Print this Page for Your Records

Close Window

Control/Tracking Number: 23-A-2450-BPS

Activity: Abstract

Current Date/Time: 10/1/2022 10:19:47 AM

MODULATING NEURONAL CELL MIGRATION UNDER CURVED CONFINEMENTS

Author Block: : Jacob M. Smith¹, Mackenna K. Landis², Anja Kunze².

¹Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA, ²Electrical and Computer Engineering, Montana State University, Bozeman, MT, USA.

Abstract:

During brain development in the cortical plate, neuronal cells exhibit distinct tangential and radial migration strategies. In case of complications, e.g., inadequate or disordered migration, developmental disorders such as lissencephaly, subcortical band heterotopia, and polymicrogyria can occur. Under healthy conditions, excitatory pyramidal neurons migrate radially from the ventricular zone into the cortical plate before switching to tangential routes. Radial migration has been extensively studied, but the mechanical cues of the tangential phase have been less scrutinized. Furthermore, additional cortical folding may superimpose critical mechanical cues to the tangential migration process. Using multi-curvature micropatterns, we studied synergistic physical and chemical cues that act upon neurons during curved tangential migration. First, PC12 cells (rat, P8) were cultured on polystyrene Petri dishes coated with poly-L-lysine (PLL) for control and with 3% (w/v) agarose micro curvatures on PLL, with media containing DMEM (97%), FBS (1%), HS (1%), and PenStrep (1%). These curvatures consisted of multiple concentric circles of increasing radii, with agarose barriers between each circle, and were created by stamping agarose with a 10:1 PDMS mold. Cell motility was imaged for 24 h *in vitro* (Dino-Lite microscope, 15 min interval) and tracked in FIJI ImageJ Manual Tracking software. Preliminary results indicate that neurons in the multi-curvatures migrated on average 45 times faster than under control conditions. These initial findings may be a starting point for better understanding physical cues during tangential migration strategies in the developing brain.

Presenter Information (Complete):

* Select Gender: Female

White: True

* Select Career Level: Other

Presentation Preference (Complete):

: Platform or Poster

: Yes

If Yes, please provide the information below.

Full Name: : Anja Kunze

Phone Number: : 4069947172

Email Address: : anja.kunze@montana.edu

Chair Career Level: Other Chair Gender: Female

Sponsorship (Complete):

Topic (Complete): 11D Micro- and Nanotechnology; 9C Neuroscience: Experimental Approaches and Tools

Technique (Complete):

First Selection: Microfluidics and Microfabrication **Second Selection:** Cell/Tissue Imaging and Mechanics **Third Selection:** Fluorescence and Light Microscopy

Fourth Selection: None/Other

Payment (Complete): Your credit card order has been processed on Saturday 1 October 2022 at 10:18 AM.

Status: Complete

Biophysical Society 5515 Security Lane, Suite 1110 Rockville, MD 20852 Phone: 240-290-5600

For technical inquiries, <u>click here</u> to contact cOASIS Helpdesk or call 217-398-1792.

Technical Support is available Monday-Friday, 8am-5pm Central Time.

1 of 2 10/1/2022, 9:20 AM

Powered by <u>cOASIS</u>. The Online Abstract Submission and Invitation System SM © 1996 - 2022 <u>CTI Meeting Technology</u> All rights reserved. <u>Privacy Policy</u>

2 of 2