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Low-energy electrons dissolved in liquid ammonia or aqueous media are powerful reducing agents that
promote challenging reduction reactions, but can also cause radiation damage to biological tissue.
Knowledge of the underlying mechanistic processes remains incomplete, in particular with respect to the
details and energetics of the electron transfer steps. Here, we show how ultraviolet (UV) photoexcitation of
metal-ammonia clusters could be used to generate tunable low-energy electrons in situ. Specifically, we
identified UV light-induced generation of spin-paired solvated dielectrons and their subsequent relaxation
by an unconventional electron-transfer-mediated decay as an efficient low-energy electron source. The
process is robust and straightforward to induce, with the prospect of improving our understanding of
radiation damage and fostering mechanistic studies of solvated electron reduction reactions.

Unbound low-energy electrons are produced in liquids by
ionizing radiation or arise as intermediates in chemical reac-
tions. If their kinetic energy lies below the first electronic ex-
citation threshold of the liquid, they are also referred to as
subexcitation electrons. Being potent chemical reduction re-
agents, slow electrons are able to drive reactions in molecular
solvents, such as liquid water and ammonia (7, 2). Subexcita-
tion electrons have been identified as important components
in the chain of radiation chemistry in aqueous environments,
for example causing severe damage to DNA molecules (1, 3).
Our understanding of these electron-induced reactions is still
far from complete, in part due to the difficulty of performing
controlled low-energy electron studies in liquids. Solvated
electrons have been widely used as strong reducing agents in
chemical synthesis. The most famous example is the Birch re-
duction, which relies on the high reducing power of solvated
electrons of alkali metals dissolved in liquid ammonia (2, 4).
The conditions, however, are technically demanding and haz-
ardous, which has prompted the search for alternative ap-
proaches. Even though substantial progress has been made
in this direction (5-7), it proved challenging to find alterna-
tive approaches that can match the high reduction capability
of the Birch reaction under milder conditions. Various Birch-
type photoreduction pathways have been explored in this
context (5-7), culminating in the discovery of a consecutive
light-induced electron transfer catalytic cycle capable of gen-
erating highly reducing solvated electrons (7). Detailed mech-
anistic studies of such complex multicomponent systems
remain challenging, highlighting the demand for simpler
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model systems to investigate individual steps. Reduction of
aqueous carbon dioxide and nitrogen by solvated electrons
was demonstrated using ultraviolet illumination of diamond
as electron source (8, 9). Comparable photoinduced electron
transfer processes have not yet been reported for the conven-
tional Birch system,; i. e. alkali metal-ammonia solutions.
Here, we report a hitherto unknown light-induced elec-
tron transfer mechanism in alkali metal-ammonia solutions
that efficiently produces low-energy electrons via the inter-
mediate formation of a solvated dielectron. Composed of only
a single solvent and solute, this system is exceptionally simple
and thus amenable to fundamental studies of photoinduced
electron transfers processes. In the mechanism we discov-
ered, ultraviolet (UV) light promotes an electron from a va-
lence orbital of the solvent molecules to the singly-occupied
solvated electron orbital, generating a solvated spin-paired
dielectron. The dielectron subsequently decays via an Elec-
tron-Transfer-Mediated Decay (ETMD) process. As key inter-
mediates, dielectrons (also referred to as bipolarons) play the
central part in this charge transfer process. Although there
has been much progress in unravelling the nature of single
(unpaired) solvated electrons (10-21), the same is not true for
the dielectron, whose direct experimental observation has
proven difficult. To date, insight into the characteristics of
this elusive species mostly relies on theoretical studies (10,
21-25). The diamagnetism observed experimentally in metal-
ammonia solutions at higher metal concentration was ex-
plained by electron spin-pairing, although no definitive iden-
tification of the spin-paired species was possible (10, 15, 26).
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Experimental evidence for hydrated dielectrons has also been
found in radiolysis experiments (27) and in mass-spectromet-
ric studies of water clusters anions (23). However, recent pho-
toelectron studies on metal-ammonia solutions covering a
wide range of metal concentrations failed to detect signatures
specific to the dielectron in the experimental spectra (24, 28).

Based on quantum chemical calculations, Larsen and
Schwartz have suggested possible experimental procedures to
create detectable amounts of metastable dielectrons by cap-
turing a second electron in the cavity of a pre-existing single
solvated electron (21). Pulsed radiolysis experiments and
time-delayed multi-pulse laser schemes were proposed. In-
spired by their work, we have developed an alternative UV
photoexcitation - photoelectron detection method that can
not only generate high yields of metastable dielectrons, but
also detect them via a unique photoelectron signature. The
key to selective detection of dielectrons is the special ETMD
process, effectively replacing the pump-probe detection steps
in the schemes suggested in ref. (21). ETMD and ICD (Inter-
molecular Coulombic Decay), i. e. non-local decay processes
of electronically excited species, were first predicted theoret-
ically (29-31) before being observed experimentally in the
soft X-ray range (32-34). ETMD processes accessible by UV
light excitation offer new perspectives for the practical use of
such non-local decay processes. Here, we show how slow elec-
trons were produced in a straightforward way by this surpris-
ing UV-pumped dielectron-ETMD process. The discovered
slow electron formation pathway could play a role in mecha-
nistic studies of radiation chemistry and solvated electron re-
duction reactions.

Photoelectron spectroscopy
UV light-induced generation of low-energy electrons was di-
rectly probed in sodium-doped ammonia clusters (Na(NH3),)
using double-imaging photoelectron-photoion coincidence
spectroscopy at the DESIRS VUV beamline of the Synchro-
tron SOLEIL (see supplementary materials, sections Sland
S2, and (35)). Coincidence spectroscopy provided cluster-size
resolved photoelectron spectra (PES) and images (Fig. 1).The
experiments were complemented by quantum chemical cal-
culations of the ground and electronically excited states of
the clusters treating electron correlation in terms of Mgoller-
Plesset and Coupled Cluster theory ((36, 37); sections S4 to
S8). The combined approach allowed us to identify the UV
light-induced generation of solvated, spin-paired dielectrons
and their subsequent ETMD as the source of low-energy elec-
trons. The mechanism we discovered also explains the domi-
nance of this process over a broad UV wavelength range.
Figure 1A (blue to green traces) shows representative PES
of Na(NH3), clusters acquired at different UV photon ener-
gies hv (see section S3 for PES of larger clusters). Higher elec-
tron binding energies (eBE) correspond to lower electron
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Kinetic energies (Exin = Av-eBE; fig. S2). PES recorded at pho-
ton energies below 5.5 eV (dark blue traces in Fig. 1A) consist
of a single, narrow low-eBE band (feature “F1”) (17), and PES
recorded at 9.9 eV (green traces) consist of a single, high-eBE
band (feature “F2”). At intermediate photon energies (5.5 eV<
hv <9.9 eV), the PES are dominated by an unexpectedly broad
distribution of low-Kinetic energy electrons (Exin < 6 eV; fig.
S2), with increasing electron abundance toward zero Kinetic
energy (feature “F3” in the light blue, orange and red traces).
Supported by quantum chemical calculations (sections S4 to
S8), the observation of the three distinct features F1, F2 and
F3 points to three distinct pathways of electron formation
(Fig. 2), which can be turned on and off selectively by the
choice of UV photon energy.

Direct photoionization of solvated electrons and solute
molecules

The sharp F1 band results from direct photoionization of the
solvated sodium 3s electron (&, in Fig. 2D, (I17-19, 38)) cor-
responding to the transition from the electronic ground state
2X of the neutral cluster to the electronic ground state x* of
the cationic cluster (Fig. 2A). The high symmetry of &gy is
reflected in the pronounced anisotropic photoelectron distri-
butions (Fig. 1B at ~v = 5.5 €V, (17)). The coincidence study
directly provided cluster size-resolved vertical eBEs in good
agreement with ab initio calculations (tables S1 and S2). The
vertical eBE decreases systematically from 4.3 eV for Na(NH;)
to ~2.6 eV for Na(INH;),0, where it converges with respect to
cluster size (figs. S3 and S4). The cluster size-resolved eBE
values improve and extend previous data obtained from PES
of cluster ensembles and photoion studies (17, 18).

A different pathway of electron formation dominates at
photon energies above the lowest ionization energy of the
NH; solvent molecules (Fig. 1A, green trace at zv = 9.9 eV;
(39)). Here, ionization occurs mainly via the removal of an
electron from the highest occupied molecular orbital
(HOMO) of the (NH3), solvent shell, ®;, (Fig. 2E), instead of
ionization from the HOMO of the entire Na(NHj3), cluster,
®sav. The assignment of the F2 band to ionization from & is
corroborated by the good agreement with the PES of pure lig-
uid ammonia (40) and ammonia clusters (39), and by the fact
that the PES of Na(NHs), clusters and bare (NH3), clusters
are very similar (Fig. 1A, green and black traces, respectively).
The F1 band is missing at hv= 9.9 eV because of the higher
ionization probability from &, compared with that from @
combined with a large increase of the total number of photo-
electrons (direct ionization of NH; molecules) and the limited
dynamic range of the coincidence detection. The almost iden-
tical PES for Na(NHj3), and bare (NHj3), clusters imply that
the electronic structure of the NH; solvent molecules is only
slightly affected by the presence of the Na* cation and the
solvated electron. In stark contrast to the PES, the relaxation
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dynamics after direct photoionization critically depends on
the absence ((NH3),) or presence (Na(NHj3),) of a solvated
electron. Relaxation of bare (NH3),* cluster ions occurs via
proton transfer between neighboring NH; molecules, and the
release of an NH," radical from the cluster: (NHs), + Av =
(NH;),1H* + NHy' +epn (41). Thus, mass spectra of undoped
ammonia clusters consist of protonated cluster signals
(NH;),1H* (major mass peaks in Fig. 1C). This ultrafast relax-
ation pathway via proton transfer is well-known to occur in
various hydrogen bonded systems (41). The proton transfer is
completely suppressed in the presence of a solvated electron
by the fast electron transfer from &g, to @ (Fig. 3B and sec-
tion S8). Here, the mass spectra show intact cluster ion sig-
nals Na(NH;)," (minor mass peaks in Fig. 1C) instead of ion
signals of protonated clusters. Albeit ionization occurs from
the same ammonia orbital (&.) in neat and Na-doped clusters,
the presence of the solvated electron opens an unexpected re-
laxation pathway in Na(NH;), that is faster than the proton
transfer pathway. We propose that relaxation of Na(NH;),*
clusters occurs via initial ultrafast electron transfer from the
delocalized ®sqv orbital to the localized @, vacancy formed by
photoionization (Fig. 2B), with subsequent energy dissipation
via internal conversion. The electron hopping between &y
and the &, vacancy corresponds to a transition from the first
electronically excited !a* state of the cluster cation to its x*
ground state. This electron transfer is analogous to the first
step of a Birch reduction, in which a solvated electron trans-
fers to an unoccupied molecular orbital.

Low-energy electron formation via decay of dielectrons
Even more intriguing with respect to the formation of reduc-
ing electrons is the mechanism that occurs after photoexcita-
tion with photons of ~5.5 to 8 eV energy (wavelength ~225 to
155 nm). Here, PES are dominated by the broad F3 feature
(Fig. 1A). This band corresponds to a broad distribution of
low-kinetic energy electrons, with increasing electron abun-
dance toward zero Kinetic energy (maximum eBE; fig. S2) and
isotropic angular distribution (Fig. 1B, left). This behavior is
fully consistent with the excitation of a dielectron state which
autoionizes by ETMD (Fig. 2C). Conceivable alternative
mechanisms to explain the origin of the F3 feature are as-
sessed in section S8 in detail. Since they prove to be incon-
sistent with our experimental observations, we do not discuss
them here further. The dielectron/ETMD mechanism produc-
ing the F3 electrons is visualized in Fig. 2C. Direct ionization
from the ammonia HOMO &, responsible for the F2 band, is
not possible at these lower photon energies. Instead, photo-
excitation promotes an electron from &, to the singly occu-
pied, delocalized solvated electron orbital &s to form a
metastable, solvated spin-paired dielectron. This unusual
electronically excited dielectron state, %A, is characterized by
a doubly occupied &,y orbital and a vacancy in the &, orbital
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of the solvation shell, in agreement with ab initio calculations
(Fig. 3 and sections S4 and S5). Regarding the difference of
this dielectron compared with the ground state dielectron
species postulated in metal-ammonia solutions (10), we refer
the reader to section S8. The 2A state lies above the x* elec-
tronic ground state of the cation and autoionizes via a unique
version of ETMD (Fig. 2C): One of the two delocalized elec-
trons in &,y transfers to the solvation shell where it localizes
in the ammonia &; vacancy. Concurrent with this transfer,
the second electron is ejected with low Kinetic energy (e'rmp)
and detected in the PES as part of the F3 band (Fig. 1A). The
broad Kinetic energy distribution of the resulting photoelec-
trons reflects the concerted progress of photoelectron ejec-
tion and electron transfer during the ETMD (see discussion
of Fig. 3). This UV light-induced-ETMD process offers a
straightforward way to generate high yields of dielectrons,
and to distinguish them (F3 band) from the always accompa-
nying single solvated electrons (F1 band) (21, 24, 28). Com-
pared with previously reported ETMD processes (30-32, 34,
42, 43), this ETMD is distinctive in two aspects: The electron
transfer goes hand in hand with a considerable spatial con-
traction of the electron wavefunction, and it is initiated by
exceptionally low photon energies in the UV range. The for-
mer might enhance the efficiency of the electron transfer, the
latter makes ETMD more amenable to applications.

Figure 3 shows computational results of the potential en-
ergy profiles (PEPs) along the one-dimensional relaxation
path of the neutral dielectron state (red), following vertical
photoexcitation from the neutral ground state (black). The
large difference between the equilibrium geometries of elec-
tronic ground and dielectron state imply a broad Franck-Con-
don progression in the photoexcitation spectrum, which
makes the dielectron state accessible over a broad range of
UV photon energies. The PEP of the cationic state (blue) in-
tersects the PEP of the dielectron state just before its mini-
mum, Amin, has been reached. The selected vibrational
wavefunctions (dashed curves) of the dielectron state and the
cationic state highlight the many possibilities along the relax-
ation path for ETMD processes to occur (section S4 and S5),
which are reflected in the broad Kkinetic energy distribution
of the errmp, constituting the F3 band in Fig. 1A. In terms of
a time-dependent wave packet picture, an increased hopping
probability near the intersection with the cationic ground
state PEP offers a plausible explanation for the observed pref-
erence of the ermyp toward zero Kinetic energies (see discus-
sion of fig. S2 in sections S3 and S8). For all photon energies,
the sharp cut-off of the F3 feature (Fig. 1A) is therefore lo-
cated at a binding energy corresponding to the photon en-
ergy. The observed high yield of errmp iS consistent with a
high photoexcitation probability from the neutral ground
state to delocalized dielectron states, and a high autoioniza-
tion probability via ETMD (section S9).
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Figure 4 shows the relative electron yields of the F3 band
for selected cluster sizes at three different photoexcitation en-
ergies. Several essential insights emerge from these results.
ETMD dominates electron formation over a broad range of
photoexcitation energies, extending from the near to the far
UV. It is largely insensitive to the specific UV photon energy.
Except for the smallest clusters (n < 2), ETMD does not de-
pend on the cluster size either (see figs. S3 and S4 for larger
clusters). The stability of the ETMD process with respect to
changes of the system size was also confirmed by calcula-
tions, so that autoionization via solvated dielectrons should
persist in bulk solutions (section S6). Moreover, the phenom-
enon exhibits some robustness to chemical changes. For ex-
ample, replacing sodium with lithium had little effect
(section S6). Theoretical assessment of solvent exchange
proved to be more challenging due to competing relaxation
channels (section S7). For solvents hosting solvated electrons,
the formation of slow electrons from a transient dielectron
state via ETMD generally appears to be an important chan-
nel.

Conclusions

What are the possible implications of this hitherto unknown
slow electron formation pathway? ICD and ETMD have been
discussed as in-situ sources of low-energy electrons, with the
caveat that high-energy photon sources are generally re-
quired to trigger these processes. The present ETMD process
offers the possibility to use conventional UV lamps in the
near to far UV range. By controlling the photon energy the
maximum electron Kinetic energy can be tuned across the
subexcitation range. This could be exploited for systematic
energy-dependent mechanistic studies relevant to radiation
chemistry and radiation damage in biological tissues. Given
that broadband UV lamps can be used for in-situ generation
of high yields of low-energy electrons, the discovery of the
dielectron-ETMD mechanism might also be of practical rele-
vance to electron reduction reactions. It is conceivable that
reduction reactions with solvated electrons are photo-en-
hanced by the dielectron-ETMD mechanism, as the more
highly energized ETMD electrons could overcome reaction
barriers unsurmountable to common solvated electrons. It
would be intriguing to study the energy-dependent activity of
the solvated electron as a reducing agent by tuning the energy
of the ETMD electron. Future investigations of the dynamics
of dielectron/ETMD process after UV photoexcitation might
even hold the prospect of discovering new reaction pathways.
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Fig. 1. Experimental results from photoelectron photoion coincidence spectroscopy of sodium-doped
ammonia clusters Na(NH3)n. (A) Cluster size-resolved photoelectron spectra of selected Na(NHs), clusters
recorded after photoexcitation at different photon energies hv (dark blue to green lines). Black lines are
photoelectron spectra of pure ammonia clusters (NHs), recorded at hv = 9.9 eV. Feature F1: Photoelectrons
from the direct photoionization of single solvated electrons in Na(NH3)n (e'pn from @sa, Fig. 2A). Feature F2:
Photoelectrons from the direct photoionization of ammonia solvent molecules in Na(NH3), (e7pn from @, Fig. 2B)
or pure (NHs), clusters (black line). Feature F3: Low-energy electrons from the ETMD of the dielectrons (€ ermo
from @, Fig. 2). (B) Velocity map images for Na(NHs). recorded at hv = 5.5 eV (left) and hv = 8.0 eV (right).
Anisotropic photoelectron angular distribution (left image) result from direct photoionization (eph), and
isotropic distributions centered at low kinetic energies (rightimage) result from ETMD of the dielectrons (€ ermp).
(C) Section of a mass spectrum recorded at hv = 9.9 eV comprised of intact Na(NHs).* cluster signals from the
pathway shown in Fig. 3B, and protonated (NH3),H* signals from ionization of pure (NH3), clusters. Further
information in sections S1to S3.
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Fig. 2. The three distinct pathways of electron formation observed after UV photoexcitation of Na(NH3)n
clusters. (A to C) The three pathways. Horizontal lines on the left indicate qualitative energy levels of the four
electronic states labeled 2X, 1x*, 2A and!a*. Orbital occupations are indicated on the right. @, is the HOMO of the
bare ammonia solvent shell, and @sqy is the HOMO of the entire Na(NHs),, which corresponds to the delocalized
solvated electron orbital. hv is the UV photon energy and Eui is the kinetic energy of the ejected electron. e,
(red), e (green) and eetmp (red) are electrons from direct photoionization, internally transferred electrons, and
electrons from ETMD processes, respectively. Red arrows indicate the ejection of electrons, green arrows an
internal electron transfer (A). Direct photoionization of a unpaired solvated electron from ®so, in Na(NH3),
(feature F1in Fig. 1A), producing a cation cluster in the ground state 'x*. (B) Direct photoionization of an electron
from @, of the ammonia solvent molecules (e, feature F2 in Fig. 1A) producing a cation cluster in the excited
state 'a* and internal electron hopping from @s.y to the @ vacancy (e). (C) Photoexcitation of an electron from
o of the ammonia solvent molecules to the singly-occupied @5, forming a dielectron (A state). Subsequent
decay of the dielectron via ETMD, producing a cation cluster in the ground state !x*. ETMD consist of internal
hopping of one electron from @, to the @ vacancy (e7) and ejection of the second electron from ®sqv from the
cluster (eermp, feature F3in Fig. 1A). The electronis ejected with a broad distribution of different kinetic energies
(Exin, see Fig. 3). (D and E) Representation of the &<, and the @ orbital, respectively, of a Na(NHs)e cluster
(section S4).
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Fig. 3. Calculated potential energy profiles along the one-dimensional
relaxation path of the dielectronic state for Na(NHj)e. Vertical
photoexcitation from the minimum geometry (Xmin) of the electronic
ground state 2X (black curve) creates a dielectron state in the saddle
point region of the electronically excited 2A state (red curve), which then
relaxes along the path. The potential energy profiles of the ?A state and
the ground state of the cation, x* (blue curve), intersect before the
minimum structure of the 2A state, Amin, is reached. Amin can be described
as an ammonia dimer cation (NH3),* bound to a smaller sodium-doped
ammonia cluster cation Na(NH3)n»* by a solvated electron pair. Selected
vibrational wavefunctions shown for the 2X (black dashed), x* (blue
dashed), and A (red dashed) states illustrate the many possibilities (and
hence the high probability) for ETMD processes to occur along the
relaxation path. Further information in sections S4 and Sb.
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Fig. 4. Relative yield of ETMD electrons at different UV excitation energies as a function of the cluster size.
Ratio I(e’etmp)/(I(eermp)+/(€pn)) retrieved from the experimental photoelectron spectra by integrating over the
F3 (I(eetmp)) and F1 (I(epn)) bands (Fig. 1A and figs. S3 and S4). The figure illustrates that the UV light-induced
dielectron ETMD (Fig. 2C) is largely insensitive to system size and UV energy. The high relative yield of e ermp can
be explained by the high probabilities of forming solvated dielectrons by UV photoexitation and their subsequent
autoionization via ETMD (Fig. 2C and Fig. 3).
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