Appendix A) we can show that the
esulting AF based on IP I (x) is [41,42]:

αP I (x) = Φ

(
µ(x)− y∗

σ (x)

)
(13)

where µ(x) and σ (x) are defined in Eqs. (9) and (10), and Φ(z) is the cumulative density function (CDF) of
the standard normal random variable z. Eq. (13) clearly indicates that αP I (x) favors exploitation because Φ(z) is
maximized at locations where the predictions are close to y∗ and have small uncertainty.

In contrast to PI which discards the magnitude of improvement (regardless of the magnitude of y(x), IP I (x) is
either 0 or 1), EI rewards large improvements over y∗ by adopting the following utility function:

IE I (x) = max(y(x)− y∗, 0) (14)

The corresponding AF can now be obtained by substituting Eq. (14) in Eq. (11) and using the reparameterization
trick (see Appendix A for the details):

αE I (x) = (µ(x)− y∗)Φ(
µ(x)− y∗

σ (x)
)+ σ (x)φ(

µ(x)− y∗

σ (x)
) (15)

here µ(x) and σ (x) are given in Eqs. (9) and (10), respectively, and φ(z) is the probability density function
(PDF) of z. Eq. (15) clearly demonstrates that αE I (x) strikes a balance between exploration and exploitation
when it is used as the objective function of the auxiliary optimization problem in Algorithm 1: while the second
term on the right-hand side directly deals with uncertainty and hence encourages exploration, the first term favors
exploitation [43,44].

Another widely used AF is KG which, unlike PI and EI, is look-ahead because it chooses xk+1 (see Algorithm
1) based on the effect of the yet-to-be-seen observation (i.e., yk+1 which follows a normal distribution) on the
optimum value predicted by the emulator. Following the terminology and setup of Algorithm 1, this AF quantifies
the expected utility of x at iteration k + 1 as:

k+1 k
αK G(x) = Ep(y|x,Dk )[max µ (x)]−max µ (x) (16)

6
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where max µk(x) denotes the maximum mean prediction of the GP trained on Dk . The expectation operation in
Eq. (16) appears due to the fact that yk+1 is not observed yet and αK G(x) is relying on the predictive distribution
provided by the GP that is trained on Dk . This expectation cannot be calculated analytically and hence a Monte
Carlo estimate is used in practice:

αK G(x) ≈
1
M

M∑
m=1

max µk+1m
(x)−max µk(x) (17)

where max µk+1m(x) is calculated by first drawing a sample at x from the GP that is trained on Dk and then
retraining the GP on Dk

∪ (x, ym) where ym is response of the drawn sample. In practice, a small value must be
chosen for M since maximizing αK G(x) over the input space at each iteration of BO is very expensive. We refer
the readers to [45,46] for more information on KG and its implementation.

2.2.2. Existing multi-fidelity BO techniques
As stated in Section 1, the overall computational efficiency of BO can be increased by leveraging inexpensive

LF datasets. MF BO has been successfully used in many applications such as hyperparameter tuning [47–50],
finding Pareto fronts in multi-objective optimizations [51–53], and solving non-linear state-space models [54,55].
For MFBO, both the emulator and the AF must accommodate the multi-source and unbalanced7 nature of the data.

Co-Kriging, which is an extension of Kriging (or GP), is a popular emulator that handles MF data by
reformulating the covariance function in Eq. (2) as follows (assuming there are three data sources denoted by
A, B, and C):

cov([yA(x), yB(x), yC (x)]T , [yA(x′), yB(x′), yC (x′)]T ) = Σ ⊗ r
(
x, x′

)
(18)

where ⊗ denotes the Kronecker product and Σ is a symmetric positive-definite matrix of size 3 × 3. This
reformulation assumes that all the responses (regardless of the source) follow a multi-variate normal distribution
and that the matrix Σi j captures the overall correlation between sources i and j .8 While this method can fuse any
number of data sources it fails to accurately capture cross-source correlations since the matrix Σ has insufficient
learning capacity.

Another well-known MF emulation method is that of Kennedy and O’Hagan who fuse bi-fidelity datasets by
learning a discrepancy function that aims to explain the differences between HF and LF sources. While this bi-
fidelity emulator has proved useful in a wide range of applications [57,58], it has some major drawbacks such as
the inability to jointly learn from more than two sources, numerical issues, and assuming a priori additive relation
between the discrepancy function and the two data sources.

The bi-fidelity approach of Kennedy and O’Hagan can be viewed as a special case of hierarchical MF modeling
where it is assumed that the relative accuracy between all the data sources is known. Space mapping techniques
belong to this category, but they are rarely used for sequential sampling, BO, or MF modeling (see [59] for a
bi-fidelity example). These techniques are typically employed in solving partial differential equations, particularly
to accelerate the convergence of an HF simulation (e.g., based on fine discretization) by initializing it via the results
of an LF simulation.

Other notable works are MF polynomial chaos Kriging (MF-PCK) [60] and that of Chen et al. [61]. While both
of these works accommodate multiple sources that are non-hierarchically ordered, they presume similar assumptions
to KOH (e.g., using an additive bias), have high computational cost, and are very sensitive to the presumed priors.

Upon reformulating the covariance function in Eq. (2), GPs can also be used for hierarchical MF modeling. For
instance, the single-task MF GP of the popular BoTorch package adopts an additive covariance function that relies
on introducing two user-defined quantitative features [24,28]. The first feature, denoted by xa , is restricted to the
[0, 1] range and assigns a fidelity value to a source based on the user’s belief (larger values correspond to higher
fidelities). This assigned fidelity value directly affects the correlation and cost function. The second feature, denoted
by xb, is the iteration fidelity parameter and benefits MF BO specifically in the context of hyperparameter tuning of
large machine learning models. The covariance function directly uses these two additional features as follows [62]:

cov(x, x′) = c0(x, x′)+ e1(xa, x ′a)c1(x, x′)+ e2([xa, xb]T , [x ′a, x ′b]T )c2(x, x′)+ e3(xb, x ′b)c3(x, x′) (19)

7 LF sources contribute more samples to the training data since they are typically much cheaper to query from.
8 GPs can handle multi-response datasets in a similar manner, see [56].
7
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where ci (x, x′) are Matern kernels9 that characterize the spatial correlations across the numerical inputs and ei (·)
re user-defined functions that model the cross-source correlations. e1(xa, x ′a) and e3(xb, x ′b) are bias kernels that
im to take the discrepancies among the sources into account while e2([xa, xb]T , [x ′a, x ′b]T ) models the fidelities’
nteraction kernel (see Appendix B for more details).

Despite being useful, Eq. (19) has some limitations. For instance, it requires a priori knowledge about the exact
hierarchy of fidelities and how they should be encoded as a numerical feature (i.e., xa). Additionally, the manually-
defined functions ei (·) are insufficiently flexible to learn complex cross-source relations and they also do not provide
any learned metric that quantifies which LF sources are useful for MF BO.

Compared to the few emulators described above, the diversity of the AFs in MF BO is more since they are often
tailored to the application, see [28,29,63,64]. Many of these developments leverage existing AFs that are used in SF
BO such as EI, PI, upper confidence bound [65], Thompson sampling [66], or GP-predictive entropy search [67].
One specific example is most likely EI (MLEI) [68] which is tailored to direct policy search problems where the EI
in Eq. (15) is first scaled by multiple context-specific priors and then the resulting AFs are optimized to determine the
next candidate point. As another example, Wu et al. [50] develop trace-aware KG to accelerate the hyperparameter
tuning process of machine learning models whose training relies on minimizing the loss function (defined as the
expected prediction error on the validation data). MF BO is useful in this process since the evaluation accuracy of
the loss function can be controlled by parameters such as the number of iterations and training/validation data points.
Correspondingly, trace-aware KG adjusts these parameters to use LF but inexpensive evaluations of the loss function
(and it trace) during training. We highlight that EI is also widely used in hyperparameter tuning problems [69–71].

3. Proposed approach

As was previously stated, the emulator and AF are the two fundamental components of any BO framework. In
this Section, we first discuss the rationale for using LMGP as the emulator of our MF BO framework in Section 3.1
and then introduce our novel cost-aware AF in Section 3.2. We elaborate on the convergence conditions and provide
an algorithmic summary of our framework in Section 3.3.

3.1. Multi-fidelity emulation via LMGP

As schematically illustrated in Fig. 2, MF emulation via LMGPs is quite straightforward [32]: Assuming there
are ds data sources, we augment the inputs with the additional categorical variable s = {′1′, . . . ,′ ds ′}10 whose j th
element corresponds to data source j for j = 1, . . . , ds. After this augmentation, the inputs and outputs of all the
datasets are concatenated as (following the notation of Fig. 2):

U =

⎡⎢⎢⎢⎣
U1

′1′n1×1
U2

′2′n2×1
...

...

Uds
′ds′nds×1

⎤⎥⎥⎥⎦ and y =

⎡⎢⎢⎢⎣
y1
y2
...

yds

⎤⎥⎥⎥⎦ (20)

where the subscripts 1, 2, . . . , ds correspond to the data sources, n j is the number of samples obtained from s( j)
(i.e., source j), U j and y j are, respectively, the n j × (dx + dt) feature matrix and the n j × 1 vector of responses
obtained from s( j), and ′ j ′ is a categorical vector of size n j × 1 whose elements are all set to ′ j ′. Once the {U, y}
dataset is built, it is directly fed into LMGP to build an MF emulator.

We argue that, compared to the existing techniques (see Section 2.2.2), LMGPs provide a more flexible and
accurate mechanism to build MF emulators, see Fig. 3 for a comparison study on an analytic example. This
superiority is because LMGP learns the relations between the sources (which are hidden in the combined datasets) in
a manifold. This manifold is learned nonlinearly by embedding the learned latent variables in an exponential function
(Eq. (4)) and hence has a much higher representation power than methods that rely on linear operations, e.g., the
matrix Σ in co-Kriging that linearly scales the correlations, see Eq. (18). Similarly, LMGP has major advantages
over single-task GPs (STGPs) reviewed in Section 2.2.2 because (1) it does not assume any hierarchy across the

9 The parameters of these kernels are endowed with Gamma priors in BoTorch.
10 We use quotation to indicate that the elements of s are categorical, e.g., ′1′ is not a quantitative number.
8
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Fig. 2. Multi-fidelity emulation with LMGP: The training data is built by first augmenting the inputs with the categorical feature s that
denotes the data source of a sample and then concatenating all the inputs and outputs, see Eq. (20). LMGP can use one or more manifolds to
encode the categorical variables into a quantitative space. For MF emulation, we recommend using two manifolds to simplify the visualization
of cross-source relations: one manifold for s and the other for the rest of the categorical variables, i.e., t .

Fig. 3. Emulator comparison: We compare the prediction accuracy of LMGP against single-task multi-fidelity GP (STGP) and Co-Kriging
Co-K) on an analytic problem with three sources (see Borehole in Table 1 where HF, LF3, and LF4 are used). While LMGP and STGP use

(5, 5, 50) initial data for (HF, LF3, LF4) sources, Co-K uses (50, 50, 50) to achieve comparable performance. Each emulator is trained 10
times by randomizing the initial data. It is evident that LMGP consistently outperforms other methods in emulating all the sources (including
the effect of random initialization). Prediction accuracy is measured by calculating the mean squared error (MSE) on unseen test data. The
large variations in the MSEs of LMGP are due to the log scale representation, see Appendix C.

data sources, (2) the cross-source relations are encoded via learned latent variables which have significantly higher
representation power than a single user-defined scalar variable (see Eq. (19)) that directly affects the covariance
function of the underlying GP and requires knowledge of the relative source fidelities.

As shown in Fig. 3, LMGPs build MF emulators that more accurately learn all the sources (rather than just the
HF source). While we can alter the formulations in Section 2.1 such that LMGPs prioritize learning the HF source,

e do not believe this is a good general decision in the context of MF BO. The reasoning behind our belief is that
he quality of LF predictions (obtained via the emulator) greatly affects the exploration nature of BO and, hence,
ts convergence behavior. The empirical results in Section 4 strongly support this reasoning.

Another major advantage of LMGPs is that their learned manifold provides an intuitive and visualizable global
etric for comparing the relative discrepancies/similarities among the data sources, see Fig. 6 for four examples
ith different number of data sources. This manifold is particularly useful in detecting anomalous sources whose
ata adversely affects MF BO. We demonstrate this in Section 4 with some examples where we use the initial MF
ata (i.e., before starting the BO iterations) to correctly predict whether SF BO outperforms MF BO.

Given the importance of identifying relative discrepancies among data sources, we slightly modify the correlation
unction of LMGP to learn two manifolds where the first one encodes the original categorical variables (collectively

enoted by t in Section 2.1) while the second one encodes the data source identifier (denoted by s in Fig. 2). The

9
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new correlation function is (compare to Eq. (5)):

r (

⎡⎣x
t
s

⎤⎦ ,

⎡⎣x′
t ′
s ′

⎤⎦) = exp{−
dx∑

i=1

10ωi (xi − x ′i )
2
−

dz∑
i=1

(zi (t)− zi (t ′))2
−

dh∑
i=1

(hi (s)− hi (s ′))2
} (21)

where h(s) = [h1, . . . , hdh]T is the latent representation of data source s. Similar to Eq. (6), this latent representation
is obtained by post-multiplying a prior vector by the parametric matrix Ah

11:

h(s) = ζ (s)Ah (22)

In our studies, we always design the prior by one-hot-encoding the categorical variable s = {′1′, . . . ,′ ds ′} that
identifies the data source and estimate all of LMGP’s hyperparameters via MAP with the new R built using Eq. (21).

[β̂, σ̂ , ω̂, Â, Âh] = argmax
β,σ 2,ω,A, Âh

|2πσ 2 R|−
1
2 × exp{

−1
2

( y − Mβ)T (σ 2 R)−1( y − Mβ)} × P(·)
β,σ 2,ω,A, Âh

(23)

Then, We use Eq. (21) to explain the relation between the latent fidelity representations, i.e., h(s), and the relative
fidelity of the data sources. At the same inputs, the correlation between the estimated outputs of sources s and s ′

is:

0 ≤ corr (ys(x, t), ys′ (x, t)) = r (

⎡⎣x
t
s

⎤⎦ ,

⎡⎣x
t
s ′

⎤⎦) = exp{0− 0−
dh∑

i=1

(hi (s)− hi (s ′))2
} ≤ 1 (24)

So sources with similar fidelities which provide highly correlated responses, must have similar latent representa-
tions, i.e., hi (s) ≃ hi (s ′). This relation is illustrated in Fig. 6 where sources with similar fidelities are encoded by
close-by points in the manifold.

3.2. Multi-source cost-aware acquisition function

The choice of AF affects the performance of BO quite significantly. This choice is especially important in MF
BO because, in addition to balancing exploration and exploitation, the AF has to consider the biases of LF data
and source-dependent sampling costs. To demonstrate these challenges, consider the analytic example in Fig. 4(a)
where, while the two functions are correlated, the LF source’s global optimum (the location and the corresponding
y value) is quite different than that of the HF source. Since LF sources are typically much cheaper than the HF
source, a naive AF (that merely scales the expected utility based on the cost) forces MF BO to converge to the
global optimum of the LF source, see Fig. 4(b) for a one-dimensional example.

Contrary to existing approaches, we argue that the key to addressing the above challenges is to quantify the
information value of LF and HF data based on different metrics which are then compared against each other
to determine the candidate input and the corresponding source. In particular, we propose to use the LF sources
exclusively for exploration to leverage their correlations with the HF source while preventing them from dominating
the convergence behavior of MF BO. Additionally, we propose to exclusively employ the HF source for exploitation
to maximally use its trustworthy samples12 during optimization.

To develop the AF for the j th LF source with j = [1, . . . , ds] and j ̸= l where l denotes the HF source, we
follow Section 2.2.1 and define the improvement (for a maximization problem) as y j (x)− y∗j where y j (x) denotes
the LMGP-based prediction at x for source j and y∗j is the best function value in the obtained dataset from source
j . We use the reparameterization trick to rewrite this improvement as:

y j (x)− µ j (x)
σ j (x)

= z ∼ N (0, 1)⇒ y j (x)− y∗j = (µ j (x)− y∗j )+ σ j (x)z (25)

where µ j (x) and σ j (x) are defined in Eqs. (9) and (10), respectively. In Eq. (25) the (µ j (x)− y∗j ) and σ j (x)z terms
control the exploitation and exploration aspects of the improvement, respectively. We now define our utility function

11 Ah ∼ N (0, 3).
12 These samples may be corrupted via ϵ ∼ N (0, σ 2) where σ 2 is the (unknown) noise variance.
10
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Fig. 4. Double-well potential: The LF source has a systematic bias because its optima do not match with those of the HF source. However,
since the two curves have similar trends, an effective AF can leverage this correlation to reduce the overall data acquisition costs. The LF
and HF sources have a cost-per-sample of, respectively, 1 and 1000 in this example. To assess the stability of the results, this example
is run 20 times where the thin curves demonstrate the convergence of each repetition and the thick one is their average. With the naive
AF, expected utility is divided by the sampling cost and hence MF BO primarily queries the cheap LF source. Lack of HF samples and a
mechanism that ensure the found optimum belongs to the HF source result in convergence to a wrong solution.

that focuses on exploration by dropping the first term on the far right-hand-side of Eq. (25):

IL F (x; j) =

{
σ j (x)z y j (x) > y∗j
0 y j (x) ≤ y∗j

(26)

which is used for the j th LF source in our framework. We obtain the corresponding AF by substituting IL F (x; j)
in Eq. (11):

αL F (x; j) =
∫
∞

−∞

IL F (x; j)φ(z)dz =
∫
∞

−∞

σ j (x)zφ(z)dz (27)

The integral is zero for y j (x) < y∗j so we find the corresponding switch point in terms of z:

y j (x) = y∗j ⇒ µ j (x)+ σ j (x)z = y∗j ⇒ z0 =
y∗j − µ j (x)

σ j (x)
(28)

nserting Eq. (28) in Eq. (27) yields:

αL F (x; j) =
∫
∞

z0

σ j (x)zφ(z)dz =
∫
∞

z0

σ j (x)z
√

2π
e−

z2
2 dz

=
σ j (x)
√

2π

∫
∞

z0

ze−
z2
2 dz =

σ j (x)
√

2π

∫
∞

z0

(e−
z2
2 )′dz

= −
σ j (x)
√

2π
[e−

z2
2 ]∞z0
= σ j (x)φ(z0) = σ j (x)φ(

y∗j − µ j (x)

σ j (x)
)

(29)

omparison between this AF and Eq. (15) illustrates that our proposed AF for LF sources is the same as the
xploration part of EI.

For the HF source, we propose to use PI as the AF because it focuses on exploitation and is computationally
fficient (the efficiency is due to the analytic form of PI which dispenses with expensive numerical integration).
ssuming source l provides the HF data, this AF is given by:

αH F (x; l) = Φ(
µl(x)− y∗l

σl(x)
) (30)

We use αH F (x; l) and αL F (x; j) as defined above in each iteration of BO to solve ds auxiliary optimization
problems (assuming there are ds data sources) to find the candidate location with the highest expected utility from

each source. We then find the final candidate point and the corresponding source by comparing the cost-normalized

11
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version of these ds values. Hence, assuming source l provides HF data among the ds sources, our AF that considers
ource-dependent costs and fidelities is:

αM FC A(x; j) =

{
αL F (x; j)/O( j) j = [1, . . . , ds] & j ̸= l
αH F (x;l)/O(l) j = l

(31)

nd

[xk+1, j k+1] = argmax
x, j

αM FC A(x; j) (32)

here O( j) is the cost associated with taking a single sample from source j . In practice, O( j) can be the cost
f an experiment or simulation with units in dollars, CPU/GPU time, or any other factor that an analyst aims to
onsider during BO (e.g., complexity, effort) . xk+1 is the point that source j k+1

∈ {1, . . . , ds} must be evaluated
in the current BO iteration. We now point out several important aspects of Eq. (31).

The naive AFs in Eqs. (29) and (30) quantify the value of a sample by comparing it to the best available sample
or the corresponding source (and not the best sample across all the sources). The advantage of this source-wise
omparison in each of the AFs is that it encourages sampling from sources that provide larger values (which is
esirable for a maximization problem). However, this formulation enables LF sources whose optima are larger than
he HF source to dominate the optimization process where not only more samples are taken from these LF sources
which may also cause numerical issues), but also the converged solution does not belong to the profile of the HF
ource. This issue is exacerbated once the AFs are divided by the data collection costs (see Eq. (31)) since LF
amples are (typically) much cheaper than HF data.

The abovementioned issues are addressed with three mechanisms in our MFCA approach. Firstly, we always
eport the points sampled from the HF source as the final optimization history (this choice ensures that the final
olution indeed belongs to the profile of the HF source but it does not guarantee global optimality13). Secondly, we
lways use the fidelity manifold of the LMGP that is trained on the initial data to detect the LF sources that should
ot be used in BO due to their severe discrepancy (we demonstrate the benefit of this exclusion with examples in
ection 4). Thirdly, we have designed the core of our AFs for the HF and LF sources based on, respectively, the
DF and the scaled PDF of the standard normal variable z. As detailed below and empirically shown in Section 4,

he intricate relation between these two functions during the optimization reduces the effect of LF sources’ biases
n the convergence.

As illustrated in Fig. 5, φ(z) and Φ(z) have comparable values up to E[z] = 0 but the ratio Φ(z)/φ(z) increasingly
rows as z realizes larger values. This trend indicates that if an HF candidate point sufficiently improves y∗l , then
q. (32) queries the HF source at that point to obtain a new sample for the next BO iteration. The frequency of this
uery during the optimization process is controlled by the data collection cost and σ j (x), see Eqs. (29) and (30),
espectively. If HF samples are highly costly, the auxiliary optimization in Eq. (32) reduces the sampling frequency.
owever, unlike existing approaches such as BoTorch, this reduction does not translate into “never sampling from

he HF source” (even if the cost ratios are as large as 1000, see Section 4) because Φ(z)/φ(z) can be quite large.
egarding the σ j (x) term in Eq. (29), we note that it encourages exploring the regions where LMGP provides highly
ncertain predictions for an LF source. This scenario happens when an LF source is rarely sampled and there are
nsufficient correlations between that source and other sources.

In summary, our proposed AF in Eq. (31), while involving intricate interactions between the fidelities and costs,
as a simple form which is analytic (and hence computationally efficient) and interpretable. As we illustrate in
ection 4 this AF, combined with LMGP, dramatically improves the performance of our MFCA BO framework.

.3. Convergence metric

Similar to AFs, convergence criteria of MF BO techniques are traditionally tailored to the application since
any factors (e.g., budget constraints, numerical issues, or convergence history) affect the results. We believe the

mulator and AF of our framework alleviate many of the convergence issues associated with MF BO and hence
se two simple convergence metrics: overall costs and maximum number of iterations without improvement. The
ormer is a rather generic metric but it can result in considerably high number of iterations if one of the LF sources

13 BO does not guarantee global optimality anyways.
12
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Fig. 5. Standard normal variable: The PDF and CDF of z ∼ N (0, 1) have comparable magnitudes up to the mean of z (i.e., 0) but
increasingly differ after 0.

Algorithm 2: Multi-fidelity Cost-aware Bayesian Optimization for Maximization

Given: Initial multi-fidelity data Dk
= {(xi , yi

}
k
i=1, black-box functions f (x; j) and their corresponding

sampling costs O( j) where j = [1, ..., ds]
Goal: Optimizing high-fidelity function (source l ∈ [1, ..., ds])
Define: Utility functions (see Eqs. (12) and (26)) and stop conditions
Step 0: Train an LMGP and exclude highly biased low-fidelity sources based on its fidelity manifold
while stop conditions not met do

1. Train an LMGP using Dk

2. Define the multi-fidelity cost-aware acquisition function (see Eqs. (29), (30), and (31)):

αM FC A(x; j) =

{
αL F (x; j)/O( j) j ∈ {1, · · · , ds} & j ̸= l
αH F (x; l)/O(l) j = l

3. Solve the auxiliary optimization problem:
[xk+1, j k+1] = argmax

x, j
αM FC A(x; j)

4. Query f (x; j) at point xk+1 from source j k+1 to obtain yk+1

5. Update data: Dk+1
← Dk

∪ (xk+1, yk+1)
6. Update counter: k ← k + 1

end
Output: Updated data Dk

= {(xi , yi )}ki=1, LMGP

is extremely inexpensive to query. For this reason, we recommend using additional metrics (such as the second one
above) that track convergence.

Algorithm 2 summarizes our framework for MFCA BO. Compared to Algorithm 1, the major differences are in
the choice of the emulator and AF which now can handle multi-source data that have different levels of fidelity and
cost. In addition, a pre-processing step is added which leverages the fidelity manifold of LMGP to detect the LF
sources that must be excluded from the BO process due to their large discrepancies with respect to the HF source.

4. Results and discussions

We compare the performance of the following four methods on four analytic and two real-world examples
(Sections 4.1 and 4.2, respectively):

• LMGPCA: Our proposed MFCA BO approach.
• LMGPEI: Single-fidelity BO whose emulator and AF are LMGP and EI, respectively.
• LMGPPI: Single-fidelity BO whose emulator and AF are LMGP and PI, respectively.
• BoTorch: Multi-fidelity BO with BoTorch where STGP and KG are used as emulator and AF.
13
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The first three methods are myopic and hence computationally much faster than BoTorch which is lookahead
(see Section 2.2.2 for details on BoTorch). Assuming the computational costs of BO (which are mainly associated
with emulation and solving the auxiliary optimization problem) are negligible compared to querying any of the
data sources, we compare the above methods in terms of cost and accuracy which are defined as, respectively, the
overall data collection costs and the ability to find the global optimum of the HF source. In Appendix D we study
the costs of the auxiliary optimizations in LMGPCA and BoTorch to illustrate that our approach also performs better
in this regard.

Our rationales for comparing LMGPCA against the above three methods are to demonstrate: (1) the advantages of
employing LF sources in BO, (2) that our designed myopic AF (see Eq. (31)) improves both the sampling cost and
accuracy compared to even lookahead methods such as BoTorch, and (3) the importance of excluding highly biased
LF sources from BO. We also note that the emulators in BoTorch cannot handle categorical inputs and hence we
compare LMGPCA to LMGPEI and LMGPPI in Section 4.2 where the two examples have categorical variables.

For all the methods, we terminate the optimization process if either of the following conditions are met: (1) the
overall sampling cost reaches a pre-determined maximum budget, or (2) the best HF sample (i.e., y∗l in Eq. (30))
does not improve over 50 consecutive iterations. These conditions are quite simple and straightforward; allowing
us to focus on the effects of AF and the emulator on the performance.

In Section 4.1, we set the maximum budget to 40 000 units for LMGPCA, LMGPEI, and LMGPPI to ensure that there
are enough iterations that the competing approaches converge (especially in high-dimensional examples). However,
we do not choose a very large budget (e.g., 100 000) to avoid very long run-times. For BoTorch we choose 50 000
since it is, as demonstrated below, highly inefficient and requires more samples to provide reasonable accuracy.
In all the examples of Section 4.1 an HF sample costs 1000 so LMGPEI and LMGPPI are terminated based on the
maximum budget condition. In Section 4.2, we set the maximum budget to 1000 and 1800 for the two examples
since their data collection cost are much lower than the examples in Section 4.1.

4.1. Analytic examples

As detailed in Table 1 in Appendix E, we consider four analytic examples (Double-well Potential,
Rosenbrock, Borehole, and Wing) whose input dimensionality ranges from 1 to 10. All examples are single-
response and the number of data sources varies between 2 and 5. The source-dependent sampling costs and number
of initial data points are also detailed in Table 1. To compare the robustness and effectiveness of the four BO
methods described above, we use relatively small initial datasets (especially from the HF source) and consider
various cost ratios (the maximum cost ratio between two sources equals 1000). For each example, we quantify the
effect of random initial data by repeating the optimization process 20 times for each method (all initial data are
generated via Sobol sequence). In Appendix F we also study the effect of the sizes of the initial datasets for the
Borehole example and demonstrate that the performance of LMGPCA is quite insensitive to them.

Table 1 also enumerates the relative accuracy of the LF sources of each example by calculating the relative
root mean squared error (RRMSE) between them and the corresponding HF source based on 1000 samples (these
RRMSEs are not used in BO in any way). In the case of Borehole we observe that, unlike Wing, the source ID,
true fidelity level (based on the RRMSEs), and sampling cost are not related. For instance, the first LF source is
the least accurate and most expensive among all the LF sources in Borehole.

Per Step 0 in Algorithm 2, we always use the initial data to train an LMGP to identify the useful LF sources.
Based on Fig. 6, we expect the LF sources to be beneficial in all the examples except for Borehole since the
latent points of the first and second sources are distant from the latent position of the HF source (we test this
expectation in Appendix G). Hence, hereafter we exclude these highly biased LF sources, i.e., both LMGPCA and
BoTorch use three sources (HF, LF3, and LF4 in Table 1) to optimize Borehole. We note that BoTorch does not
provide any mechanism to detect highly biased LF sources, but we also leverage this LMGP-based insight to boost
the performance of BoTorch and, in turn, better highlight the effectiveness of our proposed AF.

Fig. 7 summarizes the convergence histories by tracking the best HF estimate found by each method (i.e., y∗l in
Eq. (30)) as a function of accumulated sampling costs. It is evident that LMGPCA consistently outperforms all other
methods across the four examples. In particular, LMGPCA demonstrates the advantage of leveraging inexpensive LF
sources in BO by accelerating the convergence without sacrificing the accuracy (compare LMGPCA to LMGPEI and
LMGP for any of the examples in Fig. 7). Additionally, unlike BoTorch, the performance of LMGP is robust to the
PI CA

14
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Fig. 6. Fidelity manifolds of analytic examples: We train LMGPs on the initial multi-source data to (inversely) learn the relation between the
sources. The encoding described in Section 3.1 is used and hence each source is represented with a point in the fidelity manifold of LMGP.
For each example, the plot corresponds to a randomly selected case among the 20 repetitions (only one plot is shown due to consistency
across the repetitions). Based on the distances in the fidelity manifold (see also Eq. (21)), we conclude that the second and third sources
are highly biased in Borehole and hence must be excluded from the MF BO process.

input dimensionality and sampling costs. For instance, BoTorch estimates the optimum as y∗l = 10.02 in Fig. 7(c)
while the ground truth is 3.98. The reason behind this inaccuracy is that BoTorch fails to find an HF sample
whose information value is large enough to overcome its high sampling cost and, as a result, cheap LF sources are
largely queried. However, these queries do not improve y∗l and hence the second strop condition (maximum number
of repetitions without improvement of y∗l ) terminates BoTorch after 50 iterations. Removing this stop condition,
while significantly increasing the number of iterations, does not improve the accuracy of BoTorch. To demonstrate
the effect of this removal, we only consider the maximum budget constraint for BoTorch in Wing and observe that
the ground truth is again not found, see Fig. 7(d). These issues are resolved in LMGPCA by the intricate interplay
between Φ(z) and φ(z) as explained in Section 3.2.

To exclude the effect of the termination criteria from the results, we provide the accumulated cost up to and
including the iteration at which each method finds its best estimate, see Fig. 8. In terms of finding the true optimum
(compare the blue dots to the horizontal dashed line), LMGPCA outperforms all other methods and is followed by
LMGPEI and then LMGPPI (the high accuracy of the SF methods in finding the ground truth is expected since they
only sample from the HF source and neither of the two termination criteria are stringent). However, BoTorch either
terminates at an incorrect solution or is even costlier than SF methods. This poor performance is expected since,
even though BoTorch is lookahead, its AF cannot handle the high cost-ratios across the sources and its emulator
does not effectively learn the nonlinear relations between the HF and LF sources.

To provide more insight into the mechanics of MF BO methods, we also report the number of iteration at
convergence, see Fig. 9. As expected, BoTorch and LMGPCA require more iterations as they aim to leverage cheap
LF sources to reduce the overall costs. LMGPCA needs fewer iterations for convergence than BoTorch except in
Fig. 9(b). This behavior is a result of the termination criteria: the ground truth of Rosenbrock is −456.3 while

LMGPCA rapidly converges to a very close solution (−456) and then takes highly cheap LF samples to improve the
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Fig. 7. Convergence histories: The plots illustrate the best HF sample (i.e., y∗l in Eq. (30)) found by each method as a function of sampling
costs accumulated during the BO iterations (the cost of initial data is included). LMGPCA consistently outperforms other methods in all the
examples, especially in high-dimensional cases (i.e., Borehole and Wing). The solid thick curves indicate the average behavior across the
20 repetitions (the variations associated with BoTorch in Double-well Potential are extremely small and hence not visible). LMGPCA and
BoTorch use three sources in Borehole. The second termination condition (i.e., maximum of 50 BO iterations without improvement in y∗l )
is disabled for BoTorch in Wing to illustrate its convergence trajectory.

est sample. These improvements are quite small (0.01 per iteration) and hence many iterations are needed for
onvergence.

We highlight that, as long as the associated costs are low, a large number of iterations is not reflective of bad
erformance since the goal of MF BO is to reduce the overall sampling costs and not necessarily the total number of
amples. To demonstrate this, we provide the per-source sampling frequencies for LMGPCA and BoTorch in Fig. 10

which demonstrates that LMGPCA automatically adjusts its sampling mechanism based on the initial data and the
relative accuracy of the LF sources (compared to the corresponding HF source) and their costs. For instance, unlike
BoTorch which avoids querying the HF source in Borehole, LMGPCA leverages all sources where the number of
samples taken from each source depends on its cost and (in the case of LF sources) relative accuracy. In particular,
we observe that LMGPCA samples almost equally from the LF sources even though the second source is 10 times
cheaper (note that these LF sources correspond to the third and fourth sources in Table 1). This behavior may seem
undesirable at the first glance especially since the LF sources have the same relative accuracy (see RRMSEs in
Table 1) but a closer look indicates that it is primarily caused by the number of initial samples: since there are
10 times more data points from the second LF source, the emulator of LMGPCA correctly provides large prediction
uncertainties which, in turn, results in a large expected utility for the first LF source, see Eq. (29). These discussions
also hold for Wing, see Fig. 10(d) where, unlike BoTorch, LMGPCA samples from the LF sources based on their
elative accuracy (which is learnt internally by its emulator) as well as cost.

Finally, we demonstrate the performance of LMGPCA in balancing exploration and exploitation. To this end,
ource-wise sampling orders made by LMGPCA and BoTorch are visualized for a randomly selected repetition in
ach example, see Fig. 11. As it can be observed, LMGPCA alternates between all the sources: in each example the

majority of the samples are from the LF sources which are queried based on exploration (see Eqs. (29) and (31))

while the expensive HF source is typically used with much lower frequency. The sampling orders are particularly
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Fig. 8. Accumulated costs before improvements plateau: The box-plots illustrate the accumulated costs up to and including the iteration
t which the best HF sample is first obtained (i.e., these box-plots do not consider the two termination criteria). On the right axis, the
onverged solution (averaged across the 20 repetitions) and ground truth are demonstrated via, respectively, the blue marker and the horizontal
ashed line. In all four examples, LMGPCA finds the optimum faster than other methods. Comparison between the axes indicates that small

accumulated costs do not imply superior performance since the converged solution might be a local optimum, as is the case for BoTorch in
8(c). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

interesting for Rosenbrock and Borehole where, unlike BoTorch which struggles to alternate between the sources,
LMGPCA effectively uses all sources during the optimization.

.2. Real-world datasets

In this Section, we study two materials design problems where the goal is to identify the composition that
ptimizes the property of interest. Unlike the examples in Section 4.1, these two problems are noisy and have

categorical inputs. We compare the performance of LMGPCA only against the SF methods since BoTorch does not
accommodate categorical inputs. In both examples, the HF and LF data are obtained via simulations (based on the
density functional theory) which have different fidelity levels.

The first problem is bi-fidelity and aims to find the member of the nanolaminate ternary alloy (NTA) family with
the largest bulk modulus [72]. The HF and LF datasets each have 224 samples, one response, and 10 features (7
quantitative and 3 categorical where the latter have 10, 12, and 2 levels). In our studies, we presume a cost ratio
of 10 to 1 between the sources and proceed as follows: we exclude the composition with the largest bulk modulus
from the HF dataset, take 20 and 10 samples from, respectively, the HF and LF datasets (SF methods only use HF
samples), and then initiate the BO methods. We repeat this process 15 times for each BO method to quantify its
robustness to the random initial data.

Our second problem concerns hybrid organic–inorganic perovskite (HOIP) crystals where the goal is to find the
compound with the smallest inter-molecular binding energy. There are one HF and two LF datasets in this problem
and their sampling costs are 15, 10, and 5, respectively.14 The three datasets have similar dimensionalities (1 output

14 We assign these sampling costs randomly to the LF sources as we do not know which one is more accurate.
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Fig. 9. Number of iterations at convergence: As expected, BoTorch and LMGPCA need more iterations to converge compared to the SF
methods. However, the difference in the case of LMGPCA is very small as our method is quite efficient in leveraging the LF sources. It is
noted that, since only one sample is obtained per iteration, these plots are also representative of the total number of samples collected via
BO.

and 3 categorical inputs with 10, 3, and 16 levels) but are of different sizes: the HF dataset has 480 samples, while
the first and second LF sources have 179 and 240 samples, respectively. We apply the three BO methods to this
problem as follows: we first exclude the best compound from the HF dataset and build the initial MF data by
randomly sampling from the three datasets. Then, we launch the BO process where LMGPEI and LMGPPI only use
he HF samples. We set the size of the initial datasets to (15, 20, 15) for the HF and LF sources, respectively, and
epeat the BO process 15 times to assess the repetition-size variability.

Per Step 0 in Algorithm 2, we train an LMGP to the initial data in each problem to determine whether any
f the LF sources must be excluded from BO. As demonstrated in Fig. 12(a), the LF and HF sources in NTA are
ighly correlated since their corresponding latent points are very close in the learnt fidelity manifold of LMGP.
owever, the latent points in Fig. 12(b) are quite distant and hence we exclude both LF sources from the BO
rocess. It is noted that (1) we provide these manifolds for a randomly selected repetition in each example since
hey insignificantly change across the repetitions (most changes are due to rotation and translation of all the latent
oints which do not affect the relative distances), and (2) even though small initial data is used in training the
MGPs, the resulting manifolds provide trustworthy representations of the relative fidelities. To test this second
oint, we fit an LMGP to the entire data in each example and visualize the resulting manifolds, see Figs. 12(c) and
2(d). As it can be observed, while the manifolds do not match exactly, the relative distances between the latent
oints are similar.

Fig. 13 summarizes the convergence histories by tracking the best HF estimate found by each method (i.e., y∗l
n Eq. (30)) as a function of the accumulated costs. As expected, LMGPCA outperforms the two SF methods in
TA but not in HOIP. In Fig. 13(a) we observe that LMGPEI and LMGPPI cannot find the optimum compound before

he convergence criteria terminate the optimization process. However, these two methods perform quite well in
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Fig. 10. Number of samples taken from each source: As opposed to BoTorch, LMGPCA optimally and automatically adjust the sampling
frequency from each source. For instance, BoTorch does not sample from two sources in Borehole since they are much more expensive
than the second LF source. However, LMGPCA not only samples from all sources, but also adjusts the sampling frequency from the LF sources
based on their relative accuracy, initial data, and cost (note that LF2 is ten times cheaper to query than LF1 in Borehole).

HOIP and converge to a value that is very close to the ground truth (the small difference can be eliminated by
relaxing the convergence metrics). As expected, LMGPCA finds a sub-optimal compound in HOIP since the highly
biased LF sources steer the search process in the wrong direction.

Similar to Section 4.1 we also provide the accumulated cost up to and including the iteration at which each
method finds its best compound (which may not correspond to the ground truth) in each example, see Fig. 14. In
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Fig. 11. Source-wise sampling orders: A repetition is randomly selected from each example to visualize the sampling orders made by
MGPCA and BoTorch. The horizontal axis enumerates the number of BO iterations while the vertical axis denotes the example and the MF
O method used for optimization. There are 2, 2, 3 and 4 data sources in each example from top to bottom. Unlike BoTorch, LMGPCA balances

exploration and exploitation throughout the optimization process.

Fig. 12. Fidelity manifolds: The manifolds in the top row are learned via the initial data and indicate that the LF sources should not be used
n BO for HOIP because the latent points corresponding to them are positioned far from the point encoding the HF source. The manifolds
n the second row are built using the entire MF data in each example. The similarity between the two fidelity manifolds of each example
ndicates that LMGP can effectively learn source-wise discrepancies via small data.

he case of NTA, LMGPCA outperforms both LMGPEI and LMGPPI in terms of both accuracy (i.e., finding the ground
truth — compare the blue dots to the horizontal dashed line) and consistency (i.e., showing small variations across
20
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Fig. 13. Convergence history: The plots illustrate the best HF sample (i.e., y∗l in Eq. (30)) found by each method as a function of sampling
costs accumulated during the BO iterations (the cost of initial data is included). As expected, LMGPCA outperforms the single-fidelity methods
only in NTA since the LF sources of HOIP have major discrepancies. The solid thick curves indicate the average behavior across the 20
epetitions.

Fig. 14. Accumulated costs before improvements plateau: The box-plots illustrate the accumulated costs up to and including the iteration
t which the best HF sample is first obtained (i.e., these box-plots do not consider termination criteria). On the right axis, the converged
olution (averaged across the 20 repetitions) and ground truth are demonstrated via, respectively, the blue marker and the horizontal dashed
ine.

he repetitions — compare the box heights). In the case of HOIP, however, LMGPCA provides lower accuracy than
the SF methods since it is using highly biased LF sources. Even though LMGPCA is more robust to variations in the
initial data, the lower accuracy does not justify its use for HOIP.

We now investigate the resource allocation behavior of LMGPCA. As shown in Figs. 15(a) and 15(b), LMGPCA takes
equal or fewer iterations to converge (note that since one sample is taken per iteration, this means that LMGPCA takes
fewer overall samples). In the case of NTA, this behavior is desirable especially since most samples are taken from
the LF source which is cheaper to query, see Fig. 15(c). However, in the case of HOIP, this seemingly desirable
behavior results in convergence to an incorrect solution. Hence, we emphasize the importance of Step 0 in Algorithm
2: while LMGPCA can effectively allocate resources based on the initial dataset sizes and data collection costs (see
Figs. 15(d) and 15(e)), highly biased LF sources can steer the search in the wrong direction and, in turn, result in
convergence to an incorrect solution.

5. Conclusion

We introduce a multi-fidelity cost-aware framework for Bayesian optimization of expensive black-box functions.
Compared to single-source BO, our framework provides improved accuracy and convergence rate by leveraging
inexpensive LF sources during the optimization. Unlike existing MF BO techniques, our method accommodates an

arbitrary number of LF sources and can effectively balance exploration and exploitation regarding both the search
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Fig. 15. Sampling behavior of single- and multi-fidelity BO: In these examples LMGPCA takes no more iterations (i.e., total number of
dditional samples of any fidelity) than either LMGPPI or LMGPEI. In both examples, most of these samples are from LF datasets which is
esirable in MF BO as long as the LF sources are sufficiently correlated with the HF source.

pace and source utilization. We demonstrate these benefits on both analytic and engineering examples and argue
hat they are the results of our new acquisition function as well as integrating LMGPs with BO.

One of the major outcomes of our work is determining (only via the initial data) if using LF sources in BO
mproves the performance. Currently, we make this decision by inspecting the learnt fidelity manifold of LMGP:
f the point representing an LF source is far from the point which encodes the HF source, then that LF source
hould not be used in MF BO. This distance is directly related to the global correlation between an LF and the HF
ources and we use this relation to judge whether the discrepancy is large enough. While this simple approach works
uite well, it may provide sub-optimal results and hence we plan to improve it in two major directions. Firstly, we
nvision developing a local metric which enables LF sources to contribute to BO even if they are only correlated
22
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with the HF source on a small portion of the search space. Secondly, we plan to integrate the fidelity metrics with
the AFs to scale the information values based on the sample fidelity. With these additions, all LF sources are kept
in the loop since they may provide locally useful predictions.

Our new AF does not have any calibration parameters but one can certainty scale its individual components to
rioritize (based on, e.g., prior knowledge) sampling from specific sources. There is also potential in designing new
tility functions that, in addition to (in lieu of) expected and probability of improvement, are inspired by other AFs
uch as upper confidence bound. The examples of this papers do not explore these options since we observe high
erformance (which is much better than the competing methods). In addition, in our studies we use a very simple
echanism for encoding the fidelity via LMGP and assume the data collection costs are given and fixed but these

hoices and parameters can be adjusted based on the application. We plan to study these directions in our future
orks.
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ppendix A. Formulation of EI and PI

We first derive the AF for PI and then follow a similar procedure for EI. We insert PI’s utility function in Eq. (11):

αPI(x) = E[I (x) | D] =
∫
∞

−∞

Pr(I (x))I (x)dx (A.1)

Eq. (12) demonstrates that I (x) is zero for y(x) < y∗, so:

αPI(x) = E[I (x) | D] =
∫
∞

y∗
Pr(I (x) > 0)dy (A.2)

Hence, to calculate αP I we only need to find Pr(I (x) > 0) which is a function of the random variable y(x). In a
GP, the response y(x) follows a normal distribution with mean µ(x) and variance σ 2(x):

y(x) ∼ N
(
µ(x), σ 2(x)

)
(A.3)

We now apply the reparameterization trick to y(x) to calculate PI. Considering z ∼ N (0, 1), then y(x) =
µ(x)+ σ (x)z is a normal distribution with mean µ(x) and variance σ 2(x). Then:

Pr(I (x) > 0)⇔ Pr(y∗ < y(x)) = Pr(
y∗ − µ(x)

σ (x)
<

y(x)− µ(x)
σ (x)

) (A.4)

defining z0 =
y∗−µ(x)

σ (x) which follows N
(
0, σ 2

)
simplifies the above as:

Pr(
y∗ − µ(x)

σ (x)
< z) = 1− Pr(z ≤

y∗ − µ(x)
σ (x)

) = 1− Φ(z) = Φ(−z) = Φ(
µ(x)− y∗

σ (x)
) (A.5)
where Φ is the CDF of the standard normal variable [41,42].
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In the case of EI, we follow similarly and use the reparameterization trick to define y(x) = µ(x) + σ (x)z to
ewrite Eq. (14) as I (x) = µ(x)+ σ (x)z − y∗ where z is the standard normal random variable. We now insert this
tility function into Eq. (11):

αE I (x) ≡ E[I (x)|D] =
∫
∞

−∞

max(µ(x)+ σ (x)z − y∗, 0)φ(z)dz (A.6)

To eliminate the max operator and simplify the integration, we divide µ(x) + σ (x)z − y∗ into two negative and
positive components by finding the switch point:

y(x) = y∗ ⇒ µ(x)+ σ (x)z = y∗ ⇒ z0 =
y∗ − µ(x)

σ (x)
(A.7)

choosing z0 as our switch point converts the integration to:

αE I (x) =
∫ z0

−∞

(µ(x)+ σ (x)z − y∗)φ(z)dz  
zero since z<z0,I (x)=0

+

∫
∞

z0

(µ(x)+ σ (x)z − y∗)φ(z)dz
(A.8)

substituting φ(z) = 1
√

2π
exp(−z2/2) in Eq. (A.8) the integrating provides the AF:

αE I (x) =
∫
∞

z0

(
µ(x)− y∗

)
φ(z)dz +

∫
∞

z0

σ (x)z
1
√

2π
e−z2/2 dz

=
(
µ(x)− y∗

) ∫
∞

z0

φ(z)dz  
1−Φ(z0)≡1−CDF(z0)

+
σ (x)
√

2π

∫
∞

z0

ze−z2/2 dz

=
(
µ(x)− y∗

)
(1− Φ (z0))−

σ (x)
√

2π

∫
∞

z0

(
e−z2/2

)′
dz

=
(
µ(x)− y∗

)
(1− Φ (z0))−

σ (x)
√

2π

[
e−z2/2

]∞
z0

=
(
µ(x)− y∗

)
(1− Φ (z0))  

Φ(−z0)

+σ (x)φ (z0)

(A.9)

or:

αE I (x) = (µ(x)− y∗)Φ(
µ(x)− y∗

σ (x)
)+ σ (x)φ(

µ(x)− y∗

σ (x)
) (A.10)

Appendix B. Fidelity kernels of single-task multi-fidelity GP

Single-task multi-fidelity GP (STGP) uses two fidelity features (1) the data fidelity parameter, xa , which
distinguishes between different fidelity sources, and (2) iteration fidelity parameter, xb, which is optional and usually
exists in hyperparameter tuning problem. These two features are used in ei (·) which are user-defined functions that
model the cross-source correlations in Eq. (19). The formulation of these functions is as follows:

e1(xa, x ′a) = (1− xa)(1− x ′a)(1+ xa x ′a)p (B.1)

where p is the degree of polynomial (which needs to be estimated) and has a Gamma prior. e3 is defined similarly
but for the second fidelity:

e3(xb, x ′b) = (1− xb)(1− x ′b)(1+ xbx ′b)p (B.2)

inally, e2 is the interaction term with four deterministic terms and one polynomial kernel:

e2([xa, xb]T , [x ′a, x ′b]T ) = (1− xb)(1− x ′b)(1− xa)(1− x ′a)(1+ [xa, xb]T [x ′a, x ′b]T )p (B.3)

ppendix C. Comparison of MF emulators

The large variations in MSEs of LMGP shown in Fig. 3 are due to the log scale representation which magnifies

mall values. Fig. 16 illustrates that in the original space, LMGP has the least MSEs and also variations.
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Fig. 16. Emulator comparison in non − log scale: LMGP outperforms other methods as it has the least MSEs and variation in prediction
accuracy of all the sources.

Fig. 17. Computational cost of optimization in L MG PC A and BoT orch: Blue bars represent time of the optimization and other bars show
the number of samples taken from each source. Despite the larger number of auxiliary optimizations done by L MG PC A , its cost is lower
than that of BoT orch and its performance is better. Note that the computational cost refers to the auxiliary optimizations and is not sampling
cost.

Appendix D. Computational cost of auxiliary optimization

The computational costs of BO largely depend on solving the auxiliary optimization problems. Assuming
there are ds data sources, ds independent auxiliary optimizations are solved in L MG PC A while in BoT orch all
the sources are optimized jointly. Fig. 17 demonstrates the optimization time of Borehole example through 10
repetitions with L MG PC A and BoT orch. As shown in this figure, while more auxiliary optimizations are solved
in L MG PC A, its computational cost is lower than BoT orch. This trend is due to the fact that BoT orch uses KG
which is look-ahead and expensive to evaluate) while our proposed AFs are based on EI and PI (which do not
equire Monte Carlo approximations).

The motivation for using look-ahead AFs despite their high computational cost is to add more flexibility to the
odel to be able to sample more efficient points. Regarding Fig. 17, our proposed myopic AFs mostly sample

rom less-expensive LF sources to reduce the uncertainty of the domain, then find the optimum through a few
F samples while KG is misled by the large cost difference among data sources and only samples from the less

xpensive and less accurate data source. Therefore, L MG PC A outperforms BoT orch in terms of convergence value
nd computational cost.

ppendix E. Table of numerical examples

Table 1 lists the analytic functions studied in Section 4.1. The error of each LF source with respect to the
orresponding HF source is calculated via relative root mean squared error (RRMSE):

R RM SE =

√
( yl − yh)T ( yl − yh)

(E.1)

10 000× var ( yh)
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Table 1
List of analytic functions: The examples have a diverse degree of dimensionality, number of sources, and complexity. n denotes the number
of initial samples and the relative root mean squared error (RRMSE) of an LF source is calculated by comparing its output to that of the
HF source at 10 000 random points, see Eq. (E.1). For Borehole, LF3 and LF4 become the first and second LF sources, respectively, once
LMGP identifies that the listed LF1 and LF2 in this table are highly biased.

Name Source ID Formulation n RRMSE Cost

Double-well Potential
HF 0.6x4

− 0.3x3
− 3x2

+ 2x 5 − 1000

LF 0.6x4
− 0.3x3

− 3x2
− 1.2x 0 1.14 1

Rosenbrock
HF (1− x1)2

+ 100(x2 − x2
1 )2
− 456.3 5 − 1000

LF (1− x1)2
+ 100 10 1.42 1

Borehole

HF 2πTu (Hu−Hl )
ln( r

rw )(1+ 2LTu
ln( r

rw )r2
wkw
+

Tu
Tl

)
5 − 1000

LF1 2πTu(Hu−0.8Hl )
ln( r

rw )(1+ 1LTu
ln( r

rw )r2
wkw
+

Tu
Tl

)
5 4.40 100

LF2 2πTu (Hu−Hl )
ln( r

rw )(1+ 8LTu
ln( r

rw )r2
wkw
+0.75 Tu

Tl
)

50 1.54 10

LF3 2πTu(1.09Hu−Hl )
ln( 4r

rw )(1+ 3LTu
ln( r

rw )r2
wkw
+

Tu
Tl

)
5 1.30 100

LF4 2πTu(1.05Hu−Hl )

ln( 2r
rw )(1+ 3LTiu

ln( r
τw )r2

wkW
+

Tu
Tl

)
50 1.3 10

Wing

HF 0.36s0.758
w w0.0035

f w ( A
cos2(Λ)

)0.6q0.006
×

λ0.04( 100tc
cos(Λ) )−0.3(Nz Wdg)0.49

+ swwp

5 − 1000

LF1 0.36s0.758
w w0.0035

f w ( A
cos2(Λ)

)0.6q0.006
×

λ0.04( 100tc
cos(Λ) )−0.3(Nz Wdg)0.49

+ wp

5 0.19 100

LF2 0.36s0.8
w w0.0035

f w ( A
cos2(Λ)

)0.6q0.006
×

λ0.04( 100tc
cos(Λ) )−0.3(Nz Wdg)0.49

+ wp

10 1.14 10

LF3 0.36s0.9
w w0.0035

f w ( A
cos2(Λ)

)0.6q0.006
×

λ0.04( 100tc
cos(Λ) )−0.3(Nz Wdg)0.49

50 5.75 1

where yl and yh are vectors of size 10000 × 1 that store random samples taken from the LF and HF sources,
espectively.

ppendix F. Effect of dataset sizes

In practice, the number of initial samples may impact the efficiency of MF BO. In this paper, we initialize
O with dataset sizes that are small given the dimensionality of the problem. To assess the sensitivity of our BO

ramework to the size of the initial data, we re-evaluate the Borehole example of Section 4 with four different
nitialization (we exclude the two highly biased LF sources). The details about the different initializations are
resented in Table 2.

The results are summarized in Fig. 18 and demonstrate that across the four cases L MG PC A has almost the same
erformance and converges to the ground truth with the least cost compared to the other methods. These results
llustrate that the effects of the initial data on the performance of L MG PC A are negligible.

ppendix G. Effect of highly biased low-fidelity sources

In Section 4.1, we exclude two LF sources from Borehole due to their high discrepancy with respect to the HF
ource, see Fig. 6. Below, we summarize the performance of LMGPCA on this problem without removing these two
ources. As it can be observed in Fig. 19(a), the optimization is terminated based on the second convergence metric
hich caps the maximum number of iterations without improvement in the best HF sample (i.e., y∗ in Eq. (30)).
l
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i

Table 2
Borehole example with different initialization: To assess the performance of the proposed MFCA
BO approach under different initializations, the Borehole example is re-evaluated with four
different initial data. Then, each example is run 10 times to guarantee the stability of the results.
The column numbers indicate the number of initial samples from any source in each scenario.

Example Initial data

HF LF1 LF2

A 5 10 20
B 5 15 40
C 7 10 30
D 5 5 50

Fig. 18. Borehole with different initialization: To assess the sensitivity of the proposed method to the initial data, the Borehole example
s re-evaluated with four different initialization (A, B, C, D). In all different initializations, L MG PC A converged to the ground truth with

the minimum cost which illustrates the negligible sensitivity of L MG PC A to the number of initial data.

Fig. 19. Effect of highly biased and inexpensive low-fidelity sources: While LMGPCA effectively samples from all sources (considering their
costs and contribution to the initial data), it converges to an incorrect solution (11.297 while the ground truth is 3.98) since LF1 and LF2
are highly biased. The initial data are not included in 19(b).
27
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Appendix H. List of abbreviations and symbols

Abbreviation Explanation

AF Acquisition Function
BO Bayesian optimization
BoTorch Multi-fidelity BO with BoTorch
Co-K Co-Kriging
EI Expected Improvement
GP Gaussian Process
HF High-fidelity
HOIP Hybrid Organic–Inorganic Perovskite
KG Knowledge Gradient
LF Low-Fidelity
LMGP Latent Map Gaussian Process
LMGPCA Proposed MFCA BO approach
LMGPEI Single-fidelity BO whose emulator and AF are LMGP and EI, respectively
LMGPPI Single-fidelity BO whose emulator and AF are LMGP and PI, respectively
MF Multi-Fidelity
MFCA Multi-Fidelity Cost-Aware
MLE Maximum Likelihood Estimation
MLEI Most Likely Expected Improvement
MSE Mean Squared Error
NTA Nanolaminate Ternary Alloy
PI Probability of Improvement
RRMSE Relative Root Mean Squared Error
SF Single-Fidelity
STGP Single-Task Multi-Fidelity Gaussian

Symbol Description

A Rectangular matrix that maps ζ (t) to z(t)
c(x, x′) Covariance function
ds Number of data sources
dt Dimension of categorical inputs
dz Dimension of the latent map
dx Dimension of numerical inputs
h(s) = [h1, . . . , hdh]T Latent representation of data source s
I (x) Utility function
′ j ′ Categorical vector of size n j × 1 whose elements are all set to ′ j ′

N
(
µ(x), σ 2(x)

)
Normal distribution with mean µ(x) and standard deviation σ 2(x)

n j Number of samples obtained from s( j) (i.e., source j)
li Number of distinct levels in i th categorical input
R Correlation matrix
r (., .) Parametric correlation function
s = {′1′, . . . ,′ ds ′} Categorical variable whose j th element corresponds to data source j
t Categorical inputs (all except source indicator)
U j n j × (dx + dt) feature matrix obtained from s( j)
u Mixed inputs
x Input vector
y(x) Output/response
y j n j × 1 vector of responses obtained from s( j)
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Symbol Description

z(t) Points on latent map corresponding to combination t of the categorical variables
α(x) Acquisition Function
ζ (t) Unique prior vector representation of t
ξ (x) Zero-mean GP
σ 2 Variance of process
Φ(z) Cumulative density function (CDF)
φ(z) Probability density function (PDF)
Ω diag(ω)
ω Scale parameters
⊗ Kronecker product
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