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Abstract. We prove quantitative norm bounds for a family of operators involving impedance bound-
ary conditions on convex, polygonal domains. A robust numerical construction of Helmholtz scat-
tering solutions in variable media via the Dirichlet-to-Neumann operator involves a decomposition of
the domain into a sequence of rectangles of varying scales and constructing impedance-to-impedance
boundary operators on each subdomain. Our estimates in particular ensure the invertibility, with
quantitative bounds in the frequency, of the merge operators required to reconstruct the original
Dirichlet-to-Neumann operator in terms of these impedance-to-impedance operators of the sub-
domains. A key step in our proof is to obtain Neumann and Dirichlet boundary trace estimates
on solutions of the impedance problem, which are of independent interest. In addition to the vari-
able media setting, we also construct bounds for similar merge operators in the obstacle scattering
problem.

1. Introduction and statement of results

In this article we prove norm bounds for a family of elliptic operators in convex, polygonal domains
with impedance boundary conditions. Our framework is motivated by the recent need for studying
the e↵ect of impedance boundary conditions in implementations of numerical methods that compute
the Dirichlet-to-Neumann map for Schrödinger operators on planar domains. The computation of the
Dirichlet-to-Neumann map is an important problem in the study of elliptic boundary value problems,
with applications in imaging ([Nac96, FMP09, WB10, FSU19], [WdHX11]), computation of high energy
eigenvalues ([BH14]), boundary trace estimates ([HT15, BHT18]), and in scattering theory for solutions
to the Helmholtz equation ([GBM15, PTB17, GPS19]).

Constructing numerical methods that solve elliptic problems with impedance boundary conditions
on planar domains is a fundamental problem in numerical analysis. For instance, they arise when
computing single frequency scattering solutions of the Helmholtz equation. There are a large number
of methods that treat the latter problem, see for instance the classical results [DT83, KM90, KM94,
Mel95, MW99], as well as the more recent results [BB10, BSW16, BHT18, PTB17, FHT20, MMPR20].
The recent book [Mar19] contains a very thorough overview of the subject. The approach to solving
elliptic boundary value and scattering problems using Impedance-to-Impedance operators has become
known as the hierarchical Poincare-Steklov method.

One robust approach for numerically constructing scattering solutions via the Dirichlet-to-Neumann
(DtN) map is a divide and conquer approach, which involves domain decomposition through splitting
the domain into smaller more manageable sub-domains. One of the first results that used impedance
boundary conditions in these methods was [BD97]. Impedance boundary conditions arise both in
classical domain domain decomposition methods, where an elliptic boundary problem is solved as a
standard linear system, as well as in the building of direct solvers as in [GBM15, PTB17], where an ap-
proximate inverse is constructed. The key feature of these numerical constructions of the DtN operator
is the decomposition of the large rectangular domain containing the scatterers into small polygonal
components. Computing the DtN operator of each small component is ill-conditioned numerically, due
to the possibility of hitting a resonance of the DtN operator. Therefore, one instead imposes impedance
boundary conditions on each sub-domain and computes the resulting impedance-to-impedance oper-
ators (see Definition 1.1 for the precise definition of these operators). Working with these operators
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removes the possibility of artificially introducing a resonance to the problem. These domains are then
merged back together through a canonical process to recover the impedance-to-impedance and DtN
operators of the original domain. We describe this process in Section 1.1.

A version of the divide and conquer approach described above referred to as the hierarchical
Poincare-Steklov method was implemented very successfully in the work of Gillman-Barnett-Martinsson
[GBM15], where the authors study a single frequency Helmholtz scattering problem in the presence of
an inhomogeneous medium. Using a spectral discretization on a Chebyshev grid, one can thus solve
the elliptic problem on each sub-domain to high accuracy. The merge process is done on a sequence of
rectangles of varying scales in order to reconstruct the exterior DtN operator (see [GBM15, Figure 2]).
A similar merge procedure using domain decomposition with impedance boundary conditions has also
been applied in obstacle scattering problems, with multiple disjoint scatterers, see [PTB17]. A similar
approach was developed in [GM14] using DtN maps instead of Impedance-to-Impedance maps.

The procedure given in [GBM15] requires the invertibility of a merge operator, derived from equa-
tions (2.15) and (2.16) of Section 2.4 of that paper, coming from impedance-to-impedance operators
on adjacent domains. The invertibility of this operator is assumed in [GBM15], and holds for all of
their numerical computations. As a consequence of our main theorems, we prove that this operator is
indeed invertible and establish frequency dependent estimates on its inverse.

Impedance boundary conditions and impedance-to-impedance operators have also been used in
many other numerical schemes. For example, when computing scattering solutions of the Helmholtz
equation in variable media, an important model problem is to replace the outgoing Sommerfeld ra-
diation condition satisfied by the scattering field by an impedance boundary condition. In this case,
impedance boundary conditions are used as first order absorbing boundary conditions and were pro-
posed in [EM77b, EM77a, EM79, BGT82]. Estimates on such models have been derived recently in
[GPS19], as well as in [GLS21] in the high frequency limit. The key feature of this model is that this
boundary condition is imposed on the boundary of a large rectangular domain outside of which the
wave speed is constant, and allows for a numerical study of the problem. Impedance-to-impedance
operators have also been used in [JLF06] when calculating periodic wave-guides with perturbations
and in [FKS15] for computing modes in photonic crystal wave-guides.

1.1. Set-up of the problem and statement of results. We study the impedance-to-impedance
(ItI) operator for a domain ⌦ ⇢ R2, defined as follows. Given f 2 L2(@⌦), consider the problem

(
�u+ k2V u = 0 in ⌦,

@⌫u+ iku = f on @⌦,
(1)

where � is the negative definite Laplacian, k > 0, and V 2 L1(⌦) is a positive scattering potential.
Then, under suitable assumptions on the domain ⌦ and potential V , problem (1) has a unique solution
u 2 H1(⌦) such that @⌫u� iku

��
@⌦

2 L2(@⌦). Here ⌫ is a unit normal vector to @⌦. The ItI operator
R⌦ is then defined by

R⌦f =
�
@⌫u� iku

����
@⌦

.

An important feature of the ItI operator is that, unlike the DtN operator, it is a unitary transformation
and hence numerically very well-conditioned. Our main results concern the case where ⌦ is the
rectangle [0, 2] ⇥ [0, 1], or the unit squares which are the two halves of this rectangle. We begin with
the following set-up.

Let S = [0, 1] ⇥ [0, 1] be the unit square, and V1, V2 2 L1(S) be non-negative potentials. Writing
the right hand edge as A = {1}⇥ [0, 1], and given f 2 L2(A), k > 0, suppose that for j = 1, 2, uj solve
the problem 8

><

>:

(�+ k2Vj)uj = 0 in S,

@⌫uj + ikuj = 0 on @S\A,

@⌫uj + ikuj = f on A.

(2)

Here ⌫ is the outward pointing unit normal to @S. We view the potentials V1, V2 as coming from the
smooth potential on the rectangle [0, 2]⇥ [0, 1], in the following sense.
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Assumption 1 (Vj are non-trapping with respect to (1, 0)). There exist V 2 C1([0, 2] ⇥ [0, 1]) and

c > 0 such that the potentials V1, V2 2 C1(S) defined by

V1(x, y) = V (x, y), V2(x, y) = V (2� x, y),

satisfy

2Vj(x, y) + (x� 1, y)·rVj(x, y) � c (3)

for all (x, y) 2 S, and j = 1, 2.

In particular, the condition in (3) ensures that Vj(x, y) � 1

2
c for all (x, y) 2 S. Assumption 1 implies

that both V1 and V2 are non-trapping with respect to the vertex (1, 0) in a way which we will make
precise in Remark 2.1 below. The problem (2) has a unique solution uj 2 H1(S) (see Proposition 2.1
in [GBM15]). Under Assumption 1, this solution uj satisfies @⌫uj

��
A
2 L2(A) and an elliptic estimate

giving L2-norm bounds on the boundary data (see Proposition 2.1 below). Therefore, we may now
define the operators Rj on L2(A):

Definition 1.1. Let V1, V2 satisfy Assumption 1, and let k > 0. For j = 1, 2 we define the impedance-
to-impedance operator Rj on L2(A) by

Rjf =
�
@⌫uj � ikuj

����
A

, (4)

where uj is as in (2).

By Assumption 1 on the potentials Vj , the operators Rj satisfy boundedness properties involving
the following modified versions of the Sobolev H1-norm, adapted to the size of the k parameter. For
functions h 2 L2(A) and k > 0 we define the norm

khk
H

1
k(A)

:= kkhk
L2(A)

+ k@⌧hkL2(A)
. (5)

Here @⌧ = @y is the tangential derivative on A. In addition, we let H1

k
(A) ⇢ L2(A) be the Sobolev

space defined using the norm k·k
H

1
k(A)

.

Our main theorems concern the invertibility of the operator I � R1R2 on appropriately chosen
function spaces. When this inverse exists, we denote it by

W = (I �R1R2)
�1. (6)

Before stating our estimates on W , we first explain how W appears when constructing the ItI
operator, R⌦, on ⌦ = [0, 2] ⇥ [0, 1] by a merge procedure involving ItI operators on the two squares.
Denoting S1 and S2 to be the two square halves of ⌦, we consider the two elliptic problems

8
><

>:

(�+ k2V )vj = 0 in Sj ,

@⌫vj + ikvj = 0 on @Sj\A,

@⌫vj + ikvj = f on A

8
><

>:

(�+ k2V )wj = 0 in Sj ,

@⌫wj + ikwj = g on @Sj\A,

@⌫wj + ikwj = 0 on A.

for f 2 L2(A) and g 2 L2(@Sj\A). We can then define the ItI operators Rj and Qj on L2(A) and
L2(@Sj\A) respectively by

Rjf = @⌫vj � ikvj
��
A
, Qjg = @⌫wj � ikwj

��
A
.

An illustration of this set-up is given in a simple setting in Figure 1.
The operators Rj and Qj are given in terms of the ItI operators RSj of the two unit squares. Note

that the operators Rj are the same as those in Definition 1.1, which can be seen by transforming the
square S2 onto S = [0, 1] ⇥ [0, 1] via the transformation (x, y) 7! (2 � x, y). Then, to construct the
ItI operator, R⌦, of the rectangle ⌦ in terms of the operators Rj , Qj , there is the following merge
procedure: Given h 2 L2(@⌦), we define u 2 H1(⌦) to be the solution of

(
(�+ k2V )u = 0 in ⌦,

@⌫u+ iku = h on @⌦,
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S1 S2

A

Ω

Figure 1. An example rectangle ⌦ formed by regions S1 and S2 merged together
on edge A. We distinguish between @⌦\A and A by using circles and dots respectively.

so that R⌦h = @⌫u� iku
��
@⌦

. To recover R⌦h, we set fj = @⌫ju+ iku
��
A
and gj = @⌫ju� iku

��
A
to be

incoming and outgoing data on the boundary A shared by the two squares Sj . Here ⌫j is the outward
pointing unit normal to Sj on A, so that @⌫1 = �@⌫2 = @x, and in particular f1 = �g2, f2 = �g1.
Then, to construct R⌦ in terms of Rj and Qj , it is necessary to express the data fj on A in terms of
h. Writing hj = h

��
@⌦\@Sj

gives the system of equations

Q1h1 +R1f1 = @⌫1u� iku
��
A
= g1

Q2h2 +R2f2 = @⌫2u� iku
��
A
= g2.

(7)

Using f1 = �g2, f2 = �g1, we can rewrite the system in (7) as

Q1h1 +R1f1 = �f2

Q2h2 +R2f2 = �f1.
(8)

This system is invertible, in that one can write f1 and f2 in terms of h1 and h2, precisely when the
operator I � R1R2 is invertible. In this case, setting W = (I � R1R2)�1 as above, the system of
equations in (8) can be inverted to write f2 as

f2 = �WQ1h1 +WR1Q2h2. (9)

The function f1 can then be recovered from the second equation in (8). Now that f1 and f2 are
prescribed in terms of h, we can immediately use RS1 applied to h|@⌦\@S1 and f1 on @S1 and RS2

applied to h|@⌦\@S2 and f2 on @S2 in order to define R⌦h. This procedure is precisely the merge
procedure given in [GBM15], where the invertibility of I �R1R2 is assumed. Our main theorems give
the existence of W = (I � R1R2)�1, with quantitative bounds in the frequency k, which then allows
for the full recovery of the R⌦ map. In addition, in Section 5 we show that our results also give bounds
on the operators WQ1 and WR1Q2 appearing in (9). We hope that our main theorems shed some
more light into why impedance boundary conditions work so well in classical domain decompositions
in numerical methods.

We now state our main results on the invertibility of I �R1R2.

Theorem 1.1. Let V1, V2 satisfy Assumption 1, and let k > 0. Then, for R1, R2 as defined in (4),
the operator

I �R1R2 : L2(A) ! H1

k
(A)

is a bijection, and the inverse operator, W defined in (6), is bounded.

In particular, this theorem allows for R⌦ to be recovered from the ItI operators of S1 and S2. Next,
we obtain explicit estimates on the operator norm ofW under control on the di↵erence kV2 � V1kL1(S)

.

Theorem 1.2. Let V1, V2 satisfy Assumption 1 and let � > 0. Then, there exist ✏� > 0 and C� > 0
such that the following holds. Given k > 0, suppose that

kV2 � V1kL1(S)
 ✏�(1 + k)�3(1+�). (10)

Then, for R1, R2 as defined in (4), the operator W in (6) satisfies

kWgk
L2(A)

 C� (1 + k)3(1+�)

⇣
kgk

L2(A)
+
�� 1

k
@⌧g

��
L2(A)

⌘
(11)
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for all g 2 H1

k
(A). In addition, the constant C� depends only on �, the constant in (3), and the

C1(S)-norms of V1, V2.

In the theorems above, and throughout this work, @⌧g denotes the tangential derivative of g. We
note that the bound (11) is equivalent to stating that W = (I�R1R2)�1 : H1

k
(A) ! L2(A) is bounded

with operator norm

kWk  C� k
�1(1 + k)3(1+�).

We emphasize here that our estimate on W is explicit in the frequency k. Using (10), the estimate on
W in Theorem 1.2 will follow from estimates on the operators I±R. We will prove these estimates on
I ±R in a more general setting, for convex polygons and a potential with a non-trapping assumption
(see Theorem 3.1 below). In Section 5.1, we compute explicit solutions to the impedance problem on
the square (with a constant potential) in order to discuss the sharpness of the spaces and frequency
bounds in our theorems. In particular, we show that W is not bounded as an operator from L2(A) to
itself. We also show that the constant (1 + k)3(1+�) appearing in Theorem 1.2 cannot be replaced by
(1 + k)↵ for any power ↵ < 1

2
. The factor of (1 + k)3(1+�) appears when bounding the Dirichlet data

of uj on A in terms of its Neumann data on A, where uj satisfies (2) (see Proposition 3.2). In Remark
3.2 below we pinpoint the estimates in the proof where an improved dependence on k would lead to a
smaller power of 1 + k in the estimate in (11).

We prove a very similar statement to Theorem 1.2 in Section 4 for the setting of scattering obstacles
inside the regions S1 and S2 instead of potentials. Obstacle scattering is widely used in applications,
and see, for example, [PTB17], where a similar merge procedure to the above is used in this setting.
For the obstacle scattering problem, it is not possible to obtain bounds on the impedance problem that
are uniform in small k (see Theorem A.6 in [GPS19]). For k bounded below, in Section 4 we obtain
quantitative (non-sharp) estimates in terms of k on the analogous merge operators in this setting.

A key step in the proof of these theorems is to obtain a lower bound on the Neumann and Dirichlet
traces on A of the solutions, uj , to the impedance problem. We carry this out for a class of convex
polygons in the proofs of Propositions 3.1 and 3.2. The bounds are obtained using appropriately chosen
vector fields, adapted to the polygon, and Green’s function estimates. These estimates are new and
of independent interest, as estimating the Dirichlet and Neumann boundary data of Laplace eigen-
functions (for example, [BHT18], [Chr17]) and solutions of the wave equation (for example, [BLR92],
[Tat98]) are well studied questions. We in particular highlight [BHT18], where these estimates are
used for another numerical purpose, namely to show how to obtain tight inclusion bounds for Dirichlet
and Neumann eigenvalues.

1.2. Applications to the [GBM15] merge procedure. Recall that the merge process described
above in (7), (8), and (9) is the procedure given in [GBM15]. There, they propose a numerical method
for constructing the Dirichlet-to-Neumann operator of the problem

(
�u+ k2(1� b)u = 0 in ⌦,

u = h on @⌦,

where b specifies the deviation of the wave speed from the wave speed of a constant background and
V = 1 � b plays the role of the non-trapping potential above. This problem has a unique solution
u 2 H1(⌦) for each h 2 H1(@⌦) and for k away from a discrete set of resonant wavenumbers. The
method proposed in [GBM15] involves solving this Dirichlet problem when ⌦ is a square or rectangular
planar domain, in terms of its ItI operator R⌦. To construct R⌦, they partition ⌦ into a hierarchical
tree of square or rectangular boxes {⌦⌧}⌧ (see [GBM15, Figure 2]), and spectrally approximate the ItI
operator on each leaf box. To approximate R⌦ they then use the above merge process. More precisely,
if ⌦↵ and ⌦� are squares or rectangles with one common side such that ⌦⌧ = ⌦↵ [ ⌦� , then R⌦⌧ is
constructed in terms of R⌦↵ and R⌦� via a merge operator W↵� .

In Section 5.2, we show an important application of our main theorems to this merge procedure.
Namely, we will show that estimate (11) implies that the operators WQ1 and WR1Q2 appearing in (9)
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are bounded from L2(A) to itself, with operator norm uniformly bounded for small k. This is crucial
in order to allow the merge process to be applied iteratively.

For simplicity, we consider the case of merging two squares, but our methods allow for merging
rectangles works in exactly the same way. To instead merge two squares ⌦↵, ⌦� of side length r < 1
(instead of r = 1), we can first rescale the problem to unit scale. This has the e↵ect of changing k to
rk and the potentials Vj(x, y) to Vj(rx, ry) for which Assumptions 1 and (10) continue to hold. Since
the constant in Theorem 1.2 is uniform in small k, the estimate in the theorem remains valid for the
merge operator W↵� of all smaller squares. This is crucial because, for example, in [GBM15], they use
these merge operators for their hierarchical tree of rectangular boxes of decreasing size. Our theorems
therefore provide estimates that guarantee the existence and boundedness of W↵� on appropriate
spaces. In [GBM15], the invertibility and boundedness of W↵� is simply assumed, whereas here we
are able to provide quantitative bounds on the operators of the type W↵� . Boundedness of a similar
merge operator for an obstacle scattering problem was established in [PTB17], but without quantitative
control, as we provide in Section 4.

Outline of the paper. For the rest of the paper we proceed as follows. In Section 2, we discuss the
proofs of the two theorems and record some of the elliptic estimates satisfied by the impedance-to-
impedance operators Rj . In particular, we show that the proofs of the theorems reduce to estimates on
the boundary behavior of solutions of the impedance problem on the square. In Section 3, we establish
this boundary behavior for the impedance problem for a class of convex polygons. This involves a
lower bound on the Dirichlet traces for solutions of a related Neumann problem. We consider some
quantitative bounds that follow from our analysis for the case of scattering by a convex obstacle in
Section 4, and to do this, we require some microlocal analytic bounds that we discuss in Appendix
A. In Section 5, we discuss the sharpness of the estimates in Theorems 1.1 and 1.2, and provide a
further discussion of how the estimates relate to the use of the operator W in the numerical scheme
in [GBM15].

Acknowledgements. TB was supported by NSF Grant DMS-2042654. YC was supported by the
Alfred P. Sloan Foundation and NSF Grant DMS-1900519. JLM was supported in part by NSF
CAREER Grant DMS-1352353 and NSF Applied Math Grant DMS-1909035. JLM also thanks MSRI
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also thank Dean Baskin, Adrianna Gillman and Euan Spence for helpful discussions on numerical
methods for the Helmholtz equation and comments on early versions of the results. We also thank
Nicolas Burq for insightful conversations about his work on boundary control theory that allowed us
to extend to the obstacle case.

2. Discussion of the estimates for the merge operator W

In this section we show how Theorems 1.1 and 1.2 reduce to estimates on the boundary behavior of
solutions of the impedance problem. Before considering the merge operator W we first record estimates
for the operators Rj from Definition 1.1.

Proposition 2.1. Let V 2 C1(S) satisfy (3) in Assumption 1, and let k > 0. Then, for G 2 L2(S),
g 2 L2(@S), the problem (

(�+ k2V )u = G in S

@⌫u+ iku = g on @S
(12)

has a unique solution u 2 H1(S). Moreover, there exists a constant C (independent of k) such that

kuk
H

1
k(S)

+ kkuk
L2(@S)

+ k@⌫ukL2(@S)
+ k@⌧ukL2(@S)

 C
⇣
kGk

L2(S)
+ kgk

L2(@S)

⌘
.

In the above proposition, we use the norm

kvk
H

1
k(S)

= kkvk
L2(S)

+ krvk
L2(S)

,
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for functions v 2 H1(S). We also let H1

k
(S) ⇢ L2(S) be the Sobolev space defined using the norm

k·k
H

1
k(S)

.

Proof. In the case of constant potential V , the control on kuk
H

1
k(S)

is given in [Mel95, Proposition

8.1.4]. Also, in this case, the control on u and ru on @S follow from equation (8.1.5) and the displayed
equation above (8.1.7) in [Mel95].

The method of proof from [Mel95] still applies in the case of non-constant potential, provided
Assumption 1 holds. To see this, as in [Mel95], one uses the bilinear form

B(u, v) =

ˆ
S

ru ·rv dv�k2
ˆ
S

V u v dv+ik

ˆ
@S

u v ds,

where we write x = (x, y), dv for the Euclidean measure on S, and ds for the induced measure on @S.
The estimates on u are obtained by using the test function v(x) = z · ru(x), and an integration by
parts argument, where z is in the interior of S. Here we choose z = (x� 1 + ✏, y � ✏) 2 S, with ✏ > 0
a small constant chosen to ensure that Assumption 1 guarantees that

2V (x, y) + (x� 1 + ✏, y � ✏) ·rV (x, y) � 1

2
c.

Then, the only change in the proof when V is non-constant is that when integrating by parts one needs
to di↵erentiate the potential. Indeed, one obtains

ReB(u, v) = k2
ˆ
S

V |u|2 dv+
k2

2

ˆ
S

(z ·rV )|u|2 dv+
1

2

ˆ
@S

|ru|2(z · ⌫) ds

� k2

2

ˆ
@S

V |u|2(z · ⌫) ds+Re ik

ˆ
@S

u(z ·ru) ds. (13)

To obtain the same bound as in the estimate displayed right before [Mel95, (8.1.7)] one now uses that
Assumption 1 yields

k2
ˆ
S

V |u|2 dv+
k2

2

ˆ
S

(z ·rV )|u|2 dv � 1

2
ck2
ˆ
S

|u|2 dv,

and that z · ⌫ � ✏ > 0 on @S. The rest of the proof remains unchanged. ⇤

Remark 2.1. The estimate on V coming from (3) in Assumption 1 is used in a crucial way in the
above proof. This assumption is natural because it guarantees that V is non-trapping in the following
sense. Let q0 = (1, 0) 2 S and r > 0 be such that B(q0, r) ⇢ S. Then, there exists a time tr > 0
such that any trajectory q(t) with q(0) = q0 and corresponding to a bicharacteristic (q(t), ⇠(t)) 2 T ⇤R2

associated to the Hamiltonian flow induced by H(q, ⇠) = |⇠|2 � V (q) will leave the ball B(q0, r) for all
time t > tr. To see this we note that

d2

dt2
|q(t)� q0|2 = 4

�
2V (q(t)) + (q(t)� q0) ·rV (q(t))

�
.

Indeed, d

dt
|q(t)� q0|2 = {H, |q� q0|2} = 4(q(t)� q0) · ⇠(t), and so d

2

dt2
|q(t)� q0|2 = {H, 4(q� q0) · ⇠} =

4(2|⇠|2+(q� q0) ·rV ) = 4
⇣
2V (q(t))+(q(t)� q0) ·rV (q(t))

⌘
. It then follows that Assumption 1 yields

d

dt
|q(t)� q(0)|2 � c for all time t. Therefore, |q(t)� q(0)|2 � ct2 � t|q̇(0)|2, and so there exists tr > 0

such that |q(t)� q0| > r for all t > tr.

We note that for k bounded away from 0, the estimates in Proposition 2.1 are also contained in
Theorem A.6 in [GPS19], where they obtain estimates on the solution to the impedance problem under
Assumption 1 on Vj and a class of variable coe�cient operators.

Lemma 2.1. Let V1, V2 satisfy Assumption 1, and let k > 0. Then, there exists C > 0, depending
only on the constant in (3), such that for j = 1, 2, and f 2 L2(A),

kRjfkL2(A)
 C kfk

L2(A)
, k(I �Rj)fkH1

k(A)
 C kkfk

L2(A)
.
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Proof. Note that Rjf =
�
@⌫uj � ikuj

���
A
and (I �Rj)f = 2ikuj

��
A
. Therefore, the result follows from

applying Proposition 2.1 with G = 0 in S and g = f on A and g = 0 on S\A. ⇤

To prove Theorems 1.1 and 1.2, for f 2 L2(A) we obtain a lower bound on g = (I � R1R2)f by
writing

(I �R1R2)f = (I �R1)(I +R2)f � (R2 �R1)f. (14)

Together with a straightforward upper bound on R2 � R1, the key ingredient in the proof is a lower
bound on I ±Rj . We will prove the following.

Proposition 2.2. Let V1, V2 satisfy Assumption 1, and let k > 0. Given � > 0, there exist constants

c⇤ > 0, c⇤
�
> 0, depending only on � and the constant in (3), such that for all j = 1, 2, and f 2 L2(A),

k(I �Rj)fkH1
k(A)

� c⇤ kkfk
L2(A)

,

k(I +Rj)fkL2(A)
� c⇤

�
(1 + k)�3(1+�) kfk

L2(A)
.

In addition, the image of (I +Rj) on L2(A) is H1

k
(A), and the image of (I �Rj) on L2(A) is L2(A).

Since (I �Rj)f = 2ikuj

��
A
and (I +Rj)f = 2@⌫uj

��
A
, Proposition 2.2 provides a lower estimate on

the Dirichlet and Neumann traces of uj on A. This proposition in fact holds for a wider class of convex
polygons, and so in Section 3 we will prove a more general version of this proposition (see Theorem
3.1). We also have an upper bound on R2 �R1.

Lemma 2.2. Let V1, V2 satisfy Assumption 1, and let k > 0. There exists a constant C > 0, depending
only on the constant in (3), such that

k(R2 �R1)fkH1
k(A)

 C kV2 � V1kL1(S)
kkfk

L2(A)
.

Moreover, R2 �R1 : L2(A) ! H1

k
(A) is a compact operator.

We next prove Theorems 1.1 and 1.2 using Proposition 2.2 and Lemma 2.2.

Proof of Theorem 1.1: We first show that I � R1R2 : L2(A) ! L2(A) is injective. Suppose that
f 2 L2(A) with (I �R1R2)f = 0. Let u2 be the solution of (12) with V = V2, G = 0, and with g = f
on A, g = 0 on S\A. Also, let w1 be the solution of (12) with V = V1, G = 0, g = R2f on A, g = 0
on S\A. We then define the function v on the rectangle ⌦ = [0, 2]⇥ [0, 1] by

v(x, y) =

(
w1(x, y) for (x, y) 2 [0, 1]⇥ [0, 1],

�u2(2� x, y) for (x, y) 2 [1, 2]⇥ [0, 1].

Then, recalling the relation between V1 and V2 and the function V stated in Assumption 1, v(x, y)
satisfies (

(�+ k2V )v = 0 in ⌦\A,

@⌫v + ikv = 0 on @⌦,

where we continue to write A = {1}⇥ [0, 1].
By the uniqueness of solutions to the impedance problem (see Proposition 8.1.3 in [Mel95]), to

conclude that f = 0 it is su�cient to show that v and @xv are continuous across the line A.
By the definitions of u2, w1, and R2, we have that on A

@xu2 � iku2 = R2f = @xw1 + ikw1. (15)

Moreover, since we are assuming that (I �R1R2)f = 0 on A, we also have the equality on A of

@xu2 + iku2 = f = R1R2f = @xw1 � ikw1. (16)

Combining equations (15) and (16) implies that @xu2 = @xw1 and u2 = �w1 on A. This ensures that
v and @xv are continuous across the line A. Hence, f = 0 and so I �R1R2 is injective.
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To prove that I � R1R2 : L2(A) ! H1

k
(A) is bijective we use the decomposition given in (14). By

Proposition 2.2 the operator T := (I�R1)(I+R2) : L2(A) ! H1

k
(A) is invertible and T�1 is bounded.

Therefore, using (14) we have

T�1(I �R1R2) = I � T�1(R2 �R1). (17)

Note that R2 � R1 : L2(A) ! H1

k
(A) is compact by Lemma 2.2. Hence, since T�1 : H1

k
(A) ! L2(A)

is bounded, T�1(R2 �R1) : L2(A) ! L2(A) is compact. Using (17) this implies that T�1(I �R1R2) :
L2(A) ! L2(A) is a Fredholm operator of index 0, and also has trivial kernel. Therefore, the range of
T�1(I �R1R2) is L2(A), and so I �R1R2 : L2(A) ! H1

k
(A) is bijective.

We also note that combining Lemma 2.1, Lemma 2.2, and (14), the operator I � R1R2 : L2(A) !
H1

k
(A) is bounded. The fact that its inverse W is bounded therefore follows from the bounded inverse

theorem.
. ⇤
Proof of Theorem 1.2: From (14), with f = Wg we have

k(I �R1)(I +R2)Wgk
H

1
k(A)

 kgk
H

1
k(A)

+ k(R2 �R1)Wgk
H

1
k(A)

.

Applying Proposition 2.2 and Lemma 2.2 thus gives

c⇤c⇤
�
k(1 + k)�3(1+�) kWgk

L2(A)
 kgk

H
1
k(A)

+ C kV2 � V1kL1(S)
kkWgk

L2(A)
.

Here, c⇤, c⇤
�
, and C, are positive constants that depend only on � and the constant in (3). In particular,

for kV2 � V1kL1(S)
 ✏�(1 + k)�3(1+�),

kWgk
L2(A)


⇣
c⇤c⇤

�
k(1 + k)�3(1+�) � C✏�k(1 + k)�3(1+�)

⌘�1

kgk
H

1
k(A)

.

The estimate in the theorem follows from choosing ✏� > 0 such that C✏�  1

2
c⇤c⇤

�
.

. ⇤
It remains to prove Proposition 2.2 and Lemma 2.2. In Section 3 we prove Theorem 3.1 which is a

more general version of Proposition 2.2 for a class of convex polygons. We end this section by proving
Lemma 2.2 which follows in a straightforward manner from Proposition 2.1.

Proof of Lemma 2.2: Let u1, u2 be the solutions of (12) with potentials V1, V2 respectively, and with
g = f and G = 0. Then, setting v := u2 � u1 we have

(R2 �R1)f =
�
@⌫v � ikv

���
A
= �2ikv

��
A
. (18)

Since, (
(�+ k2V2)v = k2(V1 � V2)u1 in S,

@⌫v + ikv = 0 on @S.

Proposition 2.1 with V = V2, G = k2(V1 � V2)u1, and g = 0 yields

kvk
H

1
k(S)

+ kkvk
L2(@S)

+ k@⌫vkL2(@S)
+ k@⌧vkL2(@S)

 C
��k2(V1 � V2)u1

��
L2(S)

.

Applying Proposition 2.1 again also ensures that kku1kL2(S)
 C kfk

L2(A)
, and so the claimed estimate

on the norm of (R2 �R1)f follows from (18).
In addition, these estimates ensure that �v is in L2(S), with @⌫v

��
@S

2 H1(@S). Since S is a convex
polygon, by Theorem 1.6.1.5 in [Gri11], there exists a function w in H2(S) with normal derivative @⌫v
on @S. The function v � w satisfies Neumann boundary conditions on @S, with �(v � w) 2 L2(S),
and as S is convex, applying Theorem 4.3.1.4 in [Gri11] to v � w ensures that v 2 H2(S). Another
application of Theorem 1.6.1.5 then gives v

��
A
2 H3/2(A). Therefore, for each k > 0 fixed, R2 �R1 is

bounded from L2(A) to H3/2(A), and so for each fixed k, R2 �R1 is a compact operator from L2(A)
to H1

k
(A).

. ⇤
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3. Bounds on I ±R in the general setting

In this section we complete the proofs of the main theorems by proving Proposition 2.2. Since this
proposition in fact holds in more generality, we work in the following setting.

Let ⌦ ⇢ R2 be a convex polygon and A ⇢ @⌦ a side of the polygon. Given f 2 L2(A), k > 0, and
V 2 C1(⌦), suppose that u solves the elliptic problem

8
><

>:

(�+ k2V )u = 0 in ⌦,

@⌫u+ iku = 0 on @⌦\A,

@⌫u+ iku = f on A.

(19)

Here ⌫ is the outward pointing unit normal to @⌦. Analogously to Definition 1.1, for k > 0 we define
the operator R on L2(A) by

Rf =
�
@⌫u� iku

���
A
. (20)

We will again use the modified spaces, k·k
H

1
k(⌦)

and k·k
H

1
k(A)

from (5) (with the square S replaced

by ⌦). We now state the main result of this section.

Theorem 3.1. Let (a0, b0) be a vertex on the side A and let V 2 C1(⌦) be a non-negative, real valued

potential, for which there exists c > 0 such that

2V (x, y) + (x� a0, y � b0)·rV (x, y) � c, (x, y) 2 ⌦, (21)

i.e. in the language of Assumption 1, V is non-trapping with respect to (a0, b0). Then, given � > 0,
there exist constants c⇤ > 0, c⇤

�
> 0, such that for all k > 0 and R as defined in (20)

k(I �R)fk
H

1
k(A)

� c⇤ kkfk
L2(A)

,

k(I +R)fk
L2(A)

� c⇤
�
(1 + k)�3(1+�) kfk

L2(A)
,

for all f 2 L2(A). The constants c⇤ and c⇤
�
depend additionally only on the diameter and inner radius

of the polygon ⌦ and the interior angles at the vertices on A.

In addition, the images of (I �R) and (I +R) on L2(A) are H1

k
(A) and L2(A) respectively.

In the special case that ⌦ is the unit square and A is the side {1} ⇥ [0, 1], this theorem implies
Proposition 2.2. For the rest of this section we prove the theorem. The main part of the proof is to
establish the lower bound estimates, and then we end the proof by determining the ranges of I ±R.

Proof of Theorem 3.1: Let f 2 L2(A). Without loss of generality we assume that kfk
L2(A)

= 1. After
a rotation, reflection, and dilation, we also assume that A = {1}⇥ [0, 1], ⌦ is contained within the set
{(x, y) 2 R2 : x  1} and the vertex (a0, b0) = (1, 0). First, we claim that estimates in Theorem 3.1
are a consequence of the following two propositions.

Proposition 3.1. Let u solve (19). There exists C > 0, independent of k, such that

k@⌫ukL2(A)
 C kuk1/4

H
1
k(A)

.

Proposition 3.2. Let u solve (19), and let � > 0 be given. There exists C� > 0, independent of k,
such that

kkuk
L2(A)

 C�(1 + k)3(1+�)/2 k@⌫uk1/2L2(A)
.

To see that the estimates in Theorem 3.1 follow from these two propositions, note that using the
definition of R, we have

1

2k
k(I �R)fk

H
1
k(A)

= kuk
H

1
k(A)

, 1

2
k(I +R)fk

L2(A)
= k@⌫ukL2(A)

.

Therefore, to prove the estimates in Theorem 3.1 we need to show that there exist c⇤ > 0 and c� > 0,
independent of k, such that

kuk
H

1
k(A)

� 1

2
c⇤ and k@⌫ukL2(A)

� 1

2
c⇤
�
(1 + k)�3(1+�). (22)
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Now, since kfk
L2(A)

= 1, we have

1  kkuk
L2(A)

+ k@⌫ukL2(A)
 kuk

H
1
k(A)

+ k@⌫ukL2(A)
.

Therefore, the estimates in the Propositions above yield

1  kuk
H

1
k(A)

+ C kuk1/4
H

1
k(A)

, 1  C�(1 + k)3(1+�)/2 k@⌫uk1/2L2(A)
+ k@⌫ukL2(A)

.

Rearranging these inequalities proves the claimed estimates in (22). We prove Propositions 3.1 and
3.2 in Sections 3.1 and 3.2 respectively.

With Propositions 3.1 and 3.2 in place, it only remains to find the ranges of I±R. We first consider
I + R: By Lemma 3.1 below, this operator maps L2(A) into itself, and so we need to show that the
range of I + R contains L2(A). Given g 2 L2(A), we let v be the unique H1(⌦) weak solution to the
elliptic problem 8

><

>:

(�+ k2V )v = 0 in ⌦,

@⌫v + ikv = 0 on @⌦\A,

@⌫v = 1

2
g on A.

By the trace theorem, in particular kv 2 L2(A). Setting f to be 1

2
g + ikv|A 2 L2(A), we therefore

have (I +R)f = 2@⌫v|A = g. This means that the range of I +R on L2(A) is given by L2(A).

We now turn to I � R. We first record the analogous elliptic estimates to Proposition 2.1 that
are satisfied by the solution u in (19), with an identical proof to that of Proposition 2.1. From now on
we write ds to denote the measure on @⌦ induced by the Euclidean measure dv = dxdy in R2.

Lemma 3.1. The elliptic equation with boundary conditions in (19) has a unique solution u 2 H1(⌦),
and there exists C > 0, independent of k, such that

kuk
H

1
k(⌦)

+ kkuk
L2(@⌦)

+ k@⌫ukL2(@⌦)
+ k@⌧ukL2(@⌦)

 C kfk
L2(A)

.

Here ⌧ is the unit tangent vector to @⌦.

By Lemma 3.1, the operator I � R : L2(A) ! H1

k
(A) is bounded, and we will show that its image

contains H1

k
(A). Given g 2 H1

k
(A), let w be the unique H1(⌦) weak solution to the elliptic problem

8
><

>:

(�+ k2V )w = 0 in ⌦,

@⌫w + ikw = 0 on @⌦\A,

ikw = 1

2
g on A.

Again, by the trace theorem, w 2 H1/2(@⌦). The normal derivative of w is in L2(@⌦\A), while w is
itself in H1(A). Since ⌦ is a convex polygon, the interior angles where A meets its adjacent sides is
strictly less than ⇡. Therefore, by the estimates on solutions to elliptic equations with mixed Dirichlet-
Neumann boundary conditions given in [Bro94], rw is in L2(@⌦). In particular, @⌫w|A 2 L2(A).
Setting f to be @⌫w|A + 1

2
g 2 L2(A), we therefore have (I � R)f = 2ikw = g. This means that the

range of I �R on L2(A) is given by H1

k
(A), and this completes the proof of Theorem 3.1.

. ⇤

3.1. Proof of Proposition 3.1. Using Lemma 3.1 above, it is straightforward to show that kuk
H

1
k(A)

and k@⌫ukL2(A)
provide control on the boundary data of u on @⌦\A in the following sense.

Lemma 3.2. There exists a constant C > 0, independent of k, such that for u solving (19),

kkuk
L2(@⌦\A)

+ k@⌫ukL2(@⌦\A)
 Cmin{kuk1/2

H
1
k(A)

, k@⌫uk1/2L2(A)
}.

Proof of Lemma 3.2: We use the weak formulation of (19), which states that

0 = �
ˆ
⌦

ru ·rv̄ dv+k2
ˆ
⌦

V uv̄ dv+

ˆ
@⌦

@⌫uv̄ ds (23)
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for all v 2 H1(⌦). Setting v = u and using the boundary conditions yields

0 = �
ˆ
⌦

|ru|2 dv+k2
ˆ
⌦

V |u|2 dv�ik

ˆ
@⌦\A

|u|2 ds+
ˆ
A

@⌫uū ds.

Taking the imaginary part of the equation above, and using that iku = �@⌫u on @⌦\A, we have

k@⌫uk2L2(@⌦\A)
= kkuk2

L2(@⌦\A)
= kIm

ˆ
A

@⌫uū ds  k@⌫ ukL2(A)
kkuk

L2(A)
.

The result follows from Lemma 3.1.
. ⇤

We will see below that Lemma 3.2 provides su�cient control on kkuk
L2(A)

in terms of k@⌫ukL2(A)
in

order to prove Proposition 3.2. First, we use Lemma 3.2 together with the elliptic estimates in Lemma
3.1 to immediately bound k@⌫ukL2(A)

in terms of kuk
H

1
k(A)

and obtain Proposition 3.1. To do this we

use the weak formulation again with a di↵erent choice of test function v.

Proof of Proposition 3.1: We prove this proposition by choosing appropriate test functions in (23),
following the same ideas as for the original regularity estimates of the impedance problem in Propo-
sition 8.1.4 in [Mel95]. Let z := (x � a, y � b) with (a, b) to be specified later in the proof, and let
v = z ·ru. We shall use that

Re(uv̄) = 1

2
(x� a)@x

�
|u|2

�
+ 1

2
(y � b)@y

�
|u|2

�
,

Re(ru ·rv̄) = |ru|2 + 1

2
(x� a)@x

�
|ru|2

�
+ 1

2
(y � b)@y

�
|ru|2

�
.

Integrating by parts in (23), using the above equations and (19), gives

0 = �k2
ˆ
⌦

V |u|2 dv� 1

2
k2
ˆ
⌦

|u|2(z ·rV ) dv� 1

2

ˆ
@⌦

(z · ⌫)|ru|2 ds

+ 1

2
k2
ˆ
@⌦

(z · ⌫)V |u|2 ds+Re
⇣
� ik

ˆ
@⌦\A

u(z ·rū) ds+

ˆ
A

@xu(z ·rū) ds
⌘
.

Therefore, there exists C > 0, depending only on the diameter of ⌦, such that
���� k2

ˆ
⌦

V |u|2 dv� 1

2
k2
ˆ
⌦

|u|2(z ·rV ) dv� 1

2

ˆ
@⌦

(z · ⌫)|ru|2 ds+
ˆ
A

@xu(x� a)@xū ds
���

 C
⇣
kkuk2

L2(@⌦)
+ kkukL2(@⌦\A)krukL2(@⌦\A) + k@⌧ukL2(A)k@⌫ukL2(A)

⌘
.

Using Lemma 3.2, and that kuk
H

1
k(A)

is bounded, we can rearrange this as
�����k2

ˆ
⌦

�
V + 1

2
(z ·rV )

�
|u|2 dv� 1

2

ˆ
@⌦

(z · ⌫)|ru|2 ds+
ˆ
A

(x� a)|@xu|2 ds
����  C kuk1/2

H
1
k(A)

.

Expanding the second integral on the left hand side into the parts on @⌦\A and A, using that z · ⌫ =
(x� a) on A, and incorporating more terms on the right hand side, we can rewrite the above as
������k2

ˆ
⌦

�
V + 1

2
(z ·rV )

�
|u|2 dv� 1

2

ˆ
@⌦\A

(z · ⌫)|ru|2 ds+ 1

2

ˆ
A

(z · ⌫)|@xu|2 ds

�����  C kuk1/2
H

1
k(A)

. (24)

To conclude the proof, we need to choose (a, b) such that each term on the right hand side of (24) is
strictly negative. To do this we first note that for each ✏ > 0, there exists c0 = c0(✏) > 0 such that

(x� 1, y � ✏) · ⌫ � c0 > 0 on @⌦\A, (x� 1, y � ✏) · ⌫ = 0 on A.

Therefore, we set z = (x � 1 � c0
2
, y � ✏), and this has the property that z · ⌫ � c0

2
on @⌦\A, while

z · ⌫ = � c0
2

< 0 on A. Finally, for ✏ > 0 su�ciently small, and decreasing ✏ and c0 > 0 if necessary,
by the assumption on the potential V in (21), we have the lower bound 2V + z ·rV � 1

2
c on ⌦. This

is because the non-trapping assumption on V in (21) also holds for all points (a, b) su�ciently close
to (a0, b0) = (1, 0), with c replaced by 1

2
c. Therefore, each term on the left hand side of (24) has the
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same sign, and is each individually bounded by C kuk1/2
H

1
k(A)

, concluding the proof.

. ⇤

3.2. Proof of Proposition 3.2. We start the proof by noting that we may assume, without loss of

generality, that k@⌫ukL2(A)
 k@⌫uk1/2L2(A)

. Indeed, if this were not the case, then 1  k@⌫ukL2(A)
and

we would be done. It then follows that by Lemma 3.2

k@⌫ukL2(@⌦)
+ kkuk

L2(@⌦\A)
 C k@⌫uk1/2L2(A)

. (25)

Therefore, we wish to show that the estimate in (25) implies that

kkuk
L2(A)

 C�(1 + k)3(1+�)/2 k@⌫uk1/2L2(A)
. (26)

Let {�m}m�0 be the eigenvalues of the problem
(
(�+ �mV )wm = 0 in ⌦

@⌫wm = 0 on @⌦,

with corresponding orthonormal eigenfunctions wm (with respect to the (V ·, ·)-inner product on ⌦).
In particular �0 = 0 and w0 is constant in ⌦.

For k2 /2 {�m}m�0, let G(x;x0) be the Neumann Green’s function for �+ k2V . That is,

G(x;x0) =
1X

m=0

1

k2 � �m

wm(x)wm(x0). (27)

Here, we adopt the notation x = (x, y), x0 = (x0, y0) for points in R2.
To prove (26) we will split into two cases: k large and small. Indeed, let c⇤ > 0 be such that 2c⇤ is

a lower bound for the spectral gap. That is,

�1 � �0 = �1 � 2c⇤.

In Case 1 below we deal with values of k such that k2  c⇤, and in Case 2 we deal with k2 > c⇤.

Case 1: (k2 small)

For this case we assume that k2  c⇤. Since �0 = 0 is a Neumann eigenvalue, with correspond-
ing constant eigenfunction w0, we first subtract a constant u0 from u, so that u is orthogonal to u0 in
the (V ·, ·) inner product. Then, setting ũ = u� u0, it satisfies

(
(�+ k2V )ũ = �k2V u0 in ⌦,

@⌫ ũ = @⌫u on @⌦.
(28)

Let G0(x;x0) be the part of the Green’s function G from (27) which is orthogonal to the constant
eigenfunction w0 in the (V ·, ·) inner product. That is,

G0(x;x
0) =

1X

m=1

1

k2 � �m

wm(x)wm(x0).

Then, since �k2u0

´
⌦
G0(x;x0)V (x0) dx0 = 0, we have

ũ(x) = �
ˆ
@⌦

G0(x;x
0)@⌫u(x

0) ds(x0). (29)

To bound the right hand side of (29), we first consider

F0(x
0) = �

ˆ
⌦

G0(x;x
0)g(x) dx,
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where g is L2(⌦)-normalized. Using �m � k2 � c⇤ for m � 1, we have kF0kL2(⌦)
 (c⇤)�1, and F0

satisfies the equation

(�+ k2V )F0 = �⇧0g in ⌦, @⌫F0 = 0 on @⌦.

Here ⇧0 is the projection operator to the orthogonal complement of the constant eigenfunction. This
means that krF0kL2(⌦)

 C (c⇤)�1/2, and by a Sobolev trace estimate, the same holds for kF0kL2(@⌦)
.

Returning to the expression in (29), we therefore have thatˆ
⌦

ũ(x)g(x) dx =

ˆ
@⌦

F0(x
0)@⌫u(x

0) ds(x0)

can be bounded in absolute value by

kF0kL2(@⌦)
k@⌫ukL2(@⌦)

 C (c⇤)�1/2 k@⌫uk1/2L2(A)
.

Here we have also used the estimate on @⌫u from (25). Therefore, by duality,

kũk
L2(⌦)

 C (c⇤)�1/2 k@⌫uk1/2L2(A)
.

Combining this with the equation in (28) thus gives

kũk2
L2(@⌦)

 C kũk2
H1(⌦)

 C (c⇤)�1 k@⌫ukL2(A)
+ C

����
ˆ
@⌦

ũ@⌫u ds

���� .

Therefore, using (25) again we have

|u0|� kuk
L2(@⌦\A)

 kũk
L2(@⌦)

 C (c⇤)�1/2 k@⌫uk1/2L2(A)
.

The estimate kkuk
L2(@⌦\A)

 C k@⌫uk1/2L2(A)
from (25), thus implies the bound

|u0|  Ck�1 (c⇤)�1/2 k@⌫uk1/2L2(A)
.

Therefore,

kkuk
L2(A)

 kkũk
L2(A)

+ Ck|u0|  C (c⇤)�1/2 k@⌫uk1/2L2(A)
, (30)

and this implies the claim in (26).

Case 2: (k2 bounded away from zero)

For this case we assume that k2 > c⇤. To deal with this, we need to consider Neumann eigenmodes
with frequencies centered at k2. In particular, we want to rule out a Neumann eigenfunction having
small Dirichlet data on @⌦\A relative to the Dirichlet data on A. To do this we prove the following
proposition (using analogous techniques to those for triangles in [Chr17], [CX19]).

Lemma 3.3. Let V 2 C1(⌦) be as in Theorem 3.1. Let w be L2(⌦)-normalized and satisfy

(�+ k2V )w = h in ⌦, @⌫w = 0 on @⌦,

for some function h 2 H1(⌦), and k2 > c⇤. Then, there exists a constant c > 0, independent of k,
such that, if khk

H
1
k(⌦)

 ck2, then

ˆ
@⌦\A

|w|2 ds � c.

Remark 3.1. In the course of proving Lemma 3.3 we will in fact show that the lower bound holds for
the Dirichlet trace on the part of @⌦ complement to any two adjacent sides of the convex polygon.
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Proof of Lemma 3.3: The idea of the proof is to integrate the equation for w against an appropriately
chosen test function. For the vector field X = (x� 1)@x + y@y, we have

[�, X] = 2�, [V,X] = �X(V ).

Therefore,ˆ
⌦

�(Xw)w̄ � (Xw)(�w̄) dv =

ˆ
⌦

X(�w)w̄ � (Xw)�w̄ + 2(�w)w̄ dv

= �k2
ˆ
⌦

(2V +X(V )) |w|2 dv+
ˆ
⌦

X(h)w̄ � (Xw)h̄+ 2hw̄ dv . (31)

We first obtain an upper bound on the right hand side of (31). Using the assumption (21) on V ,
together with the L2(⌦)-boundedness of w, the first integral on the right hand side is at most �c1k2.
For the second integral, we first note that kwk

H
1
k(⌦)

is bounded by Ck. Therefore, by choosing the

constant c in the statement of the lemma to be su�ciently small, we can bound the second integral
from above by 1

2
c1k2. This choice of c thus ensures thatˆ

⌦

�(Xw)w̄ � (Xw)(�w̄) dv  � 1

2
c1k

2. (32)

We now turn to the left hand side. By Green’s identity,
´
⌦
�(Xw)w̄�(Xw)(�w̄) dv =

´
@⌦

@⌫(Xw)w̄ ds�´
@⌦

(Xw)@⌫w̄ ds. Therefore, since the second integral on the right hand side vanishes (w satisfies Neu-
mann boundary conditions), (32) can be written asˆ

@⌦

@⌫(Xw)w̄ ds  � 1

2
c1k

2. (33)

Next, we break up @⌦ into the pieces A1, A2, . . . Am, with A = A1 and Aj the remaining sides of the
polygon going counter-clockwise. Since @⌫ = @x, @xw = 0, and x� 1 = 0 on A the contribution to the
integral in (33) on A vanishes.

The contribution to (33) from the side Aj is equal toˆ
Aj

@⌫(Xw)w̄ ds =

ˆ
Aj

(@⌫w) w̄ ds+

ˆ
Aj

(X@⌫w) w̄ ds

=

ˆ
Aj

(x� 1, y) · (r@⌫w) w̄ ds.

Since @⌧@⌫w = 0 on Aj , we can rewrite this asˆ
Aj

(x� 1, y) · ⌫
�
@2

⌫
w
�
w̄ ds.

As Aj is a side of the convex polygon, and (1, 0) is a point on the boundary, the quantity (x� 1, y) · ⌫
is a non-negative constant on Aj . Moreover, as (1, 0) is the vertex joining the sides A1 and Am, this
constant is 0 for j = m, and a strictly positive constant for 2  j  m� 1. We thus have

ˆ
@⌦

@⌫(Xw)w̄ ds =
m�1X

j=2

ˆ
Aj

(x� 1, y) · ⌫
�
@2

⌫
w
�
w̄ ds. (34)

Using the equation that w satisfies, we can therefore write (33) as

m�1X

j=2

ˆ
Aj

(x� 1, y) · ⌫
�
�@2

⌧
w � k2V w + h

�
w̄ ds  � 1

2
c1k

2,

and by integrating by parts along Aj this becomes

m�1X

j=2

ˆ
Aj

(x� 1, y) · ⌫
⇣
|@⌧w|2 � k2V |w|2 + hw̄

⌘
ds  � 1

2
c1k

2.
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In the above, the Neumann boundary conditions and the convexity of ⌦ ensure that the gradient of
vm is continuous at each vertex, and hence vanishes there. Therefore, the boundary terms from the
integration by parts vanish. We have (x� 1, y) · ⌫ > 0 on Aj for 2  j  m� 1, V is bounded below
on ⌦, and khk

H
1
k(⌦)

 ck2. Therefore, again taking c > 0 su�ciently small ensures that we must have

m�1X

j=2

ˆ
Aj

k2|w|2 ds � c2k
2,

for some constant c2 > 0. This completes the proof of the lemma.
. ⇤

We now use Lemma 3.3 to handle Case 2. In this case, we set ũ = u� w, where

w =
X

|�m�k2|c0

(V wm, u)wm, (35)

and c0 = c0(k) > 0 will be specified below. Since we are in Case 2, we will in particular choose c0 so
that this sum does not contain m = 0. Then,

(�+ k2V )w = h, h :=
X

|�m�k2|c0

(k2 � �m)(V wm, u)V wm. (36)

Note that

khk2
H

1
k(⌦)

 Ck2c2
0

X

|�m�k2|c0

|(V wm, u)|2 = Ck2c2
0

ˆ
⌦

V |w|2 dv .

Therefore, we will take c0 = c1k, with c1 su�ciently small, depending only on c⇤, so that Lemma 3.3
can be applied. This then implies thatˆ

@⌦\A

|w|2 ds � c2
ˆ
⌦

|w|2 dv . (37)

Using (36), we see that ũ = u� w satisfies the equation

(�+ k2V )ũ = �h in ⌦, @⌫ ũ = @⌫u on @⌦. (38)

We now let Gk(x;x0) be the part of the Green’s function for � + k2V which is orthogonal (in the
(V ·, ·) inner product) to {wm : |�m � k2|  c0}. That is,

Gk(x;x
0) =

X

|�m�k2|>c0

1

k2 � �m

wm(x)wm(x0).

Then, since ˆ
⌦

V (x0)wm(x0)Gk(x;x
0) dx0 = 0

for those wm with |�m � k2|  c0, from (38) we have

ũ(x) = �
ˆ
@⌦

Gk(x;x
0)@⌫u(x

0) ds(x0). (39)

Analogously to Case 1, to bound the right hand side of (39) we first consider

Fk(x
0) = �

ˆ
⌦

Gk(x;x
0)g(x) dx,

where g is L2(⌦)-normalized. Using |�m � k2| � c0 for those m appearing in the sum in the definition
of Gk(x;x0), we have kFkkL2(⌦)

 c�1

0
= c�1

1
k�1. The function Fk also satisfies the equation

(�+ k2V )Fk = �⇧kg in ⌦, @⌫Fk = 0 on @⌦.

In this case, we use ⇧k to denote the projection operator away from the eigenfunctions wm, with
|�m � k2|  c0. This means that krFkkL2(⌦)

 Ckc�1

0
= Cc�1

1
. In a Lipschitz domain, the Sobolev
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trace estimate states that the L2(@⌦) norm of a function is controlled by its H1/2+�/2(⌦)-norm for
any � > 0. Therefore, returning to the expression in (39), for any � > 0, there therefore exists C� > 0
such that ˆ

⌦

ũ(x)g(x) dx =

ˆ
@⌦

Fk(x
0)@⌫u(x

0) ds(x0)

can be bounded in absolute value by

kFkkL2(@⌦)
k@⌫ukL2(@⌦)

 C� kFkkH1/2+�/2(⌦)
k@⌫ukL2(@⌦)

 C�c
�1

1
k�1/2+�/2 k@⌫uk1/2L2(A)

. (40)

Here we have again also used the estimate on @⌫u from (25), and Sobolev interpolation to bound
kFkkH1/2+�/2(⌦)

. This gives the bound

kũk
L2(⌦)

 C�c
�1

1
k�1/2+�/2 k@⌫uk1/2L2(A)

.

Since ũ and h are orthogonal in L2(⌦), we can integrate the equation in (38) against ũ and integrate
by parts to obtain

krũk
L2(⌦)

 C�c
�1

1
k�1/2+�/2k k@⌫uk1/2L2(A)

+

����
ˆ
@⌦

ũ@⌫u ds

���� .

Thus, krũk
L2(⌦)

 C�c
�1

1

�
1 + k1/2+�/2

�
k@⌫uk1/2L2(A)

, and using the Sobolev trace estimate again gives

kũk
L2(@⌦)

 C� kũkH1/2+�/2(⌦)
 C�c

�1

1

�
1 + k�

�
k@⌫uk1/2L2(A)

, (41)

for some possibly modified C� > 0. Therefore, for c1 su�ciently small, depending on c⇤, we can use
(37) to see that, since ũ = u� w,

c kwk
L2(⌦)

� kuk
L2(@⌦\A)

 kũkL2(@⌦\A)  C�c
�1

1

�
1 + k�

�
k@⌫uk1/2L2(A)

.

Thus, the estimate on u from (25) implies that kwk
L2(⌦)

 C�

�
k�1 + (1 + k�)c�1

1

�
k@⌫uk1/2L2(A)

. Then,

integrating the equation in (36) against w and integrating by parts, we obtain

kwk
H1(⌦)

 C�(1 + k)1+�c�1

1
k@⌫uk1/2L2(A)

.

We use the Sobolev trace estimate a final time to get

kwk
L2(@⌦)

 C� kwkH1/2+�/2(⌦)
 C�(1 + k)1/2+�c�1

1
k@⌫uk1/2L2(A)

. (42)

Combining this with (41) therefore implies that

kkuk
L2(@⌦)

 kkũk
L2(@⌦)

+ kkwk
L2(@⌦)

 C�(1 + k)3(1+�)/2c�1

1
k@⌫uk1/2L2(A)

, (43)

which completes the proof of the estimate in (26).
⇤

Remark 3.2. From the proof above, we see that any improvement in the dependence on k in the upper
bounds in (40), (41), and (42) coming from an application of the trace theorem, or an improvement in
the lower bound in Lemma 3.2, will lead to a sharper bound in Theorem 1.2. Note that from [Tat98]
the sharp estimate for the L2(@⌦) Dirichlet trace of a L2(⌦)-normalized Neumann eigenfunction of
frequency k2 is O((1 + k)1/3) (with this bound attained for a sequence of eigenfunctions on the disc),
compared to the bound of O((1 + k)1/2+�) that one obtains from a direct application of the Sobolev
trace estimate.
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4. (Non-sharp) Estimates for Obstacles using our machinery

Consider the following boundary value problem on ⌦ described in Figure 2

�u+ k2u = 0, u|@⌦5 = 0, @⌫u+ iku|@⌦j = fj for j = 1, 2, 3, 4.

We will demonstrate that comparable results to those in Theorem 3.1 hold in this case, though we will
restrict ourselves to the case of k > c⇤ > 0 uniformly bounded below away from 0 and we will have
less explicit constants arising in the estimates for large k. We prove for any 0 < � < 1

2
the slightly

modified bounds

k(I �R)fk
H1+�(A)

� c�(k) kfkH�(A)
, (44)

k(I +R)fk
H�(A)

� c+(k) kfkH�(A)
, (45)

where c±(k) are constants depending only on k. Here the operator R is defined analogously to before,
now with Dirichlet boundary conditions on the obstacle @⌦5 = @K for ⌦5 an open, convex set contained
in ⌦, and A = @⌦4 is the right side of the square. The proof of these bounds involve a boundary control
estimate using microlocal analysis. With more careful microlocal methods, these bounds can likely
be improved and optimized, though we do not pursue this here. As we are not trying to track the
dependence of the estimates on k, we now use the standard fractional Sobolev spaces H�(A) on the
boundary.

∂Ω1

∂Ω2

∂Ω5

∂Ω3

∂Ω4

Figure 2. A schematic of the obstacle problem.

First, we consider estimate (44). Following the first steps of the proof in Section 3, we may assume
that kfkH�(A) = 1, and so

1  kkukH�(A) + k@⌫ukH�(A)  kkukH1+�(A) + k@⌫ukH�(A).

Therefore, the desired estimates on I ± R will follow once we prove the existence of C±(k) > 0 such
that

k@⌫ukH�(A)  C�(k)kuk
1
4

H1+�(A)
, kkukH�(A)  C+(k)k@⌫uk

1
4

H�(A)
. (46)

We now proceed to replicate the rest of the proof from Section 3. Under the restriction to k > c⇤

and since the obstacle is star-shaped, Theorem A.6 in [GPS19] ensures that the analogous elliptic
estimates to Lemma 3.1 continue to hold. Lemma 3.2 also follows using the same proof since we have
Dirichlet boundary conditions on the obstacle. We emphasize however that the bounds on the normal
derivatives only hold on ⌦1,2,3 := @⌦1 [ @⌦2 [ @⌦3, as the proof gives bounds only on the normal
derivatives of the components of the boundary with impedance boundary conditions. Even with these
lemmas in hand, the proof of Proposition 3.1 involves integration by parts estimates with well chosen
vector fields to fit the polygonal nature of the problem. In particular, the proof of Proposition 3.1
would now pick up an error term involving the normal derivative of u on the obstacle. As a result, we
cannot in general use these techniques when there is an obstacle, and a modification is required.
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Therefore, we will establish both estimates in (46) using the strategy of the proof of Proposition
3.2. Note that we have restricted here to k uniformly bounded away from 0, and hence, we only
need to consider Case 2 of the proof. The other key di↵erence, needed to allow for obstacles in our
estimates, is that we need to generalize the results in Lemma 3.3 to give boundary control on the
three quadrilateral walls @⌦1,2,3 away from the shared wall A = @⌦4 and the obstacle itself @⌦5. The
resulting boundary control estimates that we require are of the following form. We similarly write
@⌦1,2,3,4 := @⌦1 [ @⌦2 [ @⌦3 [ @⌦4 to refer to the full set of boundaries for the quadrilateral.

Proposition 4.1. Let c⇤ > 0 and w be an L2(⌦)-normalized function satisfying

(�+ k2V )w = h in ⌦, @⌫w = 0 on @⌦1,2,3, w = 0 on @⌦5 (47)

for some h 2 H1(⌦) and k2 > c⇤. Suppose that either w = 0 on @⌦4, or @⌫w = 0 on @⌦4. Then, for

each ✏ > 0 there exists C > 0 (depending only on c⇤ and ✏) such that

kwkH1(⌦)  Ck✏
�
khkH1(⌦) + kwkH1(@⌦1,2,3)

�
. (48)

This estimate does not appear in the literature to our knowledge, but it is very similar to estimates
derived in [Bur91, BZ04] related to observability/control theory for Schrödinger equations in various
geometries. The key components required to prove such estimates are dynamical control of geodesics
that intersect the control region and a resolvent estimate that determines how much one can concentrate
on a non-degenerate hyperbolic orbit. The proof of this estimate involves some technical microlocal
analysis tools that exceed the scope of this section, but we give an overview of the proof in Appendix A.

We now demonstrate how to obtain the first estimate in (46) by adapting the proof of Proposition
3.2. Using Proposition 4.1 instead of Lemma 3.3, we can approach the proof of this estimate using
a Green’s function very similarly to the proof of Proposition 3.2. The main di↵erence is due to the
gradient of w on @⌦1,2,3 appearing in the right hand side of the estimate in Proposition 4.1. This means
that we require control on a higher order derivative of u on @⌦1,2,3, and this is why our estimates on
I ±R require fractional Sobolev spaces.

We now begin our adaptation of the proof of Proposition 3.2. Namely, let us take {µm}m�0 to be
the eigenvalues of the problem

8
><

>:

(�+ µm)wm = 0 in ⌦,

@⌫wm = 0 on @⌦1,2,3,

wm = 0 on @⌦4,5,

with corresponding orthonormal eigenfunctions wm, where @⌦4,5 := @⌦4 [ @⌦5. We note that we take
Dirichlet boundary conditions on A = @⌦4 since we wish to observe control on the normal derivatives
there.

To prove the first estimate in (46), we may assume without loss of generality that

kukH1+�(A) < kuk
1
4

H1+�(A)
.

By the analogous statement to Lemma 3.2, it therefore follows that

k@⌫ukL2(@⌦1,2,3)
+ kkukL2(@⌦1,2,3)

 C(k)kuk
1
2

H1+�(A)
,

where here and throughout C(k) is a constant depending only on k (and which may change from
line-to-line). Since @⌫u = �iku on @⌦1,2,3 and ru is bounded on @⌦1,2,3, by interpolation we have

krukH�(@⌦1,2,3)
+ kkukL2(@⌦)  C(k)kuk

1
4

H1(A)
. (49)

To now prove the first estimate in (46), let us take

w =
X

|µm�k2|<c0(k)

(wm, u)wm,
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and note then that

(�+ k2)w = h, h =
X

|µm�k2|c0

(k2 � µm)(wm, u)wm (50)

and

khk2
H1(⌦)

 Ck2c2
0

X

|µm�k2|c0

|(wm, u)|2 = Ck2c2
0
kwk2

L2(⌦)
. (51)

Here c0 = c0(k) is a constant depending on k to be prescribed below. Defining the modified Green’s
function

G̃k,c0(x,x
0) =

X

|µm�k2|>c0

1

k2 � µ2
m

wm(x)wm(x0),

we see that for |µm � k2|  c0, we haveˆ
⌦

wm(x0)G̃k,c0(x,x
0)dx0 = 0.

Letting ũ = u� w gives 8
>>><

>>>:

(�+ k2)ũ = �h in ⌦

@⌫ ũ = @⌫u on @⌦1,2,3,

ũ = 0 on @⌦5,

ũ = u on A = @⌦4.

Thus,

ũ(x) = �
ˆ
@⌦1,2,3

G̃k,c0(x,x
0)@⌫u(x

0)dx0 �
ˆ
A

@⌫G̃k,c0(x,x
0)u(x0)dx0

since (ũ, wm) = 0 for |µm � k2|  c0.
Following the proof of Proposition 3.2 mutatis mutandis, taking kgkL2(⌦) = 1, we construct the

function

Fk(x) = �
ˆ
⌦

G̃k,c0(x,x
0)g(x0)dx0

satisfying the equation

(�+ k2)Fk = �⇧̃kg in ⌦, @⌫Fk = 0 on @⌦1,2,3, Fk = 0 on @⌦4,5.

Once again, we use ⇧̃k to denote the projection operator away from the eigenfunctions wm, with
|µm � k2|  c0. Using elliptic estimates in the square [Gri11], this ensures that kFkkH2(⌦)

 C(k).
Combining this estimate with the expressionˆ

⌦

ũ(x)g(x)dx =

ˆ
@⌦1,2,3

Fk(x
0)@⌫u(x

0)dx0 +

ˆ
A

@⌫Fk(x
0)u(x0)dx0,

the estimates in (49) thus give the k-dependent bound kũk
L2(⌦)

 C(k) kuk1/4
H1+�(A)

. Using the equation
for ũ, and applying the elliptic estimate

kũk
H

3
2
+�

(⌦)
 C(k)

⇣
kũk

L2(⌦)
+ khk

H
� 1

2
+�

(⌦)
+ kũkH1+�(A) + k@⌫ ũkH�(@⌦1,2,3)

⌘
, (52)

we also have the bound

kũk
H

3
2
+�

(⌦)
 C(k)

⇣
khk

H
� 1

2
+�

(⌦)
+ kuk1/4

H1+�(A)

⌘
. (53)

The estimate (52) is stated in [Gri11], Section 1.5 (specifically following the discussion of the proof
Theorem 1.5.2.4) and is proved using interpolation estimates established in [Gri66]. Recalling that
ũ = u� w, and applying the trace estimate for convex polygons, this implies that

kwk
H1+�(@⌦1,2,3)

� kuk
H1+�(@⌦1,2,3)

 C(k)[khk
H

� 1
2
+�

(⌦)
+ kuk1/4

H1+�(A)
].
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Using (51), we can choose c0 = c0(k) > 0 su�ciently small so that the factor of Ck✏ khk
H1(⌦)

in the
right hand side of (48) can be incorporated in the left hand side of the inequality. Therefore, applying
Proposition 4.1 for this choice of c0, we have

kwk
H1(⌦)

 Ck✏ kwk
H1(@⌦1,2,3)

 C(k)[khk
H

� 1
2
+�

(⌦)
+ kuk1/4

H1+�(A)
+ kuk

H1+�(@⌦1,2,3)
].

Again choosing c0 = c0(k) > 0 su�ciently small to absorb khk
H

� 1
2
+� into the left hand side, and using

(49), we obtain

kwk
H1(⌦)

 C(k) kuk1/4
H1+�(A)

. (54)

The function w satisfies mixed Dirichlet-Neumann boundary conditions and the elliptic equation in
(50). From this elliptic equation satisfied by w, we can therefore convert the estimate in (54) into an
estimate on w in H3/2+�(⌦), and inserting this in (53) implies that

kuk
H3/2+�(⌦)

 C(k) kuk1/4
H1+�(A)

.

Finally, the trace theorem implies the first estimate in (46).
The second estimate in (46),

kkuk
H�(A)

 C+(k) k@⌫uk1/4H�(A)
,

follows using the same strategy of proof both as above and in the proof of Proposition 3.2, again using
the estimate in Proposition 4.1 in place of Lemma 3.3.

5. Remarks and Examples

5.1. Impedance eigenfunctions on the square. In this subsection, we discuss the estimates in
Theorems 1.1, 1.2, and 3.1 both in terms of the spaces appearing and the dependence of the estimates
on the frequency k. To do this, we will consider the special case where ⌦ is the unit square [0, 1]⇥ [0, 1]
and the potential V ⌘ 1. We write down some explicit solutions to

(�+ k2)u = 0 in S

@⌫u+ iku = 0 on @S\A (55)

@⌫u+ iku = f on A,

by first separating variables and looking at the eigenvalues and eigenfunctions of the impedance problem
on [0, 1].

Lemma 5.1. The eigenvalues of

w00(y) = ��2w(y) in [0, 1]

w0(1) + ikw(1) = �w0(0) + ikw(0) = 0

are given by the solutions � = �n of

e2i� =
(1� k��1)2

(1 + k��1)2
,

with corresponding eigenfunctions

wn(y) = An

�
(�n + k)ei�ny + (�n � k)e�i�ny

 
.

This lemma follows immediately from solving the ODE on [0, 1] with the impedance boundary
conditions. The solution of (55) with fn = wn from Lemma 5.1 is then given by un(x, y) = vn(x)wn(y),
with vn(x) satisfying v00n(x) = (�2

n
�k2)vn(x) on [0, 1] and the boundary conditions�v0

n
(0)+ikvn(0) = 0,

v0
n
(1) + ikvn(1) = 1. Solving this ODE, and setting µ2

n
= �2

n
� k2 gives

vn(x) =
(µn + ik)eµnx + (µn � ik)e�µnx

(µn + ik)2eµn � (µn � ik)2e�µn
. (56)
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We use this construction to study the type of bounds that we can and cannot obtain on the operators
I ±R.

1) We first show that for any fixed k, the operator I�R is not bounded from below as an operator
from L2(A) to itself: For k fixed and n large, the eigenvalues �n from Lemma 5.1 have the
asymptotics

�n = n⇡ +Ok(n
�1), µn = n⇡ +Ok(1).

Therefore, the functions vn(x) from (56) satisfy

vn(1) =
1

n⇡
+Ok(n

�2), v0
n
(1) = 1 +Ok(n

�1).

As a result of these asymptotics, since (I �R)fn(y) = 2kun(1, y) = 2kvn(1)wn(y), we have

k(I �R)fnkL2(A)

kfnkL2(A)

=
2k

n⇡
+Ok(n

�2).

Since n can be any positive integer, we indeed see that I � R is not bounded from below as
an operator from L2(A) to itself.

2) We next use the functions un(x, y) to show that the constant appearing in the lower bound on
the operator I +R in Theorem 3.1 cannot be taken independent of k, for large k. Since

(I +R)fn(y) = 2@xun(1, y) = 2v0
n
(1)wn(y), fn(y) = wn(y), (57)

we will do this by choosing n (depending only on k) to make v0
n
(1) small. By the definition

of vn from (56), we therefore want to make µn as small as possible. Given a small ↵ > 0, we
consider the sequence of k = kn such that k + k↵ is equal to n⇡, and write

�n = k + k↵ + i�n.

Then, �n is an eigenvalue provided �n satisfies

e2ik+2ik
↵
�2�n =

(k↵ + i�n)2

(2k + k↵ + i�n)2
.

For large k, we therefore require

e�2�n =
k2↵

(2k + k↵)2
+O(�nk

�2),

which has a solution for �n with �n = O(log(k)). In particular, µ2
n
= �2

n
�k2 = 2k1+↵+O(k2↵),

and so from (56),

|v0
n
(1)| = O(µnk

�1) = O(k�1/2+↵/2).

Using this in (57) shows that

k(I +R)fnkL2(A)

kfnkL2(A)

 Ck�1/2+↵/2,

and hence the constant in the second estimate in Theorem 3.1 must tend to 0 at least at this
rate as k increases.

5.2. Use of W in the numerical scheme. As we described in the Introduction, our motivation for
analysing the operator W is in its use in merge operations in numerical schemes. In the scheme used
in [GBM15], the operator W is only applied to operators Qj that take the following form:

Given h 2 L2(@S\A), let vj solve
8
><

>:

(�+ k2Vj)wj = 0 in S

@⌫wj + ikwj = h on @S\A
@⌫wj + ikwj = 0 on A.
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We again then define the operator Qj on L2(A) by Qjh = @⌫wj � ikwj

��
A
. Then, under Assumption 1

on the potential Vj , using Proposition 2.1, the functions wj satisfy the following elliptic estimates,

kkwjkL2(A)
+ k@ywjkL2(A)

 C khk
L2(@S\A)

.

In particular, kQjhkL2(A)
 C khk

L2(@S\A)
. Moreover, since @xwj + ikwj = 0 on A, we have

k�1@yQjh = k�1@y@xwj � i@ywj

��
A
= �2i@ywj

��
A
.

Therefore, using Theorem 1.2 we obtain

kWQjhkL2(A)
 C⇤

�
(1 + k)3(1+�)

⇣
kQjhkL2(A)

+
��k�1@yQjh

��
L2(A)

⌘

 C⇤

�
(1 + k)3(1+�) khk

L2(@S\A)
.

In particular, for this composition of operators we do not have the loss of a derivative in the estimate.
Moreover, this bound is uniform in k, for small frequency k. Since, from Lemma 2.1, Rj is uniformly
bounded as an operator from L2(A) to itself, the above estimates for WQj also hold for the operators
WRmQj . This is important because in the merge process from [GBM15], as shown in the expressions
in (8) and (9), it is these compositions of operators that are used iteratively to reconstruct the ItI
operators in the original domain in terms of those of the hierarchical tree of square or rectangular
boxes in the partition.

Appendix A. The Obstacle Control Theory Estimate

In this appendix we provide an overview of the microlocal analysis results and tools required to
establish the boundary control estimate in Proposition 4.1. In particular, we recall here the black box

control theory and observability machinery from the work of Burq-Zworski [BZ04], which in turn relies
on resolvent estimates for exterior scattering problems. Resolvent estimates for various scattering
settings can be read about, for example, in [DZ19], though we will recall the necessary literature for
our setting below. Hence, we especially refer the reader to Section 6 of [BZ04] for several applications
that begin with resolvent estimates of the form considered here.

The results from [BZ04] are designed to apply to a wide variety of situations and the proofs involve
microlocal analytic techniques such as propagation of singularities estimates and semiclassical defect
measures that are beyond the scope of the current study. Hence, we will state the estimates that can
be inferred in our setting of a domain with mixed boundary conditions and an obstacle with Dirichlet
boundary conditions, but with notation simplified to that we have used above in our analysis. While the
estimate (48) in Proposition 4.1 does not appear in the literature to our knowledge, it is a relatively
straightforward, albeit technically challenging, application of the black box machinery. Hence, we
forego some details here for clarity.

As in Section 4 (see Figure 2), we will consider the operator �� on the rectangle ⌦. Here, we
are imposing Dirichlet boundary conditions on the obstacle boundary, referred to as @⌦5, Dirichlet or
Neumann boundary conditions on the gluing side, referred to as @⌦4, and imposing Neumann boundary
conditions on the remaining exterior boundary components @⌦1,2,3. In addition, we will consider the
domain, X, which denotes a properly selected double of ⌦ that is a compact manifold having reflected
across @⌦4, and Y , an open subset of this manifold X containing the resulting obstacles. See Figure 3
for a sketch of what we intend with X and Y . For simplicity, we will still refer to the outer boundary
of the manifold X as @⌦1,2,3.

The proofs of the main Theorems 1 and 8 in [BZ04] are given in Section 6 of that work and are
related to observability of time-dependent equations, though they are closely related to our desired
estimates. Indeed, the observability estimates in these theorems are seen to be equivalent to a family of
resolvent estimates that are related to underlying geometry of the domains in question. For solutions
w of the equations in (47), the resolvent estimates in [BZ04] are very similar to the estimates given in
(48). The main results that we require to obtain such an estimate are those found in Theorem 6 of
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[BZ04], which allow us to establish the following estimate,

kwkH1(⌦)  log(1 + k2)
⇣
hk2i� 1

2 k(��� k2)wkH1(⌦) + kwkH1(@⌦1,2,3)

⌘
(58)

for our specific geometry. Proving this estimate will clearly result in the proof of Proposition 4.1. The
logarithm in the above estimates will be related to a natural logarithmic loss in a resolvent estimate
in the exterior to convex obstacles (see (62) below).

In order to prove (58), one must establish first that elliptic estimates hold on the region away from
Y corresponding to boundary control results of the form

k�
X\Y wkH1(⌦)  C

⇣
hk2i� 1

2 k(��� k2)wkH1(⌦) + kwkH1(@⌦1,2,3)
+O(hk2i�1)kwkH1(⌦)

⌘
, (59)

where �
X\Y is a smooth cut-o↵ function supported in a neighborhood X \ Y and �

X\Y = 1 on X \ Y .
Second, we require a resolvent estimate on the black box exterior region given by taking the obstacles
in Y embedded in all of R2. More precisely, take ⌦0

5
to be the union of the obstacle with boundary

@⌦5 and its reflection about A, then take

(��� k2)v = h in R2 \ ⌦0

5
, v = 0 on @⌦0

5
,

where the operator ��� k2 is taken to have outgoing radiation conditions. Then, we require that for
a similarly defined cut-o↵ function �Y to a neighborhood of the black box region Y that

kvkH1(R2\⌦0
5)

 log(1 + k2)
⇣
hk2i� 1

2 k�Y (��� k2)�Y vkH1(R2\⌦0
5)

⌘
, |k| ! 1, (60)

where v is taken to be a smooth function, compactly supported within the support of �Y , and again
the logarithmic dependence upon k is related to the geometry of the black box region.

The estimate (48) will therefore follow directly from Theorem 6 of [BZ04] provided we can establish
the necessary elliptic estimates on X \ Y to establish (59) and apply a resolvent estimate exterior to
convex obstacles for (60).

Estimate (59) follows from a series of operations involving reflection operations on the domain and
applying the Lifting Lemma of Bardos-Lebeau-Rauch [BLR92, Theorem 2.2]. We recall the statement
of the result here for solutions of the wave equation.

Lemma A.1 ([BLR92], Theorem 2.1). Let M be a compact Riemannian manifold with smooth bound-

ary, @M . Suppose that q 2 T ⇤(@M) is a non-di↵ractive point and that u is a distribution defined in a

su�ciently small neighborhood of q in M , say U , such that

��u 2 C1(U), u|@M 2 Hs(U \ @M), ru|@M 2 Hs�1(U \ @M). (61)

Then, u 2 Hs(U) with the proper interpretation of microlocal regularity up to the boundary.

The result essentially states that anything near a smooth part of the boundary is controlled by
the boundary. Trivially, this extends to eigenfunctions. Estimate (59) and its classical analog would
both follow from (61) were the boundary of our quadrilateral domain smooth, as discussed in [BZ04].
Since our boundary is piecewise smooth and in Proposition 4.1 we are studying mixed homogeneous
Neumann and Dirichlet boundary conditions, we need a slight modification. To handle our domain
and boundary conditions, on a rectangle with Neumann (resp. Dirichlet) boundary conditions, we
can do a series of even (resp. odd) reflections and explore boundary control in a domain with joint
Neumann/periodic boundary conditions. First, we perform an odd reflection about @⌦4 when it is
a Dirichlet exterior boundary or an even reflection when it is Neumann such that we have a domain
with two obstacles and care as such only about boundary control on all 4 sides of the new domain, see
Figure 3.

In the region X \ Y , we thus have the boundary control in (59) if the boundary were smooth. In
our case, we must simply do another even reflection first in the vertical direction, giving a cylindrical
domain with Neumann boundary conditions on the vertical edges and periodic on the horizontal edges,
see the Left panel of Figure 4 where we represent periodic boundary conditions with red and Neumann
with blue (color online). This gives boundary control for all components of the function that will hit the
now smooth Neumann boundaries. A symmetric reflection gives a cylindrical domain with Neumann
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Y

X

Figure 3. A schematic of the obstacle problem after the reflection to remove the @⌦4 boundary.

boundary conditions on the horizontal edges and periodic on the vertical edges, see the Right panel
of Figure 4 where we represent periodic boundary conditions with red and Neumann with blue (color
online). Applying this sequentially proves the boundary control from all remaining geodesics that
would only intersect the horizontal boundary.

Figure 4. A schematic of the obstacle problem after horizontal reflection (Left) and
vertical reflection (Right).

The estimate in (60) for the black box in a neighborhood of the obstacle and shared domain wall,
follows from the work of Ikawa ([Ika83]) and Gérard ([Gér88]). This states that the resolvent R(k) =
(��� k2)�1 exterior to a collection of Dirichlet convex obstacles satisfies

k�R(k)�kL2!L2  C0

loghki
hki . (62)

See also the recent book of Dyatlov-Zworski [DZ19], Chapter 6 and specifically related estimates in
Section 6.3. In the case of single obstacle scattering, one has

k�R(k)�kL2!L2  C0

1

hki
see [TZ00].

Therefore, we have established the appropriate estimates (59) and (60), and hence the proof of (48)
thus follows from Theorem 6 of [BZ04].
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