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Denoising scanning tunneling microscopy images of graphene with supervised machine learning
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Machine learning (ML) methods are extraordinarily successful at denoising photographic images. The ap-
plication of such denoising methods to scientific images is, however, often complicated by the difficulty in
experimentally obtaining a suitable expected result as an input to training the ML network. Here, we propose
and demonstrate a simulation-based approach to address this challenge for denoising atomic-scale scanning
tunneling microscopy (STM) images, which consists of training a convolutional neural network on STM images
simulated based on a tight-binding electronic structure model. As model materials, we consider graphite and
its mono- and few-layer counterpart, graphene. With the goal of applying it to any experimental STM image
obtained on graphitic systems, the network was trained on a set of simulated images with varying characteristics
such as tip height, sample bias, atomic-scale defects, and nonlinear background. Denoising of both simulated
and experimental images with this approach is compared to that of commonly used filters, revealing a superior
outcome of the ML method in the removal of noise as well as scanning artifacts—including on features not
simulated in the training set. An extension to larger STM images is further discussed, along with intrinsic
limitations arising from training set biases that discourage application to fundamentally unknown surface
features. The approach demonstrated here provides an effective way to remove noise and artifacts from typical

STM images, yielding the basis for further feature discernment and automated processing.
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I. INTRODUCTION

Since its first demonstration by Binnig ef al. [1], scan-
ning tunneling microscopy (STM) has become a powerful
and essential tool in materials science due to its ability to
measure and image electronic structure with subangstrom res-
olution [2]. Although the present paper focuses on imaging,
STM is used for many other purposes, including atomic-scale
electronic spectroscopy, atom manipulation, or determination
of momentum-resolved electronic band structure [3-5]. The
recent rise of machine learning (ML) has spawned com-
pletely new approaches for analyzing complex scientific data
[6-9]. First applications of ML to STM-related problems
have also been reported, enabling automated identification
and classification of atomic-scale patterns, materials phases,
and defects [10-14] as well as advances toward autonomous
STM operation through ML-based tip shaping and lithogra-
phy [13,15,16].

These developments motivate the application of ML to the
problem of reducing noise in STM images, including both
statistical noise and artifacts, which we demonstrate in this
article. In the processing of STM images for analysis, the
reduction of such noise provides several benefits. First, the
enhancement of the signal-to-noise ratio can improve the level
of confidence when interpreting experimental STM data. Sec-
ondly, STM measurements are inherently slow due to their
scanning nature, and many acquired images are discarded
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by the experimentalists because of limited quality achieved.
Thus, an efficient ML-based filter could increase the yield of
STM experiments and the amount of data available for analy-
sis. Finally, it can be expected that denoising will enhance the
performance of other subsequent computational or ML-based
steps such as defect recognition, autonomous data acquisition,
and control.

Supervised ML models based on convolutional neural
networks (CNNs) have been incredibly successful at denois-
ing photographic images [17-27]. The common strategy for
achieving high-performance denoising of photographic im-
ages is to train the network on images onto which noise
(typically Gaussian) is added intentionally. The corrupted im-
ages are then used as the inputs of the CNN while the original
images are used as the expected result, also referred to as
“ground truth” (GT) in the models. However, this strategy
cannot be implemented straightforwardly for denoising sci-
entific images because the expected result of scientific images
is more difficult to assess. For some experimental methods, it
is possible to produce such fundamental images by simply ac-
quiring images for a long time [28,29]. This assumes that both
statistical noise and artifacts diminish with increased scan-
ning. However, in STM imaging even images with low sta-
tistical noise can be far from the expected GT representation
because of the role played by the tip in the imaging process.
Indeed, the density of states of the tip is convolved with the
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FIG. 1. Overview of our machine learning (ML) denoising approach applied to STM images. (a) Workflow of the ML denoising based
on simulated STM images. The convolutional neural network (CNN) is trained on a set of simulated STM images which are intentionally
corrupted, and then applied to experimental images. Scale bars of 0.5 nm. (b) Architecture of the CNN, which includes two encoding layers,
one bottom layer, and two decoding layers with details given in the text. (c) Evolution of the loss function, i.e., the mean absolute error between
the output and corresponding pristine images, after each iteration (epoch) during training, along with the equivalent loss function obtained on

a validation images set.

density of states of the sample to produce the image [30]. Even
if efforts are generally made in acquiring images with tips that
have a constant or known density of states so that their effect
on the imaging is understood [31-35], it is always difficult to
assess whether an STM image can be considered as the true
representation of the underlying electronic structure.

As a guide, experimental STM results are often compared
to simulated ones to assess their validity. The simplest way
to simulate an STM image is to completely neglect the effect
of the tip and assume that the image is proportional to the
local density of states (LDOS) of the sample [30]. Here, we
exploit this idea by training a CNN on intentionally cor-
rupted images simulated using the tight-binding approach for
computing the LDOS. The tight-binding method allows for
producing a large training set in a reasonable amount of time,
contrary to more computationally demanding electronic struc-
ture computation techniques such as density functional theory.
The trained CNN is then used to denoise experimental STM
images, as illustrated in Fig. 1(a). We compare this approach
to other denoising techniques, and we discuss the advantages
and inconveniences offered by our simulation-based denois-
ing technique for STM.

Simulation-based denoising was recently introduced by
Mohan et al. for the case of transmission electron microscopy
(TEM) images [36]. However, both the nature of the electronic
interaction underlying the TEM imaging process as well as
the generation of the training set images differs fundamen-

tally from that required for STM denoising. Moreover, we
aim at training a model that can be applied to STM images
of an entire family of materials encompassing both graphite
and its two-dimensional counterparts of mono- and multilayer
graphene. As discussed below, this requires the generation of
a very diverse training set.

Another approach which has naturally been popular with
scientific denoising is unsupervised learning, where the need
for a GT image as the expected result is removed altogether
[37-42]. It has been successfully applied to fluorescence
microscopy [37-39,42] and TEM data [41]. Although unsu-
pervised approaches are appealing for denoising STM images,
they are challenging to adapt to STM for two reasons. First,
obtaining a large training set is difficult in STM because the
time needed to acquire an image is relatively long compared to
other microscopy techniques. Secondly, some assumptions on
the nature of the noise must be made to build the loss function
in unsupervised learning [40]. Although some of the noise in
STM images can be assumed to take a certain statistical form
[43], the influence of the tip shape and density of states cannot
be accounted for by assuming statistical noise.

II. COMPUTATIONAL MODEL

For the CNN, the model is implemented in PYTHON with
the KERAS [44] software library and its TENSORFLOW backend
[45]. The architecture is built on the U-Net type of networks
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[46]. which was shown by Mohan et al. to be most efficient
for denoising corrupted simulated images [36]. Our adapted
version of the U-Net architecture is depicted in Fig. 1(b). It
consists of two “down” building blocks between which the
size of the arrays is divided by 2 by the KERAS MAXPOOLING
operation, a lower building block, and two “up” building
blocks between which the size of the arrays is multiplied
by 2 by the UPSAMPLING operation. Each block has two
convolution layers with xg filters rectified linear unit (RELU)
activation functions that introduce the nonlinearity of the
network, followed by BATCHNORMALIZATION which centers
the mean output of each block close to 0 and its standard
deviation close to 1. The size of the two-dimensional (2D)
convolution kernel is set to 3 x 3 and the number of filters
in the first block of each layer was n = 32 and is doubled or
halved, respectively, after each MAXPOOLING or UPSAMPLING
operation. The last layer has a tanh activation function to
best adapt the overall output range to that of the GT images
(so-called labels). As the loss function, i.e., quantity that is
minimized during training, we choose the mean absolute error
between the outputs and labels. To optimize the network,
we used the ADAM algorithm in KERAS, which considers the
exponentially weighted average of the loss function gradient
[47]. The learning rate that sets the step size of the gradient
descent algorithm was set to 0.001 per iteration. A typical
training run was done on 3 x 10* simulated images with an
additional 500 images used for validation at each iteration.
Figure 1(c) shows the evolution of the loss function with the
iteration (epoch) number during training, along with the loss
computed on the validation images.

For the generation of the training set images we used the
PYBINDING package, a PYTHON package for tight-binding
calculations, for the calculation of the energy- and spatially
dependent electronic structure of finite graphene nanosheets
[48]. In this approach, the kernel polynomial method [49] is
used to compute the projected density of states c¢; g on each
atomic site i at energy E. Following Tersoff and Hamann
[50], the STM tunneling current at a given sample bias
Vsample = E /e (e is the electron charge) is then computed for
V>0 as  I0nyz V) o (X ho el v
where 7, ;(x,y,z) < ze"/* represents the value at
(x,y,z) of the m, orbital located at site i. Here,
r= \/(x — x> + (v —y)* + (z — z;)* defines the distance
between the tip location and the carbon atom at site i. In
the above, A = nay/Z = 0.018 nm for the given principal
quantum number n = 2, atomic number Z = 6, and Bohr
radius ag. When the bias voltage Vsympe <0, ie., for
tunneling from the sample to the tip, the sum over the
projected density of states in the STM current calculation
above is replaced by Zng c;gr. For computational
efficiency, the STM training images were calculated for
a constant height z throughout each image. The lateral image
size is chosen randomly between 1 and 4 nm with 647 pixels.

In training and applying the CNN, we restrict ourselves to
a particular material since it would be impractical to simulate
STM images for all known materials. We chose monolayer
and Bernal-stacked bilayer graphene as model materials. It
should be noted that, because STM is surface sensitive, our
model can in principle be applied to any graphitic material.

While beyond the scope of our current work, the overall
approach should be applicable to a larger range of materials,
either for those with surfaces reasonably modeled by a similar
tight-binding approach, or for materials requiring advanced
electronic structure modeling using high-performance compu-
tation separately in the training step. Limitations are expected
to arise, however, in more complex cases such as the presence
of adsorbed molecules [51-54].

To make our denoising CNN as broadly applicable as pos-
sible, we train it on images that are as diverse as possible. To
that end, we introduce the following variations, randomly cho-
sen for each image: (i) Both monolayer and Bernal-stacked
bilayer graphene are simulated. (ii) Dopants, simulated by
changing the on-site energy to 10 eV at the position of the
dopant, were randomly distributed. (iii) A hyperbolic back-
ground was added to the images. (iv) The lattice orientation,
tip height z, and the sample bias between —0.5 and 0.5 V
were randomly set. Moreover, two types of noise are included:
(v) A Gaussian height noise with randomly chosen standard
deviation dz that is added onto each pixel, and (vi) a random
horizontal spatial offset dx is added for each line of the image,
simulating a common line noise effect seen in STM images.
The training images were first normalized to between —0.5
and 0.5, and the standard deviation dz of the added Gaussian
height noise limited to a maximum value of 0.07 on this
scale. In turn, the maximum value for the randomly chosen
line noise dx was 0.1 nm. A set of representative simulated
STM images with (“corrupted”) and without noise (“GT”)
used for training are shown in the Supplemental Material,
Fig. S1[55]. Our code for producing the simulated images and
for the ML model is provided on GitHub [56]. The production
of simulated images and training of the CNN model were
carried out on a modern laptop computer with a graphics
processing unit in several hours, while denoising experimental
images, once the model is trained, occurs on the order of
seconds.

III. RESULTS AND DISCUSSION
A. Denoising of simulated images

Before its application to experimental data, we first analyze
the performance of the ML-based model on simulated STM
data and compare it to other denoising approaches. The top
row of images in Fig. 2(a) shows a computed reference and
corrupted image along with the results of denoising it with
either the trained ML model or alternatively with Gaussian
smoothing or singular value decomposition (SVD) filters.
Gaussian smoothing consists of a convolution between the
image and a 2D Gaussian profile with a fixed width o. We
chose o = 1.1 pixels by maximizing the structural similarity
index measure (SSIM) as a function of o (see Supplemental
Material [55]). The SSIM is a widely used method for evalu-
ating image similarity that compares the luminance, contrast,
and image structure to a reference image [57]. In turn, SVD-
based denoising uses the approach by Somnath et al. [58].
It consists of tiling the N x N pixels image into m X m
pixels windows, flattening the resulting 2D tile arrays onto
one-dimensional (1D) vectors and stacking them. A SVD
decomposition is then applied to the resulting (N—m + 1)? x
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FIG. 2. Comparison of denoising STM images with different methods. (a) STM images filtered with ML, Gaussian, and SVD-based
denoising schemes, after corrupting a reference image with simulated height and line noise. The uncorrupted images represent bilayer graphene
(BLG), based on a simulated STM image with N dopant (top row), and an experimentally measured pristine BLG surface (second row). BLG
model parameters are Vgympe = —0.49 €V, z = 0.68 nm, dz = 0.041, and dx = 0.107 nm. (b) Comparison of filtering a noisy experimental
STM image of Bernal-stacked trilayer graphene (TLG) via ML, Gaussian, and SVD methods. The noisy image was acquired with the same
tip and area as the reference, yet at larger tip-sample distance, i.e., low sample current. The structural similarity index measure (SSIM) with
respect to the reference is indicated, as computed over a limited area (dashed box) to avoid artifacts due to the varying moiré modulation
contrast (see text; SSIM over the whole image are 1.00, 0.36, 0.55, 0.39, and 0.45 from left to right). (c,d) SSIM as a function of noise added
onto (c) simulated STM images of mono- and bilayer graphene or onto (d) experimental BLG data as shown in the topmost panel.

m? matrix. The filtering consists of keeping only the first ¢
principal components. We set m = 8 and ¢+ = 8 for all SVD
filtering presented in this work. Visual inspection in Fig. 2(a)
of the results of these different denoising approaches reveals
that the ML model performs well compared to the other meth-
ods. Both the height noise and line noise are almost entirely
suppressed by the ML model, which is not the case for the
other approaches. The contrast of the atomic lattice is also
higher in the ML case.

Figure 2(c) plots the SSIM as a function of the image noise
level, for each type of denoising approach. For producing
the graph shown in Fig. 2(c) we generated ten sets of 200
corrupted images, with each set corresponding to a different
value of the height noise dz and line noise dx = dz plotted on
the horizontal axis. Indeed, Fig. 2(c) quantitatively confirms
the visual impression that the ML approach performs well

both on an absolute scale and relative to the Gaussian smooth-
ing and SVD methods at high noise levels. Importantly, even
for low noise levels, ML denoising retains the SSIM while
the other methods reduce the image quality for given fixed
parameters. In the case of the ML approach, this consistent
performance results from the analogy of minimizing the loss
function (mean absolute error) during training and maximiz-
ing the SSIM.

B. Experimental STM image denoising

We now show how our ML denoising method works on ex-
perimental data. The experimental STM images were obtained
from scans carried out at liquid helium temperatures (4-5 K)
without an applied external magnetic field. The images of
pristine monolayer and bilayer graphene were obtained on
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FIG. 3. Denoising of experimental STM image features simulated in the training. Experimental STM images of (a) pristine monolayer
graphene with Vimpie = —0.5 V, (b) bilayer graphene with Ve = +0.3 V, and (c) monolayer graphene including an N dopant as indicated
by the arrow (Viample = +0.5 V). Scale bars are 0.5 nm. Results of applying the ML-based denoising to the experimental STM images are
displayed in the second column. The results of Gaussian smoothing and SVD-based filtering are reported in the third and fourth columns,

respectively.

graphene devices (see elsewhere for details on the making
of these devices [59]). The images of doped and defected
graphene were obtained on graphene grown on the carbon face
of silicon carbide that was intentionally doped with nitrogen
[60]. The experimental STM images were acquired at constant
tunneling current, as customary to avoid crashing the tip, and
thus represent the corresponding tip height variation. While
the ML model is trained on constant-height data, the two
modes generally produce similar images.

First, we study the performance based on experimental
STM data where noise has been artificially added. Since the
underlying high-quality STM image now serves as a reference
image, a quantitative assessment of denoising can be obtained.
The second row in Fig. 2(a) shows measured bilayer graphene
(BLG) STM data (leftmost image) to which height and line
noise is added before one of the three different denoising
filters is applied. The dependence of the resulting SSIM on
the added noise level is shown in Fig. 2(d). This confirms a
strong overall SSIM enhancement from ~0.49 to 0.87, fully
comparable to the quantitative improvement obtained from
denoising the simulated images discussed above. However,
Gaussian and SVD filters also increase the SSIM significantly,
which reduces the relative numerical advantage for ML-based
denoising of these noise-corrupted experimental images.

In a second analysis, shown in Fig. 2(b), we recorded ex-
perimental STM images of a Bernal-stacked trilayer graphene
sample (TLG) at different noise levels. The noisy image was
taken over the same area and with the same STM tip but at
lower sample current (20 pA) compared to the high-quality
reference (1 nA), resulting in a larger tip-sample distance.

The denoised images using ML, Gaussian, and SVD filters are
also shown: The apparent visual advantage of ML denoising is
confirmed by computing the SSIM between the denoised and
reference images, resulting in an SSIM = 0.84 for the ML
filter, compared to 0.71 and 0.66 for the Gaussian and SVD
filters, respectively. It should be noted that the TLG sample
shows a long-range moiré modulation due to the misalignment
and lattice mismatch with the hBN substrate [61,62], whose
relative contrast increases at larger tip-sample distance. To
avoid artifacts on the SSIM values due to the changing moiré
contrast, we compute the SSIM over a limited area indicated
in Fig. 2(b) (dashed box), with similar results obtained when
the same-sized box is moved to other regions in the image.
As the data show, the advantage of ML filtering is thus not
only visually apparent but also confirmed by the numerical
similarity measure.

Next, we discuss how our ML-based denoising model per-
forms on images that contain (Fig. 3) or do not contain (Fig. 4)
features simulated in the training set. The first column of
Figs. 3(a) and 3(b) corresponds to experimentally measured
STM images of pristine monolayer graphene (MLG) and
BLG, respectively, and in Fig. 3(c) to monolayer graphene
with a dopant (indicated by an arrow). Experiments and
density functional theory calculations have shown that, for
single nitrogen substitution in graphene, the highest electronic
density is found on the three carbon atoms that are nearest
neighbors to the nitrogen dopant [60,63], hence the three lobes
clearly visible in Fig. 3(c). The second column in Fig. 3 shows
the images denoised with our ML model. For comparison, the
third and fourth columns show the same experimental images
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FIG. 4. Denoising of experimental monolayer graphene images with features not simulated in the training set. (a) 3N pyridine defect
(Vaampte = +0.5 V). (b) Flower defect (Viampie = 0.5 V). (¢) Grain boundary between two graphene domains (Vgampie = +0.4 V). Scale bars
are 1 nm. Results of applying the ML-based denoising to the experimental images are displayed in the second column. The results of Gaussian
smoothing and SVD filtering are reported in the third and fourth columns, respectively. The dashed black boxes in (a), (b) highlight the
donut-like charge-density wave feature (see text) which is partially smeared out by the ML filtering.

denoised with the Gaussian smoothing and the SVD filter,
respectively. Note that the images in Figs. 3(a) and 3(b) also
exhibit shape deformations due to a nonideal tip. Because
uncorrupted reference images are inherently unavailable for
these imperfect experimental images, a quantitative evaluation
in terms of the SSIM is not possible. However, a visual inspec-
tion reveals that the ML approach performs well compared to
the other filters. In particular, we note that the ML model more
effectively removes the noise that appears as horizontal lines
in the experimental images. The contrast corresponding to the
atomic lattice also appears higher for the ML denoising [see
Fig. 3(c)].

In Fig. 4, we show how our ML denoising performs on
features that did not appear in the simulations used during
training, where only single dopants were randomly incorpo-
rated. The first column displays three experimental images.
The top image [Fig. 4(a)] is a 3N pyridine defect in graphene,
which consists of a carbon vacancy accompanied by the re-
placement of its nearest neighbors with three nitrogen atoms
in a pyridine configuration [64]. The center image [Fig. 4(b)]
is the so-called flower defect in graphene, commonly observed
in graphitic systems [65]. The bottom image [Fig. 4(c)] dis-
plays a grain boundary between two graphene domains, often
found in graphene/SiC(0001) samples [66,67]. Visual inspec-
tion indicates a good performance of ML-based denoising
(second column) when compared to the other two approaches
(third and fourth columns). It should be noted that neither
filter removes the short lateral lines (spike noise) in Fig. 4(c),
which were not included in the training set for ML denoising.
As in the cases discussed above, the contrast of the atomic

lattice appears sharper for the ML-based method. That is
especially true for the grain boundary defect [Fig. 4(c)], where
the Gaussian and SVD filters do not reproduce the graphene
lattice that is visible on both sides of the grain boundary in the
experimental and the ML-denoised images.

A clear advantage of the ML approach over the other
methods is the absence of parameters to be tuned once the
model is trained. By comparison, other denoising methods
including the Gaussian and SVD techniques entail parameters
that need to be readjusted to different values depending on the
type of image. In the images in Figs. 3(c) and 4(c), the same
parameter o = 1.1 pixels was used for Gaussian smoothing.
This parameter works well for the dopant in Fig. 3(c), but it
is not adapted for the grain boundary defect [Fig. 4(c)] and
its associated high protrusion, as evidenced by the poorly
resolved graphene lattice in the Gaussian-smoothed image.
The same remark holds for the SVD approach, where two
parameters must be set. The same parameters (m = 8 and
t = 8; see above) were used in Figs. 3 and 4. The denoising
effectiveness varies widely as evident from comparing the
SVD denoising of images in these figures.

C. Extended STM images

Because the training set of our ML model was limited to
64 x 64 pixels images and a lateral side length between 1 and
4 nm, it cannot be directly applied to larger images. While it is
possible in principle to train the network on wider images with
a higher pixel count, this rapidly increases the computational
resources needed both for generation of the training set and
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FIG. 5. ML-based denoising of extended images larger than the
training images. (a) 10 x 10 nm? image (256 pixels) showing mono-
layer graphene with N dopants. (b) ML-denoised image obtained by
subdividing panel (a) into 4 x 4 images, applying the ML model to
these images, and patching the ML-denoised images back together.

for the training of the model. An alternative solution to apply
ML denoising to larger images is to subdivide the large image
into smaller images, apply the network to the smaller images,
and then stitch the small images back together. This approach
is illustrated in Fig. 5, on a 10 x 10 nm? image containing
2567 pixels. The image in Fig. 5(a) is subdivided into 16
images of 647 pixels (2.5 x 2.5 nm?) onto which the ML
model is applied and then assembled back together. The re-
sulting denoised image is shown in Fig. 5(b). Except for faint
lines at the borders between the subimages, the resulting large
ML-processed image (cf. insets in Fig. 5) is visually cleaner
than the experimental image. While the z scale is not directly
conserved in the ML filter due to the inherent normalization, it
can be well approximated in most cases by recording its range
before normalization and reapplying it to the output image.
This procedure has been applied in Fig. 5.

D. Influence of the training set and limitations

We now discuss how the inclusion of dopants, back-
ground, quasiparticle interference, and other features in the
simulated STM training images affects the outcome of ML-
based denoising. In Fig. 6, we show the same experimental
images as in Fig. 4 and compare how the performance of
the ML denoising is affected by the inclusion or omission
of features in the image set used for training the model.
Case I (second column) was trained on simulated images
containing only pristine monolayer and bilayer graphene. Per-

haps unsurprisingly, this model poorly handles the filtering of
images containing defects. Case II (third column) was trained
on images of pristine monolayer and bilayer graphene, but
with inclusion of quasiparticle interferences (QPIs), but no
dopant. Quasiparticle interferences in general are induced by
charge-carrier scattering from defects such as dopants, step
edges, or grain boundaries, and they produce standing-wave
patterns [4,68]. For the simulated images in the training set,
QPI is inherently included in the tight-binding calculation due
to scattering off the boundaries of the simulated graphene
nanosheet. In this case, it becomes prominent only when the
nanosheet size is small (cf. Supplemental Fig. S3 [55] and
Refs. [69,70]). Such simulated images with evident QPI can
be seen, e.g., in the zigzag type patterns in Figs. S1(a) and
S1(j). Surprisingly, training with such QPI-pattern images
alone is sufficient for the model to perform relatively well
on denoising of images that include defects, as evident from
Fig. 6. Only the case of the grain boundary [Fig. 6(c)] is poorly
handled by this approach. Case III in Fig. 6 incorporates
images containing dopants in the training set and results in
the model being able to handle more complex defects such as
the grain boundary.

Finally, we discuss a feature that is partially smeared out by
our ML filtering. As evidenced in Fig. 4, a donutlike pattern
is present, highlighted by the dotted box in Figs. 4(a) and
4(b). This donutlike pattern arises from a charge-density wave
due to a Kekulé distortion whose periodicity is +/3 larger
than that of the graphene lattice. Similar STM signatures
have been observed recently as a broken symmetry state in
charge neutral graphene, in intense magnetic fields [71,72],
and can be reproduced with a tight-binding model if one as-
sumes that valleys and sublattices are locked, i.e., that charge
carriers in one of the two inequivalent valleys of graphene
comprise only carriers on one of the two sublattices [71].
Similar Kekulé distortions have been observed by STM, in
the absence of magnetic field, in Li-intercalated graphene [73]
and in graphene grown epitaxially on copper [74]. However,
these previously reported STM signatures do not match the
distinct donutlike pattern that we report here for defected
graphene, which corresponds to a certain mixture of K and
K’ states [71].

The tight-binding model underlying the simulated STM
images used to train our model does not reproduce the donut-
like charge-density wave state, since we had no a priori reason
to assume any valley-sublattice locking. This lack of inclusion
in the training set explains why the donutlike pattern tends to
be partially smeared out by the ML-based denoising model
as evident from the second column images in Figs. 4(a) and
4(b). This issue illustrates well an intrinsic limitation from
the bias induced by a nonrepresentative training set in ma-
chine learning [9,75-77]. While the feature is not completely
smeared out [cf. Fig. 4(b)] this demonstrates that care should
be taken when applying ML-based models to experimental
data in fundamental physics experiments if previously unex-
plored questions are tackled, emphasizing the need for raw
images in such cases.

Overall, ML-based denoising can provide multiple bene-
fits to STM applications. As discussed earlier, the significant
noise reduction achieved can already increase the level of
confidence when interpreting data visually. Importantly, per-
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Experimental I: Trained on pristine
image images
p o ot ottt - -
(a) B r'.;:’:‘ P i e
a . b » ~

v

(b)

III: Trained on
complete set

. ——
l‘-.

II: Trained on images
displaying QPI

FIG. 6. Influence of the introduction of various features in the simulated images used for training the ML model. (a)—(c) Experimental
images as in Fig. 4. Scale bars are 1 nm. Case I: Results from the ML-filter model trained only with simulated pristine monolayer and bilayer
graphene STM images. Case II: Results from the ML model trained with an image set that includes simulated images displaying quasiparticle
interference patterns (see text and Supplemental Material [55]) but no dopant. Case III: Results from the ML model trained with images
containing all the features (same as Fig. 4, second column; see Sec. II for details on all the included features).

formant denoising can also boost the efficiency of subsequent
ML architectures such as defect identification or automated
scanning, which can be of use, e.g., in the efficient de-
velopment and analysis of novel 2D electronic materials
or defect-based quantum information platforms. Perhaps the
most important benefit of efficient denoising lies in increasing
the throughput of STM experiments, rendering usable images
that would normally be discarded. This allows for greater
scanning speed and a choice of parameters, such as low tun-
neling current, that are less likely to produce tip degradation.

IV. CONCLUSIONS

In summary, we have introduced a machine learning model
for denoising STM images of graphitic systems which is
trained on simulated images. The wide variety of simulated
images in the training set allows us to apply the model to a
broad range of experimental images. We also demonstrate that
by tiling the model can be applied to denoise images that are
larger than those used in training while retaining a rapid com-

putational speed. The relevance of including different features
in the simulated training set was analyzed, revealing that the
inclusion of QPI patterns alone results in surprisingly good
ML denoising. Finally, limitations of ML-based denoising
were illustrated in the case of an unexpected charge-density
wave distortion. The ML denoising approach presented here
is expected to be an effective tool for facilitating the vi-
sual analysis of STM images and for enhancing subsequent
machine learning techniques applied to defect detection and
classification, atom manipulation, and scan automation.
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