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Abstract
In recent years, there has been a growing interest in realizing methodologies to integrate more and more computation at the 
level of the image sensor. The rising trend has seen an increased research interest in developing novel event cameras that 
can facilitate CNN computation directly in the sensor. However, event-based cameras ca be expensive, limiting performance 
exploration on high-level models and algorithms. This paper presents an event camera simulator that can be a potent tool for 
hardware design prototyping, parameter optimization, attention-based innovative algorithm development, and benchmarking. 
The proposed simulator implements a distributed computation model to identify relevant regions in an image frame. Our 
simulator’s relevance computation model is realized as a collection of modules and performs computations in parallel. The 
distributed computation model is configurable, making it highly useful for design space exploration. The Rendering engine 
of the simulator samples frame-regions only when there is a new event. The simulator closely emulates an image processing 
pipeline similar to that of physical cameras. Our experimental results show that the simulator can effectively emulate event 
vision with low overheads

Keywords  Simulator · Convolutional neural network · Embedded vision · Pixel processing

1  Introduction

Event cameras are bio-inspired vision sensors designed 
to generate image frames asynchronously based on scenic 
events [1]. In contrast to conventional camera sensors where 
raw frame pixels are streamed to a backend processor at a 
fixed rate, event-based cameras generate output only when 
there is a new event(s). Recently, researchers are seeking 
novel methodologies to incorporate machine learning mod-
els (in particular CNNs) in the image sensor [2, 3]. This 
has revived interest in event cameras to facilitate efficient 
dataflow between the sensor and the near-sensor processing 

system. However, novel algorithms and methods are required 
to process the unorthodox data streams from these vision 
sensors to unlock their full potential [4]. However, research-
ers working on this domain face two major challenges. First, 
there are not sufficient event-cameras in the market, limiting 
the research to a few applications. Second, the commercially 
available event cameras suffer from different setbacks such 
as low resolution, lack of reconfiguration, etc.

Several camera simulators have been proposed in the lit-
erature to accommodate the research demands [5, 6]. For 
instance, authors in [5] presented ESIM, a camera simulator 
that resembles an event camera’s behavior. The simulator 
integrates an adaptive rendering scheme that only samples 
frames when necessary. In addition to generating events, 
the simulator can produce a depth map, motion field, and 
camera trajectory. However, the simulator was developed 
for robotics applications and not specifically designed to 
explore inference architectures near the sensors. Therefore, 
any in-sensor high-level processing engine that aims to lev-
erage the event sensor in the processing pipeline will fail to 
utilize the full potential of the events generated from this 
camera simulator. At best, the simulator would allow the 
inference engine only to activate whenever a new event is 
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detected on the sensor interface. However, at each iteration, 
the full image will get processed in the inference engine 
regardless of the size of the ROI (Region-Of-Interest). The 
newest developments in imaging technology have brought 
forth parallel processing image sensors that can be combined 
with an inference engine to provide high-performance com-
putation models near the sensor [1, 7–9]. By tightly coupling 
computation on the inference layer to specific image regions, 
it is possible to improve the computational capabilities of 
these systems and reduce data communications. Neverthe-
less, a suitable platform is required to explore the design 
space of these architectures.

In this paper, we present a novel event camera simulator 
that simulates a per-pixel image sensor’s behavior aiming to 
accommodate CNN inference in the sensor interface. The 
events captured in the simulator are identified on a region 
level. Therefore, only specific regions can be forwarded to 
the following computation layer to activate the inference 
engine minimally (Fig. 1). Similar to the work mentioned 
above, our rendering-module samples image frames when-
ever there is a new event. However, instead of sampling the 
complete image, respective event regions are only sampled. 
The simulator can generate valid event data from a video 
stream that can be used to model and train event-based learn-
ing models. We have prototyped the simulator’s computa-
tion module on an FPGA to estimate the hardware cost. Our 
evaluation results suggest that we can significantly reduce 
computation with our event-based camera approach with 
decent hardware overhead.

The main contributions of this paper are:

•	 A novel camera simulator design that identifies regional 
events and facilitates a suitable interface for inference 
architectures.

•	 A thorough evaluation of our region-level relevance com-
putation model to highlight the significance.

•	 An FPGA prototype of the relevance computation model 
to indicate hardware overheads related to our approach.

The main motivation of this work is to design a novel simu-
lator that identifies relevant data on a regional level. The 
work aims to generate custom attention-based datasets that 
can be used to jointly consider algorithm–hardware co-
design frameworks to address computational overheads. 

The proposed simulator can be used to explore the architec-
ture design space of inference engines that uses tiling-based 
operations on image data. We have released our design open 
source [10]. The remaining sections of this paper are organ-
ized as follows. Section 2 discusses the related works in the 
literature. Section 3 provides a detailed explanation of our 
design. We evaluate the performance of our model in Sect. 4.

2 � Related work

In recent years, vision-based algorithms are increasingly 
being used in different application domains to solve differ-
ent complex problems [11, 12]. The primary task in these 
applications includes identifying objects and recognizing 
them. In many cases, it is always beneficial to narrow down 
the computation to a specific region by utilizing an atten-
tion-based model. Several camera simulators can be found 
in the literature emulating the behavior of an event camera 
[13–15]. And, in recent years, various approaches have been 
proposed to bring inference computation close to the sen-
sor. We start by studying the state-of-the-art camera simula-
tor and highlight the advantages of our proposed toolchain. 
Next, we will discuss the in-sensor processing architectures 
that leverage event-based camera designs.

In [16], authors present an event sensor simulator that can 
render events from a 3D scene. The simulator was designed 
to facilitate research in robotic vision. However, it is not 
tailored for in-sensor processing exploration. The virtual 
camera proposed in [17] offers an interactive interface with 
a custom rendering engine that can be used for benchmark-
ing different SLAM algorithms. Similar to previous work, 
here, the authors did not illustrate the use cases with infer-
ence architectures but focused on generating photo-realistic 
indoor scenes datasets.

We found ESIM as one of the thorough works on event 
camera simulation [5]. It provides an open-source design 
and illustrates use cases on learning optical flow. How-
ever, ESIM (including all the other works described above) 
identifies events at a pixel level. These fine-grained events 
captured in the sensor interface can reduce the rendering 
engine’s workload. However, with the current setup, any 
subsequent inference engine in the processing pipeline 

Fig. 1   Region-based event 
camera simulator designed to 
accommodate inference pro-
cessing near the sensor
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will not be able to leverage many benefit from these fine-
grained events due to the available dataflow mechanisms.

There are other recent simulators that operate on DVS 
events [18, 19]. These works present simulators to gener-
ate realistic DVS events that can be useful for training 
networks. Our work differs from these works by consider-
ing both spatial and temporal features to identify relevant 
regions.

The ReImagine program launched by DARPA aims to 
integrate revolutionary capabilities in the imaging sys-
tem [20]. They demonstrated that a single, reconfigurable 
ROIC (ReadOut Integrated Circuit) architecture could 
accommodate multiple modes of imaging operations that 
may be defined after a chip has been designed. The pro-
gram seeks ROI-based efficient computation models to 
enable real-time analysis. Even though preliminary works 
have shown promising results, the landscape of the high-
level computation part is still in progress. Further develop-
ment in this research direction faces setbacks due to the 
lack of appropriate physical cameras that can accommo-
date these operations.

Other works in accommodating CNNs in an image sen-
sor involve coupling an array of pixel processors to a paral-
lel processing camera [21, 22]. Authors in [21] proposed a 
region-aware processing model to reduce high-level compu-
tation to relevant regions. However, the authors mainly dis-
cussed the hardware aspects of the architecture. Whereas, it 
is essential to thoroughly assess the behavior of region-aware 
processing models for different applications. For instance, 
the methodologies and threshold values used to identify rel-
evant image regions can differ for different scenarios.

Our simulator design differs from the works mentioned 
above by considering the CNN computation models that 
operate on the sensor’s collected data. The approaches found 
in the literature provide solutions at best for generic use 
cases. Our proposed simulator emulates event cameras that 
capture changes at a regional level as opposed to pixel-level 
sampling. This allows the subsequent computation layers 
to minimize computation on irrelevant regions. We believe 
our simulators will enable researchers to develop optimized 
attention-based hardware architectures by accurately analyz-
ing the relevance model. Besides, the configurability of the 
simulator allows exploration of the design space for event 
cameras.

3 � Proposed design flow

In this section, we first describe the concept and the prin-
ciples of operation of the event camera that we simulate. 
Then, we illustrate the design flow and architecture of the 
simulator.

3.1 � Camera model

Our virtual camera’s baseline design considers a parallel 
imager, where each sensing unit in the photodiode array has 
an analog to digital converter (ADC) and a local memory 
[8]. At the sensor interface, the incoming image frame is 
logically divided into M image regions where N × N pixels 
reside in each image patch (shown in Fig. 1). There is a 
regional processing unit (RPU) for each image patch for the 
local handling of computation. Each RPU has one streaming 
channel to transfer pixel/event data from the correspond-
ing region to the next buffer (or computation module). All 
RPUs operate independently and generate output in paral-
lel. Within the RPU, the saliency data for the correspond-
ing region are computed. A saliency score is calculated to 
reflect the spatial and temporal relevance of that region. 
Based on the saliency score, only specific image regions 
are forwarded to the next plane to enable attention-based 
near-sensor computation. Depending on the application, 
the high-level processing module can initiate computation 
for separate regional events or extract information from the 
accumulated events in an image frame. The proposed camera 
model generates attention-based image data by computing 
the events captured at the sensor interface. Here, the actual 
image pixels are forwarded to the higher processing plane 
to allow the inference processing modules to operate on a 
reduced set of pixel data. Interested readers can look at [23, 
24], to learn more about similar camera models.

3.2 � Simulator architecture

The difference between a conventional camera and an event 
camera is the latter does not capture intensity information 
from the scene synchronously. Instead, it samples visual 
signals asynchronously and independently for each pixel/
region. In our design, we simulate this behavior with a regu-
lar vision system. The simulator’s input is a stream of image 
frames from a camera or video clip captured at discrete time 
intervals. Whereas the output of the simulator includes local-
ized pixel and event information generated at irregular inter-
vals. The simulator comprises a capture module, a relevance 
computation module(RCM), and a rendering module. The 
high-level simulator architecture is shown in Fig. 2. The 
capture module collects image frames at a regular interval, 
divides the image frame into equal-sized image patches, and 
forwards them to the RCM. The RCM comprises an array of 
RPUs operating in parallel. Within the RPU, saliency scores 
are computed. The saliency scores are calculated based on 
spatial and temporal information. Visual attention can be 
drawn from different details embedded within the image 
pixels (i.e., edges, corners, motion, error surface, optical 
flow, data distribution). If the saliency score is greater than 
some threshold, then that region is identified as relevant. 
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The renderer collects data from the RCM and constructs the 
image frame for the high-level processing units in the image 
processing pipeline. This includes raw pixel data, saliency 
score, and other feature information calculated to identify 
the region of interest (ROI). The rendering engine renders an 
image at time t based on the events captured at time t interval 
and the renderer’s previous state at time t − 1 . Therefore, 
if we denote the renderer output as R, it can be written as:

The next section details the relevance computation model 
utilized in our simulator.

3.3 � Relevance computation module (RCM)

An image processing pipeline with a vision sensor and a 
high-level back-end processor imitates the eye and brain’s 
combined functionality. Except, a human eye has around 130 
million pixels, with only 1.3 million synaptic connections 
to the brain, indicating a 1% sparsity [20]. It is believed 
that the massive sparsity is essential for power and latency 
trade space and helps avoid sending repetitive information 
to the latter parts of the brain. The RCM of our simulator 
is designed to emulate the behavior of the biological vision 
system. This means that the RCM will receive a large num-
ber of incoming pixels from the sensor interface and forward 
a limited number of pixels from specific image regions to 
the higher processing module. The RPUs in this module 
operate on a region-parallel basis. The RPU performs the 
relevance function on image pixels and accumulates the rel-
evance score for all pixels in a region. The spatial relevance 
score can be calculated from a set of indexes based on the 
user-defined environment (i.e., edge, corners, variance, seg-
mentation, etc.). For instance, if we consider edge points 
as a spatial relevance index, we count the number of edge 
points found in an image region. Then, we use this value 
to rank the image regions based on a predefined threshold. 
Likewise, to check the spatial data distribution, the RPU 
can calculate the mean absolute deviation and classify the 
image regions based on data variation in a similar manner. 
Our proposed simulator implements a number of spatial rele-
vance detection functions, from where the user can select the 

(1)R(t) = RROIspatial
(t − 1) + RROItemporal

(t).

appropriate method that best suits a given scenario/dataset. 
The functionality of the RPU is shown in Fig. 3. Here, the 
noise reduction module is used to remove noise and interfer-
ence from the incoming image region. It helps to reduce the 
miss-detection of events.

For temporal saliency, RPUs compare the incoming pixel 
to its temporal neighbors. This means the temporal relevance 
is computed by comparing the incoming pixel to the existing 
pixel. The number of temporal mismatches within a region 
is compared against a temporal threshold value to deter-
mine temporal relevance. If this value exceeds a specific 
value, then we mark that region as temporally relevant. The 
threshold value can be adjusted on the simulator to find the 
optimum computation point. The image patches are catego-
rized using two-bit information, each for spatial and tempo-
ral saliency. This information is forwarded to the rendering 
engine that requests data from the RCM module based on 
the relevance score. The operation of the rendering engine 
based on the relevance score is shown in Table 1.

In Table 1, the TRS value indicated temporal relevance 
score, whereas the SRS value refers to the spatial relevance 
score. The active notion in RPU implies that for a given 

Fig. 2   Proposed Simulator 
model. The capture module 
propagates image regions to the 
RCM. The RCM computes the 
relevance and feeds an asyn-
chronous rendering engine to 
generate event-based frames
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Fig. 3   RPU block diagram. Here, spatial_feat_i indicates feature 
indexes used to identify spatially relevant regions (i.e., edges, corners, 
optical flow, etc.)

Table 1   Computation based on the Relevance score

TRS SRS RPU Rendering engine output

1 1 Active Driven by current state
0 1 Inactive Driven by previous state
(0/1) 0 Inactive Forced to Zero/previous state
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input frame, new image data are forwarded to the rendering 
engine from that RPU.

As it can be inferred, the attributes of ROI depend on 
the threshold value used in the relevance computation algo-
rithm. Here, the threshold values are achieved empirically. 
As mentioned earlier, spatial relevance can be drawn from 
different parameters. And it is understood that for differ-
ent application/feature combinations, the threshold value 
will be different. It can be tuned by observing the histogram 
analysis of the feature points. The formula to measure spatial 
relevance score (SRS) is shown in Eq. 2. When we select 
edges as the spatial feature index, in Eq. 2, featvalue will be 
the number of edge points found in an RPU region.

Please note that, for different datasets, the size of the object 
can vary widely. For example, in small object-detection 
applications, using a smaller region size for computation 
can be beneficial. Whereas, for larger objects, the opposite is 
true. Each RPU in the computational plane can be designed 
to operate in parallel. Therefore, the latency of the computa-
tion plane will depend only on a single RPUs task comple-
tion time. A larger region size indicates that there will be a 
greater number of pixels and will have higher latency. How-
ever, the total number of RPUs in the plane will decrease, 
contributing to lesser resources. It is a trade-off that needs 
to be resolved at the design stage. Therefore, the size of the 
RPU in this method is a design choice, and our simulator 
can assist in finding the optimum region size for different 
datasets.

The rendering engine in our proposed simulator model 
refreshes the image frame asynchronously. What this means 
is, it does not update the rendered image frame on each 
incoming frame. Instead, it waits for the RCM layer to send 
in the saliency score and relevance values. Depending on the 
saliency score, the new pixel regions are requested from the 
RCM. Now, for different applications that operate on the out-
put rendering engine, it is possible that the current relevance 
parameters (threshold) are not yielding ideal results. In that 
case, the simulator allows a feedback signal to be sent back 
to the RCM layer to adjust the threshold value.

3.4 � Pixel‑level relevance vs region‑level relevance

As discussed above, we identify important events in our 
simulator on a regional level. This indicates that we label 
image patches with a relevance score and not individual pix-
els. The approach is in contrast with popular methods where 
events are detected on a pixel basis. For instance, the ESIM 
simulator detects events on a pixel basis and estimates based 
on motion, optical flow, depth, and other indexes [5].

(2)SRS =

{

1, featvalue > Threshold

0, featvalue ≤ Threshold.

We opted for a different approach because we found that 
a single isolated pixel-event propagated to the subsequent 
processing units does not provide any high-level knowledge 
inference. Here, we would like to highlight that high-level 
knowledge is inferred with machine learning algorithms in 
almost all image processing pipelines. And CNNs are the 
most popular among them. In CNNs, identical window-
based operations are performed on each input feature point 
at each convolutional layer. The common approaches to 
carry out convolution on CNN accelerators include systolic 
array operations or vectored window operations. In both 
cases, even if we narrow down our calculation to each new 
eventful pixel, the dataflow mechanism will limit the accel-
erator’s ability to maximize the performance based on the 
fine-grained events. The limitation for the dataflow mecha-
nism indicates that, for every isolated pixel event, a CNN 
accelerator engine will have to load all the neighboring pix-
els corresponding to the convolution window to operate. The 
dataflow mechanism in contemporary acceleration engines 
cannot minimize the redundant data loading to the inference 
engine from pixel events. Besides, not every isolated pixel 
event corresponds to a relevant event. It is not possible to tell 
from a pixel’s perspective. This can lead to redundant opera-
tions in the engine. In other words, the inference module will 
not be able to leverage the fine-grained events generated 
at the pixel level. Whereas with our region-level saliency 
detection approach, a carefully designed inference engine 
can localize the computation, and any new events will initi-
ate computation only in a specific region using a vectored 
window operation. Besides, it is possible to opt out calcula-
tion on isolated pixel events residing in low-scoring image 
patches by adequately calibrating the event camera. We 
found that the pruning of redundant regions has a minimum 
to no impact on the accuracy of the inference model. Moreo-
ver, the approach can improve the performance of sparsity-
aware models by eliminating computational redundancies 
from the processing pipeline. For instance, authors in [25] 
presented a CNN-based tiny object detection mechanism that 
schedules image patches to a classifier and a detector to iden-
tify objects. Here, our simulator can reduce the computation 
by eliminating redundant image patches early at the sensor 
interface. Besides, in [24], authors schedule image tiles in 
their accelerator architecture to perform CNN operations. 
The output of our simulator tags each image region with its 
saliency score. Therefore, by adequately eliminating low-
scoring regions, our event camera model can be utilized in 
tile-based accelerators to improve computational efficiency.

3.5 � Configurability

The benefit of our simulator is that it allows camera param-
eter reconfigurations for different applications. We under-
stand that the size of the regions, the spatial relevance 
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index, and the threshold values dictating the saliency 
may differ for different application scenarios. Therefore, 
the simulator enables users to set up these environment 
parameters to generate custom event-based datasets that 
can be later used to develop and train region-aware infer-
ence models.

The design flow of our simulator is shown in Fig. 4. 
The simulator takes in a conventional stream of images or 
image datasets as input and generates region-based events 
based on user-specified region size and relevant functions. 
By analyzing the generated events and observing the data 
distribution, it is possible to calibrate the user-defined 
parameters to fine-tune the captured events. The simula-
tor’s output will be a custom image dataset of contiguous 
events that can facilitate the training of inference models 
for high-level computation.

4 � Results

In this section, we detail our evaluation infrastructure and 
provide experimental results to indicate the efficacy of our 
design.

4.1 � Evaluation infrastructure

Our proposed simulator computes Spatio-temporal rel-
evance to detect regions with events. However, to better 
evaluate the impact of the relevance function, we test the 
spatial and temporal modules separately for different data-
sets. The goal of this evaluation is to quantify the influ-
ence of our region-based relevance model. Next, we assess 
the effect of the region size and threshold values in our 
approach. Then, we try to evaluate the change in accu-
racy for different CNN models when trained on our event-
driven datasets. Finally, we prototype the RCM module on 
an FPGA to estimate the resource overhead of our model 
to evaluate the viability of realizing it at the edge. We 

end our evaluation by comparing our simulator with other 
event-based simulators found in the literature.

4.2 � Evaluation details

In our evaluation, we aim to show that the relevance computa-
tion model can successfully identify the relevant regions. We 
demonstrate this by showing the performance of the classifier/
detector models operating on the generated custom dataset. 
The high accuracy of the ROI-extracted model indicates that 
the simulator is well equipped to identify relevant regions. 
Besides, we want to show how our simulator can be utilized 
to resolve design choices related to embedded hardware. Our 
result suggests that an ideal RPU size can be crucial to identify 
the optimum tradeoff point.

The proposed simulator is written in Python scripting lan-
guage. For the inference modeling performed in this evalua-
tion, we used the PyTorch framework. For this evaluation, we 
used different image datasets as the simulator’s input and gen-
erated custom event-driven datasets with a reduced amount of 
data. For noise reduction, we used median filtering on incom-
ing images. However, other noise reduction mechanisms can 
also be used. For spatial relevance detection, we implemented 
three feature indices within the RPU: edge, corner, and mean 
absolute deviation (MAD). While edges and corners provide 
the locality of early feature points within an image frame, the 
MAD value gives an insight into the statistical distribution 
of the region data. The edge and corner points are common 
feature indexes used to draw ROI in an image. Therefore, we 
will emphasize our evaluation of the spatial distribution of the 
data. Here, we chose ’mean absolute deviation’ over variance 
due to their implementation’s hardware cost. The equation for 
calculating variance is shown in Eq. 3.

Here, � represents the mean value. Here, the square opera-
tion consumes considerable hardware resources. In contrast, 
MAD computation does not require square operation and 
has minimum hardware overhead. MAD is shown in Eq. 4.

To evaluate the effectiveness of mean absolute deviation, we 
first analyze the data distribution of different datasets. For 
this experiment, we selected four different datasets: MNIST, 
FashionMNIST, CIFAR10, and MOT17-08. For the first 
three datasets, the image size is 32 × 32 , and the region size 
is selected to be 4 × 4 . Whereas, for MOT-17 dataset, image 

(3)
�
2 =

n
∑

i=1

(xi − �)2

n
.

(4)
MAD =

n
∑

i=1

|xi − �|
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.
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Fig. 4   Simulator design flow. The output of the simulator will be a 
custom dataset that is similar to the images generated by the event 
camera described in Sect. 3.1
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resolution is 1920 × 1080 and we opted for a region size of 
32 × 32 . Figure 5 illustrates some sample results. As we can 
see, for datasets (a), (b), and (d), there are a large number of 
regions with a MAD value close to 0. However, for image 
(d), this is not the case. Because in CIFAR10, the foreground 
to background pixel ratio is very high, and the chosen region 
size is comparable to the actual image size.

4.3 � Temporal relevance analysis

Next, we seek to estimate the typical size of the ROI 
detected by the temporal module of the simulator. For this 
evaluation, we used the MOT17 datasets for a real-world 
scenario [26]. The dataset contains different video clips 

of people moving in public places. The video clips are 
captured with a 30fps camera with an image resolution 
of 1920 × 1080 . We tested our simulator on four different 
MOT17 datasets. Table 2 indicates the mean percentage 
of non-relevant regions for each dataset. The table indi-
cates that more than 50% of the regions contains repetitive 
regions over time for static camera positions. For region-
level relevance detection, it is possible to reduce a more 
significant amount of redundancies by carefully select-
ing the threshold value. Here, regions with insignificant 
temporal changes can be discarded from the computation. 
However, we notice that, for the 4th entry in the table, we 
have a comparatively lower number of irrelevant regions 
due to the moving camera position. Therefore, for mov-
ing camera systems, spatial redundancy reduction tech-
niques can be used for further improvement. The results 
in Table 2 further confirm the spatiotemporal redundancy 
reduction technique used in our simulator.

Figure 6 provides a pictorial view of the event-based 
outputs generated by our simulator for the MOT17 dataset. 
The graphs in Fig. 6 indicate the average percentage of 
ROI regions over time.

Fig. 5   Distribution of mean absolute deviation. For a, b, and c, images are divided into 4 × 4 patches. In image d, region size of 32 × 32 is used. 
a MNIST, b FashionMNIST, c CIFAR10 datasets, d MOT17-08

Table 2   Region-level temporal relevance analysis on MOT17 datasets

Dataset Description Avg. ROI (%)

MOT17-08 Pedestrian street (static cam) 41.60
MOT17-03 Sidewalk at night (static) 25
MOT17-01 Busy square (static) 28.29
MOT17-12 Shopping mall (moving cam) 69.43
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4.4 � Spatial relevance analysis

We perform a similar study for spatial relevance detec-
tion on different datasets. We selected four datasets for 
this study: MNIST, FashionMNIST, OpenImages [27] and 
mosquito species [28]. For the OpenImages dataset, we 
tested our simulator only on the airplane class due to the 
low foreground to background ratio on airplane images. 
It is easily understood that a high background ratio indi-
cates the existence of a higher amount of redundancy. The 

average rates of spatially redundant regions in these data-
sets are shown in Table 3. Here, the images are resized 
before passing them through the simulator. As the table 
indicates, all four datasets contain spatial redundancies 
that can be removed using our event-camera simulator.

Figure 7 provides a pictorial view of the ROI detected 
images shown in Table 3. For different datasets, region 
sizes are adjusted for optimal results. Here, we would like 
to emphasize again that the average redundancy found in 
these datasets is dependent on the threshold values and 
the region size selected for them. We have used databases 
of different image sizes to demonstrate the adaptive capa-
bilities of our proposed simulator. It is possible for our 
simulator to automatically select the region size based 
on the default granularity parameters and the permissible 
ROI percentage of the image. The granularity parameters 
include the maximum and minimum ratio of the patch 
size to the original image. With an iterative approach, the 
simulator can automatically choose the optimum region 
size that meets the allowed ROI percentage set by the 
user. Once the simulator computes a range of region sizes, 

Fig. 6   Region-level temporal 
relevance. Left column indicat-
ing original image. The second 
column illustrates temporal 
ROIs. The right column shows 
percentage of ROI region size 
over time. a MOT17-08, b 
MOT17-03, c MOT17-01

Table 3   Region-level spatial relevance analysis

Dataset Image size Avg. 
redun-
dancy (%)

MNIST 28 × 28 50
FashionMNIST 28 × 28 29
OpenImages (airplane) 224 × 224 31
Mosquito 224 × 224 40
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the value can be manually tuned to improve redundancy 
reduction.

The threshold values for the temporal and spatial rel-
evance analysis are obtained empirically. The value dif-
fers for different datasets as the foreground/background 
information changes. To illustrate the impact, we tested 
different threshold values and region sizes on the Mosquito 
data used in Table 3. Figure 8 illustrates the results. Here, 
we calculated edge points to identify spatial redundancy. 
For a given threshold value, Fig. 8a was generated. As we 
can see, the number of redundant regions decreases as we 
increase the size of the RPU region. This is because as we 
increase the region size, fine-grained regions get excluded 
from redundancy calculation. We observe a similar sce-
nario as we decrease the threshold value. In Fig. 8b we use 
a region size of 16 × 16 for calculation. However, increas-
ing the threshold value very high may cause improper 
ROI detection with key regions excluded. Therefore, it is 

necessary to identify the optimal point for the threshold 
and RPU region size.

The spatially redundant regions are labeled with an SRS 
value of 0, and temporally redundant regions are tagged with 
a TRS value of 0. Therefore, while using these datasets in 
CNN inference hardware such as [24], it is possible to skip 
computation for low SRS tiles and avoid repetitive computa-
tion for low TRS tiles.

4.5 � Impact on CNN inference

The goal of the simulator is to generate custom event data-
sets for inference modeling. Here, we evaluate the impact 
on the accuracy of different CNN models when trained 
on these custom region-based ROI-extracted datasets. We 
tested on three different models with three different data-
sets. The results are listed in Table 4. As the table suggests, 
we see little to no drop in accuracy when trained on our 

Fig. 7   Region-level spatial 
relevance. Left column indicat-
ing original image. The second 
column indicates edge points 
as possible feature points. The 
right column shows output 
image from our simulator. a 
Mosquito [28], b OpenImages 
[27]

Fig. 8   Change in ROI size with a RPU region size and b threshold value (tested on Mosquito dataset [28])
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simulator-generated datasets for all the cases. However, we 
believe further studies can bring about even better results 
for event-detected datasets in the future. And our designed 
simulator can play a vital role in assisting these works. 

The accuracy listed in Table 4 was achieved on the sim-
ulator-generated datasets with spatially redundant regions 
discarded (listed in Table 3). As we mentioned before, by 
increasing the threshold value, it is possible to decrease 
the relevant region size in images. However, it will impact 

the accuracy of the following CNN model. We tested it on 
the MNIST dataset for different thresholds. We see that the 
accuracy of the LeNet-5 model starts decreasing as we start 
increasing the threshold value beyond a certain point. This 
is shown in Fig. 9. Here, we select the RPU region size of 
8 × 8 and edge points as spatial feature index. The threshold 
value of 5 indicates that the number of edge points in an 
8 × 8 region has to be greater than equal to 5 to be consid-
ered a relevant region.

While designing the inference pipeline, it is also possi-
ble to allocate a reduced number of bit width for irrelevant 
pixels to reduce data transportation between the edge sen-
sor and the computation unit. We tested this on the MOT17 
dataset with the YOLOv3 model and found that the precision 
value remains the same for the YOLOv3 CNN model while 
operating on the region-detected dataset. Precision is defined 
as the ratio of correct detections to the sum of correct detec-
tions and false detections. This is shown in Fig. 10a, b. Here, 
we used a bit width ratio of 0.25 (non-relevant bit width/
relevant bit width) for the generated custom dataset.

4.5.1 � Hardware design evaluation

The end goal of this research is to develop suitable infer-
ence architectures that can be integrated with a region-aware 
camera sensor facilitating an event-based processing pipe-
line at the edge. Therefore, while designing the simulator, 
it is necessary to adopt ROI-detection functions with mini-
mum hardware overhead. We prototyped the RPU and the 
RCM module of our simulator in a Virtex UltrScale plus 
FPGA (VCU118) to estimate the hardware cost associated 
with it. We opted to realize the RCM module because this 
is the module that draws visual attention in our simulator. 
The resource utilization is shown in Table 5. Here, the RPU 

Table 4   Impact on CNN model accuracy

Dataset Models Accuracy 
(Original) (%)

Accuracy 
(roi-based) 
(%)

MNIST LeNet-5 98.93 98.8
FashionMNIST LeNet-5 88 87.8
Mosquito [28] ResNet-50 99 99
Mosquito VGG-16 99 99

Fig. 9   Change in accuracy with threshold value for MNIST data

Fig. 10   a Object detected on original image with uniform bit-width (MOT17). b Object detected for image ROI extracted images (bit-width ratio 
of non-ROI/ROI =0.25)
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is designed for an 8 × 8 region size, and the RCM data are 
estimated for 224 × 224 incoming image frames. The table 
indicates that the RCM module only consumes 12% combi-
national logics available in the Virtex FPGA. This confirms 
the viability of its realization with available CNN accelera-
tion engines.

Next, we perform a qualitative comparison to our work 
with existing camera simulators found in the literature. This 
is shown in Table 6. The work in [5] and [29] captures events 
at the sensor interface and transmits events along with the 
frame. The simulators model an event camera where each 
pixel operates independently and asynchronously, report-
ing changes in brightness as they occur and staying inac-
tive otherwise. However, both of the works primarily focus 
on temporal changes. The spatial redundancy is not thor-
oughly explored in these works. In contrast, our proposed 
design flow operates hierarchically. The region-level events 
are detected in two stages. First, we identify the temporal 
regions, and then spatial computations are performed on 
the extracted temporally relevant regions to reduce spatial 
redundancy. Since CNNs trained on our generated custom 
datasets can maintain the same level of accuracy (Table 4) 
without performing computation on the spatially redundant 
regions, our proposed simulator can serve as a development 
tool for modeling inference engines.

Finally, we compared our work with a tiled-based com-
putation architecture that reduces computational complex-
ity by efficiently encoding pixels in each region. Here, we 
considered the above-mentioned inference architecture that 
operates on the region-aware data generated by the proposed 
simulator architecture. We show that a similar CNN model 
trained on our simulator-generated dataset will yield bet-
ter performance than other existing works aiming to reduce 
computational complexity. The detailed performance com-
parison is shown in Table 7. The table indicates that our 

ROI-based model can yield better accuracy while reducing 
computation on each frame.

5 � Conclusion

This paper presents an event-camera simulator that emu-
lates the behavior of an attention-based parallel camera 
sensor. The simulator computes the relevant score for each 
region and performs rendering operations for only relevant 
regions. The region-based ROI detection model adopted in 
this work can provide high-performance computing for high-
level reasoning models. Our proposed simulator will serve as 
an analyzing tool to develop machine learning models that 
can best explore the event camera in the processing chain. 
The ROI detecting functions used in the simulator have low 
hardware cost. This makes it viable to implement in a dis-
tributed architecture. Our experimental results show that the 
attention-based approach used in this work can significantly 
reduce operation execution for inference engines.
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