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PRIVACY OF SYNTHETIC DATA: A STATISTICAL FRAMEWORK

MARCH BOEDIHARDJO, THOMAS STROHMER, AND ROMAN VERSHYNIN

Abstract. Privacy-preserving data analysis is emerging as a challenging problem
with far-reaching impact. In particular, synthetic data are a promising concept to-
ward solving the aporetic conflict between data privacy and data sharing. Yet, it is
known that accurately generating private, synthetic data of certain kinds is NP-hard.
We develop a statistical framework for differentially private synthetic data, which
enables us to circumvent the computational hardness of the problem. We consider
the true data as a random sample drawn from a population Ω according to some
unknown density. We then replace Ω by a much smaller random subset Ω∗, which we
sample according to some known density. We generate synthetic data on the reduced
space Ω∗ by fitting the specified linear statistics obtained from the true data. To
ensure privacy we use the common Laplacian mechanism. Employing the concept
of Rènyi condition number, which measures how well the sampling distribution is
correlated with the population distribution, we derive explicit bounds on the privacy
and accuracy provided by the proposed method.

1. Introduction

Data science and artificial intelligence play a key role in successfully tackling many
of the grand challenges our society is facing over the coming years. Data sharing and
data democratization will feature prominently in these endeavors. At the same time,
data colonialism [6] and surveillance capitalism [20] emerge as increasingly concerning
developments that threaten the potential benefits of data-driven advancements and
that highlight the utmost importance of data rights and privacy. For instance, the
WHO emphasized in its recent report the importance of data management methods
that improve the utility and accuracy of health-care data, while not compromising
privacy [15]. However, data democratization and responsible data sharing are not
likely to be accommodated by more efficient deidentification or strict security/privacy
processes alone.

Synthetic data is a promising ingredient toward solving the aporetic conflict between
data privacy and data sharing. The goal of synthetic data is to create an as-realistic-
as-possible data set, one that not only maintains the nuances of the original data, but
does so without risk of exposing sensitive information. The problem of making private
and accurate synthetic data is NP-hard in the worst case [18, 17].

In this paper we take a different route. We will show that the problem of making
private and accurate synthetic data is tractable in the statistical framework, where
the true data is seen as a random sample drawn from some probability space. Our
method comes with guarantees of privacy, accuracy, and computational efficiency. We
will discuss how our method improves upon existing techniques in Section 2.7.
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2. Problem setup and main results

2.1. The problem. We model the true data X as a sequence of n elements from some
ground set Ω. E.g., for an electronic health record these elements might represent
patients. For example, Ω = {0,1}p allows each patient to have p binary parameters,
while Ω = Rp allows the parameters to be real. Multimodal data are possible, too:
some parameters may be categorical, some real, some may consist of text strings, etc.
We would like to manufacture a synthetic dataset Y , which is another sequence of k
elements from Ω. We want the synthetic data to be private and accurate.

2.2. Defining accuracy. By “accuracy” we mean the accuracy of linear statistics
of the data. Consider a finite class F of test functions, which are functions from Ω
to [−1,1]. Linear statistics of the data X = (x1, . . . , xn) are the sums of the form
1

n ∑n
i=1 f(xi) for f ∈ F . We would like the synthetic data Y to approximately preserve

all these sums, up to a given additive error δ:

max
f∈F

RRRRRRRRRRR
1

k

k∑
i=1

f(yi) − 1

n

n∑
i=1

f(xi)
RRRRRRRRRRR ≤ δ. (2.1)

In this case we say that the synthetic dataset is δ-accurate.
As an important example, linear statistics are capable of encoding marginals of

high-dimensional data. Indeed, let us consider Boolean data where Ω = {0,1}p. In the
context of electronic health records, the data X = (x1, . . . , xn) consists of records of
n patients each having p binary parameters. The fraction of the number of patients
whose first and second parameters equal 1 and third parameter equals 0 is a three-
dimensional marginal. It can be expressed as the linear statistic 1

n ∑n
i=1 f(xi), where

f ∶ {0,1}p → {0,1} is the indicator function f(x) = 1{x(1)=x(2)=1, x(3)=0}. One-dimensional
marginals capture the means of the parameters, jointly with two-dimensional marginals
they determine the correlations, and higher dimensional marginals capture higher-order
dependencies.

In many situations, ∣Ω∣ is too large for computations while ∣F ∣ is reasonable. For
example, if F encodes all d-dimensional marginals of p-dimensional Boolean data as in
the previous example, ∣Ω∣ = 2p is exponential in p, while

∣F ∣ = ( p≤ d) = (
p

0
) + (p

1
) +⋯+ (p

d
) ≤ (ep

d
)d

is polynomial in p for any fixed d.

2.3. A statistical framework. Ullman and Vadhan [18] showed (under standard
cryptographic assumptions) that in general it is NP-hard to make private synthetic
Boolean data which approximately preserve all two-dimensional marginals. While this
result may seem discouraging, it is a worst-case result.

Yet the worst kind of data, for which the problem is hard, are rarely seen in practice.
More common in applications is the statistical framework, where the true data is seen
as a random sample drawn from some probability space (Ω,Σ, ν). The probability
distribution ν specifies the population model of the true data. We assume that we
neither know ν, nor can we sample according to ν thereby generating more true data.
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Suppose, however, that we can sample from Ω according to some other, known,
probability measure µ. For example, while we may not know the underlying population
distribution ν of the patients in the Boolean cube Ω = {0,1}p, we can still sample from
the cube according to the uniform measure µ by choosing all coordinates at random
and independently. Similarly, while we may not know the population distribution ν

of written notes in patient health records, there do exist generative models µ that
generate texts. In order to uphold privacy, we assume that the true data X may not
be used to build the generative model µ, but it can be built using some other public
data.

Having put our problem into a statistical framework, we can try to circumvent
the computational hardness of our problem in the most obvious way: subsample Ω.
Namely, we replace Ω by a much smaller random subset Ω∗ that is sampled according
to the distribution µ. Then we generate synthetic data in Ω∗ by fitting the desired
linear statistics (e.g. all marginals up to a specified degree) of the true data as close as
possible.

This idea may only work if the sampling distribution µ has some “correlation” with
the population distribution ν. We can quantify this correlation using the notion of
Rènyi divergence [16]. Namely, if ν is absolutely continuous with respect to µ, we can
utilize the Radon-Nikodym derivative dν/dµ to define the Rènyi condition number

κ(ν∥µ) = ∫ (dν
dµ
)2dµ = ∫ dν

dµ
dν, (2.2)

a quantity that equals the exponential of D2(ν∥µ), the Rènyi divergence of order 2.
Conceptually, κ(ν∥µ) is similar to the notion of the condition number in numerical

linear algebra: the smaller, the better. The best value of the Rènyi condition number
is 1, achieved when ν = µ.

If Ω is finite, the Radon-Nikodym derivative dν/dµ equals the ratio of the densities
φ(x) = ν({x}) and ψ(x) = µ({x}). In particular, if the sampling distribution µ is
uniform, ψ(x) = 1/∣Ω∣ for all x, and we have

κ(ν∥µ) = ∫ φ(x)2∣Ω∣2 dµ(x) = ⎛⎜⎝
∥φ∥L2(µ)

∥φ∥L1(µ)

⎞⎟⎠
2

. (2.3)

Thus, the Rènyi condition number in this case measures the regularity of the population
density φ: the more spread out it is, the smaller its Rènyi condition number.

2.4. Our approach. Our method, in a nutshell, is the following: obtain a reduced
space Ω∗ by subsampling Ω according to the known probability measure µ, and generate
synthetic data Y on Ω∗ by fitting the linear statistics obtained from X .

Our results come with guarantees of privacy, accuracy, and efficiency. To achieve
all this, we assume (roughly speaking) that the size of the true data is at least nearly
linear in the number of statistics we seek to preserve:

∣X ∣ ≳ ∣F ∣ log∣F ∣ .
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For accuracy, we need the size of the synthetic data to be at least logarithmic in the
number of statistics (a mild assumption):

∣Y ∣ ≳ log∣F ∣ .
And, finally, we can make all computations in the reduced space Ω∗ as long as its size
is at least linear in the number of statistics:

∣Ω∗∣ ≳ ∣F ∣ .
If these three conditions are met, we can generate synthetic data while preserving
privacy, accuracy, and efficiency (for the latter, we solve a linear program in dimension∣Ω∗∣).

In order to provide rigorous privacy guarantees, we will employ the concept of differ-
ential privacy [9], which has emerged as a de-facto standard for private data sharing.

Definition 2.1 (Differential Privacy [9]). A randomized functionM gives ǫ-differential
privacy if for all databases D1 and D2 differing on at most one element, and all mea-
surable S ⊆ range(M),

P[M(D1) ∈ S] ≤ eǫ ⋅ P[M(D2) ∈ S],
where the probability is with respect to the randomness ofM.

A basic technique to achieve differential privacy is the Laplacian mechanism, which
consists of adding Laplacian noise to the data. A Laplacian random variable λ is
Laplacian with parameter σ, abbreviated λ ∼ Lap(σ), if λ is a symmetric random
variable with exponential tails in both directions:

P {∣λ∣ > t} = exp(−t/σ), t ≥ 0.
It is well known and not hard to see that Laplacian mechanism achieves differential
privacy; see Lemma 3.1 for details.

2.5. Algorithm. We present a high level algorithmic description of our proposed
method in Algorithm 1 below. See Section 2.6 for the role of the parameters aris-
ing in the algorithm.

Note that computing h∗ amounts to solving a linear program with ∣Ω∗∣ ≤m variables1

and at most ∣F ∣+m+ 1 constraints. The complexity of solving general linear programs
is polynomial in the number of variables, see e.g. [13].

2.6. Privacy and accuracy guarantees.

Theorem 2.2 (Privacy). Let δ > 0, γ > 0 and set σ = δ/ log(∣F ∣ /γ). If

n ≥ 2(εδ)−1∣F ∣ log(∣F ∣ /γ),
then Algorithm 1 is ε-differentially private.

We emphasize that this privacy guarantee holds for any choice of the reduced space
Ω∗.

1We have inequality here because the set Ω∗ is formed of points zi that are sampled independently,
which may result in repetitions.



PRIVACY OF SYNTHETIC DATA: A STATISTICAL FRAMEWORK 5

Algorithm 1 Private synthetic data algorithm

Input: (a) the true data: a sequence X = (x1, . . . , xn) of n elements of Ω;
(b) a family F of test functions from Ω to [−1,1];
(c) the reduced space Ω∗ = {z1, . . . , zm}, made of points zi chosen from Ω;
(d) parameter σ > 0.

1. Add noise: For each test function f ∈ F , generate an independent Laplacian
random variable λ(f) ∼ Lap(σ).

2. Reweight: Compute a density h∗ on Ω∗ whose linear statistics are uniformly as
close as possible to the linear statistics of the true data perturbed by Laplacian
noise:

h∗ = argmin

⎧⎪⎪⎨⎪⎪⎩max
f∈F
∣ m∑
i=1

f(zi)h(zi) − 1

n

n

∑
i=1

f(xi) − λ(f)∣ ∶ h is a density on Ω∗
⎫⎪⎪⎬⎪⎪⎭ .

3. Bootstrap: Create a sequence Y = (y1, . . . , yk) of k elements drawn from Ω∗

independently with density h∗.
Output: synthetic data Y = (y1, . . . , yk).

Theorem 2.3 (Accuracy). Let min(n, k) ≥ δ−2 log(∣F ∣ /γ) and m ≥ δ−2K ∣F ∣ /γ, where
δ ∈ (0,1/2] and γ ∈ (0,1/4). Set σ = δ/ log(∣F ∣ /γ). Suppose the true data X =(x1, . . . , xn) is sampled from Ω independently and according to some probability measure
ν, and the reduced space Ω∗ = {z1, . . . , zm} is sampled from Ω independently and accord-
ing to some probability measure µ. Assume that the Rènyi condition number satisfies
κ(ν∥µ) ≤ K. Also assume that the family F contains the function that is identically
equal to 1. Then with probability at least 1 − 4γ the synthetic data Y = (y1, . . . , yk)
generated by Algorithm 1 is (8δ)-accurate.

Let us specialize our results to Boolean data. Here the sample space is Ω = {0,1}p
and we seek accuracy with respect to all ∣F ∣ = ( p≤d) marginals up to degree d. Choose
µ to be the uniform density on the cube, recall (2.3), and combine the two theorems
above to get:

Corollary 2.4 (Boolean data). Let n ≫ ( p≤d) log ( p≤d) and k ≫ log ( p≤d). Suppose that
the true data X = (x1, . . . , xn) is sampled from {0,1}p independently and according to
some (unknown) density φ. Then one can generate synthetic data Y = (y1, . . . , yk) that
is o(1)-accurate with respect to all marginals of dimension at most d with probability
1 − o(1), and is also o(1)-differentially private. The algorithm that generates Y from
X runs in time polynomial in n, k, and κ for a fixed d.

The proofs of the claims above will be given in Section 3.

2.7. Related work. There exists a fairly large body of work on privately releasing
answers in the interactive and non-interactive query setting, a detailed review of which
is beyond the scope of this paper. A major advantage of releasing a synthetic data set
instead of just the answers to specific queries is that synthetic data opens up a much
richer toolbox (clustering, classification, regression, visualization, etc.), and thus much
more flexibility, to analyze the data.
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In [3], Blum, Ligett, and Roth gave an ε-differentially private synthetic data al-
gorithm whose accuracy scales logarithmically with the number of queries, but the
complexity scales exponentially with p. This computational inefficiency comes as no
surprise, if we recall that making differentially private Boolean synthetic data which
preserves all of the two-dimensional marginals with accuracy o(1) is NP-hard [18].

The papers [11, 10] propose methods for producing private synthetic data with an

error bound of about Õ(√np1/4) per query. However, the associated algorithms have
running time that is at least exponential in p.

In [2], Barak et al. derive a method for producing accurate and private synthetic
Boolean data based on linear programming. The method in [2] is conceptually similar
to ours even though it is concerned with marginals, while our approach holds for general
linear statistics. The key difference is in the computational complexity. The method
in [2] involves solving a linear program on the entire domain Ω = {0,1}p and thus its
running time is exponential in p. The authors of [2] emphasize that “one of the main
algorithmic questions left open from this work is that of efficiency”, for which our paper
provides a solution. Our method works in the reduced space Ω∗, which, according to
Theorem 2.3, has size m slightly larger than ( p≤d), and thus it is only polynomial in p,
thereby providing a positive answer to the aforementioned algorithmic question.

The method developed by Hardt and Talwar in [12] privately releases answers to
linear queries (including, in particular, marginals). It applies to general data that needs
not be Boolean, just like in our work. However, unlike our method, the method in [12]
does not construct synthetic data. Also, unlike our work, the theoretical accuracy
bounds in [12] hold for most but not all linear queries. Nikolov, Talwar, and Zhang
in [14], follow up on the work [12] and improve the (lower and upper) bounds derived by
Hardt and Talwar. The lack of efficiency of the method in [14] is addressed in [1], where
the authors demonstrate empirically the computational efficiency of their method.

The paper [8] by Dwork, Nikolov, and Talwar is concerned with a convex relaxation
based approach for private marginal release, and thus, unlike our method, does not
construct synthetic data for a ground set Ω. Also, [8] gives “only” (ǫ, δ)-differential
privacy.

Privacy-preserving data analysis (beyond marginals) in a statistical framework is the
focus of [7, 5]. While these papers are quite intriguing, they are not concerned with
synthetic data, and thus not directly related to this work.

Another method of constructing private synthetic data was proposed recently in [4].
To compare the two, recall that the no-go result of Ullhman says (roughly) that, for
the worst true data, it is impossible to efficiently construct private synthetic Boolean
data that approximately preserves all marginals of dimension 2. The work [4] and the
present paper overcome this impossibility result, each in its own way: this paper relaxes
“worst data” to “typical data”, while [4] relaxes “all marginals” to “most marginals”.

3. Proofs

For an integrable function f ∶ Ω→ R on a measure space (Ω,Σ, ν), we denote

⟪f, ν⟫ = ∫ f dν. (3.1)
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Given a sequence of points x1, . . . , xn ∈ Ω, possibly with repetitions, we consider the
empirical measure

νn = 1

n

n

∑
i=1

δxi
.

By definition, we have

⟪f, νn⟫ = 1

n

n

∑
i=1

f(xi). (3.2)

With this notation, the optimization part of Algorithm 1 can be expressed as follows:

h∗ = argmin{max
f∈F
∣⟪f,h⟫ − ⟪f, νn⟫ − λ(f)∣ ∶ h is a probability measure on Ω∗} . (3.3)

3.1. Privacy. The following lemma is well known, see e.g. Theorem 2 in [2].

Lemma 3.1 (Laplacian mechanism). Let A be a mapping that transforms data D to
a point A(D) ∈ RN . Let

∆ = max
D1,D2

∥A(D1) −A(D2)∥
1

where the maximum is over all pairs of input data D1 and D2 that differ in a single
element. Then the addition of i.i.d. Laplacian noise λi ∼ Lap(σ) to each coordinate ofA(D) preserves (∆/σ)-differential privacy.

Consider the linear map L that associates to a measure ν on Ω the set of its linear
statistics, namely L(ν) = (⟪f, ν⟫)

f∈F
∈ R∣F∣.

Consider two input sets (x1, . . . , xn) and (x1, . . . , xn, xn+1) that differ by exactly one
element xn+1. Then one can easily check that the corresponding empirical measures
satisfy the identity

νn+1 − νn = 1

n + 1
(δxn+1

− νn) .
Then, using linearity of L and the triangle inequality, we obtain

∥L(νn+1) −L(νn)∥
1
=∥L(νn+1 − νn)∥

1
≤ 1

n + 1
∥L(δxn+1

)∥
1
+

1

n + 1
∥L(νn)∥

1
. (3.4)

To bound this quantity further, note that for every i the definition of L yields

∥L(δxi
)∥

1
= ∑

f∈F

∣⟪f, δxi
⟫∣ = ∑

f∈F

∣f(xi)∣ ≤ ∣F ∣ , (3.5)

where in the last step we used that each function f ∈ F takes values in [−1,1]. There-
fore, by linearity of L and the triangle inequality,

∥L(νn)∥
1
=∥1
n

n

∑
i=1

L(δxi
)∥

1

≤ 1

n

n

∑
i=1

∥L(δxi
)∥

1
≤ ∣F ∣ ,

where in the last step we used (3.5). Substituting the bound (3.5) for i = n+1 and the
last inequality into (3.4), we conclude that

∆ :=∥L(νn+1) −L(νn)∥
1
≤ 2∣F ∣

n
.
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Applying Lemma 3.1, we see that the addition of the independent Laplacian random
variable λ(f) ∼ Lap(σ) to each coordinate ⟪f, νn⟫ of L(νn) preserves (∆/σ)-differential
privacy. Due to the bound on ∆ above, the choice of σ in the algorithm, and the
assumption on n in Theorem 2.2, we have

∆

σ
≤ 2∣F ∣ log(∣F∣ /γ)

nδ
≤ ε.

Hence, the family of perturbed coefficients ⟪f, νn⟫ + λ(f) is ε-differentially private.
Finally, the function h∗ in (3.3) computed by the algorithm is a function of these private
perturbed coefficients. Hence the algorithm is ε-differentially private. Theorem 2.2 is
proved.

3.2. Accuracy. Here, our input data X1, . . . ,Xn are i.i.d. points sampled from Ω
according to the probability measure ν, and the reduced space Ω∗ is formed by the
points Z1, . . . ,Zm sampled from Ω according to the probability measure µ. Consider
the corresponding empirical probability measures

νn = 1

n

n

∑
i=1

δXi
and µm = 1

m

m

∑
i=1

δZi
.

Let us reweigh the reduced space, introducing the measure

ν′m = 1

m

m

∑
i=1

(dν
dµ
)(Zi) δZi

. (3.6)

The point is that both νn and ν′m are unbiased estimators of the population measure
ν:

E νn = E ν′m = ν.
These identities can be easily deduced from the definition of the Radon-Nikodym de-
rivative. In our argument, however, they will not be used. Instead, we need uniform
deviation inequalities that would guarantee that with high probability, all linear sta-
tistics of νn, ν′m and ν approximately match. This is the content of the next two
lemmas.

Lemma 3.2 (Deviation of linear statistics for νn). Let (Ω,Σ, ν) be a probability space,
and let νn be an empirical probability measure corresponding to ν. If n ≥ δ−2 log(∣F∣ /γ)
then, with probability at least 1 − γ, we have

max
f∈F
∣⟪f, νn⟫ − ⟪f, ν⟫∣ ≤ δ.

Proof. For each function f ∈ F , recalling (3.1) and (3.2) we get

⟪f, ν⟫ = ∫ f dν = E f(X), ⟪f, νn⟫ = 1

n

n

∑
i=1

f(Xi),
where X,X1,X2, . . . are drawn from Ω independently according to probability measure
ν. Therefore

⟪f, νn⟫ − ⟪f, ν⟫ = 1

n

n

∑
i=1

(f(Xi) −E f(Xi))
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is a normalized and centered sum of i.i.d. random variables, which are bounded by 1
in absolute value (by assumption on F). Applying Bernstein’s inequality (see e.g. [19,
Theorem 2.8.4]) we get for any δ ∈ (0,1) that

P {∣⟪f, νn⟫ − ⟪f, ν⟫∣ > δ} ≤ exp(−δ2n) ≤ γ/∣F∣ ,
where in the last step we used the assumption on n. The lemma is proved. �

Lemma 3.3 (Deviation of linear statistics for ν′m). If m ≥ δ−2K ∣F ∣ /γ and κ(ν∥µ) ≤K
then, with probability at least 1 − γ, we have

max
f∈F
∣⟪f, ν′m⟫ − ⟪f, ν⟫∣ ≤ δ.

Proof. For each test function f ∈ F , by definition of the Radon-Nikodym derivative,
we have

⟪f, ν⟫ = ∫ f dν = ∫ f(z)(dν
dµ
)(z)dµ(z) = E(dν

dµ
)(Z)f(Z),

where Z is drawn from Ω according to probability measure µ. Furthermore, by defini-
tion of reweighting (3.6) we have

⟪f, ν′m⟫ = ∫ f dν′m = 1

m

m

∑
i=1

(dν
dµ
)(Zi)f(Zi),

where Zi are i.i.d. copies of Z. Therefore

⟪f, ν′m⟫ − ⟪f, ν⟫ = 1

m

m

∑
i=1

(Ri −ERi) where Ri = (dν
dµ
)(Zi)f(Zi).

In other words, we have a normalized and centered sum of i.i.d. random variables. The
variance of each term of the sum is bounded by the Rènyi condition number κ(ν∥µ).
Indeed,

Var(Ri) ≤ ER2

1 = E(dνdµ)(Z)2 f(Z)2 ≤ E(
dν

dµ
)(Z)2 = ∫ (dν

dµ
)2 dµ = κ(ν∥µ) ≤K.

Here, in the third step we used the assumption that f takes values in [−1,1].
We showed that the variance of ⟪f, ν′m⟫ − ⟪f, ν⟫ is bounded by K/m. Applying

Chebyshev’s inequality, we get for any δ ∈ (0,1) that
P {∣⟪f, ν′m⟫ − ⟪f, ν⟫∣ > δ} ≤ K

δ2m
≤ γ

∣F ∣ ,
where in the last step we used the assumption on m. The lemma is proved. �

Proof of Theorem 2.3. Assume that the events in the conclusions of Lemma 3.2 and
Lemma 3.3 hold; this happens with probability at least 1 − 2γ.

The measure ν′m introduced in (3.6) need not be a probability measure, since its
total mass

r := ⟪1, ν′m⟫
does not need to equal 1. But it is not far from 1. Indeed, since the constant function
1 lies in F by assumption, the conclusion of Lemma 3.3 gives

∣⟪1, ν′m⟫ − ⟪1, ν⟫∣ ≤ δ.
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Since ν is a probability measure, it satisfies ⟪1, ν⟫ = 1, and we get

∣r − 1∣ ≤ δ. (3.7)

Now, ν′m/r is a probability measure. Let us check that it satisfies a deviation inequal-
ity. To this end, first note that the conclusion of Lemma 3.3 and triangle inequality
give

∣⟪f, ν′m⟫∣ ≤ ∣⟪f, ν⟫∣ + δ = ∣∫ f dν∣ + δ ≤ 1 + δ (3.8)

where we used the assumption that all f ∈ F take values in [−1,1]. Thus, subtracting
and adding the term ⟪f, ν′m⟫, we obtain

∣⟪f, ν′m/r⟫ − ⟪f, ν⟫∣ ≤ ∣1/r − 1∣ ∣⟪f, ν′m⟫∣ +∣⟪f, ν′m⟫ − ⟪f, ν⟫∣ .
Since δ ∈ (0,1/2], (3.7) yields ∣1/r − 1∣ ≤ 2δ. Furthermore, (3.8) yields ∣⟪f, ν′m⟫∣ ≤ 3/2.
Finally, the conclusion of Lemma 3.3 yields ∣⟪f, ν′m⟫ − ⟪f, ν⟫∣ ≤ δ. Substituting these
bounds into the inequality above, we obtain the desired deviation inequality:

max
f∈F
∣⟪f, ν′m/r⟫ − ⟪f, ν⟫∣ ≤ 4δ.

Combining this with the conclusion of Lemma 3.2 via the triangle inequality, we
obtain

max
f∈F
∣⟪f, ν′m/r⟫ − ⟪f, νn⟫∣ ≤ 5δ.

A simple union bound over ∣F ∣ Laplacian random variables shows that with probability
at least 1 − γ,

max
f∈F
∣λ(f)∣ ≤ σ log(∣F∣ /γ) = δ (3.9)

where the last identity is due to the choice of σ in the algorithm. Combining the two
bounds, with probability at least 1 − 3γ, we have

max
f∈F
∣⟪f, ν′m/r⟫ − ⟪f, νn⟫ − λ(f)∣ ≤ 6δ.

Recall that, by construction, ν′m/r is a probability measure on the set Ω∗ = {Z1, . . . ,Zm}.
Therefore, minimality of h∗ in algorithm (3.3) implies that

max
f∈F
∣⟪f,h∗⟫ − ⟪f, νn⟫ − λ(f)∣ ≤ 6δ.

Using (3.9) again, we conclude that

max
f∈F
∣⟪f,h∗⟫ − ⟪f, νn⟫∣ ≤ 7δ.

To complete the proof, we note that bootstrapping preserves the accuracy of linear
statistics. Indeed, apply Lemma 3.2 for the probability density h∗ on Ω∗ and its
empirical counterpart h∗k = 1

k ∑k
i=1 δYi

where Yi are sampled independently from Ω∗

according to the probability density h∗. Since k ≥ δ−2 log(∣F∣ /γ) by assumption, with
probability at least 1 − γ we have

max
f∈F
∣⟪f,h∗k⟫ − ⟪f,h∗⟫∣ ≤ δ.
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Combining this with the previous bound, we obtain that with probability at least 1−4γ,

max
f∈F
∣⟪f,h∗k⟫ − ⟪f, νn⟫∣ ≤ 8δ.

This is an equivalent form of (8δ)-accuracy (2.1). Theorem 2.3 is proved. �

4. Open problems

While the method proposed in this paper provides a simple and efficient roadmap
to construct private synthetic data that preserve with high accuracy linear statistics
of the original data, we may require our synthetic data to accurately model other
features of the data that are not (fully) captured by linear statistics. This poses
numerous questions. For example, how well do linear statistics inform other kinds of
data analysis tasks (e.g., clustering, classification, regression, etc.)?

Another challenge is that we do not know the population distribution ν, and thus we
may not know how to choose a good sampling distribution µ. Using various generative
models seem a natural choice for certain types of data, such as text and images. Using
those, we may hope to build the sampling distribution µ that has enough “overlap”
with the population distribution ν (as measured by the Renyi condition number). Since
we just need to be able to sample from ν, building an MCMC model for it is enough.

It is important, however, that we may not use the true data X to make any decisions
about µ, as this could violate privacy. The sampling distribution µ should be estimated
in some other way. We can either use private density estimation for that purpose, or
estimate µ from some publicly available data that does not need to be protected by
privacy.
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