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ABSTRACT

The past few years have seen a surge of activity around integra-
tion of deep learning networks and optimization algorithms for solv-
ing inverse problems. Recent work on plug-and-play priors (PnP),
regularization by denoising (RED), and deep unfolding has shown
the state-of-the-art performance of such integration in a variety of
applications. However, the current paradigm for designing such al-
gorithms is inherently Euclidean, due to the usage of the quadratic
norm within the projection and proximal operators. We propose
to broaden this perspective by considering a non-Euclidean setting
based on the more general Bregman distance. Our new Bregman
Proximal Gradient Method variant of PnP (PnP-BPGM) and Breg-
man Steepest Descent variant of RED (RED-BSD) replace the tra-
ditional updates in PnP and RED from the quadratic norms to more
general Bregman distance. We present a theoretical convergence re-
sult for PnP-BPGM and demonstrate the effectiveness of our algo-
rithms on Poisson linear inverse problems.

Index Terms— Plug-and-play priors, inverse problems, proxi-
mal optimization, image reconstruction.

1. INTRODUCTION

The recovery of an unknown signal € R"™ from its noisy measure-
ments y € R"™ can often be formulated as an inverse problem

y=N(Ax), )

where A € R™*" is a measurement operator and A/ models the
corruption of the measurements by noise, which could be signal de-
pendent (e.g., Poisson noise) or signal independent (e.g., Gaussian
noise). The solution of ill-posed inverse problems is often formu-
lated as an optimization problem

& = argmin f(x) + g() @
xER™
where f is the data-fidelity term and g is the regularizer.

The past few years have seen a surge of efforts to integrate deep
learning (DL) priors into iterative algorithms [1,2]. Plug-and-play
priors (PnP) [3] and regularization by denoising (RED) [4] are two
methods that integrate pre-trained DL denoisers into iterative algo-
rithms. Deep unfolding is a related strategy based on unfolding an
iterative algorithm and including trainable blocks within it [5]. Com-
pared to the black-box DL, model-based DL methods integrate the
physics-based knowledge of the measurement model. Their empir-
ical success, has spurred a number of algorithmic extensions [6-9],
as well as theoretical convergence analyses [10-13].
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Most of the current work in PnP is fundamentally based on
the traditional definition of the proximal operator that relies on
the squared Euclidean norm. Under this definition the proximal
operator can be naturally interpreted as the Gaussian denoiser. In
this paper, we seek to broaden the family of PnP algorithms to the
non-Euclidean setting by building on the recent work on Bregman
proximal algorithms [14—16]. Specifically, we propose to generalize
the well-known PnP-PGM [6] and RED-SD [4] algorithms to their
Bregman counterparts, PnP-BPGM and RED-BSD algorithms, by
using the Bregman distance. We learn the corresponding artifact-
removal operators by unfolding the iterations of our algorithms.
Finally, we present the theoretical convergence analysis of PnP-
BPGM and test our algorithms on Poisson linear inverse problems.

2. BACKGROUND

2.1. Proximal Gradient Method

PGM can be interpreted as the Majorize-Minimization (MM)
method for solving the composite optimization problem in (2).
Each iteration of PGM can be expressed as a minimization of a
quadratic majorizer

. L

" = arg min {mTVf(mk) + 2|l — 2|3 + g(m)} , (3
meR’Vl 2

where f is assumed to have a L-Lipschitz continuous gradient.

Eq. (3) can also be expressed in the following form

ZF =" — 'ny(mk) (4a)
"t = proxwg(zk) = (I4+~v99)~ " (z"), (4b)

where 0 < v < 1/L is the step size and

.1

prox,(z) = arg min {5 ||z—a:||§—|—g(m)} 5)
xeR™

is the proximal operator, which is well-defined for any proper,

closed, and convex function g.

2.2. Using DL Denoisers as Priors

The mathematical equivalence between proximal operator (5) and
Gaussian denoiser motivated denoiser-based iterative algorithms
such as PnP [3]. In PnP, the proximal operator is replaced with
an arbitrary Gaussian denoiser D. Unlike PnP where the ex-
plicit regularizer g is usually not known for a given denoiser,
RED [4] seeks to form an explicit denoiser-based regularizer
g(x) = 7" (x — D(x)), where 7 > 0 is the regularization
parameter. When the denoiser is locally homogeneous and has a
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Algorithm 1 PnP-BPGM

Algorithm 2 RED-BSD

1: input: z° € R", y € R™,andy > 0
2: fork=1,2,... do
32 " =Dg (VA" (Vh — V) (zF)

1:

2

3:

input: z° € R", y € R™,andy > 0
cfork=1,2,... do
"t = Vh* (Vh — v (Vf +7 (I — De))) (z¥)

Repeat for K Iterations

Repeat for K Iterations

Repeat for K Iterations Repeat for K Iterations

K" iteration

.
—T, x
(oo

L—4
Vil

(b) U-RED-SD

(a) U-PnP-PGM

Ly K

() U-PnP-BPGM

(d) U-RED-BSD

Fig. 1: The proposed PnP-BPGM and RED-BSD methods replace the quadratic penalty in PnP-PGM and RED-SD by a more general
Bregman distance. Both algorithms rely on data-driven regularizers obtained by training an artifact-removal operator Dg via deep unfolding.

symmetric Jacobian [17], the gradient of the RED regularizer has
a simple form Vg(x) 7 (x — D()), which enables the us-
age of the traditional steepest descent (SD) method for solving (2).
By leveraging the power of state-of-the-art DL-denoisers, such as
DnCNN [18], PnP/RED have achieved empirical success in many
imaging applications [19,20].

2.3. The Bregman Distance

Given a differentiable convex reference function h defined on a
closed convex set C C R", the Bregman distance By, : dom h x
int dom h — [0, co) [21] is defined by

Bu(x;y) = h(z) — h(y) — Vh(y)' (z — y). (6)
The Bregman distance’ is an extension of the classical squared Eu-
clidean distance which is recovered when h(x) = 1/2||z||3. Other
widely-used Bregman distance functions include the KL-divergence
and the Itakura—Saito (IS) distance.

3. PROPOSED METHOD

The path to Bregman-based proximal algorithm starts from observ-
ing that the quadratic majorization step in the classical PGM in
eq. (3) is equivalent to the following condition:

L
3 llz||> — f(z) is convex, 7
where the equivalence follows from the first-order convexity in-
equality. To bypass the Lipschitz gradient assumption, the work
in [14, 15] has proposed to generalize the condition in eq. (7) by

using a possibly non-quadratic reference function h
Lh(z) — f(e)

Such functions f can be referred to as L-smooth relative to h. Then,
by using the first-order convexity inequality, one can obtain a Breg-
man majorizer of the data-fidelity term

is convex.

®

f(@) < f(@")+ Vi) (@ —z") + LBu(z,z"). ()

"Note that the Bregman distance is a pesudodistance, because it does not
satisfy the triangle inequality, and is generally asymmetric.
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This inequality directly leads to the Bregman PGM (BPGM) method,
which generalizes the classical PGM using a Bregman majorizer as

k+1

x = argmin

xcR™

{mTVf(mk) 4 L Bu(z, ") + g(m)} . (10)

The BPGM method shares the same structural splitting mechanism
as the classical PGM [16], which allows one to express (10) as

2" = Vh* (Vh =V f) (2¥)
" = (Vh + v99) "' Vh(z")

where 0 < v < 1/L is the step size and h* denotes the Fenchel
conjugate of h. Note that the PGM is a special case of the BPGM
obtained by setting h(x) = 1/2||z||3. The first step of the BPGM in
(11a) is known as the Mirror Descent (MD) algorithm, which gener-
alizes the classical GM. The second step is known as the left Breg-
man proximal operator (BPO) defined as

(11a)
(11b)

pron (2) = arg gin {Bn(z,z)+g(x)}. (12)
xER™

Traditionally, the BPO is motivated from a computational per-
spective, e.g., Bregman projection onto the simplex with h(x) =
a" log(a) is simpler than the corresponding classical proximal op-
erator (5). Similar to the case where the classical proximal operator
can be interpreted as a Gaussian denoiser, under some conditions
on the reference function h, the BPO can be interpreted as an ex-
ponential family mean estimator. Moreover, selecting the reference
function A~ provides more flexibility depending on the problem
settings [14-16].

3.1. Bregman PnP and RED Algorithms

In this section, we propose two algorithms, PnP-BPGM and RED-
BSD that extend existing two algorithms PnP-PGM and RED-SD,
respectively. PnP-BPGM is obtained by replacing the BPO in (11b)
with a DL network Dg

2" = Vh* (Vh — V) (&%)

$k+l — Dg(Zk),

(13a)
(13b)

where 0 are the learnable parameters that characterize the network
Deg. Similarly, the Bregman variant of RED-SD is obtained as

2" = V' (Vh— v (Vf+7( —Do))) (z), (14)
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Table 1: The PSNR (dB) results of different methods on the testing images with different peaks and kernels.

Method [ 1 [ 2 [ 3 [ 4 [ 5 [ 6 [ 7 [ 8 [ 9 [ 10 [ 11 [ 12 [ Average [
Uniform kernel, peak = 8
Corrupted 11.70 | 11.13 | 11.74 | 11.59 | 11.61 | 9.56 11.81 | 11.80 | 11.82 | 11.63 | 12.04 | 1191 | 11.53
U-Net 20.89 | 23.11 | 21.28 | 20.79 | 19.79 | 19.15 | 19.63 | 24.76 | 21.96 | 22.70 | 23.37 | 22.65 | 21.67
U-PnP-PGM 19.57 | 22.74 | 20.89 | 20.59 | 19.20 | 19.15 | 19.04 | 24.38 | 21.79 | 2243 | 23.19 | 2244 | 21.28
U-RED-SD 20.38 | 22.74 | 20.74 | 20.29 | 18.81 | 19.00 | 18.90 | 24.44 | 21.81 | 22.38 | 23.32 | 2241 | 21.27
U-PnP-BPGM 21.00 | 24.12 | 21.27 | 20.72 | 20.10 | 19.17 | 19.81 | 25.21 | 22.13 | 22.65 | 23.82 | 22.62 | 21.89
U-RED-BSD 20.97 | 2397 | 21.14 | 20.82 | 20.25 | 19.28 | 19.78 | 25.08 | 22.13 | 22.70 | 23.75 | 22.66 | 21.88
Uniform kernel, peak = 32
Corrupted 16.14 | 16.08 | 16.51 | 16.25 | 1576 | 13.97 | 1581 | 17.12 | 16.68 | 16.77 | 17.13 | 16.95 | 16.26
U-Net 21.50 | 24.66 | 22.12 | 21.71 | 21.01 | 19.97 | 20.23 | 26.19 | 22.56 | 23.38 | 24.67 | 23.40 | 22.62
U-PnP-PGM 20.90 | 23.76 | 22.03 | 21.54 | 20.54 | 19.71 | 19.85 | 25.37 | 22.22 | 23.26 | 24.01 | 23.32 | 22.21
U-RED-SD 21.37 | 2413 | 21.92 | 21.41 | 20.75 | 19.88 | 20.17 | 25.67 | 22.40 | 23.35 | 24.25 | 23.40 | 22.39
U-PnP-BPGM 21.58 | 25.01 | 22.15 | 21.81 | 21.64 | 20.23 | 20.57 | 26.33 | 22.64 | 23.45 | 24.90 | 23.46 | 22.81
U-RED-BSD 21.57 | 25.04 | 22.17 | 21.64 | 21.48 | 20.22 | 20.34 | 26.44 | 22.65 | 23.35 | 24.91 | 2341 | 22.77
Gaussian kernel, peak = 8
Corrupted 1198 | 11.25 | 12.01 | 11.86 | 12.01 | 9.71 12.32 | 11.89 | 11.89 | 11.79 | 12.17 | 12.07 | 11.75
U-Net 21.72 | 2492 | 22.06 | 21.55 | 22.17 | 20.87 | 21.27 | 25.60 | 22.22 | 22.97 | 24.63 | 23.08 | 22.76
U-PnP-PGM 21.01 | 23.97 | 21.70 | 21.41 | 20.74 | 19.72 | 2032 | 25.18 | 22.17 | 22.72 | 24.17 | 22.87 | 22.16
U-RED-SD 21.18 | 23.30 | 21.88 | 21.26 | 20.65 | 19.79 | 20.15 | 24.86 | 21.96 | 22.97 | 23.69 | 23.03 | 22.06
U-PnP-BPGM 22.30 | 24.60 | 2248 | 21.78 | 22.44 | 19.23 | 21.92 | 26.03 | 22.48 | 23.90 | 24.49 | 23.60 | 22.94
U-RED-BSD 2222 | 24.62 | 22.17 | 21.72 | 22.27 | 19.61 | 21.61 | 25.76 | 22.37 | 23.79 | 24.37 | 23.60 | 22.84
Gaussian kernel, peak = 32
Corrupted 17.06 | 16.62 | 17.30 | 17.17 | 17.05 | 1445 | 17.19 | 17.51 | 17.04 | 17.35 | 17.57 | 17.55 | 16.99
U-Net 22.63 | 26.74 | 23.13 | 23.13 | 23.83 | 21.69 | 22.51 | 27.14 | 22.89 | 24.00 | 25.95 | 24.12 | 23.98
U-PnP-PGM 22.12 | 2450 | 23.61 | 23.10 | 22.54 | 19.53 | 21.81 | 26.03 | 22.60 | 24.27 | 24.77 | 2422 | 23.26
U-RED-SD 22.15 | 2543 | 23.07 | 23.14 | 22.86 | 21.29 | 21.92 | 26.55 | 22.80 | 24.27 | 25.31 | 24.24 | 23.58
U-PnP-BPGM 23.41 | 26.85 | 23.79 | 23.54 | 2441 | 20.82 | 23.30 | 27.86 | 23.13 | 25.03 | 26.03 | 24.83 | 24.42
U-RED-BSD 23.12 | 26.79 | 23.41 | 23.27 | 24.46 | 21.02 | 23.05 | 27.88 | 23.11 | 24.96 | 26.04 | 24.75 | 24.32

where [ is an identity operator. When the assumptions for the exis-
tence of the explicit RED regularizer in [4] hold, then RED-BSD can
be interpreted as the mirror descent algorithm. Note that the PnP-
PGM [3] and RED-SD [4] are recovered when h(z) = 1/2||z|
and Dg being a Gaussian denoiser.

Algorithm 1 and Algorithm 2 summarize the proposed PnP-
BPGM and RED-BSD algorithms. In this work, the regularizer Do
is implemented using the deep unfolded strategy, so we refer to
the proposed algorithms as unfolded PnP-BPGM (U-PnP-BPGM)
and unfolded RED-BSD (U-RED-BSD). Similarly, the unfolded
version of PnP-PGM, and RED-SD are referred as U-PnP-PGM and
U-RED-SD. All four different unfolding architectures are shown in
Fig. 1 and will be compared in the next section.

Recent work has explored the convergence properties of various
PnP/RED algorithms [10, 11,22]. Similar results can be also estab-
lished for both PnP-BPGM and RED-BSD. The following theorem
presents the analysis of PnP-BPGM for a strongly convex function
f and a Lipschitz continuous operator Dg. While these assumptions
are too strong for some applications, they provide the first steps for
the broader analysis of Bregman PnP/RED methods.

Theorem 1 Assume h be pp-strongly convex with Ly-Lipschitz
continuous gradient, and f be pg-strongly convex function with
L-Lipschitz continuous gradient. Assume Dg be an M-Lipschitz

4. NUMERICAL ILLUSTRATION

4.1. Poisson Linear Inverse Problem

We empirically evaluated the proposed methods on Poisson linear
inverse problems. Poisson noise is a signal dependent noise whose
negative log-likelihood function results in the following data-fidelity
term and its gradient

f(@)=1"Ax — y" log (Az) + 17 log(y!)
Vi@)=A"(1-yo(Az))

(16a)
(16b)

where 1 is a vector of ones, and @ denotes element-wise division.

Classical algorithms for solving Poisson linear inverse problems
include the Richardson—Lucy (RL) algorithm and transform-based
methods [23-28]. Several ADMM-based algorithms were proposed
that handle the data fidelity via its proximal operator [29, 30]. In
[14] it was showed that by using the Burg’s entropy as a reference
function h(x) = —1" log(x), one can satisfy (8) with L > ||y||:.
Therefore, using (13) we can obtain the following simple iteration
for PnP-BPGM

K z"

= 17
operator. Then, the iteration in (13) converges to a fixed point if 1+~yxk O Vf(zF) (172)
pn (g + L) z"" = Do (2"), (17b)
M< ——— (15)
Ly Ly — pn g
. where © is the element-wise multiplication. It can be shown that
and the step size % (TZ - ﬁ) <7< %’; 1+ 35)- the backward operator is related to inverse Gamma scale estimator.
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Fig. 2: Examples of image reconstruction results on Babara (top) and Cameraman (bottom) obtained by U-Net, U-PnP-PGM, U-RED-SD,
U-PnP-BPGM, and U-RED-BSD. The first row is corresponding to the noise peak 8 with uniform kernel, and the second row is noiser peak
32 with Gaussian kernel. Each reconstruction is labeled with its PSNR (dB) value with respect to the Ground-truth image. Visual differences
are highlighted using the rectangles drawn inside the images. Note U-PnP-BPGM and U-RED-BSD shows close performance one to another,
outperforming other methods and providing the best visual results by recovering sharp edges and removing artifacts.

Similarly, RED-BSD in (14) can be simplified to

k

k4+1 _ T
S oI TV M) IO R

4.2. Image Deblurring with Poisson Noise

We demonstrate the ability of our proposed algorithms PnP-BPGM
and RED-BSD over their traditionally counterparts PGM and RED
on Poisson linear inverse problems. We focus on image deblurring,
where the forward model A corresponds to the blurring operator.
Specifically, we follow a similar settings in [29, 30], and test our al-
gorithms for Poisson noise with peaks 8 and 32 using two different
blur kernels of size 9 by 9: (1) a Gaussian kernel with ¢ = 1.6,
and (2) a uniform kernel, respectively. All the methods compared
are trained in an unfolding fashion as illustrated in Fig. 1, where
the end-to-end training seeks to compute the trainable parameters
in Dg by minimizing the /5 loss function between network output
{x} and the ground-truth {z} over all training samples. We set
20 using the raw measurements y with a small white Gaussian per-
turbation. We unfold each algorithm with K = 100 iterations for
stable performance, where in each iteration, the network Dg is re-
alized using a 7—layer DnCNN [18] with shared weights across all
iterations. The step-size parameter « and the regularization param-
eter 7 in RED and BRED are set as a learnable parameters, initial-
ized with v = 5 X 10t and 7 = 1 x 1073, As a reference, we
also report the image reconstruction performance of the end-to-end
learning method where U-Net [31] is trained end-to-end in the usual
supervised fashion using the /2-loss. All networks are trained on
public dataset BSD400 for 400 epochs, using the Adam solver [32]
with an initial learning rate 1 x 10~%. We select the models that
achieved the best performance on the validation dataset BSD68. At
test time, Setl2 dataset is used to evaluate the performance of each
algorithm.
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The numerical results on the test dataset Setl2 with respect to
two scenarios are summarized in Table 1. Test images used for
the quantitative performance labeled from 1 to 12 are: Camera-
man, House, Pepper, Starfish, Butterfly, Plane, Parrot, Lena, Bar-
bara, Boat, Artist, Room. For each image, the highest PSNR in each
scenario is highlighted. We observe that the performances of U-
PnP-BPGM and U-RED-BSD are very close to one another, provid-
ing the best performance compared to all the other methods, outper-
forming U-PnP-PGM and U-RED-SD. Fig. 2 shows visual examples
for two images from Set12 in two different settings, uniform kernel
with peak 8 (top) and Gaussian kernel with peak 32 (bottom). Note
that both U-PnP-PGM and U-RED-SD yield similar visual recovery
performance with artifacts remaining in the images, U-PnP-BPGM
and U-RED-BSD show much better reconstruction performance in
removing artifacts and noise. The enlarged regions in the image sug-
gest that U-PnP-BPGM and U-RED-BSD better recover the fine de-
tails and sharper edges compared to their counterparts and U-Net.

5. CONCLUSION

This paper proposes generalizing plug-and-play priors (PnP) and
regularization by denoising (RED) beyond squared Euclidean dis-
tance using the Bregman distance. The proposed Bregman-based
methods are motivated by the recent progress in optimization, that
have the potential to better align to specific non-Euclidean geome-
try of the loss function. Our numerical results show the potential of
the proposed methods in Poisson linear inverse problems. This work
can be considered as a first step towards extending widely-used Pn-
P/RED to problems where there is a benefit of using non-Euclidean
formulations of proximal and projection operators.

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on May 26,2023 at 21:09:35 UTC from IEEE Xplore. Restrictions apply.



(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(1]

[12]

[13]

(14]

[15]

[16]

6. REFERENCES

G. Ongie, A. Jalal, C. A. Metzler, R. G. Baraniuk, A. G. Di-
makis, and R. Willett, “Deep learning techniques for inverse
problems in imaging,” IEEE J. on Sel. Areas in Inf. Theory,
vol. 1, no. 1, pp. 39-56, 2020.

V. Monga, Y. Li, and Y. C. Eldar, “Algorithm unrolling: Inter-
pretable, efficient deep learning for signal and image process.”
IEEE Signal Process. Mag., vol. 38, no. 2, pp. 18-44, 2021.

S. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg, “Plug-
and-play priors for model based reconstruction,” in 2013 IEEE
Global Conf. on Signal and Inf. Process., 2013, pp. 945-948.

Y. Romano, M. Elad, and P. Milanfar, “The little engine that
could: Regularization by denoising (RED),” SIAM J. on Imag-
ing Sci., vol. 10, no. 4, pp. 1804—1844, 2017.

K. Gregor and Y. LeCun, “Learning fast approximations of
sparse coding,” in Proc. of the 27th Int. Conf. on Machine
Learning, June 2010, pp. 399-406.

U. S. Kamilov, H. Mansour, and B. Wohlberg, “A plug-and-
play priors approach for solving nonlinear imaging inverse
problems,” IEEE Signal Process. Lett., vol. 24, no. 12, pp.
1872-1876, 2017.

S. Ono, “Primal-dual plug-and-play image restoration,” /EEE
Signal Process. Lett., vol. 24, no. §, pp. 1108-1112, 2017.

A. H. Al-Shabili, H. Mansour, and P. T. Boufounos, “Learning
plug-and-play proximal quasi-newton denoisers,” in Int. Conf.
on Acoust., Speech and Signal Process., 2020, pp. 8896-8900.

Y. Sun, Z. Wu, X. Xu, B. Wohlberg, and U. S. Kamilov, “Scal-
able Plug-and-Play ADMM With Convergence Guarantees,”
IEEE Transactions on Computational Imaging, vol. 7, pp. 849—
863, 2021.

X. Chen, J. Liu, Z. Wang, and W. Yin, “Theoretical lin-
ear convergence of unfolded ISTA and its practical weights
and thresholds,” Proc. 32nd Int. Conf. Inf. Process. Syst., pp.
9079—-9089, 2018.

E. Ryu, J. Liu, S. Wang, X. Chen, Z. Wang, and W. Yin, “Plug-
and-play methods provably converge with properly trained de-
noisers,” in Int. Conf. on Machine Learning. PMLR, 2019,
pp- 5546-5557.

X. Xu, Y. Sun, J. Liu, B. Wohlberg, and U. S. Kamilov, ‘“Prov-
able convergence of plug-and-play priors with MMSE denois-
ers,” IEEE Signal Processing Letters, vol. 27, pp. 1280-1284,
2020.

X. Xu, J. Liu, Y. Sun, B. Wohlberg, and U. S. Kamilov, “Boost-
ing the performance of plug-and-play priors via denoiser scal-
ing,” in 54th Asilomar Conf. on Signals, Systems, and Comput-
ers, 2020, pp. 1305-1312.

H. H. Bauschke, J. Bolte, and M. Teboulle, “A descent lemma
beyond Lipschitz gradient continuity: First-order methods re-
visited and applications,” Math. of Operations Res., vol. 42,
no. 2, pp. 330-348, 2017.

H. Lu, R. M. Freund, and Y. Nesterov, “Relatively smooth
convex optimization by first-order methods, and applications,”
SIAM J. on Optim., vol. 28, no. 1, pp. 333-354, 2018.

M. Teboulle, “A simplified view of first order methods for op-
tim.” Math. Program., vol. 170, no. 1, pp. 67-96, 2018.

[17]

[18]

[19]

[20]

(21]

[22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

(30]

[31]

(32]

245

E. T. Reehorst and P. Schniter, “Regularization by denoising:
Clarifications and new interpretations,” IEEE Trans. Comput.
Imag., vol. 5, no. 1, pp. 52-67, 2018.

K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond
a Gaussian denoiser: Residual learning of deep CNN for im-
age denoising,” IEEE Trans. Image Process, vol. 26, no. 7, pp.
3142-3155, Jul. 2017.

S. Sreehari, S. V. Venkatakrishnan, B. Wohlberg, G. T. Buz-
zard, L. F. Drummy, J. P. Simmons, and C. A. Bouman, “Plug-
and-play priors for bright field electron tomography and sparse
interpolation,” IEEE Trans. Comput. Imag., vol. 2, no. 4, pp.
408-423, 2016.

A. Brifman, Y. Romano, and M. Elad, “Turning a denoiser into
a super-resolver using plug and play priors,” in 2016 IEEE Int.
Conf. on Image Process. (ICIP), 2016, pp. 1404—-1408.

L. M. Bregman, “The relaxation method of finding the com-
mon point of convex sets and its application to the solution of
problems in convex programming,” USSR Comput. Math. and
Math. physics, vol. 7, no. 3, pp. 200-217, 1967.

Y. Sun, B. Wohlberg, and U. S. Kamilov, “An online plug-and-
play algorithm for regularized image reconstruction,” /EEE
Trans. Comput. Imag., vol. 5, no. 3, pp. 395-408, 2019.

Z. T. Harmany, R. F. Marcia, and R. M. Willett, “This is
SPIRAL-TAP: Sparse Poisson intensity reconstruction algo-
rithms—theory and practice,” IEEE Trans. Image Process.,
vol. 21, no. 3, pp. 1084-1096, 2011.

P. Sarder and A. Nehorai, “Deconvolution methods for 3-D
fluorescence microscopy images,” IEEE Signal Process. Mag.,
vol. 23, no. 3, pp. 32-45, 2006.

J.-L. Starck and F. Murtagh, Astronomical Image and Data
Analysis. Berlin, Germany: Springer-Verlag, 2007.

N. Dey, L. Blanc-Feraud, C. Zimmer, P. Roux, Z. Kam, J.-
C. Olivo-Marin, and J. Zerubia, “Richardson—Lucy algorithm
with total variation regularization for 3D confocal microscope
deconvolution,” Microsc. Res. and Technique, vol. 69, no. 4,
pp- 260-266, 2006.

M. Makitalo and A. Foi, “Optimal inversion of the Anscombe
transformation in low-count Poisson image denoising,” IEEE
Trans. Image Process, vol. 20, no. 1, pp. 99-109, 2010.

F.-X. Dupé, J. M. Fadili, and J.-L. Starck, “A proximal itera-
tion for deconvolving Poisson noisy images using sparse rep-
resentations,” IEEE Trans. Image Process, vol. 18, no. 2, pp.
310-321, 2009.

M. A. Figueiredo and J. M. Bioucas-Dias, “Restoration of
Poissonian images using alternating direction optimization,”
IEEE Trans. Image Process, vol. 19, no. 12, pp. 3133-3145,
2010.

A. Rond, R. Giryes, and M. Elad, “Poisson inverse problems
by the plug-and-play scheme,” J. of Vis. Communication and
Image Representation, vol. 41, pp. 96-108, 2016.

O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolu-
tional networks for biomedical image segmentation,” in Med.
Image Comput. and Computer-Assisted Intervention (MIC-
CAI), Munich, Germany, Oct. 2015, pp. 234-241.

D. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” in Int. Conf. on Learning Representations (ICLR),
San Diego, CA, USA, May 2015, pp. 1-13.

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on May 26,2023 at 21:09:35 UTC from IEEE Xplore. Restrictions apply.



