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Deep Filtering With Adaptive Learning Rates

Hongjiang Qian~, George Yin

Absiraci—This article develops a new deep learning
framework for general nonlinear filtering. Our main contri-
bution is to present a computationally feasible procedure.
The proposed algorithms have the capability of dealing
with challenging (infinitely dimensional) filtering problems
involving diffusions with randomly-varying switching. First,
we convert it to a problem in a finite-dimensional setting
by approximating the optimal weights of a neural network.
Then, we construct a stochastic gradient-type procedure
to approximate the neural network weight parameters, and
develop another recursion for adaptively approximating the
optimal learning rate. The convergence of the combined
approximation algorithms is obtained using stochastic av-
eraging and martingale methods under suitable conditions.
Robustness analysis of the approximation to the network
parameters with the adaptive learning rate is also dealt
with. We demonstrate the efficiency of the algorithm using
highly nonlinear dynamic system examples.

Index Terms—Deep learning, filtering, stochastic approx-
imation (SA).

|. INTRODUCTION

HIS article develops a novel approach to nonlinear filtering
T using deep learning techniques. It presents a computa-
tionally feasible procedure. The proposed algorithms have the
capacity of dealing with challenging filtering problems involving
switching diffusions. First, we convert the infinitely dimensional
problem to a finite-dimensional setting. The problem becomes
to approximate the optimal weights of the corresponding neural
network (NN). Then, we construct a stochastic gradient-type
procedure to approximate the optimal weight parameters, and
develop another recursion for adaptively approximating the op-
timal learning rate (LR).
There is along history of nonlinear filtering. Given the state of
a system that is not completely observable, filtering is concerned
with state estimation based on partial observations of the system
state. Nonlinear filtering focuses on state estimation. Devoted to
conditional mean or distribution, the problem is in fact, infinite
dimensional. To illustrate the setup and the nature of the problem
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and fundamental difficulty, we briefly describe the setting of
the problem. We begin by considering the state of the system
x¢, a Markov process with an associate operator A (called the
extended generator). A function of z; is observable with additive
white noise so that the observation process y; is

dy; = h(z;)dt + dw,

where h is a continuous function and w; is a Brownian motion
independent of z,. Nonlinear filtering focuses on calculating
the conditional distribution or conditional mean of x; given
the information of the observation up to time ¢, namely, }; :=
o{ys : s <t} (the o-algebra generated by y. up to time ¢).
Early developments in nonlinear filtering can be found in the
classical work of Kushner [12], Duncan [7], Mortensen [17],
and Zakai [28], among others.

Consider a function space E' (a complete and separable metric
space) and sample paths of z; in the space of right-continuous
functions with left-hand limits endowed with weak topology
[known as D|[0,T] (see [14, Ch. 7])]. Denote by m; the condi-
tional distribution of z; given }; (information of the observation
up to time ¢). For any Borel function (Borel measurable) f on E,
the conditional mean given the information of the observation
up to time ¢ is given by m¢(f) = [ f(z)m¢(dzx). Then, m¢(f) is
known to satisfy the so-called Kushner equation

dri(f) = m(Af)dt + (m(hf) — m(F)me(h))dv,

where dv; = dy; — m¢(h)dt and v; is known as the innovation
process. Denote by o;(f) the unnormalized conditional distri-
bution (that is, the conditional distribution is not a probability
measure)

t i, 1 t Ll
o) =mf e ( [ mu@iva+ [ riau).
Then, o¢( f) satisfies the following equation (see [28])

doi(f) = o:(Af)dt + oe(hf)dys.

It has been referred to as the Duncan—Mortensen—Zakai equa-
tion subsequently. To calculate the unnormalized conditional
distribution o¢(f), a typical approach is to first find a solution
o¢(f) to the Duncan-Mortensen-Zakai equation, then show
that it is indeed the conditional distribution under uniqueness
of the solution of the differential equation. One of such ap-
proaches can be found in [11] in terms of the well posedness of
the corresponding martingale problem; see also [5] for related
treatment. Note that the conditional distribution given above
involves partial differential equations of infinite dimension.
Although the celebrated results of the Kushner equation and
the Duncan—Mortensen—Zakai equation decisively settled the
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matters of nonlinear filtering theoretically, the computation of
nonlinear filtering remains to be an extremely challenging task.
Various efforts on numerical methods for solving these equations
have been made. For example, Lototsky ef al. [16] developed a
spectral approach for nonlinear filtering based on the Cameron—
Martin version of the Wiener chaos expansion. An advantage
of this approach is its separation of the computations involving
the observations and those involving the system parameters. The
latter is shifted to offline and makes online computation more
efficient.

In this article, we focus on general filtering with regime
switching, which are diffusions modulated by a continuous-time
Markov chain. General filtering with regime switching is a
class of challenging problems. There are some efforts along this
direction. Early work on discrete-time hybrid models can be
found in [2], in which an interactive multiple model algorithm
to account for regime switchings was introduced. Subsequent
efforts can be found in [6]. They studied a filtering problem
with Markovian jumps. Their observation process consists of
an image-based sensor for the system mode and a conventional
sensor for the state. Under these conditions, they were able to
obtain a suboptimal filter; see also [4] for a linear recursive
least-square state approach in the absence of the system mode
observer.

For recent progress on general filtering, we refer the reader
to [9] and [10]. In [9], the authors used Galerkin’s approxi-
mation to solve a Zakai equation, whereas in [10], the authors
considered distributed mean-field filters for traffic networks and
developed a scheme decomposing the entire state space into
subspaces and performing the distributed filters independently.
Their main effort was still on developing approximation methods
of infinite-dimensional filtering equations.

We note that the difficulty of using the conditional distribution
based filtering is the underlying stochastic differential equations
are infinite dimensional. Thus, the aforementioned methods still
have to deal with the inherent “curse of dimensionality.” This
makes the filtering very difficult and challenging for general
nonlinear systems.

It is the purpose of this article to develop a new frame-
work with solid foundation, which is a deep neural network
(DNN)-based filtering approach. Our emphasis is on obtaining
a computationally feasible approach. In this article, we treat
general dynamic systems involving randomly-varying switching
processes. Such systems are termed hybrid diffusions or switch-
ing diffusions. A distinct feature is the coexistence of continuous
states and discrete states (also termed discrete events). That
is, the systems are running in continuous time, but the states
are hybrid involving both continuous and discrete states. Under
such a setup, it is computationally difficult or even virtually
impossible to directly use the traditional approaches in nonlinear
filtering. In this article, we focus on computable methods based
on DNNs.

A. Deep Filtering

The recent advent in machine learning and neural computation
has promoted the extensive use of NNs. To approximate func-
tions arising from applications using NNs has shown promising

outcomes. The essential ideas rely on composition of hidden
layers of base functions. Note that a DNN is one with several
hidden layers. In this article, we only consider a fully connected
NN with no connections between nodes in the same layer. We
refer the reader to [20] and [15] for an introduction to deep
learning and applications. Note also that stochastic gradient
methods play a key role in deep learning optimization when
searching for loss-function minimizing network weights. An
extensive coverage along this line can be found in [3].

Recently, a new type of DNN-based filtering is developed
in [24]. The idea is to generate Monte Carlo samples and then
use these samples to train a DNN. The observed data are used as
inputs to the DNN and the state trajectories from the Monte Carlo
samples are used as the target. The least squares error between
the target and calculated output is used as a loss function for the
DNN training to generate a weight vector. Then these weight
vectors are applied to another set (out-of-sample) of Monte Carlo
samples of the actual dynamic system. Such a state estimation
procedure is termed a deep filter (DF). For convenience and
simplicity, we also refer to the corresponding calculated DNN
output as the DF. The DF has the promise as a powerful tool
for state estimation thanks to the DNN. Indeed, it was shown
in [24] that the DF compares favorably to the traditional Kalman
filter, which requires system linearity, Gaussian distributions,
and delicate mathematical derivations. The DF, on the other
hand, demands none of these. It is remarkable that the DFs can
be used to treat switching models with jumps, which cannot be
handled by using the usual filtering techniques. In addition, in
applications, real data can be used to train the underlying DNN
so as to bypass the traditional model calibration. Filtering or
state estimation is difficult in general and is often extremely
time consuming, whereas the deep filtering techniques alleviate
the difficulty and reduce computational complexity, which is
promising for handling large-scale systems.

Clearly, the design behind the DF is completely different from
the traditional conditional mean estimation philosophy. Rather
than searching for conditional mean or distribution of the state
observations, the DF approach employs a DNN that is obtained
by data-based training through back-propagation and then feed-
forwarding filtering mechanisms. A key component of the DF is
the recursive algorithm searching for optimal weight parameters
that minimizes the corresponding loss function, which in fact,
is a finite-dimensional optimization problem.

B. Adaptive LRs

In [24], the training for deep filtering was done using back-
propagation with constant LRs. We note that the procedure
developed in [24] is only semirecursive or not fully recursive. For
recursive computation, it is more desirable to have fully recursive
procedures. Note that the constant LR choice is common in some
machine learning related works. Nevertheless, if the LR is too
small, it may take forever to converge; if too large, it tends to
overshoot leading to oscillation divergence. In order to make it
work, some initial guess work and preliminary runs are needed
to reach suitable LRs. Typically, to make the filtering more
efficient, one would apply a larger LR initially and decrease
its value over time. In view of this, it is desirable to vary LRs
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to adapt the descent of the loss functions over iterations. There
are some efforts along this direction. For example, time-based
LR schedules and step-based LR schedules were also used
in [18], in which the LRs decrease over time and iteration,
respectively. In these cases, the LRs are taken to be constants
independent of the value of the loss functions. Various adaptive
LRs can be found in Ruder [22] including the popular ones
(RMSprop and Adam). These LRs are taken to be functions of
the gradient of the loss functions in explicit forms. They are
structured to fit the need of the specific underlying application.
Their design is ad hoc in nature. Additional attempts were made
to choose LRs adaptively in [21]. In which, the updated LR
is proportional to the loss function. It is our observation that
a potential drawback of this approach is its reliance on the
magnitude of the loss function. Its performance is sensitive to
the initial value of the LR when the loss function is large. In deep
filtering problems, the noise can be large especially in cases with
random switching. In these cases, it is desirable to choose LRs
that are adaptive to various noise levels. As noted by LeCun ef
al. [15], it has long been recognized by the learning community
that the adaptive learning is an effective approach. Our approach
is along this direction focusing on fully recursive stochastic
gradient descent algorithms with adaptive LRs that is different
from the exiting results in the learning literature. Moreover,
although a class of algorithms has been proposed in [24], the
asymptotic properties of the deep filtering have not been fully
analyzed. There is a need to establish the foundation of DF. The
main objective of this article is to set up a solid foundation for
a deep filtering methods with adaptive LRs. In particular, we
develop a stochastic approximation (SA)-based algorithms by
making use of perturbed gradient estimates. We examine the
robustness of the approximation to the network parameters and
establish convergence of the scheme together with error bounds
under suitable conditions. To demonstrate the effectiveness of
our filtering schemes, we carry out numerical experiments with
nonlinear systems in a multidimensional setting. In contrast
to the preliminary version of the DF introduced in [24], the
DF algorithm developed in this article is fully recursive with
adaptive LRs.
Our main contributions of this article include the following.

1) We develop a brand new framework for general filtering
and state estimation. We are able to treat switching dif-
fusions and propose deep learning-based algorithms with
adaptive LRs. A key component of the DF is development
for fully coupled recursive algorithms searching for opti-
mal weight parameters and optimal LRs that minimize the
corresponding loss functions. Treating filtering problems
for diffusions modulated by a continuous-time Markov
chain is a challenging task. The development of feasible
algorithms is scarce and there has been no convergence
results provided to date for such problems to the best of
authors’ knowledge.

2) Our stochastic gradient descent with adaptive LRs is
fully recursive and strongly coupled aiming to achieve
loss-function minimization in a more systematic way and
enabling recursive computation. We carry out the corre-
sponding convergence analysis for the LRs. In particular,

we use SA methods to establish the convergence of the
LRs and to obtain error bounds on the weight parameters.

3) Rather than dealing with infinite-dimensional conditional
means, we are treating a finite-dimensional parameter
optimization problem using double recursions. Such a
setting enables us to establish robustness results on DNN
weight parameters in terms of the adaptive LRs.

4) We focus on filtering with switching models, which is
difficult to handle under the conditional mean (or distri-
bution) based approach. In particular, we note that in case
of switching diffusions, even if the systems are linear in
the state variables, the overall systems are still nonlinear
because of the switching. There has been no computa-
tional feasible methods for general conditional mean (or
distribution) type filtering with switching to date. In these
cases, our algorithms provide a viable alternative.

The rest of this article is organized as follows. Section II be-
gins with the setup of filtering problems for a class of switching
diffusion processes. In addition to the continuous-time problem,
we present a discrete-time approximation scheme. Our main
effort is on developing computable results using deep learning
machinery, which is presented in Section IV. Under the deep
filtering framework that we propose, a main task is to carry out
the parameter estimations for the NN weight. We, thus, consider
this problem in Section III. This section proposes a novel algo-
rithm that involves adaptive LR approximation and then use the
adaptive LR in the approximation of stochastic gradient type
procedures for the parameter estimates. Section VI provides
several examples on how our algorithms can be implemented.
Section VI presents several remarks and possible extension.
Finally, the Appendix containing some technical results is placed
at the end of this article.

Il. FILTERING OF SWITCHING DIFFUSIONS

We consider hybrid nonlinear filtering problems involving a
random switching process that is represented by a continuous-
time Markov chain a(-). Suppose that W(-) and W (-) are two
independent multidimensional standard Brownian motions. A
distinct feature here is that «(-) is a finite-state Markov chain
with state space M = {1,...,mq} and generator Q) = (g;;) so
that g;; > 0 and )™ g;; = O for each i € M. In this article,
the switching process a(t) is not directly observable. Our main
concern is the estimation of X (¢) as the state. So we do not
need the information of (%) or a(t) can be treated as noise.
We assume «(-) is independent of both W (-) and W() The
system state is X (£) € R% and the observation is Y () € R%.
The state and observation pair satisfies the following stochastic
differential equations:

{dX&%=ﬂXULMUH#+dX&LMﬂMWR)

dY (t) = g(X(¢), alt))dt + o1 (X (2), a(®))dW (5).

The inclusion of the switching process makes the filtering task
increasingly more difficult or even impossible using the tradi-
tional approach.

In this article, our main interest is on developing computable
numerical procedures for state estimation. To build a computable
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filter algorithm, we work with a discrete-time system of the form

{In+1 =T+ nf(Iman) & \/ﬁo—(xman)wn

2
Yni1l = Yn +N9(Tn,an) + \/ﬁgl(Iman)”ﬂ @)

where > 0 is a small step size, and a, is a skeleton process of
a(t). That is, a,, = a(nn) for each n. We take ay,, {w,}. and
{vn} to be independent random processes, in which {w, } and
{vn} can be thought of as the discrete-time “approximations™
of the corresponding Brownian motions in (1). It is readily
seen that (2) is a discretization of (1) with step size 7. We
have the following result concerning the approximation to the
continuous-time filtering problem.

Proposition 1: Suppose that (1) has a unique (in the sense in
distribution) solution for each initial condition. Assume that f,
g, o, and o1 have continuous partial derivatives with respect to
z up to the second order; {wy, } and {v, } are sequences of inde-
pendent and identically distributed random variables such that
Ewy, =0, Ev, =0, Ew,w), = I, and Ev,v], = I (the identity
matrix with appropriate dimension). For the approximation (2),
define piecewise constant interpolations by

z(t) = T, Y1(t) = yn, a'(t) = an for t € [nn,nn+17n).
3)
Then, the process (z"(-),y"(-),a"(-)) converges weakly to
(X(-),Y(-),a(-)), which is a solution to (1), where «(-) is the
Markov chain generated by Q.

We stated the proposition by using general conditions. An
equivalent way to state it as: The martingale problem (see
[27]) associated with (1) has a unique solution in the sense
in distribution. Note we only need the uniqueness holds in
the sense in distribution (not in the strong or pathwise sense).
Sufficient conditions that ensure the existence and uniqueness in
the pathwise sense can be stated as follows. Suppose that f(-, ),
g(-,a), o(-,a), and oy (-, ) are Lipschitz continuous for each
a € M. Because proving Proposition 1 is not our main line of
work here and because our earlier work already covers the main
idea, only ideas of proof is sketched in the Appendix. We mainly
show the discrete iterations converge to the switching diffusion;
some more details on switching diffusions can be found in [27].

lll. ESTIMATION OF NN PARAMETERS

To use machine learning techniques for filtering, there are
two main ingredients. One of them is the use of NN parameter
¢ and the other is the selection of LR p. Note that in our case,
the NN parameters are in finite dimensional spaces. A key in
our procedure is to find the optimal parameters. Nowadays,
a commonly used procedure for estimating parameter € is a
stochastic gradient type algorithm, rooted to the methods of SA.
The procedure uses a scheme based on noisy gradient estimates
of a loss function V.J(6). SA is a well studied subject initiated
in the early 1950s for root findings and stochastic optimization.
A state-of-the-art treatment of SA can be found in [14]. The
idea is to choose the parameters of the neural net so that a loss
function (objective function) J() is minimized. To do this, let
V.J(6,&) be the gradient estimates of VJ(6) at time k with
{&x} denoting a sequence of observation noise. Following such
an idea, a recursive algorithm to estimate # can be constructed

as follows:

Oks1 = O — pV I (0k, &x) 4)

where p > 0 is a selected LR. We write (4) as a general
scheme with nonadditive noise. A simple exampleis V.J (6, £) =
VJ(6) +&. That is, J(0) observed with an additive noise £.
Nevertheless, (4) is much more general than the additive noise
model.

In the existing machine learning literature, a constant LR is
commonly used. However, there were few systematic treatments
of how to choose the LR beyond the work of [21]. There have
been no in-depth serious mathematical analysis on properties of
algorithms with adaptive LRs. To analyze (4), we can use the
methods of [14]. The analysis is based on martingale averaging
methods. We show that as p — 0, an interpolated sequence
6°(t) = 6y for t € [kp,kp+ p) has a limit (in the sense of
weak convergence) so that the limit is a solution of a martingale
problem. From a dynamic system point of view, the limit is a
solution of an ordinary differential equation. The abovemen-
tioned analysis is based on the scaling p — 0, k — oo, and kp
“matches™ the continuous time £. Then, we can use stability
argument to show that when k — oo, p — 0, but kp — oo to
get the convergence to the minimizer of the cost function. We
will return to this point at a later time.

Nevertheless, we note that in practice, one normally does not
use an LR that goes to 0. Rather, one uses a fixed constant LR
as it has been done in the machine learning literature. It is clear
that not all LRs are equal. Some of them are better than the other
experimentally. A usual practice is to choose the LRs by trial and
ErTOor.

In this article, we propose a systematic approach, namely, an
adaptive strategy. The idea is that while we are updating the
parameter ¢, we also adaptively update the LRs. Then, updated
learning rates are used in the parameter estimation for . Thus,
in lieu of a single process in the iteration, we have two sequences
(a pair of sequences for estimating (£, p)) simultaneously. In the
process of updating, # and p are not changing at the same scale
or frequency. In fact, we update # more often than that p. To
reflect this, we propose an algorithm of the following form. We
allow the function to be varying with the NN parameter 6. For
our machine learning scheme, rather than assuming that the LR
is a fixed constant as in the most of the existing works, we will
generate a sequence of LRs { pn }. The sequence is generated so
as to minimize another objective function y that depends on the
LR. Similar to getting the estimates {6}, we use a sequence
of noisy gradient estimates of Y(p, f.) (to be specified later)
with a time-dependent cost function with {(,} denoting the
observation noise. The quantity 6, is a constant value returned
from estimates of # parameter. Our estimation algorithms are still
of stochastic gradient type. The procedure involves two levels.
One of them is the estimate of #, whereas the other is the estimate
for the LR. We denote by 672 the iterate within the epoch and p,,
the iterate for the LR across the epoch. Denote 6};"‘ = Onesr for
k < £.Soin particular, 67¢ = ¢, (similar notation for {£7}).
Suppose that the noisy gradients are available to us. Then, we
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consider the following stochastic gradient procedures:

Orts = 0" — Ve J (07, &%), k=0,...,0—1

(3
Pnt+l = Pn — G,

where Vg J(67¢, £0f) denotes the noisy gradients of J w.r.t.
6, € > 0 is a small parameter serving as a stepsize, and 9.
denotes a sequence of time-varying (n dependent) estimates of
the partial derivative w.r.t. p of the loss function (8/9p)X(p, fe)-
The én, in fact, depends on p, 6. a constant value within each
epoch, and a sequence of noise processes, which we will specify
shortly. The idea is that we choose a loss function so that the
noisy gradient estimate VgJ(67¢, £2¢) is available (e.g., we
may choose a quadratic (in #) function). For the iterates of p,,
however, because of large amount of data is used, the form
of the gradient or partial derivatives with respect to p is not
readily available. Thus, we have to use a noisy finite difference
to approximate the partial derivative.

Remark 2: The rationale of the construction can be illustrated
as follows. As far as the practical algorithm is concerned, we
consider that £ as the number of iterations within the nth epoch.
We are developing an adaptive LR scheme, so p,, is changing
(decreasing). However, for the first recursion 92‘, the p, is a
fixed constant LR. Starting from a preselected pp > 0 and initial
value 6 = 65° = 6o, we can start the iteration to get 6} for
k=0,...,¢ with pp used. Then, a computed constant value
f. = 9? is used in the second iteration for calculating p;. This
computed value of p; is then used in the approximation 9; It
returns a value 6 (set as ;) to be used in the next estimate of
p- and so on. That is, within each epoch, we use a constant LR.

Because of the second iteration in (5), the LR, in fact, is
changing in accordance with a gradient descent procedure. We
are searching for the optimal LR using the second recursion.
Note that @n depends on #,. that is a constant but varies for
different epochs.

We use xn(p, fe,(n) to denote a sequence of estimates of
X(p, 6 ), where (,, denotes the observation noise. In fact, be-
cause we are using a noisy finite difference, we use {(C}
({¢;F} and {¢;, }) two sequences of observation noise processes,
which are in the nonadditive form following the usual finite
difference approximation. In addition, there is another additive
noise sequence {cw,, } that is independent of {¢}. We write G,
in detail as follows:

G — A
26 26
where {w,} is a sequence of martingale difference noise

X (p,€) = xn(p £ 8,0e, ) )

0 = 6. > 0 is the finite difference parameter satisfying 6. — 0
ase — Obut (¢/62) — 0 [e.g., we may choose &, = £1/6.]Soin
particular, we have x=(pn, Cn) = Xn(pn £ 02, 0, (). Define

_ X(pn +6,6.) —X(prn — 6,0.) . xX(pn.0.)

(6)

bn 26, dp
Xn(p, ¢F) = [t (p,0e, ¢T) — X(p + ¢, 0e)]
. [XH(P: 9€1C_) _Y(p_és-;ee)]- (8)

Then, the second recursion in (5) can be written as

a)?(ﬂm 98) .
dp

E

b_
B

s =
Pnt+1 = Pn—E Xn(Pn:C:) — a7 @Wn-
20,

®)
The interpretation of (9) is that b,, can be considered as a bias
term, and the last two terms in (9) can be considered as noise
term, in which Y, represents nonadditive noise, whereas wy,
represents additive noise.
To proceed, we state the conditions needed for our recursive
algorithms.

(A1)The {w, } is a sequence of martingale difference noise that
is independent of {£,} and {(,} satisfying E|w,|? < oc;
{&n} and {¢, } are bounded sequences of noises such that

a) for each i and £, and each 0 € RY, {V,J(0,£¥)} is a
bounded stationary ¢-mixing sequence with appropriate
mixing rate such that

EVoJ(0,£X) =VeJ(6)

b) for each n and each p € R, {x,(p, 0., (&)} are bounded
stationary sequences of ¢-mixing processes with mixing
rate ¢(n) such that

Zi,’bu{n) < 00

and that there is a continuous function X(-) satisfying

]EXi(P: 981 C:l:) = Y(p: 69}'

(A2) For each n, each &, and each (, Vo J(-,£), X(+,0.), and
Xn (- 0e,(F) have continuous partial derivatives up to the
second order w.r.t. ¢ and p, respectively.

(A3) The following conditions hold.

a) The differential equation

6(t) = —VeJ (6(t)) (10)
has a unique solution for each initial condition.
b) The differential equation
: &
At) = —3—px(p(t):6e} (11)

has a unique solution for each initial condition.
Remark 3: It is well known that if a sequence is stationary
¢-mixing, then it is strongly ergodic. As a result, condition (A1)
implies that for each positive integer m, as n — oo

n+m—1
% Y EmVeJ(6,&) — VoJ(6) in probability. (12)
Jj=m

In fact, the abovementioned convergence also takes place with-
out the conditional expectation E,,, because of the strong ergod-
icity. In addition, in view of the well-known mixing inequality [8,
p- 349], for some K > 0

|Em Xk-i—m(P: 63: C;:::J,_mzlj 3
= |Erﬂxk+m(P: Oe, C_:H.m) = ]EX.'H-m (P: O, Ck-i—m) | (13)
< Kv(k)
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because Exi+m(p, be, C,irm) =0.

For generality, we assumed that the i dependent of n and
also includes both nonadditive noise and additive noise. In the
simplest case, (8/0dp)X(p, f.)+ noise. However, our setup is far
more general.

Note that (A3) essentially requires that the associated (degen-
erate) martingale problems have a unique solution. It is degen-
erate because no second-order term is involved in the operator
(to be given later). Note that we only need the uniqueness in the
sense of in distribution.

I\V. ASYMPTOTIC PROPERTIES OF THE ADAPTIVE LEARNING
ALGORITHM

This section is devoted to the convergence rate of the adap-
tive learning algorithm. For convenience, we suppress the -
dependence in Vg J2¢ and write it simply as VJ2¢ instead in
what follows. Because the iterations for 62¢ use a constant LRs
that do not go to 0 within each epoch, we begin our analysis by
examining the algorithm for the LR p,, first.

A. Convergence of p,

We shall use weak convergence methods to establish the
convergence property. To begin, define a piecewise constant
interpolation

pE(t) = pn, for t € [ne,ne +¢). (14)

To proceed, we first work on the convergence of {p°(-)}. Note
that under this interpolation, we may examine more closely the
martingale difference noise term. If we define

t/e—1
= o £
j=0
. t/e—1
E|M:(t)|2 = 5 Y eElw;|> =0 as € > 0.
E J=D

Thus, by the familiar martingale inequality

£ 2
gw—m as € —0. (15)
m

P (sup 7)1 2 7
t<T
Since we do not assume a prior that the sequence generated by
(5) is bounded, we need to use a truncation device [14, p. 284].
Let N be a fixed but otherwise arbitrary number satisfying N >
0. We focus on a truncated version of the iterates p? defined by

a)?(pg ) 6E)TN

Pry1=ph —€ 95 (n)

£ €
— 5T (PR) = 553 (pas GEIT™ (PR) — 555m
(16)
where TV () is a sufficiently smooth truncation function defined
by

1 if pe [-N,N]

T%(p) = { 0if pe R—[-(N+1),N +1].

Note that we only truncate p;, not the noise (,,. Define p=V () =
py for t € [en,en +¢). Then, p*N (t) = p*(t) 1<, With T
being the first exit time from [— N, N] (i.e.,7 = min{¢ : p°(¢) &
[~N, N]}). Thatis, p°-" (t) is equal to p*(¢) up until the first exit
from [~ N, N|. Thus, by the definition [14, p. 284], oV (-) isan
N-truncation of p°(-). In lieu of p°(-), we focus on {p=V(-)}.
We shall first establish the tightness of {p**™ ()}, and proceed
with the weak convergence of the sequence. Then, we will let
N — oo to complete the proof. In what follows, for notation
simplicity, we use ¢/¢ to denote |t/¢], the integer part of t/e.
without using the floor function notation.

Lemma 4: Assuming pj = pp and conditions (A1)—(A3),
5% (-) converges weakly to p™V(-) such that p™ (-) is a solution
of (11) with initial condition p" (0) = pp and with (G%/3p)
replaced by a7" /dp.

Remark 5: Note that in view of (A3), the associated martin-
gale problem with operator L is given by

9x(p, be) dh(p)

Lh(p) = ~=F==

a7

where h(-) is a suitably smooth function, (e.g., a continuously
differentiable function with compact support).

For simplicity, we have chosen the initial condition to be
independent of . We could replace this condition by allowing pg
to be £ dependent. In this case, we will assume that pj converges
weakly to pp. All the subsequent arguments still carry over.

Proof of Lemma 4 : In view of Remark 5, we shall show that
p™ () is a solution of the martingale problem with operator

9x" (p, 9e) dh(p)

N e s
LY h(p) == o i where
X" (p.6:)  X(p,0) v

To proceed, we first show that {p=™ (-)} is tight in the space of
functions that are right continuous having left limits endowed
with the Skorohod metric (see [14, Ch. 7] for various definitions
and notion of weak convergence). Note that weak convergence
is a generalization of convergence in distribution.

Step 1: We first show that {p*V(-)} is tight in D([0, o] :
R), where D([0, oc] : R) denotes the space of functions defined
on [0, cc) taking values in R, which are right continuous, have
left limits, endowed with the Skorohod metric (equivalently, the
sequence is sequentially compact).

Use E,, to denote the conditional expectation with respect
to the o-algebra generated by F,, = {(;,w; : 7 < n}. Fix any
A(-) € CZ (C? function with compact support), it is readily seen
that

EnA(pp;1) — Alpp)

IxX(pp » e
= — ey (o) LTV () — e T (52

2
— A Tnlom TV () 40 (55)

= (19)
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In the abovementioned, we used the fact that E, o, /(24.) = 0.
Using (8), calculation of the bias term leads to

bnTN(PnN)
= [T — o (n, 6] V() ca0)
- o[-t

where p;; is on the line segment joining p,, and p,, ;1. Because
{¢E} are stationary ¢-mixing sequences, by virtue of (13), for
each0 < T < ooand t < T, it is easily verified that

T/fe

2 X; (P, G )TN (p) — 0 in probability as £ — 0.
j=t/e

21

[We are taking n = t/< with the convention that ¢/ is meant to

be the integer part of ¢/<. In the rest of the tightness part of the

proof, we will use either n or £/ whichever is more convenient

for us.] Define a perturbation by

T/e
$(0:0) = ~55-85(0) 3 EeXs(p. TN () 22)
j=t/e
Recalling that n =t /¢
sup E|A5(pY,ne)| — 0 as € —» 0.
n<T/e
Now, define the perturbed smooth function A*(p) = A(p) +

$(p, ne). For any = € CZ, define an operator A® as

A°E(p}) = EnE(pY,) — (oY)
It can be seen that
A A5 (ne) == A°AS (o}, ne)

25 Ap(py )Xn(pn, G)TN (o) +0(1)  (23)

where o(1) — 0 in probability as € — 0. Note that the first term
on the second line of (23) cancels with the first term on the third
line of (19). By virtue of (19). (20), the boundedness due to the
truncation, the boundedness of the noise {¢Z}, the martingale
difference noise {wy,}, and the definition of A%(#), it can be
shown as in [13, Th. 2, p. 68] that {AA<(-)} is tight. Thus,
by Lemmas 5 and 7 on [13, pp. 50-511, {p*"(-)} is tight as
desired.

Step 2: We next proceed to characterize the limit process.
Because {p®" (-)} is tight, it is sequentially compact (see [14,
Ch. 7]). Thus, we can select a convergent subsequence. Pick out
such a subsequence, and for simplicity still use  as its index with
a limit denoted by p” (-). We proceed to characterize the limit
process. By Skorohod representation, in an enlarged probability
space, we can find 5= (-) and g (-) which are equal to p**"V (-)
and p™ (-), respectively, with probability one (w.p.1) such that
55N (-) converges to 5™ (-) w.p.1 in the enlarged probability
space. With a slight abuse of notation, we may assume that the
sequence itself p=V(-) — p™(-) w.p.1, and the convergence is
uniform on each bounded set.

To show that p™ (-) is the solution of a martingale problem
with operator L™, we need only show that for any h € C3,

continuously differentiable functions with compact support, any
bounded and continuous function H (-), any positive integer &,
anyt,s >0,: <k,andt, <t

EH(p" (t) -0 < 1) [A(o™ (t+9)) — h(o" )

t+=
- ft LNh(pN(u))du} —0. 24)

To verify (24), we work on the sequence p*™ (-). Using the weak
convergence and the Skorohod representation, we have

lim EH (5 (8,) : ¢ < R)[R(o"Y (¢ + 5)) — h(o ()]
—EH(p(t.) : ¢ < 0)[A(p" (t + ) — h(o™ (D).
Choose a sequence {k-} such that k. — cc and §-k. — oo as
€ — 0 but A. =¢ek: — 0 as € — 0. Subdividing the interval
[t/e, (t + s)/£) by using A., we have
h(p™N (t +5)) — h(p™" (2))

(t+s)/A

— Z [P(pjk.+x.) — h(pjk.)]

j=t/A.

(25)

(t+8)/Ac jkotk—1

dh(PJk ) Z
= ¥, B, =) L,
j=t/A. k=jk. =1
where
Ox(p, 0
Lky = Lia(p) = —Xpbe) (p)

op
Liz = —eb TV (p})

Lia = Lia(p) = —55%(0: T (p)

£
Lis= — —wr. (26)

26

By virtue of the estimates on the bias (20) and the martingale
difference noise y, it is readily seen that

ljm]EH(pE*N(t ):1< k)
(t+8)/Ac jhetk—1

dh
Z Z (PJkE Liz=0
j=t/A. k=jk.
lim EH (p* (AT n) @7
(t—i—s)/i‘.\ k-+k-—1
Z g Z dh(PJks -0
k4 — Y.

j=tfA. k=jk:

Letting €jk. —+ u, then for each k satisfying jk. <k <
jke + ke, €k — u. Thus, the continuity of (8x™ /8p)(-, e, ()
implies that (9x” /0p)(pk,0e,(x) can be replaced by
(0x™ /9p)(pjk., be, Cx) with an error term going to 0 in proba-
bility. As a result, we have

lim EH (5N (t,) : ¢ < ) [R(pN (¢ + 5)) — h(p"N (1)

= ]j_n%]EH(pE-‘N(tJ 1< K)
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[(t+9)/£\s jhetke—1

Z Z ]EJ-" = (pjks

j=t/Ac

1 N (5 .
= mEH(p™" () : ¢ < &)

k=jk:

[ (t+8)/Ac jke+k—1

Z Z E . dh(pjks)
J

Jj= t/.ﬂg k=jk=
x [Lra(phk,) + kaa(pﬁs)]] : (28)
It can be shown that
= £,N .
l_l_% EH(p5"(t) :t < K)
(t4+8) /A, jh+k—1 dh(
Pik.)
%t ¥, ¥ Ex Jk —=Li1(p%.)
Jj= t/ﬂs k=jk=
< dh(p™) ox" (p" (w)
=EH((pN(t,): 1<k [—f ]
(P (t) -t < k) ! do o
(29)

As for Lk,3(p_‘;-\';cs), we have

(t+8)/Ae jhe+k—1

dh
LA SH i W 2 A% B

i=tfA, k=jkc
1 (t+8)/Ac
=g 2 Aol
J=t/Ac

where o(1) — 0 in probability and
jks“l‘ks_l

1 dh(pjx,) _
R == Z oL ol &)
Jke I Re _‘,lk 1
Ok i dp
We claim that
I';x. — 0 in probability as € — 0. (30)
To see this, we compute the moment of I';,_. We have
E[T5. |
1 1dh(efy) 17" x
. 5k E T Z ]EJk Xﬂ(pjkE:Ck)|
K jks"l‘ks_l
< 73 k Z ]E.?k Xﬂ(pjks'!gk)|
ehe k—jk.
K Jket+k—1
— Y (k- jk.)
e g ik,
K
<3E (31

In the abovementioned, we used K as a generic positive constant,
whose value may change for different usage. We also used
Exn (p?;cs ,CE) = 0, the well-known mixing inequality with the

k)17 oY 4 Bl )1]

mixing measure 1(k), the summability of 1(k), and the choice
of k.. In view of (31), (30) follows.
Now, we combine the estimates (25)—(30) to obtain

GmEH (p™Y (t) - ¢ < K)[(p™" (¢ + 5)) — h(p™" (1)

t+=
=EH(p" (t,) : e < w)| f LV h(p" (u))dul. (32)

By virtue of (25)+32), and noting (18), we arrive at (24). Thus,

Lemma 4 is proved. |
Theorem 6: Under the conditions of Lemma 4, p°(-) con-

verges weakly to p(-) such that p(-) is the solution of (10).

Outline of Proof. We have shown that the truncated process
p5%(-) converges to p"V(-). Here, we need to show that the
untruncated process is also convergent. The argument is very
similar to [13, p. 44, Corollary], so we will only indicate the
main steps but leave the details out. Denote by P*°(-) and
PY(-) the measures induced by p(-) and p" (-), respectively.
The measure P#°(-) is unique by (A3). Thus, foreach T" < oo,
P#o(.) agrees with PV (-) on all Borel subsets of the set of
paths in D([0, oo) : R) with values in [N, N] fort < T'. How-
ever, PP° (sup;<7 |p(t)| < N) — 1las N — oo.The abovemen-
tioned together with p=-V (-) converges to p™ (-) weakly implies
that p*(-) converges weakly to p(-). The uniqueness of the ODE
then implies the desired results. This completes the outline of
the proof.

So far, the analysis is based on the scalings — 0, — oo and
en remains to be bounded (¢n is essentially the continuous time
t). To proceed, we consider the case thate — Oand n — oo such
that en — oo. We state a result in the following proposition.

Proposition 7: Suppose that the conditions of Theorem 6
hold: (11) has a unique stationary point p* that is stable in the
sense of Lyapunov; {p, } is bounded in probability in R. Then,
p°(t- + -) converges weakly to p* as € — 0 and t. — oo.

Remark 8: Note that for simplicity, we have assumed that
{pn} is bounded in probability. Sufficient conditions can be
derived, which are similar to Theorem 10. We omit the details,
however.

We provide a discussion on the main ideas of proof below.
Let us choose T > 0 and consider a convergent subsequence
of the pair of processes {p°(t- + -), p°(t- — T + -)}, with limit
denoted by (p(-), pr(-)). We have p(0) = p7(T'). The value of
pr(0) is not known, but all the possible such pr(0), over all T’
and convergent subsequences, belong to a set that is tight. This
together with the stability condition, forany § > OthereisaTs <
oo satisfying forall " > T}, pr(T") will be in a 6-neighborhood
of p* with probability > 1 — § yielding the desired assertion.

Before we analyze the iteration for 9};‘? in (5), we first present
a result on the analysis of (4). Because the proof is very similar
to Theorem 6 and Proposition 7, the verbatim proofs are omitted.

Theorem 9: Consider the auxiliary algorithm (4). The follow-
ing results hold.

a) Under the conditions of Theorem 6, with 67 (¢t) = 6y, for
t € [kp, kp + p), 87 (-) converges weakly to 6(-) such that
6(-) is the solution of the ordinary differential (10).
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b) Suppose that (10) has a unique stationary point §* that is
stable in the sense of Lyapunov, {6 } is tight in R%. Then,
07 (t, + -) converges weakly to #* as p —+ Oand £, — oo.
Because our adaptive algorithm uses small step size p,, thatare
not tending to 0, we will use Theorem 9 together with Theorem 6
to obtain some practically useful results. The question we wish
to address is: Suppose p, # 0. How far are we away from the
optimal value 6* if we use algorithm (5)? Our approach is based
on a perturbed Lyapunov function method. The main idea can be
illustrated as follows. We aim to use Lyapunov stability to carry
out the analysis. However, the noise sequence is correlated. We
thus introduce a small perturbation to the Lyapunov function,
which results in the needed cancelation of un-wanted terms.
Then we obtain an estimate of EV/(63¢) in terms of the LR
pr- This can be considered as a robustness result. In particular,
when the Lyapunov function is locally quadratic in that V' (§) =
(6 —6*)'S(0 — 6*) + o(|@ — 67|?), for a positive definite matrix
S, then we can obtain a mean squares estimate E|62¢ — 6*|2 =
O(pr) if {pn} is a constant. Then, we treat the random p,,,
naturally, we need to use a conditional expectation argument.
The details are to follow.

B. Error Bounds on 67

For simplicity, denote the conditional expectation with respect
to the o-algebra F** by E,..

A4) There is a Lyapunov function V(-) : R? — R such that

a) V() = oo as |#| = coand V (6) > 0 for 6 # 6*;

b) V() is twice continuously differentiable and the Hessian
V2V (#) is uniformly bounded;

) [VV(9)'VI(6) > AV (9) for some A > 0;

d) the following estimates hold

Y [EJ[VV(O)IVIO,&) — VIO
j=k

<K(V()+1)
> EX[VI6,6) - VIO

j=k
<K(1+V(®)

> [EX[VI(6,6) — VIO)l6l?
j=k

< K(1+V(0))

where [-]o denotes the partial derivatives with respect to
the variable 6

(AS5) [VJ(6,8)* < K(V(6) + 1) and V2J(6, ) (the Hessian
of J w.r.t. §) is bounded.

(33)

Theorem 10: Forafixed nandaconstantLR p,,, the following
results hold.
1) {67} is bounded in probability.
2) There is a k = K(pn) such that for k > &,

EV (6;°) = O(pn)-

The proof of this result is moved to the Appendix. To proceed.
we obtain a couple of corollaries. The first one relates the error

bounds to the second moments, which is a direct consequence of
Theorem 10 with a particular class of Lyapunov function chosen.

Corollary 11: Assume the conditions of Theorem 10. In
addition, suppose that the Lyapunov function is locally quadratic
in that

V()= (0—6)SO—0)+0(l6 — 6

for a positive definite matrix S. Fix a p,, in the nth epoch. Then,
we obtain a mean squares estimate

E|63¢ — 6" = O(pn)-

Remark 12: The abovementioned result is under the premise
that p,, is a fixed constant. In the actual computation, p,, is an
LR coming from the adaptive learning algorithm. Let us denote
the o-algebra generated by the random p;s up to time n by
Gn = o{p; : 7 < n}. Then, Theorem 10 can be restated as

Eg,V (6;°) = O(pn).

Similarly, Corollary 11 can be restated as Eg, |07¢ — 6*|% =
O(pn)-

So far, the result is for 9}:‘ with k& < £. The bounds, in fact, are
for each epoch. Next we try to obtain a bound that is across the
epoch. Note that p,, comes from adaptive LRs, so it depends on
€. By virtue of Proposition 7, we have p®(f: + -) — p* weakly
or in probability. Effectively, for n large, € small, and ne — oo,
we have

pn = p" +0(1), where o(1) — 0 in probability.
In view of Corollary 11, for some K > 0

Eg, 07" — 6"
<Kp,
< K(p" +0(1)).

Taking expectation mentioned above, we obtain E |07 — §*|2 =
O(p") for n and k sufficiently large and ¢ sufficiently small. We
summarize this as follows.

Corollary 13: There exist ng, ko, £ such that for all n > ny,
k > ko, and & < &9, we have E|02¢ — 6*|% = O(p*).

V. NUMERICAL EXAMPLES

In this section, we present several numerical examples to
illustrate how our adaptive LR algorithm works. In our exam-
ples, we use Ngppe to denote the number of training samples
(the number of in-sample Monte Carlo simulations), use N to
stand for the total number of steps in the time horizon of the
state and observation processes, and use ng to be the training
window size. For k = ng, ..., N with fixed sample w, we take
{yk(w), ygs1(w), - - -, Ykrny—1(w)} as the input of the NN and
the corresponding state T4 n,_1(w) as the target. The NN used
in our experiments being fully connected has four hidden layers.
The neurons of each hidden layer are 32, 16, 8, 8 for first three
examples and 128, 64, 32, 8 for the last example. The dimension
of the input layer of NN equals n, times the dimension of
observation process y. The output layer has the same dimension
as that of the state process. We use the rectified linear activation
function for hidden layers and the identity activation function
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T T T * = | P N = T
08 L = const Ir 0.001 i
i === EpochAda Ir 0.001 1
P = const Ir 0.005
S o6+ === EpochAda Ir 0.005
t"}’._, = const Ir 0.01 ]
= === EpochAda Ir 0.01
2o4r 4
E i
g
= I
0.2+t .
| L L L L 1 1 1 1 1 1 1 PR 1 1 . 1 PR 1 4

0 50 100

Epoch

Fig. 1. Example 1: MSE loss functions.

for the output layer. The loss function J in (5) used for state is
taken as the mean squared error (MSE) and the loss function x
for LR is chosen as quadratic error.

In this article, for each of the following examples, we take
Niample = 256, N = 100, ng = 10. We use € = 0.001 in (5)
where the second line is substituted by the finite difference form
as (39) and take J = 0.01. We also take the discretization step
size 7 = 0.04. The noise w, and v, are independent Gaussian
random variables of mean zero and covariance identity I with
suitable dimensions (in one-dimensional case, it is simply 1).
Following the training of the NN, we generate Nampe = 256
out-of-sample paths to validate our filtering results. We define

the relative error of vectors r(w) = (zn,(w),...,zx(w)) and

20(w) = (zp, (W), - .., T} (w)) as

o — 20 = ko Cnng it b a(we) = (1)
b7 Yonmno Siea (l2na(we)| + |29 (i)

where Tn(w) = (Tn,1 (W), - ., Tnm(w)), zp(w) =

(Iﬁrl(w), S Igfm(w)) forn =nyg,...,N.

In what follows, we consider models with regime switch-
ing. The switching process a, € {1,2} has generator Q =

_0[}; 0[')55 . Both linear and nonlinear models of one and

two dimensions are considered in first three examples. For higher
dimensional systems, we consider a six dimensional nonlinear
model in the last example.

A. Example 1: One-Dimensional Nonlinear Model

We consider a one-dimensional state z,, and observation y,
satisfying

{In+1 = Tp +nsin(5zpan) + (/Mow, (34)

Ynil = Yn +20Tn + /MO1Un

where o0 = 0.7, 07 = 0.2, and p = yp = 0. The random vari-
ables w,, and v,, are independent Gaussian with mean 0 and
variance 1. In Fig. 1, we plot the training loss function with both
constant LR and our adaptive LR (denoted by EpochAda) with
the initial data being the constant rate. For example, if we initially

APENEPE PN
0.010 [+ —— EpochAda Ir 0.001 ]
[ |= === EpochAda Ir 0.005 ]
§0008F i e EpochAda Ir 0.01 -
e W& ]
£
=
; -
@
-l
@
=
5 9
i)
o
<
1 PR 1 1

PR I
100

Epoch
Fig. 2. Example 1: Adaptive LRs with initials 0.001, 0.005, and 0.01.
TABLE |
EXAMPLE 1: RELATIVE ERRORS OF THE QUT-OF-SAMPLE TESTS
Po 0.001 | 0.005 | 0.01
EpochAda LR | 0.155 | 0.143 | 0.143

Time

Fig. 3. Example 1: Sample paths of the state and deep filtering with
constant p = 0.004 and the adaptive LR with initial pg = 0.004.

chose the constant LR p = 0.001, corresponding loss function
is given by the solid line in Fig. 1. Using this py = 0.001 as the
initial value for the adaptive LR, the corresponding loss function
decreases much faster after around 20 epochs. Similarly, we can
start at p = 0.005 and 0.01. The corresponding loss functions
also improve but the difference between constant LR and adap-
tive LR are less pronounced.

The paths of our adaptive p,, can be found in Fig. 2 with initial
values being pp=0.001, 0.005, and 0.01, respectively. It can be
seen that the LR appears to converge around 0.004. If initial setup
was higher then it tends to decrease and if initial setup was lower,
it moves up gradually. The corresponding relative errors of the
out-of-sample filtering are given in Table LIt is readily seen that
the initial data has little influence on the relative error, which is
a sign of robustness. It, in fact, is favorable from a computation
point of view.

Finally, a sample path of the state =, and the corresponding
paths of DFs with constant LR and adaptive LR are provided in
Fig. 3.
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Fig. 4. Example 2: The loss functions.
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Fig. 5. Example 2: The convergence of the adaptive LRs.

B. Example 2: Two-Dimensional Linear (In (z,y)) Model

We consider a two-dimensional linear (in (z, y)) model where
the state x,, and the observation y,, satisfy the equations

{In+1 =In+ TIF(QH)IR 1= \/‘-'_}‘J(an)wn

35
Uni1 = Yn + NG (an)Tn + /MO10n 5)

where the Markov chain a,, € {1, 2}, the initial condition ¢ =
(1,—1), and

F(1) = ; _11],0(1)2 [(1) Of’ ,G(1) = o
F(2) = _11 _01],0(2)2 [[1) [1) ,G(2) =

and the observation noise matrix

0.2 0.05

gy — -

0 02
Note that although the system is linear in (z,y), it is still
nonlinear due to the presence of a,. The corresponding loss
functions are shown in Fig. 4. As can be seen in Fig. 5, the
resulting adaptive LR appears to converge to around 0.006. If

we start with this equilibrium with constant LR and adaptive
LR, two corresponding out-of-sample paths for the state and

TABLE 1l
EXAMPLE 2: RELATIVE ERRORS OF THE STATE x5, AND THE DEEP FILTERING
RESULTS
PO 0.001 0.005 | 0.01
EpochAda LR | 0.061 | 0.058 | 0.057

T T T T T
A ]
——— Const Ir

---— EpochAda Ir |

o 2 3 4
Time Time
Fig. 6. Example 2: Sample paths of out-of-sample state z, and the

deep filtering outcomes with constant LR p = 0.006 and adaptive LR
with initial py = 0.006.

LI P R T, R |
const Ir 0.001
EpochAda Ir 0.001 ]
const Ir 0.005
EpochAda Ir 0.005
const Ir 0.01

04r EpochAda Ir 0.01

Training MSE Loss

Epoch

Fig. 7. Example 3: The loss functions.
DF can be seen in Fig. 6. Both learning rates lead to similar
performance.

The relative errors of the state z,, and the deep filtering with
adaptive LRs with p, =0.001, 0.005, and 0.01, respectively, are
given in Table II. The behavior is similar to that reported in
Table L.

C. Example 3: Two-Dimensional Nonlinear Model

Let us consider a two-dimensional nonlinear model. The state
vector x,, and the observation vector y,, satisfy the following
equations:

sin((0.3z2 + 0.5z))ay)
T =In+ + ow
n+1 S sin(0.3z1ay) e
Ynil = Yn + nGz, + ﬁglvn
(36)

where z,, = (2%, z1)’ and the Markov chain a,, € {1,2} and

1 —-03 Ty Ak 0.2 0.05
= ] G= 301 =
0 1 (3 0 0.2

The initial state is chosen as zp = (1,—1). Like in the first
two examples, the training loss functions with constant LRs
(0.001, 0.005, 0.01) as well as adaptive LRs with the initial
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R L T TR | P D A D
0.010 |- +=, —— EpochAda Ir 0.001 ] 0.010 | —— EpochAda Ir 0.001 ]
: === EpochAda Ir 0.005 : ——= EpochAda Ir 0.005 ]
‘E 0008 1 e EpochAda Ir 0.01 - g 0008 i - EpochAda Ir 0.01 -
50 50 = ]
Ac =
j= =
3 1 S
| 3
2 2
B ] 2
o o
- -
< <
1 PR S 1 PRENPEN B R S S T Bt PEENE |
0 50 100 150 200
Epoch
Fig. 8. Example 3: Paths of the adaptive LRs with initials 0.001, 0.005, Fig. 11. Example 4: Paths of the adaptive LRs with initials 0.001,
and 0.01. 0.005, and 0.01.
TABLE IV
EXAMPLE 4: RELATIVE ERRORS OF =, AND THE DEEP FILTERING RESULTS
Po 0.001 | 0.005 | 0.01
EpochAda LR | 0225 | 0.228 | 0.224

Fig. 9. Example 3: Sample paths of out-of-sample state and the
sample paths of the DFs with constant LR p = 0.0025 and adaptive LR
with initial pg = 0.0025.

El oo s ol = e o da 22 6hEs 5 erTd
10 —— const Ir 0.001 ]
=== EpochAda Ir 0.001 ]
w 0.8 ——— const Ir 0.005 ]
] === EpochAda Ir 0.005 ]
o E —— const Ir 0.01 ]
0.6
fn === EpochAda Ir 0.01
=4
E 04p .
e
|_
0.2r .
L 1 PEY PR 1 PR L PR T R SR S B R S T T | ]

0 50 100 150 200
Epoch
Fig. 10. Example 4: The loss functions.
TABLE I
EXAMPLE 3: RELATIVE ERRORS OF x,, AND THE DEEP FILTERING RESULTS
£o 0.001 | 0.005 | 0.01
EpochAda LR | 0.112 | 0.110 | 0.113

rates are given in Fig. 7 and demonstrate similar behaviors as in
the previous models.

The adaptive LRs also shown similar convergence in Fig. 8.
It appears to converges to 0.0025 in this example.

The relative errors of the state x, and the deep filtering
outcomes are given in Table III. It again confirm that the results
are not much influenced by the initial conditions.

Finally, we provide sample paths of the state =, and the
corresponding out-of-sample deep filtering sample paths with
constant LR 0.0025 and adaptive LR with py = 0.0025 in Fig. 9.
Both LRs lead to similar performance.

D. Example 4: Six-Dimensional Nonlinear Tracking
Model

Finally, we consider the following six-dimensional nonlinear
model where the state z,, and the observation y,, satisfying

Tn41 = Tn + NF Ty +/wn
Ynt1 = Yn +nh(zn) + /Mo10n

where wy, «~ N(0,Ig), vn «~ N(0,Ig) with Ig being a 6 x 6
dimensional identity matrix, the matrix F' is

(37)

0 1 00 0 O
0 0 10 0 O
p_|0 « 00 0 0
0 0 00 1 0
0 0 00 0 1
0 0 0 0 —wj O

o1 = 0.2, and the function h(z) is defined as
h(z) = [\/z¢ + z%,tan ! (z3/z0), T1, T2, T4, T5]'

where the state = = (zo, 1, T2, T3, T4, T5)'. For experiments,
we take w; = 1,wp = 0.5and 7o = (1,1,1,1,1,1)". The train-
ing losses are exhibited in Fig. 10 and the evolution of adaptive
LR is presented in Fig. 11.

We also provide the relative errors of the state x,, and the deep
filtering with adaptive learning outcomes in Table IV. These
relative errors show the robustness of our DF with respect to the
initial selections of the adaptive LRs.

In addition, as depicted in Fig. 11, the adaptive LRs converge
after 50 epochs. Finally, we include the sample paths of the state
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& % o
15}
10} 'i;\ ] -1r
o 1 IZ 3 4 o 1 ; 3
Time Time
Fig. 12. Example 4: Sample paths of out-of-sample state and the

sample paths of the DFs with constant LR p = 0.002 and adaptive LR
with initial pp = 0.002.

Tn and the corresponding out-of-sample deep filtering sample
paths with constant LR 0.002 and adaptive LR with initial py =
0.002inFig. 12 . These results demonstrate the effectiveness and
capability of the DF dealing with high dimensional and highly
nonlinear models.

VI. FURTHER REMARKS

In this section, we make several remarks regarding the deep
filtering and our approximation algorithms. Also included are
several possible extensions.

1) In our algorithm, for example, in (5), we used bounded
nonadditive noise. The gradient estimates are of the form
Vo J (0™, £2¢). This model can be easily generalized to

Ve (67, &) + ¥

where {#7*} is a sequence of unbounded noise inde-
pendent of &7 such that {7} is a stationary mixing
process with mean zero and bounded second moments.
All previous results still hold. Only notation becomes
more complex.

2) If the noisy gradients as in (5) are not available, but we can
only observe the function values with noise instead. Then,
we can construct a more general version of the algorithm.
We use

Ot =00 — e (5 659), =0, 21
g (38)
where J™ is the sample finite difference (approximation

to the gradient of Tw). Thatis, forj=1,...,d

Tred (03, 62°)

_ IO tenesn ) — TBR" — cnesn )
2¢cn

(39)

where e; is the standard unit vector, ie., e; =
(0,...51,.c. ) 6 = ea(p(n)) ~¥0:and p. /¢, —5 0 a8
pn—>0,0=06(¢) +0,and /6 — 0 as £ — 0. So the
¢n = cn(pn) and 6 = 4(<) are small finite difference pa-
rameters. Then, J“E(GEE, ,’:E) = (J“‘fj(ﬂ_{cw,&';c‘f) : <
d). It is readily seen that (39) are sample central finite
difference approximation of the gradients.

3) The deep filtering scheme can be more general than it
has been presented in this article. It can cover even those
models that cannot be covered in terms of typical dynamic
systems, for example, highly nonlinear oscillating func-
tion with nonadditive noise; see [24] for related numerical
results.

4) A hybrid model is treated in this article in which a(?)
is not directly observable. It would be interesting to
generalize the results of this article to estimate the pair
(X (%), «(t)) jointly. In this case, additional observations
of a(t) are needed. Then, the Wonham filter [25] can be
applied.

5) In this article, we proposed an adaptive LR algorithm
devoted to the filtering applications. The idea presented
in this article may suggest a viable alternative for a
systematic way of choosing the LRs via the recursion,
which could be beneficial for many machine learning
problems. Finally, we would like to emphasize that the
Monte Carlo samples for DNN training can be fully
replaced by real-world data. This will allow us to bypass
the traditional model calibration. In this connection, it
would be interesting to examine how our filtering schemes
work with real-world applications.

This article work aims at setting up a framework with
solid theoretical ground. The real-world applications can
be and definitely should be a subject of future research.

VI. APPENDIX

In this Appendix, we provide a sketch of the proof of Proposi-
tion 1 showing discrete-time system (z,,, y,, &, ) approximates
the filtering equations (switching diffusion) (X (¢),Y (¢), a(t)).
Let F(-,-,-) : R x R% x M — R satisfying that for each
a € M, F(-,-,a) has continuous partial derivatives up to the
second order w.r.t.  and y. Define

LF(z,y,1) = [VoF(z,y,9)]'f(z,1)
" %tr[ng(I, y,0)o(z,i)o’(z, )]
VyF (2,9, f(z3)
- %tr[VgF(I, v,i)o(z, i)’ (z, §)]

+QF(z,y,-)(i), ie M (40)

where V. F,V,F, VZF, and V, F are the gradients and Hes-
sians of F' w.r.t. = and y, respectively, trA denotes the trace of
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the matrix A, and
QF(z,y,-)(i) = Z i F(z,y, j) for each i.

JEM
We define
lt/n]-1 lz/n]-1
W)= > wk, WIt)=yn Y.
k=0 k=0

where |¢/n] denotes the integer part of /5. It can be shown
that W7(-) converges weakly to a standard Brownian motion
W{(-), and W’?() converges weakly to a standard Brownian
motion W(-), respectively. Then, we can proceed to show that
(27(-),y"(-),a™()) converges weakly to (X(-),Y (), ().
which is a martingale problem with operator (40). In this process,
we need to use a truncation device similar to the proof in
Theorem 6. We refer the reader to [19] for approximation of
randomly modulated sequences to switching diffusions, and
details on switching diffusions and convergence to switching
diffusions to Yin and Zhu [27, Sec. 5.3]. Proof of Theorem 10 .
The proof of the first assertion is simpler than that of the second.
In fact, the proof can be done in the second part. We, thus, will
only prove the second assertion in what follows.

We will use K to denote a generic positive constant, whose
value may be different for different appearances. We have

ExV (054,) — V(63°
= —pa[VV (R IVI(6:°. 5]
= —pa[VV (6:)'VI(6;°)
— pa[VV (ORI [VI(6R5, £74) — VI(67°)]
+O0(p2)(V (67°) +1).

To proceed, we use the methods of perturbed Lyapunov function.
Define

(41)

Vi(z, k) = —pn Y _[VV(2)/'[ExVJ(z, &) — VI(z)] (42)
i=k
and
V(z,k) = V(z) + Va(z, k). 43)
It is readily checked that by using (A4)
Vi(z, k)| = lpn ) [VV (@) [ExVI(z, &) — VI(2)]]
j=k

=Kpn(V(z) +1). (a4)

Thus, the perturbation is small in magnitude.
Next, we demonstrate it results in the desired cancelation. In
fact, we have

ExV (0551, k+1) = V(6p°, k)
=E:V (6p%,) — V(6p9)
+ExVi (0% k +1) — Va(62". )

+Ec[Vi(0py. k+1) —Vi(0p5k+1). 45

In view of the definition of (42), we have
EiVi(07%, k +1) — Vi (67, k)
= palVV (6 VI (6R°,67°) — VI (62°)]
Ex[Vi(0p% . k+1) — Vi(0F, k +1)]

[ 4]

= —pnEx Y [VV(62))

j=k+1

X Ex11VI (0551,

(46)

‘) = VI(6:0)]

+ Pn Z [VV(6R) [ExVI (6%, €1%) — VI (674

j=k+1
47)
Using (A4) and (AS5), we can show that
[Ex[Vi(6ri1, k+1) — Va(6r", k+1)]|
< Kp2(V(62) +1). (48)
Using (A4) and combining (41), (46)—(48), we obtain
EiV (0551, k+1) — V(6% k)
< —ApV(O7%) + Kp2(V(61) +1)
< —hpaV (07, k) + Kp2(V(624, k) +1).  (49)

The last line above follows from the estimate (44). Because p,
is small, we may consider p, to be small enough that K p2 <
Apn/2, and

ExV (678, k+1)
< (1—(P2/2)V (634 k) + O(p})

k
< (1= (p2/2))"V(65°,0) + > (1 — (p2/2)] O(p})-
=0
J (50)

We can choose & = &(py,) so that for k > &, (1 — (p2/2)) <
O(pn). Taking expectation in (50), we arrive at

EV(67¢,k) = O(pn)- (51)

Finally, using (44), we also obtain EV (67¢) = O(p,) as
desired. |
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