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Abstract

In recent years, there has been a growing interest in realizing methodologies to integrate more and more computation at the
level of the image sensor. The rising trend has seen an increased research interest in developing novel event cameras that
can facilitate CNN computation directly in the sensor. However, event-based cameras ca be expensive, limiting performance
exploration on high-level models and algorithms. This paper presents an event camera simulator that can be a potent tool for
hardware design prototyping, parameter optimization, attention-based innovative algorithm development, and benchmarking.
The proposed simulator implements a distributed computation model to identify relevant regions in an image frame. Our
simulator’s relevance computation model is realized as a collection of modules and performs computations in parallel. The
distributed computation model is configurable, making it highly useful for design space exploration. The Rendering engine
of the simulator samples frame-regions only when there is a new event. The simulator closely emulates an image processing
pipeline similar to that of physical cameras. Our experimental results show that the simulator can effectively emulate event
vision with low overheads

Keywords Simulator - Convolutional neural network - Embedded vision - Pixel processing

1 Introduction

Event cameras are bio-inspired vision sensors designed
to generate image frames asynchronously based on scenic
events [1]. In contrast to conventional camera sensors where
raw frame pixels are streamed to a backend processor at a
fixed rate, event-based cameras generate output only when
there is a new event(s). Recently, researchers are seeking
novel methodologies to incorporate machine learning mod-
els (in particular CNNs) in the image sensor [2, 3]. This
has revived interest in event cameras to facilitate efficient
dataflow between the sensor and the near-sensor processing
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system. However, novel algorithms and methods are required
to process the unorthodox data streams from these vision
sensors to unlock their full potential [4]. However, research-
ers working on this domain face two major challenges. First,
there are not sufficient event-cameras in the market, limiting
the research to a few applications. Second, the commercially
available event cameras suffer from different setbacks such
as low resolution, lack of reconfiguration, etc.

Several camera simulators have been proposed in the lit-
erature to accommodate the research demands [5, 6]. For
instance, authors in [5] presented ESIM, a camera simulator
that resembles an event camera’s behavior. The simulator
integrates an adaptive rendering scheme that only samples
frames when necessary. In addition to generating events,
the simulator can produce a depth map, motion field, and
camera trajectory. However, the simulator was developed
for robotics applications and not specifically designed to
explore inference architectures near the sensors. Therefore,
any in-sensor high-level processing engine that aims to lev-
erage the event sensor in the processing pipeline will fail to
utilize the full potential of the events generated from this
camera simulator. At best, the simulator would allow the
inference engine only to activate whenever a new event is
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detected on the sensor interface. However, at each iteration,
the full image will get processed in the inference engine
regardless of the size of the ROI (Region-Of-Interest). The
newest developments in imaging technology have brought
forth parallel processing image sensors that can be combined
with an inference engine to provide high-performance com-
putation models near the sensor [1, 7-9]. By tightly coupling
computation on the inference layer to specific image regions,
it is possible to improve the computational capabilities of
these systems and reduce data communications. Neverthe-
less, a suitable platform is required to explore the design
space of these architectures.

In this paper, we present a novel event camera simulator
that simulates a per-pixel image sensor’s behavior aiming to
accommodate CNN inference in the sensor interface. The
events captured in the simulator are identified on a region
level. Therefore, only specific regions can be forwarded to
the following computation layer to activate the inference
engine minimally (Fig. 1). Similar to the work mentioned
above, our rendering-module samples image frames when-
ever there is a new event. However, instead of sampling the
complete image, respective event regions are only sampled.
The simulator can generate valid event data from a video
stream that can be used to model and train event-based learn-
ing models. We have prototyped the simulator’s computa-
tion module on an FPGA to estimate the hardware cost. Our
evaluation results suggest that we can significantly reduce
computation with our event-based camera approach with
decent hardware overhead.

The main contributions of this paper are:

A novel camera simulator design that identifies regional
events and facilitates a suitable interface for inference
architectures.

A thorough evaluation of our region-level relevance com-
putation model to highlight the significance.

An FPGA prototype of the relevance computation model
to indicate hardware overheads related to our approach.

The main motivation of this work is to design a novel simu-
lator that identifies relevant data on a regional level. The
work aims to generate custom attention-based datasets that
can be used to jointly consider algorithm—hardware co-
design frameworks to address computational overheads.

Fig. 1 Region-based event
camera simulator designed to
accommodate inference pro-
cessing near the sensor
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The proposed simulator can be used to explore the architec-
ture design space of inference engines that uses tiling-based
operations on image data. We have released our design open
source [10]. The remaining sections of this paper are organ-
ized as follows. Section 2 discusses the related works in the
literature. Section 3 provides a detailed explanation of our
design. We evaluate the performance of our model in Sect. 4.

2 Related work

In recent years, vision-based algorithms are increasingly
being used in different application domains to solve differ-
ent complex problems [11, 12]. The primary task in these
applications includes identifying objects and recognizing
them. In many cases, it is always beneficial to narrow down
the computation to a specific region by utilizing an atten-
tion-based model. Several camera simulators can be found
in the literature emulating the behavior of an event camera
[13—15]. And, in recent years, various approaches have been
proposed to bring inference computation close to the sen-
sor. We start by studying the state-of-the-art camera simula-
tor and highlight the advantages of our proposed toolchain.
Next, we will discuss the in-sensor processing architectures
that leverage event-based camera designs.

In [16], authors present an event sensor simulator that can
render events from a 3D scene. The simulator was designed
to facilitate research in robotic vision. However, it is not
tailored for in-sensor processing exploration. The virtual
camera proposed in [17] offers an interactive interface with
a custom rendering engine that can be used for benchmark-
ing different SLAM algorithms. Similar to previous work,
here, the authors did not illustrate the use cases with infer-
ence architectures but focused on generating photo-realistic
indoor scenes datasets.

We found ESIM as one of the thorough works on event
camera simulation [5]. It provides an open-source design
and illustrates use cases on learning optical flow. How-
ever, ESIM (including all the other works described above)
identifies events at a pixel level. These fine-grained events
captured in the sensor interface can reduce the rendering
engine’s workload. However, with the current setup, any
subsequent inference engine in the processing pipeline
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will not be able to leverage many benefit from these fine-
grained events due to the available dataflow mechanisms.

There are other recent simulators that operate on DVS
events [18, 19]. These works present simulators to gener-
ate realistic DVS events that can be useful for training
networks. Our work differs from these works by consider-
ing both spatial and temporal features to identify relevant
regions.

The Relmagine program launched by DARPA aims to
integrate revolutionary capabilities in the imaging sys-
tem [20]. They demonstrated that a single, reconfigurable
ROIC (ReadOut Integrated Circuit) architecture could
accommodate multiple modes of imaging operations that
may be defined after a chip has been designed. The pro-
gram seeks ROI-based efficient computation models to
enable real-time analysis. Even though preliminary works
have shown promising results, the landscape of the high-
level computation part is still in progress. Further develop-
ment in this research direction faces setbacks due to the
lack of appropriate physical cameras that can accommo-
date these operations.

Other works in accommodating CNNSs in an image sen-
sor involve coupling an array of pixel processors to a paral-
lel processing camera [21, 22]. Authors in [21] proposed a
region-aware processing model to reduce high-level compu-
tation to relevant regions. However, the authors mainly dis-
cussed the hardware aspects of the architecture. Whereas, it
is essential to thoroughly assess the behavior of region-aware
processing models for different applications. For instance,
the methodologies and threshold values used to identify rel-
evant image regions can differ for different scenarios.

Our simulator design differs from the works mentioned
above by considering the CNN computation models that
operate on the sensor’s collected data. The approaches found
in the literature provide solutions at best for generic use
cases. Our proposed simulator emulates event cameras that
capture changes at a regional level as opposed to pixel-level
sampling. This allows the subsequent computation layers
to minimize computation on irrelevant regions. We believe
our simulators will enable researchers to develop optimized
attention-based hardware architectures by accurately analyz-
ing the relevance model. Besides, the configurability of the
simulator allows exploration of the design space for event
cameras.

3 Proposed design flow

In this section, we first describe the concept and the prin-
ciples of operation of the event camera that we simulate.
Then, we illustrate the design flow and architecture of the
simulator.

3.1 Camera model

Our virtual camera’s baseline design considers a parallel
imager, where each sensing unit in the photodiode array has
an analog to digital converter (ADC) and a local memory
[8]. At the sensor interface, the incoming image frame is
logically divided into M image regions where N X N pixels
reside in each image patch (shown in Fig. 1). There is a
regional processing unit (RPU) for each image patch for the
local handling of computation. Each RPU has one streaming
channel to transfer pixel/event data from the correspond-
ing region to the next buffer (or computation module). All
RPUs operate independently and generate output in paral-
lel. Within the RPU, the saliency data for the correspond-
ing region are computed. A saliency score is calculated to
reflect the spatial and temporal relevance of that region.
Based on the saliency score, only specific image regions
are forwarded to the next plane to enable attention-based
near-sensor computation. Depending on the application,
the high-level processing module can initiate computation
for separate regional events or extract information from the
accumulated events in an image frame. The proposed camera
model generates attention-based image data by computing
the events captured at the sensor interface. Here, the actual
image pixels are forwarded to the higher processing plane
to allow the inference processing modules to operate on a
reduced set of pixel data. Interested readers can look at [23,
241, to learn more about similar camera models.

3.2 Simulator architecture

The difference between a conventional camera and an event
camera is the latter does not capture intensity information
from the scene synchronously. Instead, it samples visual
signals asynchronously and independently for each pixel/
region. In our design, we simulate this behavior with a regu-
lar vision system. The simulator’s input is a stream of image
frames from a camera or video clip captured at discrete time
intervals. Whereas the output of the simulator includes local-
ized pixel and event information generated at irregular inter-
vals. The simulator comprises a capture module, a relevance
computation module(RCM), and a rendering module. The
high-level simulator architecture is shown in Fig. 2. The
capture module collects image frames at a regular interval,
divides the image frame into equal-sized image patches, and
forwards them to the RCM. The RCM comprises an array of
RPUs operating in parallel. Within the RPU, saliency scores
are computed. The saliency scores are calculated based on
spatial and temporal information. Visual attention can be
drawn from different details embedded within the image
pixels (i.e., edges, corners, motion, error surface, optical
flow, data distribution). If the saliency score is greater than
some threshold, then that region is identified as relevant.
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Fig.2 Proposed Simulator
model. The capture module
propagates image regions to the
RCM. The RCM computes the
relevance and feeds an asyn-
chronous rendering engine to
generate event-based frames

The renderer collects data from the RCM and constructs the
image frame for the high-level processing units in the image
processing pipeline. This includes raw pixel data, saliency
score, and other feature information calculated to identify
the region of interest (ROI). The rendering engine renders an
image at time ¢ based on the events captured at time ¢ interval
and the renderer’s previous state at time ¢ — 1. Therefore,
if we denote the renderer output as R, it can be written as:

R(t) = RROIWMI(I — 1)+ Ry, (. 1)

temporal

The next section details the relevance computation model
utilized in our simulator.

3.3 Relevance computation module (RCM)

An image processing pipeline with a vision sensor and a
high-level back-end processor imitates the eye and brain’s
combined functionality. Except, a human eye has around 130
million pixels, with only 1.3 million synaptic connections
to the brain, indicating a 1% sparsity [20]. It is believed
that the massive sparsity is essential for power and latency
trade space and helps avoid sending repetitive information
to the latter parts of the brain. The RCM of our simulator
is designed to emulate the behavior of the biological vision
system. This means that the RCM will receive a large num-
ber of incoming pixels from the sensor interface and forward
a limited number of pixels from specific image regions to
the higher processing module. The RPUs in this module
operate on a region-parallel basis. The RPU performs the
relevance function on image pixels and accumulates the rel-
evance score for all pixels in a region. The spatial relevance
score can be calculated from a set of indexes based on the
user-defined environment (i.e., edge, corners, variance, seg-
mentation, etc.). For instance, if we consider edge points
as a spatial relevance index, we count the number of edge
points found in an image region. Then, we use this value
to rank the image regions based on a predefined threshold.
Likewise, to check the spatial data distribution, the RPU
can calculate the mean absolute deviation and classify the
image regions based on data variation in a similar manner.
Our proposed simulator implements a number of spatial rele-
vance detection functions, from where the user can select the
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Fig.3 RPU block diagram. Here, spatial_feat i indicates feature
indexes used to identify spatially relevant regions (i.e., edges, corners,
optical flow, etc.)

Table 1 Computation based on the Relevance score

TRS SRS RPU Rendering engine output

1 1 Active Driven by current state

0 1 Inactive Driven by previous state
0/1) 0 Inactive Forced to Zero/previous state

appropriate method that best suits a given scenario/dataset.
The functionality of the RPU is shown in Fig. 3. Here, the
noise reduction module is used to remove noise and interfer-
ence from the incoming image region. It helps to reduce the
miss-detection of events.

For temporal saliency, RPUs compare the incoming pixel
to its temporal neighbors. This means the temporal relevance
is computed by comparing the incoming pixel to the existing
pixel. The number of temporal mismatches within a region
is compared against a temporal threshold value to deter-
mine temporal relevance. If this value exceeds a specific
value, then we mark that region as temporally relevant. The
threshold value can be adjusted on the simulator to find the
optimum computation point. The image patches are catego-
rized using two-bit information, each for spatial and tempo-
ral saliency. This information is forwarded to the rendering
engine that requests data from the RCM module based on
the relevance score. The operation of the rendering engine
based on the relevance score is shown in Table 1.

In Table 1, the TRS value indicated temporal relevance
score, whereas the SRS value refers to the spatial relevance
score. The active notion in RPU implies that for a given
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input frame, new image data are forwarded to the rendering
engine from that RPU.

As it can be inferred, the attributes of ROI depend on
the threshold value used in the relevance computation algo-
rithm. Here, the threshold values are achieved empirically.
As mentioned earlier, spatial relevance can be drawn from
different parameters. And it is understood that for differ-
ent application/feature combinations, the threshold value
will be different. It can be tuned by observing the histogram
analysis of the feature points. The formula to measure spatial
relevance score (SRS) is shown in Eq. 2. When we select

edges as the spatial feature index, in Eq. 2, feat,;,, will be
the number of edge points found in an RPU region.

_J 1, feat,,, > Threshold
SRS = { 0, feat,,,, < Threshold. @)

Please note that, for different datasets, the size of the object
can vary widely. For example, in small object-detection
applications, using a smaller region size for computation
can be beneficial. Whereas, for larger objects, the opposite is
true. Each RPU in the computational plane can be designed
to operate in parallel. Therefore, the latency of the computa-
tion plane will depend only on a single RPUs task comple-
tion time. A larger region size indicates that there will be a
greater number of pixels and will have higher latency. How-
ever, the total number of RPUs in the plane will decrease,
contributing to lesser resources. It is a trade-off that needs
to be resolved at the design stage. Therefore, the size of the
RPU in this method is a design choice, and our simulator
can assist in finding the optimum region size for different
datasets.

The rendering engine in our proposed simulator model
refreshes the image frame asynchronously. What this means
is, it does not update the rendered image frame on each
incoming frame. Instead, it waits for the RCM layer to send
in the saliency score and relevance values. Depending on the
saliency score, the new pixel regions are requested from the
RCM. Now, for different applications that operate on the out-
put rendering engine, it is possible that the current relevance
parameters (threshold) are not yielding ideal results. In that
case, the simulator allows a feedback signal to be sent back
to the RCM layer to adjust the threshold value.

3.4 Pixel-level relevance vs region-level relevance

As discussed above, we identify important events in our
simulator on a regional level. This indicates that we label
image patches with a relevance score and not individual pix-
els. The approach is in contrast with popular methods where
events are detected on a pixel basis. For instance, the ESIM
simulator detects events on a pixel basis and estimates based
on motion, optical flow, depth, and other indexes [5].

We opted for a different approach because we found that
a single isolated pixel-event propagated to the subsequent
processing units does not provide any high-level knowledge
inference. Here, we would like to highlight that high-level
knowledge is inferred with machine learning algorithms in
almost all image processing pipelines. And CNNs are the
most popular among them. In CNNs, identical window-
based operations are performed on each input feature point
at each convolutional layer. The common approaches to
carry out convolution on CNN accelerators include systolic
array operations or vectored window operations. In both
cases, even if we narrow down our calculation to each new
eventful pixel, the dataflow mechanism will limit the accel-
erator’s ability to maximize the performance based on the
fine-grained events. The limitation for the dataflow mecha-
nism indicates that, for every isolated pixel event, a CNN
accelerator engine will have to load all the neighboring pix-
els corresponding to the convolution window to operate. The
dataflow mechanism in contemporary acceleration engines
cannot minimize the redundant data loading to the inference
engine from pixel events. Besides, not every isolated pixel
event corresponds to a relevant event. It is not possible to tell
from a pixel’s perspective. This can lead to redundant opera-
tions in the engine. In other words, the inference module will
not be able to leverage the fine-grained events generated
at the pixel level. Whereas with our region-level saliency
detection approach, a carefully designed inference engine
can localize the computation, and any new events will initi-
ate computation only in a specific region using a vectored
window operation. Besides, it is possible to opt out calcula-
tion on isolated pixel events residing in low-scoring image
patches by adequately calibrating the event camera. We
found that the pruning of redundant regions has a minimum
to no impact on the accuracy of the inference model. Moreo-
ver, the approach can improve the performance of sparsity-
aware models by eliminating computational redundancies
from the processing pipeline. For instance, authors in [25]
presented a CNN-based tiny object detection mechanism that
schedules image patches to a classifier and a detector to iden-
tify objects. Here, our simulator can reduce the computation
by eliminating redundant image patches early at the sensor
interface. Besides, in [24], authors schedule image tiles in
their accelerator architecture to perform CNN operations.
The output of our simulator tags each image region with its
saliency score. Therefore, by adequately eliminating low-
scoring regions, our event camera model can be utilized in
tile-based accelerators to improve computational efficiency.

3.5 Configurability
The benefit of our simulator is that it allows camera param-

eter reconfigurations for different applications. We under-
stand that the size of the regions, the spatial relevance
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index, and the threshold values dictating the saliency
may differ for different application scenarios. Therefore,
the simulator enables users to set up these environment
parameters to generate custom event-based datasets that
can be later used to develop and train region-aware infer-
ence models.

The design flow of our simulator is shown in Fig. 4.
The simulator takes in a conventional stream of images or
image datasets as input and generates region-based events
based on user-specified region size and relevant functions.
By analyzing the generated events and observing the data
distribution, it is possible to calibrate the user-defined
parameters to fine-tune the captured events. The simula-
tor’s output will be a custom image dataset of contiguous
events that can facilitate the training of inference models
for high-level computation.

4 Results

In this section, we detail our evaluation infrastructure and
provide experimental results to indicate the efficacy of our
design.

4.1 Evaluation infrastructure

Our proposed simulator computes Spatio-temporal rel-
evance to detect regions with events. However, to better
evaluate the impact of the relevance function, we test the
spatial and temporal modules separately for different data-
sets. The goal of this evaluation is to quantify the influ-
ence of our region-based relevance model. Next, we assess
the effect of the region size and threshold values in our
approach. Then, we try to evaluate the change in accu-
racy for different CNN models when trained on our event-
driven datasets. Finally, we prototype the RCM module on
an FPGA to estimate the resource overhead of our model
to evaluate the viability of realizing it at the edge. We

Visual Scene
or
Image Dataset

¥

User Specification Event Data Parameter Event-Camera
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Analysis Calibration Dataset generation
] Region Size s P PUUU > o}

i ROI detection function | | Histogram 1 ‘Resize regions

Threshold Values : | feature extraction | :Update Thresholds

Fig.4 Simulator design flow. The output of the simulator will be a
custom dataset that is similar to the images generated by the event
camera described in Sect. 3.1
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end our evaluation by comparing our simulator with other
event-based simulators found in the literature.

4.2 Evaluation details

In our evaluation, we aim to show that the relevance computa-
tion model can successfully identify the relevant regions. We
demonstrate this by showing the performance of the classifier/
detector models operating on the generated custom dataset.
The high accuracy of the ROI-extracted model indicates that
the simulator is well equipped to identify relevant regions.
Besides, we want to show how our simulator can be utilized
to resolve design choices related to embedded hardware. Our
result suggests that an ideal RPU size can be crucial to identify
the optimum tradeoff point.

The proposed simulator is written in Python scripting lan-
guage. For the inference modeling performed in this evalua-
tion, we used the PyTorch framework. For this evaluation, we
used different image datasets as the simulator’s input and gen-
erated custom event-driven datasets with a reduced amount of
data. For noise reduction, we used median filtering on incom-
ing images. However, other noise reduction mechanisms can
also be used. For spatial relevance detection, we implemented
three feature indices within the RPU: edge, corner, and mean
absolute deviation (MAD). While edges and corners provide
the locality of early feature points within an image frame, the
MAD value gives an insight into the statistical distribution
of the region data. The edge and corner points are common
feature indexes used to draw ROI in an image. Therefore, we
will emphasize our evaluation of the spatial distribution of the
data. Here, we chose mean absolute deviation’ over variance
due to their implementation’s hardware cost. The equation for
calculating variance is shown in Eq. 3.

)2
) ;(x, ) )

n

62

Here, u represents the mean value. Here, the square opera-
tion consumes considerable hardware resources. In contrast,
MAD computation does not require square operation and
has minimum hardware overhead. MAD is shown in Eq. 4.

n
Z:, I, = ul @
MAD = —.
n

To evaluate the effectiveness of mean absolute deviation, we
first analyze the data distribution of different datasets. For
this experiment, we selected four different datasets: MNIST,
FashionMNIST, CIFAR10, and MOT17-08. For the first
three datasets, the image size is 32 X 32, and the region size
is selected to be 4 X 4. Whereas, for MOT-17 dataset, image
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(a)

30 4

Fig.5 Distribution of mean absolute deviation. For a, b, and ¢, images are divided into 4 X 4 patches. In image d, region size of 32 x 32 is used.

a MNIST, b FashionMNIST, ¢ CIFAR10 datasets, d MOT17-08

Table 2 Region-level temporal relevance analysis on MOT17 datasets

Dataset Description Avg. ROI (%)
MOT17-08 Pedestrian street (static cam) 41.60
MOT17-03 Sidewalk at night (static) 25
MOT17-01 Busy square (static) 28.29
MOT17-12 Shopping mall (moving cam) 69.43

resolution is 1920 x 1080 and we opted for a region size of
32 x 32. Figure 5 illustrates some sample results. As we can
see, for datasets (a), (b), and (d), there are a large number of
regions with a MAD value close to 0. However, for image
(d), this is not the case. Because in CIFAR10, the foreground
to background pixel ratio is very high, and the chosen region
size is comparable to the actual image size.

4.3 Temporal relevance analysis

Next, we seek to estimate the typical size of the ROI
detected by the temporal module of the simulator. For this
evaluation, we used the MOT17 datasets for a real-world
scenario [26]. The dataset contains different video clips

of people moving in public places. The video clips are
captured with a 30fps camera with an image resolution
of 1920 x 1080. We tested our simulator on four different
MOT17 datasets. Table 2 indicates the mean percentage
of non-relevant regions for each dataset. The table indi-
cates that more than 50% of the regions contains repetitive
regions over time for static camera positions. For region-
level relevance detection, it is possible to reduce a more
significant amount of redundancies by carefully select-
ing the threshold value. Here, regions with insignificant
temporal changes can be discarded from the computation.
However, we notice that, for the 4th entry in the table, we
have a comparatively lower number of irrelevant regions
due to the moving camera position. Therefore, for mov-
ing camera systems, spatial redundancy reduction tech-
niques can be used for further improvement. The results
in Table 2 further confirm the spatiotemporal redundancy
reduction technique used in our simulator.

Figure 6 provides a pictorial view of the event-based
outputs generated by our simulator for the MOT17 dataset.
The graphs in Fig. 6 indicate the average percentage of
ROI regions over time.

@ Springer



370

Journal of Real-Time Image Processing (2022) 19:363-374

Fig.6 Region-level temporal
relevance. Left column indicat-
ing original image. The second
column illustrates temporal
ROIs. The right column shows
percentage of ROI region size
over time. a MOT17-08, b
MOT17-03, ¢ MOT17-01

0 5 100 150 200 250 300 350 400 0 5 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
frame sequence frame sequence frame sequence

Table 3 Region-level spatial relevance analysis

Dataset Image size Avg.
redun-
dancy (%)

MNIST 28 x 28 50

FashionMNIST 28 % 28 29

Openlmages (airplane) 224 x 224 31

Mosquito 224 x 224 40

4.4 Spatial relevance analysis

We perform a similar study for spatial relevance detec-
tion on different datasets. We selected four datasets for
this study: MNIST, FashionMNIST, Openlmages [27] and
mosquito species [28]. For the Openlmages dataset, we
tested our simulator only on the airplane class due to the
low foreground to background ratio on airplane images.
It is easily understood that a high background ratio indi-
cates the existence of a higher amount of redundancy. The

@ Springer

average rates of spatially redundant regions in these data-
sets are shown in Table 3. Here, the images are resized
before passing them through the simulator. As the table
indicates, all four datasets contain spatial redundancies
that can be removed using our event-camera simulator.
Figure 7 provides a pictorial view of the ROI detected
images shown in Table 3. For different datasets, region
sizes are adjusted for optimal results. Here, we would like
to emphasize again that the average redundancy found in
these datasets is dependent on the threshold values and
the region size selected for them. We have used databases
of different image sizes to demonstrate the adaptive capa-
bilities of our proposed simulator. It is possible for our
simulator to automatically select the region size based
on the default granularity parameters and the permissible
ROI percentage of the image. The granularity parameters
include the maximum and minimum ratio of the patch
size to the original image. With an iterative approach, the
simulator can automatically choose the optimum region
size that meets the allowed ROI percentage set by the
user. Once the simulator computes a range of region sizes,
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Fig.7 Region-level spatial
relevance. Left column indicat-
ing original image. The second
column indicates edge points
as possible feature points. The
right column shows output
image from our simulator. a
Mosquito [28], b Openlmages
[27]

the value can be manually tuned to improve redundancy
reduction.

The threshold values for the temporal and spatial rel-
evance analysis are obtained empirically. The value dif-
fers for different datasets as the foreground/background
information changes. To illustrate the impact, we tested
different threshold values and region sizes on the Mosquito
data used in Table 3. Figure 8 illustrates the results. Here,
we calculated edge points to identify spatial redundancy.
For a given threshold value, Fig. 8a was generated. As we
can see, the number of redundant regions decreases as we
increase the size of the RPU region. This is because as we
increase the region size, fine-grained regions get excluded
from redundancy calculation. We observe a similar sce-
nario as we decrease the threshold value. In Fig. 8b we use
aregion size of 16 x 16 for calculation. However, increas-
ing the threshold value very high may cause improper
ROI detection with key regions excluded. Therefore, it is

50
40
30
20

10

Redundant regions (%)

16x16 32x32 56x56

RPU region size

(@)

necessary to identify the optimal point for the threshold
and RPU region size.

The spatially redundant regions are labeled with an SRS
value of 0, and temporally redundant regions are tagged with
a TRS value of 0. Therefore, while using these datasets in
CNN inference hardware such as [24], it is possible to skip
computation for low SRS tiles and avoid repetitive computa-
tion for low TRS tiles.

4.5 Impact on CNN inference

The goal of the simulator is to generate custom event data-
sets for inference modeling. Here, we evaluate the impact
on the accuracy of different CNN models when trained
on these custom region-based ROI-extracted datasets. We
tested on three different models with three different data-
sets. The results are listed in Table 4. As the table suggests,
we see little to no drop in accuracy when trained on our
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Fig.8 Change in ROI size with a RPU region size and b threshold value (tested on Mosquito dataset [28])
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Table 4 Impact on CNN model accuracy

Dataset Models Accuracy Accuracy
(Original) (%) (roi-based)
(%)
MNIST LeNet-5 98.93 98.8
FashionMNIST LeNet-5 88 87.8
Mosquito [28] ResNet-50 99 99
Mosquito VGG-16 99 99
10
0 T
__ 75
X
3 50
o
3
3]
< 2

5 (ROI 50%) 10 (ROI 37.5%)

Threshold Value

15 (ROI 31.2%)

Fig.9 Change in accuracy with threshold value for MNIST data

simulator-generated datasets for all the cases. However, we
believe further studies can bring about even better results
for event-detected datasets in the future. And our designed
simulator can play a vital role in assisting these works.

The accuracy listed in Table 4 was achieved on the sim-
ulator-generated datasets with spatially redundant regions
discarded (listed in Table 3). As we mentioned before, by
increasing the threshold value, it is possible to decrease
the relevant region size in images. However, it will impact

e
iunnmmqm_

person

the accuracy of the following CNN model. We tested it on
the MNIST dataset for different thresholds. We see that the
accuracy of the LeNet-5 model starts decreasing as we start
increasing the threshold value beyond a certain point. This
is shown in Fig. 9. Here, we select the RPU region size of
8 X 8 and edge points as spatial feature index. The threshold
value of 5 indicates that the number of edge points in an
8 X 8 region has to be greater than equal to 5 to be consid-
ered a relevant region.

While designing the inference pipeline, it is also possi-
ble to allocate a reduced number of bit width for irrelevant
pixels to reduce data transportation between the edge sen-
sor and the computation unit. We tested this on the MOT17
dataset with the YOLOv3 model and found that the precision
value remains the same for the YOLOv3 CNN model while
operating on the region-detected dataset. Precision is defined
as the ratio of correct detections to the sum of correct detec-
tions and false detections. This is shown in Fig. 10a, b. Here,
we used a bit width ratio of 0.25 (non-relevant bit width/
relevant bit width) for the generated custom dataset.

4.5.1 Hardware design evaluation

The end goal of this research is to develop suitable infer-
ence architectures that can be integrated with a region-aware
camera sensor facilitating an event-based processing pipe-
line at the edge. Therefore, while designing the simulator,
it is necessary to adopt ROI-detection functions with mini-
mum hardware overhead. We prototyped the RPU and the
RCM module of our simulator in a Virtex UltrScale plus
FPGA (VCU118) to estimate the hardware cost associated
with it. We opted to realize the RCM module because this
is the module that draws visual attention in our simulator.
The resource utilization is shown in Table 5. Here, the RPU

Fig. 10 a Object detected on original image with uniform bit-width (MOT17). b Object detected for image ROI extracted images (bit-width ratio

of non-ROI/ROI =0.25)

@ Springer



Journal of Real-Time Image Processing (2022) 19:363-374 373
Table 5 FPGA resource utilization of the RCM Table 7 Performance Comparison

Module name LUT FF LUTRAM Convolution Accuracy
RPU 183 90 16 CNN-PPA [30] 160 ps 93%
RCM (784 RPUs) 143,472 70,562 12,544 Our Design 31.2 us 98.8%

is designed for an 8 X 8 region size, and the RCM data are
estimated for 224 X 224 incoming image frames. The table
indicates that the RCM module only consumes 12% combi-
national logics available in the Virtex FPGA. This confirms
the viability of its realization with available CNN accelera-
tion engines.

Next, we perform a qualitative comparison to our work
with existing camera simulators found in the literature. This
is shown in Table 6. The work in [5] and [29] captures events
at the sensor interface and transmits events along with the
frame. The simulators model an event camera where each
pixel operates independently and asynchronously, report-
ing changes in brightness as they occur and staying inac-
tive otherwise. However, both of the works primarily focus
on temporal changes. The spatial redundancy is not thor-
oughly explored in these works. In contrast, our proposed
design flow operates hierarchically. The region-level events
are detected in two stages. First, we identify the temporal
regions, and then spatial computations are performed on
the extracted temporally relevant regions to reduce spatial
redundancy. Since CNNs trained on our generated custom
datasets can maintain the same level of accuracy (Table 4)
without performing computation on the spatially redundant
regions, our proposed simulator can serve as a development
tool for modeling inference engines.

Finally, we compared our work with a tiled-based com-
putation architecture that reduces computational complex-
ity by efficiently encoding pixels in each region. Here, we
considered the above-mentioned inference architecture that
operates on the region-aware data generated by the proposed
simulator architecture. We show that a similar CNN model
trained on our simulator-generated dataset will yield bet-
ter performance than other existing works aiming to reduce
computational complexity. The detailed performance com-
parison is shown in Table 7. The table indicates that our

Table 6 Simulator design comparison

[5] [29] Ours
Transmit events along with v v v
frame
Adaptive rendering v x v
Events detected Pixel Pixel Region
Configurability v N/A v

ROI-based model can yield better accuracy while reducing
computation on each frame.

5 Conclusion

This paper presents an event-camera simulator that emu-
lates the behavior of an attention-based parallel camera
sensor. The simulator computes the relevant score for each
region and performs rendering operations for only relevant
regions. The region-based ROI detection model adopted in
this work can provide high-performance computing for high-
level reasoning models. Our proposed simulator will serve as
an analyzing tool to develop machine learning models that
can best explore the event camera in the processing chain.
The ROI detecting functions used in the simulator have low
hardware cost. This makes it viable to implement in a dis-
tributed architecture. Our experimental results show that the
attention-based approach used in this work can significantly
reduce operation execution for inference engines.
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