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ABSTRACT

Regularization by denoising (RED) is a widely-used frame-
work for solving inverse problems by leveraging image de-
noisers as image priors. Recent work has reported the state-
of-the-art performance of RED in a number of imaging appli-
cations using pre-trained deep neural nets as denoisers. De-
spite the recent progress, the stable convergence of RED al-
gorithms remains an open problem. The existing RED theory
only guarantees stability for convex data-fidelity terms and
nonexpansive denoisers. This work addresses this issue by
developing a new monotone RED (MRED) algorithm, whose
convergence does not require nonexpansiveness of the deep
denoising prior. Simulations on image deblurring and com-
pressive sensing recovery from random matrices show the sta-
bility of MRED even when the traditional RED diverges.

Index Terms— Inverse problems, plug-and-play priors,
regularization by denoising, model-based deep learning.

1. INTRODUCTION

Many imaging problems, such as deblurring and super-
resolution, can be formulated as inverse problems involving
the recovery of an image x 2 Rn from its measurements

y = Ax+ e, (1)

where A 2 Rm⇥n is the measurement operator and e 2 Rn

is the noise. Since many inverse problems are ill-posed, it is
common to formulate the solution as a regularized inversion,
expressed as an optimization problem

bx = argmin
x2Rn

f(x) with f(x) = g(x) + h(x), (2)

where g a data-fidelity term that quantifies consistency with
the observed measurements y and h is the regularizer that
enforces prior knowledge on x. For example, when the noise
vector e in (1) is the additive white Gaussian noise (AWGN),
the popular data-fidelity term is the least-squares function
g(x) = 1

2ky �Axk22. On the other hand, many widely-used
image regularizers are based on sparsity promoting functions
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of the form h(x) = ⌧kWxk1, where ⌧ > 0 is the regulariza-
tion parameter and W is a suitable transform [1–3].

There has been considerable recent interest in leveraging
image denoisers as priors for the recovery of x [4, 5]. One of
the most popular frameworks in this context is regularization
by denoising (RED) [6], which uses a denoiser D : Rn ! Rn

as a regularizer within an iterative algorithm. For example,
the steepest descent variant of RED (RED-SD) [6] is imple-
mented by iterating the following steps until convergence

xk  xk�1 � �G(xk�1) with (3a)

G(xk�1) := rg(xk�1) + ⌧(xk�1 � D(xk�1)), (3b)

where � > 0 is the step size, and ⌧ > 0 is the regularization
parameter. For a locally homogeneous D that is nonexpansive
and has a symmetric Jacobian, it can be shown [6,7] that RED
algorithms solve (2) with a regularizer

h(x) =
⌧

2
xT(x� D(x)). (4)

The state-of-the-art performance of RED on many compu-
tational imaging problems has motivated a great deal of re-
search on RED and its applications [8–13].

Despite the recent activity around the topic, the stable
convergence of RED algorithms remains an open problem
from both theoretical and practical perspectives. The exist-
ing theoretical guarantees for the convergence of RED algo-
rithms require the denoiser D to be a nonexpansive opera-
tor [6, 7, 9, 11, 13]. On the other hand, it has been empirically
observed that RED algorithms can easily diverge for expan-
sive denoisers (see, for example, Table II in [9]). With the
explosion of interest in using deep neural networks within it-
erative algorithms, there is consequently a pressing need for
more flexible strategies for desining RED algorithms that are
stable for nonconvex functions g and expansive operators D.

This paper addresses the need for stable RED algorithms
by proposing a new monotone RED (MRED) algorithm that
can offer stable convergence for nonconvex data-fidelity
terms and expansive deep image denoisers. MRED defines
and uses an explicit loss based on the fixed-point interpreta-
tion of RED that does not rely on the existence of the explicit
RED regularizer h. MRED extends the heuristic backtrack-
ing line search (BLS) strategy proposed in the prior work [12]
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Algorithm 1 RED with BLS
1: input: x0 2 Rn; �, " > 0; � 2 (0, 1)
2: for k = 1, 2, . . . , t do
3: xk  xk�1 � �G(xk�1)
4: while kG(xk)k2 > kG(xk�1)k2 do
5: �  ��
6: xk  xk�1 � �G(xk�1)
7: if � < " then
8: return: x⇤  xk�1

9: output: x⇤  xt

by adopting a more principled BLS strategy. MRED is the
first RED method which is guaranteed to converge for any
denoiser—irrespective of its expansiveness. Our simulations
on image deblurring and compressive sensing from random
matrices illustrate the stability of MRED compared to the
traditional RED-SD with and without BLS.

2. BACKGROUND

There has been a broad interest in methods that integrate deep
neural nets into iterative algorithms for solving imaging prob-
lems. One of the earliest methods is plug-and-play priors
(PnP) [4], which proposed to extend the traditional proximal
optimization [14] by replacing the proximal operator with a
more general denoiser. It has been shown that the combina-
tion of proximal algorithms with advanced denoisers, such
as BM3D [15] or DnCNN [16], leads to the state-of-the-art
performance for various imaging problems. Remarkably, the
heuristic of using denoisers within iterative algorithms exhib-
ited great empirical success [13, 17–20] and inspired a sig-
nificant follow up work on the so-called model-based deep
learning method that include RED, denoising-based approx-
imate message passing (D-AMP), deep unfolding (DU), and
deep equilibrium models (DEQ) [21–26].

One of the key motivations of RED is its formulation as an
optimization problem (2) with an explicit regularizer h in (4).
However, the existence of h only holds under a set of assump-
tions on D, such as its nonexpansiveness [6, 7, 11]. As a re-
minder, an operator D is nonexpansive, if it satisfies

kD(x)� D(z)k2  kx� zk2, 8x, z 2 Rn. (5)

Remarkably, nonexpansiveness is also used in the conver-
gence analysis of RED algorithms when interpreting them as
fixed-point iterations seeking zeros of the operator G [9, 13].
While it is possible to train nonexpansive deep neural nets via
spectral normalization [9, 20, 27], nonexpansiveness can hurt
the performance and reduce the flexibility to use existing ex-
pansive denoisers. It is worth noting that nonexpansiveness,
as well as more restrictive conditions firm nonexpansiveness
and contractiveness, are used to ensure convergence of other
related frameworks, such as PnP and DEQ [9, 26]. Thus,

Algorithm 2 Monotone RED (MRED)
1: input: x0 2 Rn; �,↵0, " > 0; � 2 (0, 1); ✓ 2 (0, 1/2)
2: for k = 1, 2, . . . , t do
3: xk  xk�1 � �G(xk�1)
4: ↵ ↵0

5: while '(xk) > '(vk�1)� ↵✓kr'(xk�1)k22 do
6: xk  xk�1 � ↵r'(xk�1)
7: ↵ �↵
8: if ↵ < " then
9: return: x⇤  xk�1

10: output: x⇤  xt

Fig. 1. The six test images used in our numerical evaluation.
From left to right, baby, bird, butterfly, leaves, starfish, head.

while our focus is on RED, our approach can be applied to
develop more stable variants of other related frameworks.

3. PROPOSED METHOD

3.1. RED with Backtracking Line Search

RED algorithms can be interpreted as fixed-point iterations
seeking a vector x⇤ in the zero set of the operator G in (3b)

x⇤ 2 zer(G) := {x 2 Rn : G(x) = 0}. (6)

This implies that the goal of a RED algorithm is to reduce
the quantity kG(xk)k2 at every iteration k � 1. This ob-
servation is behind the backtracking line search (BLS) strat-
egy for RED summarized in Algorithm 1. The main idea be-
hind RED (BLS) is to shrink the step size � > 0 by a factor
0 < � < 1 whenever the distance to zer(G) is not improving.
The algorithm stops when the step-size becomes smaller than
a pre-defined quantity " > 0 or when the maximum number
of iterations t � 1 is reached. This strategy was originally
proposed in [12] as an heuristic to stabilize the convergence
of regularization by artifact removal (RARE) variant of RED
that replaces image denoisers by artifact-removal operators.
However, the convergence of the algorithm was never for-
mally compared to the traditional RED with a fixed step-size.

When the data-fidelity term g is a convex Lipschitz con-
tinuous function and the denoiser is nonexpansive, one can
show that there exists a small enough step size so that the iter-
ates of RED (BLS) satisfy kG(xk)k2  kG(xk�1)k2 (see the
analysis in [9]). However, for nonconvex data-fidelity terms
and/or expansive denoisers there is no guarantee for the exis-
tence of such a step size, which means that RED (BLS) might
terminate prematurely.
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Fig. 2. Illustration of the MRED convergence for image deblurring for different regularization parameters ⌧ 2 {1, 0.1, 0.01}.
The figures plot the average normalized distance to zer(G) over the six test images against the iteration number. We compare
three algorithms, the traditional RED with a fixed step-size parameter, RED with BLS, and the proposed MRED. Note how
MRED achieves the smallest distance to zer(G) for all three plots.

Fig. 3. Visual results for image deblurring with a 17⇥ 17 blur kernel from [28] and 30 dB AWGN noise on the Starfish image.
We ran three algorithms the traditional RED with the fixed step-size, RED (BLS), and MRED for the regularization parameter
⌧ = 0.01. Note the poor visual quality of the RED image with the fixed step-size due to divergence of the algorithm.

3.2. Monotone RED

The proposed monotone RED (MRED) method, summarized
in Algorithm 2, addresses this issue by reformulating the
search for a vector in zer(G) as an optimization problem.
Consider the loss function

'(x) :=
1

2
kG(x)k22, (7)

which measures the squared distance of a vector to zer(G). It
is clear that whenever zer(G) 6= ?, the minimizers of ' are
vectors in zer(G). Additionally, whenever ' is a smooth func-
tion, we can use the traditional optimization theory to perform
BLS (see Secion 9.2 in [29]). To that end, let ' be a smooth
function that has a Lipschitz continuous gradient with con-
stant L > 0 and consider the gradient update

x+  x� ↵r'(x), (8)

where we will assume that the step satisfies 0 < ↵  1/L.
Note that one can use the automatic differentiation capability
of modern deep learning frameworks to evaluate r'. Then,
from the Lipschitz continuity of the gradient

'(x+)  '(x) +r'(x)T(x+ � x) +
L

2
kx+ � xk22

 '(x)� ↵

2
kr'(x)k22

 '(x)� ↵✓kr'(x)k22, (9)

with 0 < ✓ < 1/2, where in the second row we used (8)
and the fact that 0 < ↵  1/L. Therefore, there always ex-
ists a small enough step-size ↵ > 0 such that (9) is satisfied.
MRED uses the violation of the condition (9) as an indicator
to reduce its step-size parameter. It is worth mentioning that
for ✓ = 0, the condition in Line 5 of MRED is equivalent to
the condition of the while loop in Line 4 of RED (BLS). How-
ever, unlike RED (BLS), MRED guarantees the existence of
a small enough step-size even for nonconvex functions g and
expansive denoisers D, so long the function ' is smooth.

MRED is a hybrid algorithm in the sense that it uses the
traditional RED update (Line 3 of MRED) whenever it can
reduce the distance to zer(G) and switches to the gradient
update (Line 6 of MRED) if this is not possible. The ben-
efit of the proposed hybrid approach is that it maintains the
fast fixed-point convergence of the traditional RED algorithm
whenever possible. Additionally, the gradient r' needs to
be evaluated only when the traditional RED update cannot
reduce the loss, thus limiting the computational overhead
relative to the traditional RED algorithm. In short, MRED
maintains all the benefits of the traditional RED algorithm,
while also providing additional flexibility and stability. In
Section 4, we validate the effectiveness of MRED by com-
paring it both with the traditional RED with a fixed step-size
and RED (BLS) on two different types of inverse problems.
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Fig. 4. Illustration of the MRED convergence for compressive sensing from random measurements for different regularization
parameters ⌧ 2 {1, 0.1, 0.01}. The figures plot the average normalized distance to zer(G) over the six test images against the
iteration number. We compare three algorithms, the traditional RED with a fixed step-size parameter, RED with BLS, and the
proposed MRED. Note how MRED achieves the best convergence behaviour for all three plots.

4. NUMERICAL RESULTS

In this section, we numerically illustrate the ability of MRED
to stabilize the convergence for expansive deep denoising
priors. We consider two scenarios: (a) image deblurring and
(b) compressive sensing using random projections. Our deep
neural net prior is the simplified Unet architecture [30], ob-
tained by removing all the batch-normalization layers. We
trained the denoiser as a residual network R := I� D that
predicts the noise residual from a noisy input, without using
any spectral normalization for controlling the nonexpansive-
ness of the network. Hence, our network is expected to be
expansive. The training data was generated by adding AWGN
to images from the BSD500 [31] and DIV2K [32] datasets,
by cropping the images into small patches of 96 ⇥ 96 pixels
with stride 10. Note that the gradient in (8) is given by the
expression r'(x) = ATAG(x) + ⌧rR(x)TG(x), where
the last term was computed by using the autodiff functionality
of PyTorch. The normalized distance kG(xk)k22/kG(x0)k22
was used to quantify the fixed-point convergence of three
RED algortihms: (a) the traditional RED with a fixed step
size; (b) RED with BLS in Algorithm 1; and (c) MRED
in Algorithm 2. Following the theoretical analysis in [9],
we fix the step-size of the traditional RED � = 0.8, which
is small enough to theoretically ensure convergence under
nonexpansive denoisers. Note that we fixed The quantity
kG(xk)k22/kG(x0)k22 is expected to approach zero as the al-
gorithms converge to zer(G). All the quantitative results were
obtained by averaging over six test images shown in Fig. 1.

4.1. Image Deblurring

The measurement model in image deblurring with uniform
blur can be expressed as in (1), where the matrix A denotes a
two-dimensional convolution between the clean image x and
the blur kernel. We consider the blur kernel of size 17 ⇥ 17
and the AWGN vector e corresponding to the input SNR of
30 dB. Fig. 2 illustrates the convergence behaviour of all three
RED algorithms. First, note the divergence of the traditional
RED with the fixed step-size, which is not surprising since

our CNN prior has been trained without any Lipschitz con-
straints. Note how RED (BLS) stabilizes the convergence,
but stops making any progress prematurely due to the fact
that it cannot find a small enough step-size to decrease the
distance to zer(G). Finally, as expected, MRED achieves the
best convergence behaviour for all three values of ⌧ . Fig. 3
shows some visual examples of the performance of all three
algorithms, where RED yields a suboptimal image due to its
divergence and MRED achieves the highest quality image.

4.2. Compressive Sensing

We consider the traditional compressive sensing measurement
setup y = Ax, where A 2 Rm⇥n is orthogonalized version
of a matrix with elements that are i.i.d. zero-mean Gaussian
random variables of variance of 1/m. We set the compression
ratio m/n to be 0.1 and consider a similar setting to image de-
blurring by running all three algorithms for three values of ⌧ :
1, 0.1, and 0.01. As before, our baseline methods are the tra-
ditional RED with a fixed step-size and RED (BLS). Fig. 4
illustrates the divergence of the traditional RED and conver-
gence of MRED for all the regularization parameters ⌧ .

5. CONCLUSION

There is a growing interest in iterative algorithms, such as
PnP, RED, or DEQ, for solving inverse problems by using
deep neural nets as priors. While such algorithms have often
lead to significant improvements in the imaging quality, they
have also been shown to suffer from convergence issues when
the deep neural net is expansive. In this paper, we proposed a
new MRED algorithm that uses a novel line search strategy to
ensure monotonic convergence of the steepest descent variant
of RED (RED-SD) even for nonconvex data-fidelity terms and
expansive denoisers. Our numerical results highlight the sta-
bility of MRED relative to the traditional RED-SD algorithm,
which diverges for our expansive denoiser. While our focus
was on RED, the future work will look into the potential of
our strategy to be applicable to other related frameworks such
as PnP and DEQ.
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