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Modeling liquid droplet impact on a micropillar-arrayed viscoelastic surface via
mechanically averaged responses
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ABSTRACT
Droplet impact on a substrate is an intriguing phenomenon that widely exists in our daily life and
a broad range of industrial processes. However, droplet impact dynamics on soft textured surfaces
are less explored and the underlyingmechanisms remain elusive. Here, we report numerical simula-
tion of droplet impact dynamics on amicropillar-arrayed soft surface using BASILISK, which involves
a multiscale geometric domain containing the micropillars and droplet that are in the order of µm
and mm, respectively. As such, the volume of fluid (VOF) method is coupled with the finite volume
method (FVM) to build the fluid fields and track their interface. From a conceptual point of view, the
micropillared substrate is formedby imposing interstitial gaps into the otherwise intact softmaterial,
whose viscoelastic properties can be quantified by gap density ε. Via a five-parameter generalized
Maxwell model, the viscoelastic properties of the micropillared substrate can be approximated by
its equivalent elastic response in the Laplace–Carson (LC) space, and the averaged bulk strain of the
micropillared substrate in the real space is obtained by the inverse LC transform. Moreover, through
parametric studies of splash extent, it turns out that for a specific ε, the splash is dramatically inten-
sified with increasing impact velocity Ui . The splash also turns more violent with increasing ambient
pressure Pa, which is evidenced by a larger splash angle of 114.44◦ between the ejected sheet and
the horizontal substrate at 5 atm. Conversely, the splash becomes more depressed with increasing
surface tension σ . Overall, the splashmagnitudes of our simulations agree well with those predicted
by the Kelvin-Helmholtz instability theory. By leveraging the LC transform in the fluid-viscoelastic
solid interactions, our simulationmethodology captures themain features of droplet impact dynam-
ics onmicrostructured viscoelastic surfaces bymeans of themechanically averaged responses while
avoiding the predicament of domain scale inconsistency.
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1. Introduction

Droplet impact dynamics and the related splash
phenomena on various substrates have been exten-
sively studied over the past several decades. Contingent
on droplet properties, ambient conditions, and surface
topography, six distinct procedures such as deposition,
prompt splash, corona splash, receding break-up, par-
tial rebound, and complete rebound may take place in
sequence during the entire droplet impinging process on
a solid surface (Rioboo et al., 2001). Within the spread-
ing stage, the droplet behaviour is mainly determined
by the conversion of kinetic energy to surface energy.
Wildeman et al. (2016) found that for a droplet with
high impact velocities, nearly half of its kinetic energy
would be converted to the surface energy of the spread-
ing liquid film, regardless of the impact parameters or
the exact energy budgets. Furthermore, capillary force
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plays a certain role in influencing droplet spreading and
recoiling evolutions on a solid surface. Pasandideh-Fard
et al. (1996) examined the droplet spreading diame-
ter and recoil height following the initial impingement
on a solid surface to evaluate the capillary effects. In
their study, when surface tension is reduced by adding
a surfactant, the maximum spreading diameter increases
but the recoil height decreases. Meanwhile, the max-
imum spreading diameter can be used to demarcate
the spreading range of thus-generated liquid film. Laan
et al. (2014) conducted a parametric study of droplet
impact and deduced a universal scaling of the maximum
spreading diameter, which considers both the capillary
and viscous forces and conforms to the experimental
results.Moreover, regarding the droplet splash behaviour,
it may take different geometric profiles such as corona,
prompt, and fingering splash, depending on droplet size,
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impact velocity, and surface conditions (Lee et al., 2015;
Thoroddsen& Sakakibara, 1998; Xu et al., 2005).Mandre
and Brenner (2012) probed the formation and deflection
of the ejected splash sheet on a smooth surface, and quan-
titatively delineated the splash threshold as a function
of impact velocity and droplet size. Rioboo et al. (2002)
found that there exists a dimensional similarity of the
droplet impact shape during the initial impinging phase
on a dry solid surface.

Since most of the droplet impact studies were focused
on rigid substrates, many outstanding problems of
droplet impingement on soft surfaces involving energy
transport and force imposition have been less explored.
Also, the droplet impact on soft surfaces presents some
unique characteristics, such as an extended contact time
and different evolutions of spreading and splashing. Lan-
gley et al. (2020) investigated the effects of substrate stiff-
ness on droplet spreading and found that the transition
fromgliding to ring contact is delayed at lower stiffnesses,
characterized by a smaller Weber number We (We =
ρlU2

i D/σ , where ρl and D are the density and diame-
ter of the droplet, respectively, Ui is impact velocity, and
σ is surface tension). As surface wettability also affects
contact time, Weisensee et al. (2016) studied the droplet
impact on elastic nanostructured superhydrophobic sub-
strates and found that the springboard effect could con-
versely lead to an impact time reduction.Moreover, com-
pared to a rigid substrate, the spreading diameter devel-
ops distinctively on a soft surface and the initiation of
splash generally requires more kinetic energy. Howland
et al. (2016) studied droplet impact and splash on soft sur-
faces with varying stiffness, droplet size and viscosity, and
air pressure. They concluded that droplet splash could
be substantially mitigated by reducing the stiffness of the
substrate, and it needs approximately 70% more kinetic
energy to initiate the droplet splash on a soft surface.

As a unique soft material owning elasticity and vis-
cosity simultaneously, the viscoelastic materials such as
polymer-matrix composites, physiological tissues, and
polymeric compounds have received increasing interest
in a wide spectrum of researches (Christensen, 2012).
Specifically, Ghezelbash et al. (2022) examined the time-
dependent viscoelastic behaviours of blood clots through
the compression and shear stress relaxation tests. Ram-
bausek et al. (2022) developed a numerical frame-
work to model viscoelastic behaviours of finite strain
magnetorheological elastomers which consist of mag-
netically hard or soft phases. Furthermore, a variety
of mathematical models of viscoelasticity have been
developed to describe the deformation, relaxation, and
creep responses of viscoelastic materials. Using atomic
force microscopy (AFM), Chyasnavichyus et al. (2014)
measured the probe tip force-displacement curve on

poly(n-butyl methacrylate) and analysed its properties
via Sneddon’s model for the elastic region and John-
son’s model for the viscoelastic zone, which was car-
ried out across the whole glass-transition process. Boisly
et al. (2016) experimentally investigated the rate depen-
dence and the characteristic force-deformation tendency
of the cutting process of viscoelastic materials. Then,
the generalized Maxwell model and the Mooney-Rivlin
model were utilized in their finite elementmethod (FEM)
simulations to describe the linear viscoelasticity and the
force-displacement relation, respectively.

Facing an external impetus, the responses of a vis-
coelastic bulk material are influenced not only by the
viscoelastic properties of itself but also by its geometric
configuration. Nguyen et al. (2017) developed a method-
ology that analogizes the bulk and shear moduli of the
intact viscoelastic solids obtained by the generalized
Maxwell model to the corresponding moduli of micro-
cracked materials in the Laplace-Carson (LC) space.
Then, they validated this analogical deduction in the real
space with a simple loading case through the inverse
LC transform. Regarding the contact properties of a vis-
coelasticmicropillar, Gong et al. (2021) analysed the con-
tact properties between a spherical asperity and a soft
polymer substrate, which was validated by the FEM sim-
ulations, and subsequently studied the viscoelastic con-
tact between an asperity and a composite micropillar.
On a single viscoelastic polydimethylsiloxane (PDMS)
micropillar, Du et al. (2013) calculated the cell contrac-
tion force in the frequency domain by FEM, in which
the complex modulus was obtained by fitting the gener-
alized Maxwell model with the least square method, and
the reaction forcewas deduced by the cellular contraction
data transformed to the Fourier series.

Regarding droplet impingement on a structured soft
surface such as a micropillar-arrayed viscoelastic sub-
strate, the aforementioned viscoelastic models need to be
revisited to predict the elasticmoduli and timedependent
stress-strain relationship. According to the soft material’s
viscoelastic responses, linear viscoelasticity and nonlin-
ear viscoelasticity models have been put forward respec-
tively. In the case of the linear responses, stress could be
scaled or superposed in the same way as the correspond-
ing composite strain is processed mathematically (Wine-
man, 2009). Regarding the nonlinear viscoelasticity, it
could result from the material’s nonlinear characters or
its geometric structure (Drapaca et al., 2007).

With sufficient accuracy and modest complexity, lin-
ear viscoelasticity is adopted by us to investigate the
viscoelastic properties of the micropillar-arrayed sub-
strates. In this respect, several typical models have
been developed to describe the stress-strain relationship,
including the Kelvin-Voigt model where the viscoelastic
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system consists of a spring and a dashpot in paral-
lel, and the Maxwell model which is composed of the
same components rather connected in series (Findley
et al., 1977). As opposed to the Kelvin-Voigt model
that has limitations in elucidating the stress relaxation
and the Maxwell model that is deficient to handle the
creep behaviour (Findley et al., 1977), the generalized
Maxwell model, in which one additional spring is con-
nected in parallel with other Maxwell elements (i.e.
each Maxwell element comprises an elastic spring and
a viscous damper in series), can account for both the
stress relaxation and the creep behaviour simultaneously
(Kohlrausch, 1863). In general, the more the Maxwell
elements are integrated, the more accurate the general-
ized Maxwell model would be. However, this strategy
might lead to a prohibitive computational cost along with
implementation difficulty. Thus, a three-parameter gen-
eralized Maxwell model (i.e. the standard linear solid
model (Lazan, 1968)) has been developed as a trade-off.
Likewise, the five-parametermodel has also been put for-
ward to render a more accurate prediction of viscoelastic
behaviours with moderate computational cost. Mishra
and Patra (2018) utilized both linear and non-linear five-
parameter models to investigate the creep behaviour of
pile groups in soil study, finding that compared with
other numerical and experimental results the maximum
errors induced by these twomodels are only 18% and 3%,
respectively.

Because of the complexity in determining the vis-
coelastic properties of the microstructured soft substrate
and the difficulty in describing the associated droplet-
substrate interactions, in which a multiscale geometric
domain is involved including micropillars in the order
of µm and the droplet in the order of mm, studying
droplet impact on such a micropillar-arrayed viscoelas-
tic substrate becomes rather challenging and arduous.
Consequently, only few studies have been conducted on
this topic. For instance, Parizi et al. (2007) conducted
a parametric study of the molten nickel and zirconia
droplets impacting on rigid micro-cube patterned sur-
faces, in which the finite difference method and the VOF
approach were coupled to track the fluid-fluid interface.
Choi et al. (2017) performednumerical simulations of the
droplet impact and evaporation on a porous surface by
solving vapour fraction-related equations, in which the
effects of impact velocity, porosity, and particle size of
the porous medium on the impingement and evapora-
tion were carefully appraised. Guo et al. (2014) leveraged
the level set method and the VOF approach to probe the
two-dimensional (2D) impact dynamics on a liquid film
and analysed the effects of impact velocity and film thick-
ness on spreading diameter. Because of the complexity
in force implementation and response determination in

the three-dimensional (3D) space, there have been only
few studies of droplet impact dynamics for the 3D sce-
nario. Bussmann et al. (1999) proposed a volume tracking
algorithm delineating the free surface of the droplet and
used the software RIPPLE to determine the surface ten-
sion force as a volumetric force exerted on the free sur-
face. Therefore, it is more feasible to study droplet impact
on a micropillar-arrayed viscoelastic substrate in the 2D
domain under reasonable assumptions.

In this work, we adopted the five-parameter viscoelas-
tic model for the micropillar-arrayed substrate and then
simulated droplet impact dynamics thereon by means of
the mechanically averaged responses in the LC space.
This work can be divided into several parts: (i) construct
the discretizedmodel for the fluid fields including the liq-
uid droplet and the ambient gas as well as the interface
between them by the coupled FVM and VOF method;
build the mathematical model of the micropillar-arrayed
viscoelastic substrate in the LC space, and realize the
real-space coupling between the fluid field evolution and
the substrate response via the inverse LC transform; (ii)
based on the elastic moduli and viscosities of micropil-
lared substrates characterized by gap density ε, con-
duct parametric simulations of droplet impact dynamics
regarding the effects of diverse factors such as impact
velocity Ui, ambient pressure Pa, and surface tension
coefficient σ on the substrate deformation magnitude
and the splashing intensity; and (iii) study the impact and
splash mechanisms by comparing the simulation results
with theKelvin-Helmholtz (K-H) instability theory of the
interface growth. Based on the LC transform, our sim-
ulation methodology can reconcile the geometric scale
inconsistency between the impinging droplet and the
micropillar-arrayed viscoelastic substrate by way of the
mechanically averaged responses.

2. Mathematical model

2.1. Theory and discretizationmethod for liquid
droplet and ambient gas phases

The simulation of droplet impact on a structured vis-
coelastic substrate necessitates modelling multiphase
fluid flow and fluid-solid interactions in a coupled
manner. In this work, we used the open-source codes
BASILISK to numerically simulate the droplet impact-
ing, spreading, and splashing processes on micropillar-
arrayed viscoelastic surfaces by solving the incompress-
ible Navier-Stokes (N-S) equations (Equations (1)–(3))
(Temam, 2001) and the related VOF equations (Equa-
tions (4)–(10)). The N-S equations are first discretized
by FVM and then solved through the obtained algebraic
equations. As represented in Equation (3), the velocity
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divergence is equal to zero within each computation step.
At the impacted surface, the deformation velocity of the
viscoelastic substrate is treated as a Dirichlet boundary
condition to two distinct phases, i.e. the liquid droplet
and the surrounding gas. And the volume of fluid (VOF)
method is used to obtain the concrete volume fraction
of each phase at each computation step by solving the
advection equation (Equation (4)), which can be math-
ematically derived from the continuity equations based
on the individual phase density (Equation (5)) and the
weighted density (Equation (6)). According to the VOF
theory, both phases share the same value of either the
velocity field or the pressure field in each discretized cell
of the computation domain. By substituting the weighted
density and theweighted viscosity (Equations (7) and (8),
respectively) into the N-S equations (Equations (1)–(2)),
the velocity and pressure fields can be obtained. Regard-
ing the two-phase case, if a specific grid cell is completely
filled with one phase, volume fraction f is assigned as
unity for that phase and zero for the other phase. There-
fore, for two-phase flow (i = 2 in Equations (7)–(8)),
Equations (7) and (8) are simplified to be Equation (9)
and (10), respectively.

∂(ρu)

∂t
+ ∇ · (ρuu) = −∇p + ∇ · (2μD) + ρa + Fs

(1)

∂ρ

∂t
+ ∇ · (ρu) = 0 (2)

∇ · u = 0 (3)

∂fi
∂t

+ u · ∇fi = 0 (4)

∂ρi

∂t
+ ∇ · (ρiu) = 0 (5)

∂ρ

∂t
+ ∇ · (ρu) = 0

⇒ ∂
∑

i (ρifi)
∂t

+ ∇ ·
(∑

i
(ρifi)u

)
= 0 (6)

ρ =
∑
i

(ρifi) (7)

μ =
∑
i

(μifi) (8)

ρ = ρ1f + ρ2(1 − f ) (9)

μ = μ1f + μ2(1 − f ) (10)

where u is the velocity vector shared by all phases, and
the deformation tensor D is defined as Dmn ≡ (∂mun +
∂num)/2, ρ and μ are the weighted density and the
weighted dynamic viscosity of various phases, respec-
tively. ρi and μi (i = 1, 2 for the two-phase case) are the

density and the dynamic viscosity of phase i, respectively.
Additionally, p stands for the pressure, a is the accelera-
tion vector considering both the gravity and the external
forces except for surface tension, and Fs represents the
capillary force caused by surface tension. fi is the volume
fraction of phase i (only f is adequate for the two-phase
flow).

During the computation, volume fraction f and pres-
sure p are centre staggered in each grid cell. By con-
trast, velocity u, viscosity μ, and acceleration term are
face staggered. The detailed temporal discretization of
the N-S equations is realized by BASILISK, in which the
momentum equation in vector form is discretized with a
second-order time scheme using an intermediate veloc-
ity u′ (Equation (11)) (Popinet, 2009). The velocity at the
next time step can be expressed as Equation (12), where
the pressure gradient needs to be calculated in advance
by the Poisson equation as shown in Equation (13)
(Popinet, 2009). Here, Equation (13) is solved by the
quad/octree-based multilevel solver (Popinet, 2003).

ρn+ 1
2

[
u′ − un

�t
+ un+ 1

2
· ∇un+ 1

2

]

= ∇ · [μn+ 1
2
(Dn + D′)] + ρa + (σκδsn)n+ 1

2
(11)

un+1 = u′ − �t
ρn+ 1

2

∇pn+ 1
2

(12)

∇ ·
(

�t
ρn+ 1

2

∇pn+ 1
2

)
= ∇ · u′ (13)

where σ is the surface tension coefficient; κ and n are the
curvature and the normal vector of the interface, respec-
tively; δs is the Dirac distribution function related to the
interface. Comparing Equation (1) with Equation (11),
the capillary force could be written as:

Fs = σκδsn (14)

This surface tension force can be transformed into the
specific control volume within the discretized domain as
a volumetric force (Dupont & Legendre, 2010):

Fv = σκ∇f = σ∇ ·
( ∇f

‖∇f ‖
)

∇f (15)

To get the exact value of u′, Equation (11) is reorganized
and can be expressed as:

ρn+ 1
2

�t
u′ − ∇ ·

[
μn+ 1

2
D′

]
= ∇ · [μn+ 1

2
Dn] + ρa + (σκδsn)n+ 1

2

+ ρn+ 1
2

[ un
�t

− un+ 1
2

· ∇un+ 1
2

]
(16)
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As can be seen, the right-hand side of Equation (16)
only relies on the values at time steps n and n + 1/2.
This Helmholtz-type equation (Equation (16)) could be
solved by an alternative form of the multilevel Poisson
solver. The viscous term is discretized by the Crank-
Nicholson method which is second-order convergence
and unconditionally stable. Also, the Bell-Colella-Glaz
second-order unsplit upwind scheme (Bell et al., 1989;
Popinet, 2003) is utilized to discretize the advection term
un+ 1

2
· ∇ un+ 1

2
. When the CFL number (a scale to assure

that the time step size is within a reasonable range) is less
than one, the Bell-Colella-Glaz scheme is relatively stable.

2.2. Initial construction of the droplet-gas interface
by level set method

In addition, the level set method (Osher & Sethian, 1988)
is utilized to initially construct the interface between the
liquid droplet and the ambient gas so that the periph-
ery of the impinging droplet can be accurately built at
the beginning of the simulation. Rather than by either
explicit parameterization or direct specification, the level
set method could build the profile of an object in a
fast and reliable fashion and obtain the topology repre-
sentation with excellent adaptation (Wang et al., 2003).
According to the level set method, a scalar function of
an iso-surface in implicit form is used to get the object
boundary:

A = {x : | 	(x) = y} (17)

where scalar function 	 is the level set function, i.e.
	(x) : Rn �→ R, y is the iso-value to define the specific
iso-surface, and x is the set of points that comprise the
iso-surface associated with the iso-value y. In this way,
the set of vertices of the initial grid cells are applied to
derive the values of the level set function 	 so that the
volume fraction of each cell is obtained to delineate the
primary interface between the two phases.

2.3. Viscoelastic model for themicropillar-arrayed
substrate

As mentioned in the introduction, there are three main
models to describe the stress-strain relationships for
viscoelastic materials, namely the Kelvin-Voigt model
(Figure 1(a)), the Maxwell model (Figure 1(b)), and the
generalized Maxwell model (Figure 1(c)). For the first
two models, the dashpot (representing viscosity) and the
spring (standing for elasticity) are connected in parallel
and in series, respectively. Nonetheless, the generalized
Maxwell model is composed of one spring and a load of
Maxwell elements (a dashpot and a spring connected in
series) in the parallel configuration.

Compared to the other two models, the generalized
Maxwell model gives rise to better description of the
stress-strain relationship by taking both relaxation and
creep into account. That said, the Kelvin-Voigt model
fails in interpreting stress relaxation and the Maxwell
model falls short of accounting for creep response of
the viscoelastic materials. However, the higher accuracy
of the generalized Maxwell model usually incurs a pro-
hibitive computational cost, which can be optimized by
simplifying the generalized Maxwell model to a five-
parameter model, i.e. two Maxwell elements in parallel
with an additional spring which stands for the long-term
elastic effect.

Regarding the viscoelastic micropillar-arrayed sub-
strate whose elastic and viscous properties are different
from those of the intact bulk of the viscoelastic material,
we need to build a viscoelastic model for the micropil-
lared configuration. According to Nguyen et al. (2017),
the temporal response of a non-aging viscoelastic mate-
rial to external stress could be approximated by the elastic
temporal response of an equivalent elastic material in
the LC space. After this LC transform, the viscoelas-
tic material can be modelled by the comparable elastic
material whose stress-strain relationship is expressed in
a linear tensor format: σs∗ = C(q) : ε∗, whereC(q) is the

Figure 1. Schematic configurations ofmathematicalmodels for viscoelasticmaterials: (a) the Kelvin-Voigtmodel; (b) theMaxwellmodel;
and (c) the generalized Maxwell model.



6 Y. LI AND J. CHENG

stiffness tensor in the LC space, ∗ represents the LC trans-
form, and q denotes the LC variable. Consequently, for
the generalized Maxwell model in the LC space, the bulk
and shear moduli of the intact viscoelastic material, k∗
and μ∗, could be given by:

k∗ = k∞ +
n∑
i=1

(
1
ki

+ 3
qηsi

)−1
(18)

μ∗ = μ∞ +
n∑
i=1

(
1
μi

+ 2
qηdi

)−1

(19)

where ksub and μsub (sub = i or ∞) indicate the bulk
and shear moduli of either the specific spring in one cer-
tain Maxwell element or the additional spring. ηsi and ηdi
are the bulk and shear viscosities of the corresponding
Maxwell element, respectively.

In accordance with Nguyen et al.’s elastic response
study of micro-cracked materials in the LC space
(Nguyen et al., 2017), all the parameters in Equations (18)
and (19) should bemodified for cracked (i.e. micropillar-
arrayed in this study) materials considering the effects of
crack density ε = Na, which is also deemed as gap den-
sity for the micropillar-arrayed substrate in this paper.
Here, a is the interstitial gap (or gap length for shapes
other than circle) for the micropillared surface and N is
the number of gaps in a unit volume of the micropillared
substrate. Thus, the above two equations (Equations (18)
and (19)) are modified correspondingly to obtain the
bulk and shear moduli for the micropillared configura-
tion, i.e. khom∗

and μhom∗
:

khom
∗ = k∞(ε) +

n∑
i=1

(
1

ki(ε)
+ 3

qηsi (ε)

)−1
(20)

μhom∗ = μ∞(ε) +
n∑

i=1

(
1

μi(ε)
+ 2

qηdi (ε)

)−1

(21)

Also, it should be noted that the modified moduli in
Equations (20) and (21) are identical to those of the
media with randomly distributed cracks (i.e. gaps for
the micropillar-arrayed substrate) as predicted by the
classical Mori-Tanaka approach (Mori & Tanaka, 1973).
Therefore, these two governing equations can be effec-
tively applied to the micropillared case regardless of
the shape and distribution of the micropillar gaps
when employing the five-parameter generalizedMaxwell
model in the LC space. As for the gas entrapped in the
gaps between the micropillars, its cushion effect between
the droplet and substrate is neglected due to the relatively
low gap density ε in this study (all the cases are listed
in Table 1). In our simulated cases, the equivalent shear
modulus is not dominant because the droplet impacts

Table 1. Effectiveness j of the bulk moduli and viscosities of
the micropillar-arrayed substrates compared to the correspond-
ing parameters of the intact material with varying gap density ε

(Nguyen et al., 2017).

k∞(ε)/k∞ k1(ε)/k1 k2(ε)/k2 ηs1(ε)/η
s
1 ηs2(ε)/η

s
2

Gap density ε Effectiveness j

0.05 0.868 0.855 0.850 0.862 0.860
0.10 0.750 0.738 0.732 0.753 0.755
0.15 0.660 0.589 0.586 0.661 0.662
0.20 0.590 0.578 0.575 0.593 0.595

along the normal direction where the shear deflection
of the micropillars plays a relatively minute role in the
response. Therefore, only the bulk strain caused by the
bulk modulus (Equation (20)) is evaluated in our anal-
ysis, resulting in the bulk deformation velocity of the
substrate. This deformation velocity is then applied as a
Dirichlet boundary condition to the fluid fields of the liq-
uid droplet and the ambient gas. Furthermore, the bulk
strain for 2D cases in the LC space could be calculated by:

ε0(q) = σs0

3khom∗
(q)

(22)

where σs0 and ε0(q) represent the stress and strain in the
normal direction under a specific loading, respectively.

However, instead of directly using the obtained strain
in the LC space to calculate the boundary velocity, the
inverse LC transform should be performed in advance
so that the equivalent strain in the real space could be
implemented. Due to the analytical complexity of this
inverse transform, the direct inversion method proposed
by Schapery (1962) is adopted by us to get the approxi-
mate value of the strain as:

ψ(t) � [ qψ∗(q) ] q= 0.5
t

(23)

According to Schapery (1962), the direct inversion
method has a great adaptivity when the logarithmic time
doesn’t change quickly as in our case. Therefore, the
strain in the real space can be approximately deduced
after this direct inversion operation.

3. Simulation domain and computation
algorithm

3.1. Schematic representation of the
micropillar-arrayed geometry

The schematic of the droplet impacting process on a
micropillar-arrayed substrate is shown in Figure 2. The
2D simulation domain is a 5 unit lengths× 5 unit lengths
(unit length is the basic length scale in BASILISK) region
meshed with 512 × 512 discretized points. The height
h of the micropillars is set at 100 × 10−6 unit length,
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Figure 2. Droplet impact process on a micropillar-arrayed substrate (not in scale), the unit of the denoted lengths is one unit length of
the grid in BASILISK.

and the diameter D of the droplet is 1 unit length. The
computational process of droplet impact by BASILISK
starts at the droplet’s fallingmoment from its initial posi-
tion, during which the progress is characterized by time
t. As stated above, the micropillar matrix configuration
is characterized by gap density ε, and only the strain in
the normal direction is considered in this study. Due to
the axial-symmetry of the spherical liquid droplet, only
half of the droplet is modelled to get the representative
scenario of the impact process.

3.2. A simplified five-parametermodel for the
generalizedMaxwell model

In Equations (20) and (21), the bulk and shear mod-
uli for the micropillared material in the LC space have

been established. Nonetheless, in order to reduce the
computational cost while achieving a sufficient accuracy,
a five-parameter model is adopted by us to represent the
elastic response in the LC space as shown in Figure 3. In
this model, two parallel Maxwell elements are included
and the shear moduli and shear viscosities are omitted as
stated above. Moreover, according to Nguyen et al.’s val-
idation study of the creep case (Nguyen et al., 2017), the
five-parameter model has an excellent agreement with
the analytical solution of the governing equations in the
LC space in terms of the temporal strain under a constant
stress load.

Meanwhile, instead of getting the exact values of
ksub(ε) (sub = i or ∞) and ηsi (ε) in Equation (20) by the
analytical polynomial suggested by Nguyen et al. (2017),
the approximate effectiveness j of the viscoelasticity

Figure 3. Schematic configuration of the five-parameter model.
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Table 2. Bulk moduli and viscosities of the intact material used
in this study (based on the data by Nguyen et al. (2017) and
modified).

Moduli and Viscosities Values

k1 12.21 MPa
k2 14.04 MPa
k∞ 4.91 MPa
ηs1 11 × 106 Pa s
ηs2 11 × 106 Pa s

(ksub(ε) and ηsi (ε)) of the micropillar-arrayed substrate
under a specific gap density ε could be directly obtained
in the Effective Viscoelastic Properties Figures provided by
Nguyen et al.With a specific gap density ε, the bulkmod-
ulus or viscosity of themicropillared substrate is obtained
bymultiplying the correspondingmodulus or viscosity of
the intact substrate material by the correlated effective-
ness value. Then, khom∗

for the micropillared substrate is
acquired by substituting thus-obtained moduli and vis-
cosities of all the components (dashpots and springs) in
the five-parameter viscoelastic model into Equation (20)
with i = 2. The values of effectiveness j for the bulkmod-
uli and viscosities of the micropillar-arrayed substrate
with varying gap density ε are given in Table 1, which
are used in the subsequent simulations. Also, the bulk
moduli and viscosities of the adopted intact material are
listed in Table 2, which are modified to become relatively
softer compared to the primary intact material (Nguyen
et al., 2017).

3.3. Algorithm chart for the computation process

The algorithm of the whole computational procedure is
listed in Table 3, including the N-S solver and the VOF
solver adopted by BASILISK. From the ad hoc point of
view, the deformation velocity of the micropillared sub-
strate, which is acquired by averaging the strain rates at
all the discretized points on the boundary, functions as a
Dirichlet boundary condition to the N-S equations of the
fluid fields. Additionally, the corrected pressure, calcu-
lated by the pressure at the current step and the pressure
at the previous step, is applied to replace the analogous
stress, i.e. σs0 in Equation (22), in the LC space. This cor-
rection approach could avoid the race condition (i.e. a
disorder caused by the sequence of computation steps).
For this case, the race condition is that the substrate
deformation velocity needs to be computed while being
used as the initial boundary condition at the same time.
The flow chart of the computation process is showcased
in Figure 4.

Table 3. Algorithm of the N-S equation and VOF solvers.

Algorithm 1 Computation for cell-centred velocity u and cell-centred
pressure p and volume fraction f

The time step size is controlled by CFL number, which is 0.8 by default.
Part A – solve for u and p:
1. For Equation (16):
ρn+ 1

2

�t
u′ − ∇ ·

[
μn+ 1

2
D′

]
= ∇ ·

[
μn+ 1

2
Dn

]
+ ρa + (σκδsn)n+ 1

2
+

ρn+ 1
2

[ un
�t

− un+ 1
2

· ∇un+ 1
2

]
in order to getu′ , the face velocityu

′ n+1/2
f at t + �t/2 needs to be predicted

first;
2. Divergence-free face velocity un+1/2

f at t + �t/2 can be obtained after
successive iterations, using the Poisson-Helmholtz equation solver similar
to Equation (13), i.e.:

∇ ·
(

1
ρ
n+ 1

2

∇pf (n+ 1
2 )

)
= ∇·u′ n+1/2

f
�t/2

(ρ is constant for incompressible flow, the default tolerance for this solver is
10−3 which must be reached within the specified maximum iterations);

3. Utilize this divergence-free face velocity un+1/2
f to calculate the advection

term un+ 1
2

· ∇un+ 1
2
via the standard Bell-Collela-Glaz advection scheme,

which is a second-order unsplit upwind scheme;
4. Before leveraging the implicit viscosity solver, which is the samemultilevel
Poisson solver in step 2, to gain the viscous term ∇ · [μn+ 1

2
(Dn + D′)],

the acceleration and pressure gradient effects can be added to un by a
correction function where a combined term c consisting of cell-centred
acceleration a and pressure gradient ∇p at the previous time step is
adopted;

5. Remove c dt from the previously modified un after step 3 and step 4. Then,
the provisional face velocity un+1

f at t + �t is obtained by adding the face
velocity unf interpolated from the centred velocity un and the product of
the acceleration term a and�t;

6. Make one more projection to obtain the final face velocity un+1
f at t + �t

along with the cell-centred pressure p, which could be used to calculate c
at the current time step;

7. Use correction function mentioned in step 4 to add the effect of the
combined acceleration and pressure gradient term, c dt, at current step to
un , then un+1 is derived;

8. Face velocity un+1
f obtained in step 6 could be applied to predict the next

half step’s face velocity as step 1;
Part B – solve for f :
9. For the following equation similar to Equation (4):
∂fi
∂t + uf · ∇fi = 0
un+1
f from step 6 could be employed in the advection solver of volume
fraction;

10. f n+1
i is acquired through time integration of the discretized equation

resulting from the equation in step 9, mainly considering the advection
term.

4. Validation throughmodeling droplet impact
on rigid and soft surfaces

Prior to investigating droplet impact dynamics on a vis-
coelastic surface, we need to validate the simulation
protocols and algorithms developed by us (Figure 4) as
well as the mathematical models built for both the fluid
fields and the soft substrate. Since droplet impact on
viscoelastic structures has been less explored, we first
simulated droplet impact on a rigid surface and com-
pared the BASILISK simulation results with the available
experimental data for the validation purpose. As such,
the stress-strain relationship σs = Eε, where σs and ε are
the stress and the strain in the bulk direction, respectively,
E is the bulk elastic modulus, was used in the case of the
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Figure 4. Flow chart of the simulation procedures realized in BASILISK.

Figure 5. Comparison between the experimentally captured images (top) provided by Liu et al. (2010) for the impact process of an
ethanol droplet on a Plexiglas surface and the contours of volume fraction f (bottom) simulated by BASILISK under the same conditions,
i.e. droplet diameter D = 1.7mm,We = 1870 and ambient pressure Pa = 1 atm. The physical properties of ethanol droplet used in the
simulations are the same as Table 1 of Liu et al. (2010). See Movie S1 in the supplemental materials.

relatively rigid substrate to directly acquire the substrate
deformation velocity. In specific, we compared the exper-
imentally captured images provided by Liu et al. (2010)
regarding the impact process of an ethanol droplet on
a Plexiglas surface with our simulation contours of vol-
ume fraction f under the same conditions. The Weber
number We was set as 1870, and the physical properties
of ethanol such as density, viscosity, and surface tension
are given in Table 1 of Liu et al. (2010). In this validation
simulation, the bulk elastic modulus of the Plexiglas sur-
face E = 2.95GPa and its thickness is 2mm. As shown
in Figure 5, our simulation results can capture the main
features of the impact process and are consistent with the
experimental images at each frame.Moreover, the nondi-
mensionalized radial trajectory rt/ar as a function of the
dimensionless time te/τ for the ethanol droplet impact

process is showcased in Figure 6, where rt and ar are the
travelling distance of the outmost rim and the droplet
radius, respectively; te is the elapsed time after the initial
impingement, τ = ar/Ui is a characteristic falling time,
and Ui is the impact velocity. As can be seen in Figure 6,
the evolution of the radial trajectory obtained by our
modelling has a good agreement with both the simula-
tion results of Wu and Cao (2017) and the experimental
data provided by Stow and Hadfield (1981).

To make further validation, the impact dynamics of
ethanol and water droplets over soft PDMS silicone
gels with various stiffnesses have been simulated by us,
which are then compared with the experimental results
obtained by Basso and Bostwick (2020). The spread-
ing factor α = Dmax/D (where Dmax is the maximum
spreading diameter) is selected as the parameter for
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Figure 6. Nondimensionalized radial trajectory rt/ar of the
ejected sheet against dimensionless time te/τ for the ethanol
droplet impact simulation shown in Figure 5. The experiment
data are from Stow and Hadfield (1981), and the referred sim-
ulation results of ethanol droplet impact were obtained by Wu
and Cao (2017). The lines are guides to the eye.

comparison, which demarcates the maximum spread-
ing capability of the generated liquid film. As can be
seen in Figure 7(a), the simulation results are gen-
erally consistent with the experimental data. For the
case of water droplet, the maximum difference is only
1.72% at E = 47.4 kPa compared to the corresponding
experimental result. Furthermore, the contour of the
maximum spreading diameter for ethanol droplet impact

on different soft substrateswithWe = 270 is illustrated in
Figure 7(b).

Hence, our simulation results are consistent with the
experimental data on both the rigid substrates and the
soft surfaces, indicating that the mathematical model
of the entire droplet impact process implemented in
BASILISK is reliable and robust. Consequently, the gen-
eral protocols developed by us can be applied in the
subsequent simulations of the micropillared cases.

5. Effect of viscoelasticity of the
micropillar-arrayed substrate on droplet impact

By directly leveraging the strain-stress relationship as
discussed in Section 4, droplet impingement on either
the stiff substrate or the soft surface has been simulated
by us for validation purpose. However, whether there
exists a critical point for viscoelasticity of the viscoelastic
micropillar-arrayed substrate, at which its deformation
behaviour is analogous to that of the stiff solid substrate,
deserves further investigation. In this respect, the effects
of viscoelasticity of the micropillar-arrayed substrate on
the surface deformation need to be investigated.

Because the Plexiglas surface is treated as a stiff sub-
strate in the droplet impingementmodelling of Section 4,
we performed an asymptotic analysis to find out at what
viscoelasticity the deformation of themicropillar-arrayed
substrate can be approximated to that of the Plexiglas
surface. We chose the primary viscoelasticity of the bulk
material from Nguyen et al. (2017) with only the viscos-
ity terms modified, as listed in Table 4. The effectiveness

Figure 7. Validation of simulations of droplet impact on soft silicone substrates with various elastic moduli, i.e. 15.1 kPa, 22.2 kPa and
47.4 kPa: (a) spreading factor α against Young’s modulus E, where the experimental data of ethanol and water droplets with different
We are from Basso and Bostwick (2020); (b) contour of the maximum spreading diameter when ethanol droplet impinges on silicone
substrates with diverse stiffnesses whileWe = 270. The lines are guides to the eye.
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Table 4. Bulk moduli and viscosities of the intact material used
for the asymptotic analysis (based on the data by Nguyen
et al. (2017) and with only viscosities modified by us).

Moduli and Viscosities Values

k1 12.21 GPa
k2 14.04 GPa
k∞ 4.91 GPa
ηs1 11 × 106 Pa s
ηs2 11 × 106 Pa s

values of gap density ε = 0.20 in Table 1 are applied to
form the basic micropillar-arrayed substrate. Moreover,
to represent various micropillar-arrayed substrates, each
of the elasticity terms (i.e. k1(ε), k2(ε) and k∞(ε), with
ε = 0.20) of the basic micropillared substrate is multi-
plied by a pre-factorm, which ranges from 0.005 to 0.05.
For the Plexiglas surface, its elastic modulus is 2.95GPa,
and its thickness is equal to the height of micropillars, i.e.
100 × 10−6 unit length.

In addition, the same conditions used in the Plexiglas
surface case of Section 4 are employed to simulate ethanol
droplet impact on the micropillar-arrayed substrates, i.e.
droplet diameter D = 1.7mm, We = 1870 and ambient
pressure Pa = 1 atm. By comparing the dimensionless
deformation magnitude of different substrates as shown
in Figure 8, it turns out that the larger the pre-factor
is, the smaller the deformation tends to be. When tak-
ing the deformation of the Plexiglas surface as a bench-
mark, with a critical pre-factor m = 0.00875, the vis-
coelastic response of the micropillar-arrayed substrate

Figure 8. Dimensionless deformation displacement davg/h of
various substrates against time t with We = 1870 and ambient
pressure Pa = 1 atm for ethanol droplet impact simulations. The
pre-factor m is applied to represent diverse micropillar-arrayed
substrates. The droplet diameter D = 1.7mm, the gap density
of the micropillar-arrayed substrates ε = 0.20, and the physical
properties of ethanol droplet are from Table 1 of Liu et al. (2010).
During the impingement process, stages I and II indicate the
going-down stage and the lift-up stage of the substrates, respec-
tively.

to the impinging ethanol droplet can be deemed almost
the same as the elastic behaviour of the stiff Plexiglas
surface. Regarding the maximum dimensionless inden-
tation depth, the difference is merely 0.76% between the
micropillar-arrayed substrate with m = 0.00875 and the
Plexiglas surface.

6. Results and discussion

In general, impinging droplet over the solid surface starts
spreading upon the initial contact, which is followed by
the potential splashing afterward. By considering vari-
ous factors such as impact velocity Ui, surface tension
coefficient σ , and ambient gas pressure Pa, we have con-
ducted parametric simulations of droplet impact dynam-
ics involving spreading and possible splashing processes
on micropillar-arrayed viscoelastic substrates with gap
density ε varying from 0.05 to 0.20 as listed in Table 1.
Correspondingly, we compared the splashingmagnitudes
obtained from our simulations with the splashing extents
predicted by the Kelvin-Helmholtz instability theory,
which is a type of interfacial instability perturbed by
small-amplitude variation originating from the substan-
tially large velocity difference across the interface (Lee
& Kim, 2015).

In essence, the Kelvin-Helmholtz instability is caused
by the incompetence between the stabilizing effect of
gravity and surface tension and the destabilizing effect
of shear stress across the interface. Jepsen et al. (2006)
found that the Kelvin-Helmholtz instability might serve
as the main mechanism for the occurrence of splash-
ing and finger formation during the spreading process
of the impinging droplet. The dispersion relation of the
Kelvin-Helmholtz instability could be expressed as:

ω2 = ρg

ρl
U2
relk

2 + σ

ρl
k3 (24)

kmax = 2U2
relρg

3σ
(25)

where ω is the interface growth rate, k is the wave num-
ber, and kmax corresponds to the maximum point of ω

(Equation (24)) which is achieved by setting the deriva-
tive of ω function as zero; Urel is the relative velocity
between the gas phase and the liquid droplet phase; ρg
and ρl are the densities of the ambient gas and liquid
droplet, respectively.

A series of droplet impact processes in the ambient
environment have been simulated by us under a variety of
impact velocities and gap densities for parametric study.
In addition, while ε = 0.15 and Ui = 2m/s or 3m/s,
droplet impact dynamics with varying ambient gas pres-
sure Pa or surface tension coefficient σ have also been
simulated in this study.
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Figure 9. Representative meshed domain and independence test of mesh density: (a) schematic of the 512 × 512 node mesh used in
this study; (b) dimensionless deformation displacement davg/h of the micropillar-arrayed substrate against time t with impact velocity
Ui = 2m/s, gap density ε = 0.15, ambient pressure Pa = 1 atm, and surface tension coefficient σ = 1/50 N/m for different meshes.

6.1. Grid demonstration andmesh independence
test

Regarding numerical simulations of droplet impact on
the micropillar-arrayed substrate, a schematic of the
meshed domain is shown in Figure 9(a), which is a 512 ×
512 grid network as mentioned in Section 3.1. Along
with the computation by BASILISK, a self-mesh adapta-
tion process is implemented to adaptively adjust themesh
density especially in the vicinity of the fluid-fluid inter-
face. Due to the wide gap of the geometric dimensions
between the droplet and themicropillars, which span sev-
eral orders of magnitude from µm to mm, there is no
physical mesh built for themicropillars in ourmodelling.
Instead, via the five-parameter model for themicropillar-
arrayed substrate in the LC space, each discretized node
at the bottom boundary serves as a coupling position
between the substrate and the main fluid fields by trans-
mitting the corresponding deformation velocity. In this
way, the inconsistency of geometric scale between the
droplet and micropillars has been reconciled by means
of the mechanically averaged responses.

Mesh independence test needs to be conducted before
the subsequent parametric studies. Hence, we added two
more meshes to observe and compare the dimensionless
displacement of themicropillar-arrayed substrate, i.e. one
is 256 × 256 mesh and the other is 1024 × 1024 mesh, in
addition to the adopted 512 × 512 mesh. The averaged
dimensionless deformation davg/h of the micropillar-
arrayed substrate against time t with impact velocity
Ui = 2m/s, gap density ε = 0.15, ambient pressure Pa =
1 atm, and surface tension σ = 1/50N/m for various
mesh densities is illustrated in Figure 9(b). As can be
seen in 9(b), all the deformation results are quite uniform

with negligible deviations during the entire impact pro-
cess. The difference of the maximum indentation depth
between 512 × 512 mesh and 1024 × 1024 mesh is only
0.55%, indicating that the 512 × 512 mesh is accurate
enough for subsequent analyses. This independence test
strongly confirms the high efficiency of the self-mesh
adaptation method implemented in BASILISK.

In the spirit of mechanically averaged responses, the
equivalent elastic properties of the entire micropillar-
arrayed viscoelastic surface are governed by the five-
parameter generalizedMaxwell model in the LC space, as
stated in Section 2.3. We elucidate this averaging proce-
dure by illustrating the dimensionless deformation dl/h
of each local discretized point at the base boundary at
a certain moment (for instance, t = 1.15 s) as shown in
Figure 10 with impact velocity Ui = 2m/s, gap density
ε = 0.15, ambient pressure Pa = 1 atm, and surface ten-
sion σ = 1/50N/m. As such, the averaged deformation
at one moment is the arithmetic mean of all the local
momentary deformations. It is noteworthy that point 1
in Figure 10 coincides with the droplet centre. And the
discretized points ranging from node 60 to node 100 rep-
resent the rim of the spreading liquid laminate by droplet
impingement.

6.2. Contours of spreading and splashing processes
and droplet impact behaviours

Based on the parametric simulations of droplet impact
processes, we observed the evolutions of both the veloc-
ity field and the volume fraction field as shown in
Figures 11–15. Also, the movies for the contours of
volume fraction f are showcased in the supplemental
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Figure 10. Dimensionless deformation dl/h at t = 1.15 s of each
local discretized point at the bottom boundary with impact
velocity Ui = 2m/s, gap density ε = 0.15, ambient pressure
Pa = 1 atm, and surface tensionσ = 1/50 N/m. The droplet con-
tact radius on the substrate approximately ranges from node 1,
which is aligned with the right boundary shown in Figure 2, to
node 100 at the corresponding moment.

materials. For all the cases in Sections 6.1–6.5, as stated
in Section 3.1, the height of micropillars h = 100 × 10−6

unit length and the droplet diameter D = 1 unit length,
corresponding to 0.1µm and 1mm, respectively, if the
unit length is set to be 1mm.While ε = 0.15,Pa = 1 atm,
and σ = 1/50N/m, the contours of volume fraction f
for the droplet impact processes with Ui = 1m/s, 2m/s,
3m/s, and 4m/s, respectively, are shown in Figure 11.
With increasing impact velocity, the splashing magni-
tude is enhanced and more satellite droplets are gener-
ated. Additionally, with ε = 0.15, σ = 1/50N/m, and
Ui = 3m/s, the contours of volume fraction f and ver-
tical velocity Uv are showcased in Figures 12 and 13,
respectively, when splashing occurs with varying ambi-
ent pressure Pa = 2 atm, 3 atm, and 5 atm. As can be seen
in Figure 12, the splash angle changes from 92.65◦ to
114.44◦ as Pa increases from 2 atm to 5 atm. In general,
more satellite droplets are ejected with increasing ambi-
ent pressure. Meanwhile, with a higher ambient pres-
sure, each of the generated satellite droplets tends to
become smaller. Moreover, while ε = 0.15, Pa = 1 atm,
andUi = 3m/s, the splash processes with diverse surface
tension coefficients, i.e. σ = 1/25N/m, 1/100N/m, and
1/200N/m, are displayed in Figures 14 and 15, respec-
tively. As displayed in Figure 14, with σ decreased from
1/25N/m to 1/200N/m, the splash angle increases from
58.76◦ to 84.96◦, and more satellite droplets are ejected
at the rear end of the splash tip with a tendency to break

into even smaller ones. Thus, as opposed to the declin-
ing trend of splash intensity with increasing surface ten-
sion coefficient σ , the splash extent gets enhanced with
either increasing impact velocity Ui or rising ambient
pressure Pa.

6.3. Substrate deformation during droplet impact
with varying impact velocity

Since the viscoelastic properties of themicropillared sub-
strate are substantially determined by gap density ε in
the five-parameter viscoelastic model, we investigated its
equivalent elastic response under a certain impact veloc-
ity Ui with varying ε. To study the effects of impact
velocity Ui on the droplet impinging process, we con-
ducted simulations by setting Ui equal to 1m/s, 2m/s,
3m/s, and 4m/s (corresponding to We = 50, 200, 450,
and 800), respectively, for each gap density ε, while
Pa = 1 atm and σ = 1/50N/m.

Instead of using each individual micropillar’s inden-
tation depth, we adopted the average indentation davg
across all the discretized mesh points in our analy-
sis. Then, the average dimensionless indentation depth
davg/h of the micropillared substrate against time t with
changing gap density ε for each impact velocity Ui is
showcased in Figure 16. As stated in Section 3.1, the ini-
tial height ofmicropillars h = 100 × 10−6 unit length. As
can be seen in Figure 16, the deformation response of
the micropillared substrate to impact can be divided into
two distinct stages, i.e. the going-down stage I (including
the pre-impact stage) and the lift-up stage II (containing
the post-impact stage). In addition, themaximum inden-
tation depth is enlarged with increasing impact velocity
Ui for each gap density ε. For instance, for ε = 0.15
and Ui = 2m/s, the maximum dimensionless indenta-
tion depth reaches 2.565 × 10−8 at t = 1.193 s. In com-
parison, themaximum indentation depth rises to 6.743 ×
10−8 at t = 0.88 s in the case of ε = 0.15 andUi = 3m/s.
Also, the duration of the lift-up stage II is shortened with
increasing Ui for each ε. Therefore, there exists a larger
displacement variation within a shorter period for the
entire lift-up stage under the higher impact velocity. Con-
sequently, with increasing Ui, a more intensified splash
would be incurred, andmore satellite droplets get ejected
from the mother droplet, as shown in Figure 11.

Furthermore, the averaged dimensionless deforma-
tion velocity d′

avg/|Ui| (here d′ is the deformation veloc-
ity for a discretized cell, i.e. the derivative of d with
respect to the time step size�t) of the micropillared sub-
strate against time t with varying gap density ε for each
impact velocity Ui is displayed in Figure 17. It is note-
worthy that the negative sign of d′

avg/|Ui| just indicates
the going-down phase (indentation) of the micropillars.
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Figure 11. Contours of volume fraction f during droplet impact processes with impact velocity Ui increased from 1m/s to 4m/s while
ε = 0.15, Pa = 1 atm, and σ = 1/50 N/m: (a) Ui = 1m/s; (b) Ui = 2m/s; (c) Ui = 3m/s; and (d) Ui = 4m/s. See Movies S2-5 for the
cases of (a)–(d) in the supplemental materials, respectively.

As can be seen in Figure 17, with increasing impact
velocity Ui, both the maximum indentation velocity and
the maximum lift-up velocity are enhanced. In specific,
for ε = 0.15 and Ui = 3m/s, the maximum indenta-
tion velocity reaches 1.500 × 10−10 at t = 0.867 s and the
maximum lift-up velocity gets to 2.982 × 10−11 at t =
0.902 s. In comparison, they increase to 2.794 × 10−10 at
t = 0.738 s and 4.841 × 10−11 at t = 0.765 s, respectively,
for the case of ε = 0.15 and Ui = 4m/s. Meanwhile, the

duration of either the going-down stage or the lift-up
stage (marked as regions II and III in Figure 17, respec-
tively) of the micropillared array is dramatically short-
ened as the impact velocity rises for each gap density. This
trend indicates that in the case of higher impact velocity
Ui, the kinetic energy transferred from the droplet into
the micropillars during the impingement is at least par-
tially converted back to the droplet within amuch shorter
period throughout the lift-up process. In other words, an
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Figure 12. Contours of volume fraction f during droplet impact processes with ambient pressure Pa increased from 2 atm to 5 atmwhile
ε = 0.15, σ = 1/50 N/m, and Ui = 3m/s: (a) Pa = 2 atm; (b) Pa = 3 atm; and (c) Pa = 5 atm. The inset in each figure represents the
zoom-in view of the splash process for the corresponding case. See Movies S6-8 for the cases of (a)–(c) in the supplemental materials,
respectively.

Figure 13. Contours of vertical velocity Uv during droplet impact processes with ambient pressure Pa increased from 2 atm to 5 atm
while ε = 0.15, σ = 1/50 N/m, and Ui = 3m/s: (a) Pa = 2 atm; (b) Pa = 3 atm; and (c) Pa = 5 atm.

Figure 14. Contours of volume fraction f during droplet impact processes with surface tension coefficient σ decreased from 1/25 N/m
to 1/200 N/mwhile ε = 0.15, Pa = 1 atm, and Ui = 3m/s: (a) σ = 1/25 N/m; (b) σ = 1/100 N/m; and (c) σ = 1/200 N/m. The inset
in each figure represents the zoom-in view of the splash behaviour for the corresponding case. See Movies S9-11 for the cases of (a)–(c)
in the supplemental materials, respectively.
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Figure 15. Contours of vertical velocityUv during droplet impact processeswith surface tension coefficient σ decreased from1/25 N/m
to 1/200 N/mwhile ε = 0.15, Pa = 1 atm, and Ui = 3m/s: (a) σ = 1/25 N/m; (b) σ = 1/100 N/m; and (c) σ = 1/200 N/m.

Figure 16. Dimensionless deformation displacement davg/h of the micropillared substrate against time t with changing gap density ε

while Pa = 1 atm and σ = 1/50 N/m for varying impact velocity Ui : (a) Ui = 1m/s; (b) Ui = 2m/s; (c) Ui = 3m/s; and (d) Ui = 4m/s.
The initial height of micropillars h = 100 × 10−6 unit length. Two stages, i.e. stage I (going-down including pre-impact process) and
stage II (lift-up containing post-impact process), denote the entire droplet impact process.
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Figure 17. Dimensionless deformation velocityd′
avg/|Ui|of themicropillared substrate against time twith changinggapdensity εwhile

Pa = 1 atm and σ = 1/50 N/m for varying impact velocity Ui : (a) Ui = 1m/s; (b) Ui = 2m/s; (c) Ui = 3m/s; and (d) Ui = 4m/s. The
initial height of micropillars h = 100 × 10−6 unit length. The entire impact process is composed of four stages, i.e. I (prior), II (going-
down), III (lift-up), and IV (post).

even more drastic variation of deformation velocity of
micropillars ensues as Ui increases, which would facili-
tate the splash occurrence with an enhanced intensity, as
reflected in Figure 11.

6.4. Substrate deformation during droplet impact
with distinct ambient pressure

Since the ambient gas density ρg also serves as a dom-
inant factor in determining the maximum wave num-
ber kmax (Equation (25)), we simulated splash circum-
stances under gap density ε = 0.15 and impact velocity
Ui = 2m/s and 3m/s, respectively, with varying ambi-
ent pressure Pa. The dimensionless indentation depth
davg/h of themicropillared substrate against time t under
two distinct impact velocities with increasing ambient
pressure Pa is displayed in Figure 18(a,b), respectively.
Furthermore, the dimensionless deformation velocity

d′
avg/|Ui| of the micropillared substrate against time t

under the same conditions is shown in Figure 18(c,d),
respectively.

With increasing ambient pressure, a similar decreasing
trend of indentation depth exhibits for both Ui = 2m/s
and 3m/s, as displayed in Figure 18(a,b), respectively.
In particular, for Ui = 3m/s, the maximum indentation
depth reduces from 7.058 × 10−8 to 4.628 × 10−8 as the
ambient pressure Pa is increased from 3 atm to 5 atm .
Moreover, the displacement regions labelled with the red
lines in Figure 18(a,b) correspond to the velocity ranges
marked with the red solid lines in Figure 18(c,d), respec-
tively. A close look at Figure 18(a,b) reveals that the slope
of the displacement range demarcated by red line is not
consistent with the slope of its prior continuous range of
the lift-up phase. The slope inconsistency of the red line
may be due to an intense velocity instability, which would
facilitate a more intensified splashing.
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Figure 18. Dimensionless deformation displacement davg/h and dimensionless deformation velocity d′
avg/|Ui| of the micropillared

substrate against time t with ambient pressure Pa increased from 2 atm to 5 atm while σ = 1/50 N/m, gap density ε = 0.15, and
Ui = 2m/s, 3m/s, respectively: (a) davg/h vs t, Ui = 2m/s; (b) davg/h vs t, Ui = 3m/s; (c) d′

avg/|Ui| vs t, Ui = 2m/s; and (d) d′
avg/|Ui|

vs t, Ui = 3m/s. The initial height of micropillars h = 100 × 10−6 unit length. In (d), the ejection and rejoining behaviours of satellite
droplets, which induce the drastic oscillations during the lift-up stage as Pa = 2 atm and 3 atm, can be seen in Movies S6 and S7 of the
supplemental materials, respectively.

As shown in Figure 18(c,d), both the maximum
indentation velocity and the maximum lift-up velocity
decrease with increasing ambient pressure Pa. With Pa
increased from 2 atm to 3 atm while the impact velocity
Ui = 2m/s, ignoring some minor oscillations, the maxi-
mum indentation velocity reduces from 4.824 × 10−11 to
3.651 × 10−11 and themaximum lift-up velocity declines
from 1.783 × 10−11 to 1.604 × 10−11. Consequently, a
lower Pa results in a velocity profile of larger values
around the main splash tip as illustrated in Figure 13(a).
However, this observation doesn’t mean that the splash-
ing under a lower Pa occurs in a more intensified fash-
ion, i.e. multiple satellite droplets ejected and a bigger
splash angle formed (the angle gauged between the main
splash tip and the horizontal substrate surface), because

the largest splash angle of 114.44◦ appears at Pa = 5 atm
as shown in Figure 12(c). On the contrary, the splash
magnitude is mainly determined by the instability of
the dimensionless deformation velocity d′

avg/|Ui|. In the
cases of Ui = 2m/s and 3m/s while Pa = 5 atm, there
exists a consecutive range whose slope is not consistent
with its prior range within the lift-up phase, which is
marked by the red solid lines as shown in Figure 18(c,d)
(corresponding to the red lines in Figure 18(a,b)), respec-
tively. This slope inconsistency is indicative of a sub-
stantial instability at the interface between the liquid
droplet and the ambient gas, which would induce a
more intense splashing with satellite droplets gener-
ated and a larger splash angle formed, as displayed in
Figure 12(c).
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Figure 19. Dimensionless deformationdisplacement davg/h anddimensionless deformation velocityd′
avg/|Ui|of themicropillared sub-

strate against time twith surface tension coefficient σ decreased from 1/25 N/m to 1/200 N/mwhile Pa = 1 atm, gap density ε = 0.15,
and Ui = 2m/s, 3m/s, respectively: (a) davg/h vs t, Ui = 2m/s; (b) davg/h vs t, Ui = 3m/s; (c) d′

avg/|Ui| vs t, Ui = 2m/s; and (d)
d′

avg/|Ui|, Ui = 3m/s. The initial height of micropillars h = 100 × 10−6 unit length.

6.5. Substrate deformation during droplet impact
with different surface tension coefficients

As indicated by Equation (25), surface tension coefficient
σ has a significant influence on themaximumwave num-
ber kmax aswell. Therefore, we simulated and investigated
the splashing behaviours with a variety of surface tension
coefficients while gap density ε = 0.15, ambient pres-
sure Pa = 1 atm, and droplet impact velocityUi = 2m/s
and 3m/s, respectively. With a varying surface tension
coefficient σ , the dimensionless deformation displace-
ment davg/h and the dimensionless deformation velocity
d′

avg/|Ui| against time t for impact velocity Ui = 2m/s
and 3m/s are depicted in Figure 19(a–d), respectively.

As can be observed in Figure 19(a,b), only a minor
increment of the maximum indentation depth exhibits
with decreasing surface tension coefficient for both

impact velocities, i.e. Ui = 2m/s and 3m/s. Specifi-
cally, withUi = 3m/s, the maximum indentation depths
with surface tension coefficient σ = 1/100N/m and
1/200N/m are 6.758 × 10−8 and 6.768 × 10−8, respec-
tively. Although there is a rather small increment in the
maximum lift-up height with decreasing surface tension
σ for each impact velocity, the maximum lift-up heights
under the three different surface tension coefficients can
be deemed almost the same for both Ui = 2m/s and
3m/s. Therefore, the variations of both the maximum
indentation depth and themaximum lift-up height under
distinct values of σ are relatively minute, indicating that
the variation of surface tension σ is not the dominant
factor determining the splash extent.

Not only the maximum indentation velocity but also
the maximum lift-up velocity does not alter too much
when surface tension coefficient σ is decreased from
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Figure 20. Dimensionless deformationdisplacement davg/h anddimensionless deformation velocityd′
avg/|Ui|of themicropillared sub-

strate against time t while Pa = 1 atm, σ = 1/50 N/m, and Ui = 1m/s, 2m/s, respectively, with varying gap density ε: (a) davg/h vs t,
Ui = 1m/s; (b) davg/h vs t, Ui = 2m/s; (c) d′

avg/|Ui| vs t, Ui = 1m/s; and (d) d′
avg/|Ui| vs t, Ui = 2m/s. The initial height of micropillars

h = 3000 × 10−6 unit length. In (a) and (b), stages I and II are consistentwith Figure 16. In (c) and (d), stages I-IV have the samemeanings
as in Figure 17.

1/25N/m to 1/200N/m for impact velocity Ui = 2m/s
and 3m/s, as shown in Figure 19(c,d), respectively.
Therefore, surface tension has a minor influence on the
deformation velocity of the micropillared substrate. For
instance, under Ui = 2m/s, the maximum indentation
velocity has a minor variation between 5.782 × 10−11

and 5.740 × 10−11 and the maximum lift-up velocity
slightly varies between 1.385 × 10−11 and 1.370 × 10−11

as σ changes from 1/100N/m to 1/200N/m. Nonethe-
less, the velocity instability, which is reflected by a consec-
utive rangewhose slope of its dominant trend, i.e. without
considering intermittent peaks pointing up and down, is
not consistentwith its prior range during the lift-up phase
as demarcated by the red solid lines in Figure 19(c,d),
is strengthened with decreasing surface tension coeffi-
cient. This strengthening trend is evidenced by the fact
that the inconsistent range of slope generally deviates

further away from its prior range under the lower sur-
face tension condition. Because the strengthened velocity
instability in the case of a lower surface tension may
lead to intensified splash, a larger extent of splash conse-
quently ensues in this situation with a bigger splash angle
formed and more accompanying satellite droplets would
be generated, as displayed in Figure 14. However, as
opposed to the aforementioned slope inconsistency of the
dominant and consecutive trend, there exist some inter-
mittent oscillations or peaks of the dimensionless velocity
d′

avg/|Ui| during the lift-up stage for σ = 1/100N/m
under Ui = 2m/s and for σ = 1/25N/m under Ui =
3m/s, as shown in Figure 19(c,d), respectively. It is note-
worthy that these intense intermittent oscillations them-
selves do not stand for the entire velocity instability,
which is signified by the slope inconsistency as discussed
above. Instead of resulting in a more intense splash, these
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Figure 21. Maximum interface growth rateωk=kmax againstwave
number kmax for cases with gap density ε = 0.15.

intermittent oscillations would just induce a large veloc-
ity divergence at the main splash tip, as displayed in
Figure 15(a) for the case of Ui = 3m/s.

6.6. Droplet impacting with varying droplet
diameter andmicropillar height

In addition, the impact processes of a droplet of 2 unit
lengths in diameter with impact velocityUi = 1m/s and
2m/s, respectively, for each gap density ε listed in Table 1
were simulated, as shown in Figure 20. Here, the ambi-
ent pressure Pa and surface tension σ are maintained
at the same levels as in Section 6.3, i.e. Pa = 1 atm and
σ = 1/50N/m. Also, the height of the micropillars is
increased to 3000 × 10−6 unit length. In the realistic
scale, with the unit length being millimeter, the droplet
diameter D = 2mm and the initial micropillar height
h = 3µm.

For the cases with an enlarged droplet diameter (D =
2mm) and an increased micropillar height (h = 3µm),
the averaged dimensionless displacement davg/h of the
micropillared substrate against time t with changing gap
density ε for impact velocity Ui = 1m/s and 2m/s is
showcased in Figure 20(a,b), respectively. Compared to
the displacement variation in the case of the smaller
droplet diameter D = 1mm and shorter micropillar
height h = 0.1µm(as shown in Figure 16(a,b)), the trend
of the dimensionless displacement for the correspond-
ing case of D = 2mm and h = 3µm acts very similarly
under the same impact velocity Ui and gap density ε,
as shown in Figure 20(a,b). However, an increment of
the maximum indentation depth under the same Ui and

ε becomes prominent in the cases of the larger droplet
diameter and taller micropillar height. And the aver-
aged dimensionless deformation velocity d′

avg/|Ui| of
the micropillared substrate against time t with vary-
ing gap density ε for impact velocity Ui = 1m/s and
2m/s is displayed in Figure 20(c,d), respectively, while
D = 2mm and h = 3µm. Regarding each gap density,
there is much similarity between Figure 20(c,d) and
Figure 17(a,b) (D = 1mm and h = 0.1µm) for the same
impact velocity Ui. Nonetheless, due to the larger impact
pressure caused by an enlarged droplet size, the dimen-
sionless deformation velocity in the case of D = 2mm
and h = 3µm generally increases under the sameUi and
ε. In comparison with prior cases, more violent oscilla-
tions of davg/h and d′

avg/|Ui|have emerged in the cases of
a larger droplet size and tallermicropillars, resulting from
the stronger impact pressure associated with the bigger
impinging droplet.

6.7. Splashmagnitude comparedwith the
Kelvin-Helmholtz instability

After simulating the splashing process and analysing
the tendency of splash magnitude under the effects of
impact velocity Ui, ambient pressure Pa, and surface
tension coefficient σ , we conducted a quantitative esti-
mation of flow instability, which may result in poten-
tial splash, via the Kelvin-Helmholtz instability theory
(Equations (24)–(25)) to determine how intense the
splash would be. By substituting the values of impact
velocity Ui (approximately treated as Urel in Equa-
tions (24)–(25)), gas density ρg , ambient pressure Pa, and
surface tension coefficient σ used in one certain simula-
tion into Equations (24) and (25), the splashmagnitude of
the corresponding case can be quantified by the interface
growth rateω, which owns amaximumpoint at kmax. As a
result, for the various cases with ε = 0.15, the maximum
interface growth rate ωk=kmax against wave number kmax
is shown in Figure 21. It can be seen thatUi plays an even
more dominant role in determining ωk=kmax than either
Pa or σ , which is due to the higher order (the second
order) of the velocity term in Equation (25).

The trend of the interface growth rate ωk=kmax shown
in Figure 21 is consistent with the splash circumstance
displayed in Figures 12 and 14, which are the contours
of volume fraction f with varying Pa and σ , respectively,
as ε = 0.15 and Ui = 3m/s. With Pa in the range of
2 atm to 5 atm, the magnitudes of ωk=kmax for points b-d
shown in Figure 21 conform to the splash intensity results
shown in Figure 12. In specific, a larger splash angle of
114.44◦ and more satellite droplets are present at Pa =
5 atm in Figure 12(c), which is consistent with the higher
ωk=kmax of point d as shown in Figure 21. In addition,
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with σ decreased from 1/25N/m to 1/200N/m, the val-
ues ofωk=kmax for points e-g displayed in Figure 21match
the splash extent contours represented in Figure 14. For
instance, a larger splash angle of 84.96◦ and more satel-
lite droplets of smaller volume become prominent at
σ = 1/200N/m in Figure 14(c), which agrees with the
higher ωk=kmax of point g as represented in Figure 21.
Consequently, the contour results are in an excellent
agreement with the K-H instability theory, indicating
the conducted simulations of droplet impact on the
micropillared substrate still abide by the interface growth
mechanism.

7. Conclusions

In this work, we performed the numerical simulations of
liquid droplet impact dynamics on micropillar-arrayed
viscoelastic surfaces using BASILISK. As such, a level set
method is used to initially construct the profile of the
droplet. As to themathematical model of themicropillar-
arrayed viscoelastic substrate, a five-parameter general-
ized Maxwell model in the Laplace-Carson (LC) space is
adopted by us to obtain the equivalent elastic response
related to its viscoelastic properties. Subsequently, the
bulk strain in the real space, which is used for cal-
culating the substrate deformation velocity, is acquired
by the inverse LC transform. The deformation of the
micropillar array in the horizontal shear direction is
omitted in this study due to its secondary influence on
the droplet’s normal impingement. Eventually, this bulk
deformation velocity at each time step is treated as a
Dirichlet boundary condition to the flow fields of both
the liquid droplet and the ambient gas.

By tuning a variety of factors such as impact velocity
Ui, ambient pressure Pa, and surface tension coefficient
σ in the parametric study, the mechanisms of how these
factors affect the splash extent on the micropillar-arrayed
surface are revealed. For instance, with increasing impact
velocity Ui, both the maximum indentation velocity and
the maximum lift-up velocity increase under each gap
density ε. In addition, both the going-down period and
the lift-up period of micropillars are dramatically short-
ened with impact velocity Ui enhanced. Also, a com-
prehensive view of the fluid fields has been obtained by
virtue of contours of various parameters. These para-
metric studies shed light on how the viscoelasticity of
the micropillar-arrayed substrate influences the droplet’s
spreading and splashing behaviours.

Furthermore, the splash magnitude has been quan-
titatively analysed by the Kelvin-Helmholtz instability
theory for different cases, which reaches a good agree-
ment with our simulation results regarding the splash
extent under a wide range of impact velocity Ui, ambient

pressure Pa, and surface tension coefficient σ . With
increasing Ui, the splash is intensified and there are
more satellite droplets generated. This increasing trend
of splash also holds for the cases with rising Pa, which
is verified by the experimental results (Xu et al., 2005)
that the splashingwould be strengthened by the increased
ambient pressure. On the contrary, the declining σ can
enhance splashing possibility and magnitude. And these
splash tendencies are consistent with the experimental
observations of droplet impact on a rigid solid surface
conducted by Liu et al. (2010).Hence, our numerical sim-
ulation methodology captures the main features of the
droplet impact dynamics onmicrostructured viscoelastic
surfaces and underscores the importance of the LC trans-
form in studying fluid-viscoelastic solid interactions by
virtue of the mechanically averaged responses to recon-
cile the geometric inconsistency of multiscale domain.

Regarding the air entrapped within the gaps between
the micropillars, its cushion effect on the droplet impact
dynamics is neglected due to the relatively low gap den-
sity ε in this study. However, with larger gap density,
the cushion effect deserves further investigation in future
work.
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