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Abstract. We introduce a new method for diverse foreground genera-
tion with explicit control over various factors. Existing image inpainting
based foreground generation methods often struggle to generate diverse
results and rarely allow users to explicitly control specific factors of vari-
ation (e.g., varying the facial identity or expression for face inpainting
results). We leverage contrastive learning with latent codes to generate
diverse foreground results for the same masked input. Specifically, we
define two sets of latent codes, where one controls a pre-defined factor
(“known”), and the other controls the remaining factors (“unknown”).
The sampled latent codes from the two sets jointly bi-modulate the con-
volution kernels to guide the generator to synthesize diverse results. Ex-
periments demonstrate the superiority of our method over state-of-the-
arts in result diversity and generation controllability.
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1 Introduction

Foreground object generation is the task of filling in the missing foreground
region in a given context, such as generating human faces as shown in Figure 1.
This task is useful in practice, e.g., for privacy-related applications (anonymizing
a person’s face by generating a new identity) or replacing/adding objects in an
image (replacing a car in a photo if one does not like the original one). It is a
special case of image inpainting in which the entire foreground object is masked.
In inpainting, when the missing region (hole) is small, there may only be one or
few “correct” completions (e.g., if only one eye is masked, then it mostly can be
inferred from the other eye), but as the hole gets bigger there should be more
diversity in the generated completion, especially when an entire object is masked.
As there can be many different plausible solutions for filling in the missing region,
this task naturally demands learning a “one-to-many” mapping between the
input and outputs (e.g., Figure 1). That is, a good method should 1) synthesize
foreground objects that are both realistic and semantically coherent with the
surrounding unmasked context; 2) have the capability to generate diverse results
for the same missing region and context; and 3) provide control over different
properties of the synthesized results. While tremendous progress has been made
to obtain better realism and coherence [60,11,40,26], progress in diversity is
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Fig. 1. Foreground generation on the same mask. We use contrastive learning to
increase generation diversity. We also explicitly disentangle out an expected predefined
factor (human identity here) to increase diversity and controllability.

still unsatisfactory and increasing controllability for the results is also relatively
under explored.

Like the inpainting task [4,12, 3,32, 28, 61], foreground generation needs to
consider coherence between the given context and the generated object. Exist-
ing inpaiting work can generate good quality object/foreground, but it usually
lacks diversity and controllability. Although there are many inpainting methods
trying to generate diverse results [61,59, 60, 26], the results are still less satisfac-
tory. These methods typically have an encoder-decoder architecture. To achieve
diversity, different latent codes can be sampled and injected into these models.
However, although the output is a function of both the masked image as well as
the latent code, the spatial features from the encoder usually dominate the final
results and prevent the latent codes from inducing large changes. For example,
in [60], an encoder is used to extract 2D spatial features from the masked image,
and skip connections are added to all levels of the encoder and decoder. The
information from the latent code can be easily submerged by the large number
of features from the encoder.

In this paper, we propose a novel approach for diverse and controllable fore-
ground generation. As shown in Figure 1, our method can generate diverse results
for the same input. To synthesize diverse content, we condition the generation
on both the masked image and the sampled latent codes, and apply contrastive
learning [5] so that the latent codes that are close/far in code space result in
corresponding synthesized images that are close/far in image space.

Besides diversity, controllability is another desired property in foreground
generation. Thus, we also try to explicitly disentangle a predefined factor by
using a pretrained classifier on this factor. For example, as shown in Figure 1,
one can disentangle human identity (rows) from other attributes (columns) for
face images. We explicitly use two sets of latent codes, where one represents the
predefined factor (“known”), and the other controls all the other factors (“un-
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known”). This allows us to change the unknown factors while keeping the known
factor fixed (e.g,, in Figure 1, changing the facial attributes which are unknown
during training while keeping the identity of the face intact). To inject these two
codes, we propose a bi-modulated convolution module where the convolution
kernels are modulated by the two latent codes from different spaces. We design
each training batch to contain a mix of instances that share the same known
latent code while differing in the unknown, and instances that share the same
unknown latent code while differing in the known. We use a contrastive loss to
ensure that known and unknown codes control their respective factors.

Contributions. (1) We propose a novel contrastive learning based approach
for diverse foreground generation; (2) An explicit disentangled latent space for
controllability via a novel bi-modulated convolution module; (3) More diverse
results compared to existing state-of-the-art methods on three different datasets.

2 Related Work

Image inpainting This problem has been studied for decades due to its impor-
tance. Traditional methods [2,4, 41,12, 3] typically rely on low-level assumptions
and image statistics, leading to over smoothing and results with limited visual
semantics. Recently, deep learning methods [8, 18, 33, 34, 46,48, 50, 51, 53, 57, 28,
55,59] dramatically boosted the quality, in terms of both visual quality and
semantic coherence. [32] first uses an encoder-decoder architecture in inpaint-
ing with reconstruction loss and adversarial loss [10]. [28] and [55] proposes the
use of partial and gated convolutions on irregular masks. However, these meth-
ods only generate deterministic results. Thus [61] proposes a VAE-based [23]
method allowing pluralistic image completion. Recently proposed [60,26] use
StyleGAN [20,21] architecture for inpainting. [60] combines encoded features
from a masked image with a random latent code to co-modulate StyleGAN
convolution kernels. [26] has a similar setting as ours as instead of traditional
inpainting, they use a foreground model to synthesize high quality foreground ob-
jects conditioned on the background context. In both work, diverse images can
be generated by sampling different latent codes injected into StyleGAN. But
their diversity in the latent code space is restricted due to extra spatial features
from the encoder which usually determine most of the aspects of the generation.
[45,56] also try to use transformer to realize diversity in image inpainting. They
both use bidirectional attention to predict missing tokens. However, their image
quality suffers compared to styleGAN2-based architectures. Also, none of the
existing pluralistic inpainting work enables user controllability in the results via
latent code disentanglement.

Contrastive learning Contrastive learning [63,42, 13,30, 5] has shown great
potential in representation learning. Among them, [5] proposes a simple frame-
work for contrastive learning without requiring specialized architectures or mem-
ory bank. Recently [31] proposes to use contrastive learning in image translation
task. Also, there are a few work [62, 29] studying contrastive learning in the im-
age inpainting task. Like most inpainting methods, [62,29] use encoder-decoder
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architecture. [62] encode more discriminative features using contrastive loss in
different semantic sub-regions. [29] applies the contrastive loss to the output fea-
tures of encoder by setting two identical images with different masks as positive
pairs while different images as negative pairs. However, they are both determinis-
tic inpainting methods which means they only produce a single result per input.
Different from prior work, instead of learning a better intermediate feature us-
ing contrastive loss, we use contrastive learning to achieve disentanglement and
diversity in the latent space, enabling us to produce diverse inpainting results
for foreground generation in a controllable way.

Disentanglement learning For a generative model, it is desirable to disentan-
gle the factors of variation. One way is to explicitly learn a disentangled latent
space: having separate codes for different factors. A large number of work try
to disentangle object shape/structure from appearance [39,27,37,7,49]. Search-
ing for semantic directions in a pre-trained GAN latent space is another way
to achieve disentanglement. This method is getting popular recently and both
unsupervised methods [43, 17, 36] and supervised methods [19, 35, 52] are heav-
ily explored. Despite the progress made in the field, few work explore it for
the foreground generation task. We use contrastive learning to explicitly learn a
disentangled latent space for controllable foreground generation.

3 Approach

Our goal is to propose a model (ContrasFill) which is able to generate diverse
foreground objects for the same masked region while providing control over dif-
ferent factors of generated results. We encode spatial features corresponding to
masked image and modulate them with randomly sampled latent codes to gener-
ate diverse results. However, without applying explicit training loss on diversity,
different latent codes might introduce only minor changes as in [60,26]. Thus
we use contrastive learning to encourage the model to synthesize diverse results
by forcing latent codes closer in the latent space to produce images closer in the
image space and vice versa. To gain explicit control over certain factor, we also
try to disentangle the latent space into two spaces: a known factor space which
corresponds to an expected factor, and an unknown factor space which controls
the rest of other factors. Section 3.1 introduces the training details for achieving
diversity and disentanglement using the contrastive loss. Section 3.2 talks about
how do we inject two codes into our model using the proposed bi-modulation.

3.1 Contrastive learning for diversity and disentanglement

Figure 2 shows the framework of our method. Our model takes a masked image
I with context only and two latent codes as inputs: a known factor code k
drawn from a distribution ¢, and an unknown factor code u from a distribution
¢, to output the synthesized image S. If we define our model as G, then we
have Sy .1 = G(k,u, I). Since the input context is independent of the following
analysis, we will omit I in S}, ; for simplicity and talk about the context later.



ContrasFill 5

\_o

Fig. 2. ContrasFill takes as input two sets of codes (squares on the left): known-
factor code (e.g., identity) and unknown-factor code (non-identity factors) to synthesize
images. Two encoders (Ey and E,) embed images into different features (bars on the
right, color between code and feature refers to correspondence). A contrastive loss
forces features with same/different colors closer/further in the feature spaces.

One can refer to supp. for visual examples to help understand the following
analysis.

Suppose we sample N codes from each latent space, we will have N2 combi-
nations between the code k and wu in total. To enforce a contrastive loss in the
known and unknown factor latent spaces, we first define an image pair as:

Plk,w), (k" ur) = (Sk,us Skrur), (1)

Note, we do not consider images sharing the same known and unknown codes
as a valid pair. In order words, Kk = k' and u = u’ cannot hold at the same
time. We will next define the positive and negative pairs used in our contrastive
learning scheme. To simplify the explanation, we first consider the case of the
known space.
Contrastive pairs in the known space. A positive image pair contains two
images sharing the same known codes but different unknown codes (i.e., k& =
E',u # v in the Eq 1). We define Py, as a set of all positive pairs associated
with the code combination (k,u) in the known space (bold indicates the space).
For example, in Figure 2 where we set the known factor as human identity,
Piaur = {P(k1,u1),(k1,u2)}- To ease explanation, we denote P as all positive
pairs in the known space. Here we have Pi = {P(k1,u1),(k1,u2)> P(k2,u1),(k2,u2) }-
For the negative pair, we define two images not sharing the same known
codes (i.e., k # k’). In this case, we construct two types of negative pairs. The
first case is the hard negative pair where two images sharing different known
codes but the same unknown codes (i.e., k # k',u = v, images in each column
in Figure 2). The reason is that these images share the same features (e.g.,
smile) in the unknown space which forces the learned known latent code to
control different aspects of the face due to the use of contrastive loss which
we will introduce later. Pairs of images sharing different known and unknown
codes (i.e., & # k',u # u’) are easy negative pairs (diagonal image pairs in
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Figure 2). Similarly, we define Ny , as all negative pairs associated with the code
combination (k,u) in the known factor space. For example, for image Sk1,,1 in
Figure 2, Ni1,u1 = {P(k1,u1),(k2,u1)s P(k1,ul),(k2,u2) } -

Contrastive loss in the known space. The job of the known space is to
control an expected factor during the generation. To push the model to learn
this correspondence, we use contrastive learning. The intuition is to push im-
ages closer/further if they are positive/negative pairs. In order to measure the
distance between two images, we define the similarity score f as:

f(k,u),(k’,u’) = eSim(zk’uyzk/"u/)/Tv (2)
where zj,, is the extracted feature of the image Sy ,, from an encoder, sim(-, -) is
the cosine similarity and 7 denotes a temperature parameter. To force our known
space to control the expected factor, we assume having access to a pretrained and
fixed classifier. The encoder Ej, for the known space will output the penultimate
feature of the classifier. For example, in faces, we use a pretrained ArcFace [6]
to extract identity features.

For an image S}, and its positive pair Sy . in the known space, the con-
trastive loss becomes:

Jokw), (ke yut 3)

14 u u') = —lo ’
(k’ )a(k: ) g f(k,,u),(k,u/) + FNk,u

where F' Ny, is the sum of similarity scores of all negative pairs with respect to
the image Sj ,,. In other words, it is the summation of Eq. 2 over all elements in
the Ny ,. Finally, the total loss for the known space becomes:

1
L nown — 14 u ') 4
k |PK‘ Z (k,u),(k,u’) ( )

where the summation is over all positive pairs Pk in the known space.
Contrastive learning in the unknown space. The contrastive learning idea
is similarly applied to the unknown latent space and we highlight the main
difference below.

In the unknown space, positive pairs share the same unknown code (each
column in Figure 2) and negative pairs have different unknown codes. Similarly,
we define Py as all positive pairs in the unknown space. For example, in Figure 2,
Py = {pk1,u1),(k2,u1), P(k1,u2),(k2,u2) }- For an image Sy, ,,, we define all negative
pairs associated with it in the unknown space as Ny, (bold indicates space). For
example, Ni1u1 = {Pk1,u1),(k1,u2)s Plk1,u1),(k2,u2)} In the unknown space, the
image feature zj ,, for calculating image pair similarity in the Eq 2 is extracted
from an encoder E, which is trained from scratch. This is because it is hard to
define what factors can be controlled in the unknown space beforehand. Also, this
avoids pre-training an additional feature extractor and simplifies our approach.

Then, for an image Sy ,,, and its positive pair Sy ,,, the counterpart of Eq 3
in the unknown space becomes
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f(k’u);(k"u) (5)
f(k,u),(k’,u) + FNk,u '
where F'Nj y, is the sum of similarity score of all negative pairs with respect to
image Sy, in the unknown space. The total loss for the unknown space becomes:

L), (k) = — log

1
Lun nown — T | 14 u fu) 6
k |PU‘ Z (k,u), (k' u) ( )

where the summation is over all positive pairs in the Py in the unknown space.
In this way the disentanglement can be learned because we use a pretrained

encoder for the known-factor which only extracts expected features, thus the

model will synthesize known-factors in images according to codes sampled from

known space. For the unknown space, due to the existence of hard negative pair

(sharing the same known factors), different unknown codes need to generate

factors that are different from known factor to minimize the contrastive loss.
Overall we have the final loss £ as

L= £gan + )\l‘cknown + )\2£unknown7 (7)

where L4, is same as the one used in the StyleGAN2 [22]. Linown and Lynknown
are two contrastive losses in known and unknown latent spaces. A\; and Ao are
their weights. We sample different context (background) for different code com-
binations (e.g., N2 in total) since we want to have the same context distribution
for both the real and fake batches when training the discriminator. More details
are presented in the supp.

3.2 Codes injection with bi-modulated convolution

Our model uses an encoder-decoder architecture (details in the supp). Inspired
by StyleGAN2 that shows the effectiveness of modulation, we also use our latent
codes to modulate convolution kernels. However, since we have two latent codes,
we propose the bi-modulation, where the convolution kernel is modulated by two
codes. We use this novel modulation scheme for all convolutions in our model.
Figure 3 shows the bi-modulation process. The two codes k and u first go to
two separate fully connected layer to become scaling vectors s and ¢. The length
of scaling vectors is the same as the number of input channels of a convolution
kernel. Then the scaling vectors bi-modulate the convolution weight by: w k=
8;-t;- Wik, where w and w’ are the original and the bi-modulated weights. s; and
t; are the scaling factors corresponding to the i¢th input feature map. j and k
enumerate the output feature maps and the spatial footprint of the convolution.

4 Experiments

We perform quantitative and qualitative evaluations via comparing our proposed
foreground generation model ContrasFill with prior arts.
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Fig. 3. The proposed bi-modulation scheme, where convolution kernels are modulated
by two disentangled latent codes.

Datasets. We conduct the evaluation on three different datasets: 1) Face. We
use CelebAMask-HD [25] that includes 30,000 face images with segmentation
masks. We follow the official training/testing split. To acquire more training
data, we use a publicly available face parsing model [1] on FFHQ [21] as extra
training data. We use a pretrained face recognition model [6] as our known factor
feature extractor. 2) Bird. We use the bird category from LSUN dataset [54]. We
choose images greater than certain resolution and run the pretrained MaskR-
CNN [14,47] to remove bad images. In total, we have 34,969 images and we
randomly select 10% (3,497) as test data. We train a fine-grained classification
model [9] on the CUB dataset [44] as our known factor feature extractor. 3)
Car. We use the car category from LSUN dataset [54] and same preprocess-
ing steps to clean our data. In total, we have 77,840 images and we randomly
select 10% (7,784) as test data. We train a shape classifier [9] on the Stanford
car dataset [24] as our known factor feature extractor. To measure the extent of
our ability to synthesize diverse results, we use the object bounding box as the
missing region in our main study.

We train our model at 256 x 256 resolution on all datasets. Our unknown

factor code is drawn from the normal distribution. Our known factor codes are
drawn from one-hot distribution for the cars and birds; for faces, we choose to
draw from a hypersphere which is the feature distribution of penultimate layer of
ArcFace. We sample N = 8 different known and unknown codes in each training
minibatch. Due to memory issue, we can not fit all 64 combinations, thus we
subsample one hard negative pair for each code, resulting in a batch size of
16 during training. Please refer to supp for more dataset and implementation
details.
Baselines. We mainly compare with: 1) CollageGAN [26], which generates
foreground object conditioned on the background; 2) CoModGAN [60], a state-
of-the-art image inpainting model. These two methods, built on top of Style-
GAN2 [22], are able to generate multiple results via sampling codes in the latent
space; 3) BAT-fill [56], a recently proposed two-stage inpainting model using
transformer. It first autoregressively predicts missing tokens in a 32 x 32 image
with bidirectional attention, and then use a convolutional network to perform up-
sampling to 256 x 256. It samples different plausible missing tokens in the 32 x 32
grid to achieve diversity. This work has demonstrated the benefits of adding au-
toregressive predication over other transformer-based inpainting work [45]. We
train all baseline models with the same input mask setting as ours.
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Fig. 4. We can achieve diverse samples from the same masked image by sampling in
both known and unknown code spaces.

Evaluation. We use the following metrics: 1) FID [15] measures the quality
and diversity by comparing distributions between the real and the generated
images. 2) LPIPS [58] measures distance between two images in deep feature
space. For each testing image, we compare pairs of inpainting results generated
from the same input mask, we use this to measure diversity. 3) Known Factor
Feature Angle (KFFA). To better understand how we can improve result di-
versity using the disentangled known factor, we sample 10 inpainting results for
each input image. Then we compute deep features of these 10 results from a
known factor classifier. We report average angle between all normalized feature
pairs. For a fair comparison, we use feature extractors different from the one
used in the training. For face, we use CurricularFace [16], and for bird and car,
we train a new classifier using the VGG architecture [38]. Note that L1, SSIM
and PSNR are also commonly used metrics for inpainting tasks. However, they
all favor deterministic methods which aim to reproduce the single ground truth.
As pointed out by [45], these metrics are more suitable for small mask cases
where the synthesized contents are more likely to be similar to the ground truth.
With large holes covering an entire semantic region or object, synthesized diverse
contents might look plausible but different from the ground truth.

4.1 Qualitative results

Figure 4 shows random samples from our model given the same masked input.
Our method can generate diverse identities, facial attributes for faces and syn-
thesize diverse shapes, poses and object appearances for birds and cars. Figure 5
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Fig. 5. Compared with the baselines, our method generates more diverse results. For
faces, we have more variations in identity. For birds and cars, we have different object
shapes and textures.

shows side-by-side comparisons between our method and other baselines. Our
results on faces are more diverse compared to CoModGAN [60] and Collage-
GAN [26]. For unaligned dataset (cars and birds), these two methods tends to
generate results with the same shape. BAT-fill [56] results have better diversity,
but lower image quality. It sometimes generates artifacts on faces or distorted
geometries for cars.

We also evaluate how disentangled our results are in Figure 6. Each column
shares the same known factor and each row shares the same unknown factor.
For faces, the known code controls identity and the unknown code controls fa-
cial attributes such as smile, glass and lighting condition. For cars, the known
code controls car shape (e.g., sedan-like and wagon-like in the second and third
column), and the unknown code changes color and orientation. For birds, the
known factor changes species (color is associated with species) and the unknown
factor changes pose and orientation. When one latent code changes, the image
changes only along the direction it is supposed to, e.g, as the identities change,
the same facial expression remains within each row in the face results.
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FID LPIPS KFFA

FID LPIPS KFFA

FID LPIPS KFFA

CoModGAN
CollageGAN
BAT-Fill
ContrasFill-1
ContrasFill (Ours)

8.88 0.045 52.41
8.77 0.069 66.00
15.08 0.102 75.98
8.40 0.072 74.71
8.36 0.075 83.66

11.35 0.090 52.45
12.11 0.100 61.08
37.15 0.117 55.41
11.29 0.151 66.06
11.97 0.160 74.58

6.59 0.183 44.34
6.57 0.191 48.67
22.20 0.270 51.98
6.24 0.310 63.09
6.46 0.327 82.96

Table 1. Our method has comparable image quality with the state-of-the-art, but with
more diversity.

4.2 Image quality and diversity

Besides our model ContrasFill, we also evaluate one variant of our approach,
where we only have one latent space using contrastive learning without explicit
latent disentanglement (denoted as “ContrasFill-1”, see supp for details about
this variant). This entangled latent space models all factors together for gener-
ation. It is used to show the effectiveness of the contrastive loss on diversity.

Table 1 shows comparison in terms of image quality (FID) and diversity
(LPIPS for overall, KFFA for known factor). Overall, our model has compara-
ble image quality with the state-of-the-art methods, and it performs favorably
against all baselines in terms of known factor diversity, especially compared with
CoModGAN [60] and CollageGAN [26]. We also have the highest overall diver-
sity on bird and car datasets. Although, BAT-fill [56] has better LPIPS distance
in face dataset, but their image quality is worse (Figure 5 ) and they sometimes
generate artifacts, which can often results in larger LPIPS difference. Our model
also has better diversity, especially on the known factors, compared with our
single code variant (ContrasFill-1).

We also compared with UCTGAN [59] which is designed for diverse hole
filling. Due to code unavailablity, we only compare with it in CelebA-HQ dataset
and use the same setting as theirs. Here we measure diversity LPIPS for full
output and only mask region. We grab their numbers and notations (ours first):
Toyt: 0.036 vs 0.030; Loyi(m): 0.101 vs 0.092.
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Fig. 7. Moving along the discovered identity direction causes changes in non-identity
factors such as facial expressions and lighting for baselines. Our results only vary in
identity.

4.3 Disentanglement study

We compare with baselines to show that having two explicit latent spaces im-
proves the disentanglement. Recent works [43,17,36] show that postprocessing
can be applied to find disentangled latent directions in a pretrained GAN space.
Thus we use a supervised method [35] to find known factor directions for Co-
ModGAN, CollageGAN and ContrasFill-1. We use pretrained known factor clas-
sifiers to get labels for sampled latent codes and then train a linear regressor to
find latent directions [35]. We do not compare with BAT-fill since they lack
controllability.

Next, we generate images with different known factors. For baselines, given a
masked image, we first randomly sample a latent code, and then move along the
discovered known direction to generate 10 different results. For our approach,
since we have a disentangled space, thus we directly sample 10 different codes
in known factor space by fixing unknown code. We calculate KFFA for 1,000
different contexts and report the average number in the Table 2. Our model
has the best KFFA scores. This demonstrates the benefit of having an explicitly
disentangled latent space.

Since we has two spaces, we also conduct an experiment where we fix our
known code and randomly sample 10 unknown codes. The last row of Table 2
shows the average KFFA numbers over 1,000 context images which indicates
when unknown factor varies, our known factor is less influenced. Please refer to
Figure 6 for qualitative results.

We also visually examine the baselines in Figure 7. By moving along the
discovered known (identity) direction, those baselines not only change identity
to some extent, but also alter other attributes, such as smile, skin tone, and gaze,
whereas our sampled results maintain the attributes controlled by the unknown
factor while the known factor changes. This means that certain factors such
as human identity can not be easily disentangled during the latent direction
discovery stage even with explicit supervision. We also show that this is true for
vanilla unconditional StyleGAN [21,22] in the supp. Note, we move large steps
in two directions on purpose (leftmost and rightmost) to show the full effect of
the discovered directions. Details about this study can be found in the supp.
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face bird car

CoModGAN 56.00 47.55 44.25
CollageGAN 57.78 58.15 47.49
ContrasFill-1 67.40 61.14 52.01
ContrasFill 82.03 75.20 83.71

ContrasFill (known fixed)|26.15 21.69 35.47
Table 2. High KFFA shows our latent space is more diverse compared with discovered
latent directions in baselines. The last row is a different setting, please refer the text.
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Fig. 8. Our model can generate diverse disentangled results in semantic mask case.

Known direction (identity)

4.4 Ablation

Other type of masks. We also analyze our model’s performance on the in-
painting task where the input mask is of the shape of an object instead of a
box. In this case, our model can no longer change the object shape and pose
but can still generate diverse appearance in the mask. Figure 8 (left) shows that
our results are more diverse than CoModGAN and CollageGAN, especially on
human identity. BAT-fill has worse image quality. We can also achieve disentan-
glement (Figure 8 right). We compare image quality and diversity (LPIPS for
overall, KFFA for known factor), and report numbers in Table 3 (left) for the
face dataset. We also study the case of arbitrarily-shaped masks that cover part
of the object in random places (e.g., half of face is hidden); see supp for details.
Latent codes injection method. To study the effectiveness of our bi-modulated
convolutions (Figure 3), we try the following alternative approaches: (1) We con-
catenate s with ¢ and pass the result to fully-connected layers to output a single
scale vector to modulate the convolutions (denoted as “concat”); (2) We use
each code to modulate a different set of convolution kernels. And the two sets of
modulated convolutions are sequentially applied to image features. Depending
on the order, we denote them as “k-u” and “u-k” (k and u stand for known and
unknown codes). The first three columns of Table 3 (right) indicate that, these
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‘CoMod‘Collage‘ BAT ‘ Ours ‘concat‘ u-k ‘ k-u ‘repredict‘Ours
FID | 5.73 6.07 |11.97| 5.95 FID | 8.64 |8.41|8.42| 14.41 [8.41
LPIPS| 0.029 | 0.029 |0.050|0.048 LPIPS| 0.048 {0.052|0.056| 0.120 |0.075
KFFA| 51.19 | 58.73 |72.48 |83.39 KFFA | 48.99 [78.19|77.58| 86.87 |83.06

Table 3. (Left) Comparison in mask case. Our method has comparable image
quality but with more diversity on faces when using face masks as inpainting regions.
(Right) Ablation. results indicate the effectiveness of bi-modulation (the first three
columns) and contrastive loss (4th column).

alternative designs achieve similar image quality, but lower level of diversity. Our
bi-modulation is a more direct way to inject information to the generator which
makes the learning process easier compared with the “concat” alternative. The
approach of applying two separate sets of convolutions results in poor diver-
sity. We hypothesize that the later convolution set may undo what is learnt by
the previous set as their objective functions are different (factors in two spaces
should learn different things).

The loss choice. We use the contrastive loss to encourage diversity by forcing
images with the same latent codes to have similar factors. Another way to learn
this correspondence is to repredict the input code from the resulting image.
For example, by sampling a code in the identity space, one can use ArcFace
to repredict this code from the generated image. Table 3 (right 4th column)
shows that replacing the contrastive loss with reprediction loss encourages more
diversity, but at the cost of image quality. This is because a foreground generation
model needs to consider the compatibility between the sampled latent code and
the input context. For example, if the context contains light skin pixels on the
neck, then latent codes that generate dark-skinned faces are not compatible.
However, the reprediction loss forces the model to synthesize a dark-skinned face,
which may not look real according to the discriminator. However if a contrastive
loss is applied, which considers the relative distance in the feature space, then
the model can adjust the input identity code based on the context information
to synthesize a face that looks more plausible in the context.

5 Conclusion and Limitations

We propose ContrasFill, a novel approach for diverse and controllable foreground
generation by contrastive learning. We demonstrate superior diversity and con-
trollability over previous work. Our method has some limitations. We found that
our model is sometimes sensitive to the pretrained classifier which may be biased
due to the training data. For example, certain types of car are more common in
certain color (e.g., van are usually white). Thus our model may also be biased.
Acknowledgement This work was supported in part by Sony Focused Research
Award, NSF CAREER 1IS-2150012, Wisconsin Alumni Research Foundation,
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